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H I G H L I G H T S

• pH responsive capsaicin@chitosan nanocapsules were prepared by microemulsion.

• These nanocapsules presented cyclic stability under alternate pH.

• The changed structure of nanocapsules was caused by the protonation and deprotonation amino groups of chitosan.

• Stable pH response performance of nanocapsules prolonged the service time of outstanding antibacterial activities.
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A B S T R A C T

Capsaicin@chitosan nanocapsules (CAP@CS) were prepared by micro-emulsion method in this work. Through
transition between protonation and deprotonation of pH sensitive amino groups in chitosan, capsaicin can be
triggered for self-releasing by pH changes resulted from bacterial reproduction. The total amount of released
CAP@CS at pH 4 is five times more than that at pH 8.5. The CAP@CS is able to maintain the pH responsive
property after 15 cycles of dialysis at pH ranging from 4 to 8.5, indicating a good cycling stability of CAP@CS
nanocapsules. The bacteriostasis efficiency of CAP@CS is still up to 82.23%, 81.13% and 80.43% against ad-
hesion of Escherichia coli (E.coli), Staphylococcus aureus (S.aureus) and Pseudomons aeruginosa (P. aeruginosa),
respectively, which is caused by the repeated protonation and deprotonation of amino groups in chitosan. The
prepared CAP@CS nanocapsules enable a bio-driven, intelligent and pH responsive performance for antifouling
in marine applications.

1. Introduction

In marine environments, the traditional methods against the growth
of bacteria by pre-doping biocides into coatings would result in an early
loss of the coating's antifouling function because of the poorly con-
trolled release of biocides [1–6]. A promising solution is to achieve
controlled-release of biocides through microencapsulation on demand
nowadays [6–9]. Microencapsulation, i.e., encapsulating biocides
through covalent linkages or physical interactions, could reduce the

rapid release of biocides from the nanocapsules to the surroundings,
and protect the encapsulated biocides from degradation [10–13].
Moreover, the condition of local environment around nanocapsules will
change due to the secretions produced by bacterial metabolism, such as
temperature, pH and enzyme activity [14,15]. The fabrication of in-
telligent nanocapsules which can respond to the stimulation from en-
vironment is needed in antifouling field to further prolong the service
time of antifouling agents [16–20].

Many natural or synthetic polymers, surfactants and lipids have
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been employed as intelligent drug carriers to achieve responsive release
of drugs in vivo or in vitro [21–26]. Polysaccharides have received
increasing attention due to their remarkable biological and physical
properties, including high biocompatibility, excellent biodegradability,
low toxicity, as well as abundant availability [21,25,27]. For instance,
chitosan, alginate and cellulose derivatives have been studied widely as
pH responsive materials [28–30]. Gellan and xanthan gums present
remarkable temperature-sensitiveness for the transition between an
ordered helix structure at low temperature and a disordered coil state at
high temperature [31]. Polysaccharides with disulfide bonds which can
be cleaved to thiol groups by glutathione in the cells can achieve in-
tracellular controlled release of drugs [32].

Cationic natural polysaccharide chitosan (CS) [33–39] possesses
antibacterial properties due to its interactions between the positively
charged amino groups and the negatively charged cell membranes of
bacteria [40–43]. Moreover, nanocapsules made of CS exhibit a typical
pH-responsive characteristic due to the inclusion of a large number of
amino groups in the side chains [44–50]. Specifically, the dissociation
constant (pKa) of CS is about 6.5 [51], the nanocapsules swell due to
the protonation of amino groups for the environmental pH < 6.5.
Deprotonation of amino groups occurs in alkaline environments, re-
sulting in the shrinking of nanocapsules to prolong the service time of
drugs [36,45,52–54]. Thus, CS nanocapsules have been highly pursued
as smart drug delivery system in vivo or in vitro [25,37,55]. However, it
hasn't been studied for delivery of biocides intelligently in marine ap-
plication.

In marine environments, the local pH increase due to the secretions
produced by bacterial metabolism [14,15] and CS nanocapsules will
swell and release biocides on demand subsequently to prevent the
biofouling in response to the increasing environmental pH. On the
contrary, the capsules will maintain closed in the absence of bacterial
adhesion. Consequently, the intelligent nanocapsules can prolong the
service time of antifoulant. Thus, CS provides a promising material for
antifouling in marine application to store and release biocides in a
controllable way upon stimulation by environmental changes. Fur-
thermore, antifouling property means preventing the settlement of
fouling organisms by killing organisms including micro-organisms like
bacteria, diatoms and algae spores; the other is macro-organisms like
barnacles, mussels, and algae. Antibacterial properties as one of the key
parts of antifouling can prevent the bacteria adhesion progress,
avoiding the following process of algae and mussels growth effectively.
Therefore, combining antibacterial material with pH responsive chit-
osan can impart great antibacterial properties to chitosan nanocapsules
for the application in antifouling field.

Due to the increasing restriction of toxic antibacterial material such
as organo-tin compounds [56], eco-friendly biocides such as natural
compounds derived from plants and animals have been paid more at-
tention [57,58]. Among these natural compounds, capsaicin (CAP) is an
ideal biocide due to its remarkable bactericidal performance, environ-
mental friendly properties and excellent biodegradability [59–62].
Furthermore, CAP, as typical negative charged biocide, can form stable
complexes by electrostatic interaction between CS and CAP to prolong
the release period [37,38]. It is expected that CAP as biocide loaded in
pH-responsive CS nanocapsules has the capability for developing in-
telligent antibiofouling nanocomposites, which have not been studied
yet.

In this study, micro-emulsion method was used to prepare the pH-
responsive CAP@CS nanocapsules with a controlled ratio of chitosan to
capsaicin. The self-release performance of CAP@CS nanocapsules in
response to pH changes was evaluated by colony counting method in
the environments containing Escherichia coli (E.coli), Staphylococcus
aureus (S.aureus) and Pseudomons aeruginosa (P. aeruginosa) bacteria.
An alternate cycling test was conducted to characterize the cyclic sta-
bility of CS@CAP nanocapsules under different dialysate (pH 4 and pH
8.5). The remarkable cycling stability of CAP@CS nanocapsules was
studied and found to be caused by repeated protonation and

deprotonation of amino groups in chitosan.

2. Materials and methods

2.1. Materials

Capsaicin and soybean lecithin with a purity> 98% were pur-
chased from Macklin Biochemical Co. Ltd. (Shanghai, China). Chitosan
(CTS) with the viscosity-average molecular weight of 1.0× 106 and
deacetylation degree of about 95% was purchased from Aladdin
Chemistry Co Ltd. (China). Phosphate buffered solution (PBS) solution
was prepared with NaCl, KCl, Na2HPO4 and KH2PO4 and the pH value
of PBS was adjusted with hydrochloric acid and sodium hydroxide.
Model bacteria S. aureus (ATCC25923), E. coli (ATCC9522) and P.
aeruginosa (ATCC27853) were purchased from RiShui Biotech Co.Ltd
(Qingdao, China). SYTO9/Propidium-Iodide (PI) BacLight Bacterial
Viability Kit was purchased from Invitrogen (Eugene, Oregon).

2.2. Preparation of core-shell CAP@CS nanocapsules

Capsaicin with varied weights (1.6, 3.2, 6.4mg) was dissolved in
30mg/mL absolute ethanol (400mL) containing lecithin to prepare an
oil phase. 10 mg chitosan was dissolved in 20mL acetic acid aqueous
solution (1%, v/v) by stirring at room temperature to prepare the
chitosan solution as the aqueous phase. These two solutions were mixed
upon stirring for 2 h to prepare the oil in water (O/W) microemulsion
by micro-emulsion method. The CAP@CS nanocapsules were obtained
after being transferred into a dialysis bag (MD25 8000-14000D) and
immersed in PBS (pH 8.5) for 12 h to eliminate free capsaicin.

2.3. Measurements of pH responsive performance of the prepared CAP @CS
nanocapsules

To measure the pH responsive performance of the prepared
CAP@CS nanocapsules, 5 mL suspension of the prepared nanocapsules
after dialysis was transferred into a dialysis bag (MD25 8000-14000D)
and immersed into 50mL PBS with various pH values (i.e., 4, 5, 6, 7,
and 8.5), respectively, at room temperature. Aliquots (3.0 mL) of the
solution at varied time intervals were taken from the dialysates to
measure the concentration of released CAP by monitoring the absorp-
tion peak located at 280 nm by UV–Vis spectrometry [63]. After the
sampling solution was taken, 3.0 mL fresh PBS was added back to keep
the total volume of the test solution constant. The total capsaicin mo-
lecules released through the dialysis membrane over time was calcu-
lated by Equation (1) [46]:

= × + ∑ ×

= − ×

= ×

=
= −Mi C 55 mL C 3 mL

M (0.32 mg/mL Cs) 3mL
Cumulative releasing (%) M /M 100%

i j 1
j i 1

j

A

i A (1)

where Mi (mg) is the total amount of released capsaicin from CAP@CS
nanocapsules as of measurement i, Ci (mg/mL) is the CAP concentration
of sample i (i= 1,2,3 …), ∑ ×

=
= − C 3 mLj 1

j i 1
j is the total quantity of

capsaicin in previously extracted samples, CS is the concentration of
free CAP before dialysis, and MA is the total quantity of encapsulated
CAP.

The suspension of CAP@CS after dialyzing in the PBS solutions (pH
4–8.5) was diluted and the zeta potential and size distribution of the
prepared nanocapsules were determined by Zetasizer Nano and dy-
namic light scattering (DLS), respectively.

2.4. pH-responsive antibacterial property of the prepared CAP@CS
nanocapsules

The antibacterial property of dialysates with pH of 4, 5, 6, 7 and 8.5,
respectively, was tested after dialyzing CAP@CS nanocapsules for 4 h
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by the colony counting method. S.aureus and E.coil were chosen as the
representative of Gram-positive and Gram-negative bacteria, respec-
tively. P.aeruginosa has also been tested as the representative of marine
bacteria. The initial concentration of bacterial was about 107–108 CFU/
ml. The bacteria were cultured in a Luria Broth medium and incubated
in a shaking incubator at 37 °C at a rotating speed of 110 rpm for 18 h.
The bacterial suspensions with different dialysates (pH 4, 5, 6, 7 and
8.5) and the same volume of physiological saline were then incubated
in a shaking incubator for another 18 h. After that, 20 μL suspension of
each dialysate was spread on a solid medium plate after diluted 105

times for colony counting.
In addition, the LIVE/DEAD bacterial viability kit was also used to

evaluate the antibacterial property for comparison [64]. E.coli bacterial
suspension was chosen as representative and was dyed by a mixture
solution of PI (i.e., red fluorescent dye for dead bacteria) and SYTO9
(i.e., green fluorescent dye for live bacteria). The color of bacteria was
observed from a fluorescence microscope to distinguish the live and
dead bacteria.

2.5. Recyclable performance of the prepared CAP@CS nanocapsules

The CS@CAP suspension placed in a dialysis bag was dialysed for
0.5 h in dialysate (pH 4). 3.0mL dialysate was taken to analyze the
concentration of released capsaicin by UV–Vis spectrometry. The dia-
lysis bag was then transferred to another dialysate (pH 8.5) and dia-
lysed for another 0.5 h 3mL dialysate was taken to analyze the con-
centration of released capsaicin. The zeta potential and diameter of
CAP@CS after each dialysate were also detected. The process of alter-
nating dialysis in dialysates with different pH values was repeated 15
times subsequently.

2.6. Characterization of CAP@CS nanocapsules

The size and surface morphology of the prepared CAP@CS nano-
capsules were characterized using a transmission electron microscope
(Hitachi H-700, Japan). The interaction between CS and CAP was
analyzed by Fourier transform infrared spectroscopy (FT-IR) IS-50
spectrometer (Nicolet America) with KBr discs. The Zeta potential of
the core-shell nanocapsules was measured by Zetasizer Nano (Malvern
Instrument, UK). The diameter distribution of the nanocapsules was
detected by dynamic light scattering (DLS) Zetasizer Nano (Malvern
Instrument, UK). The encapsulation efficiency and the pH responsive
behaviors of the prepared nanocapsules were performed by Ultraviolet
and visible spectrophotometer (UV–Vis) (Ue3900H, Hitachi Ltd). The
fluorescent live/dead stain images were investigated by confocal laser
scanning microscope (ZEISS Scope. A1).

3. Results and discussions

3.1. Characterization of the prepared CAP@CS nanocapsules

Fig. 1 shows the TEM image and size distribution of the prepared
CAP@CS core-shell nanocapsules. The nanospheres with 220 nm in
diameter were observed. Meanwhile, the average size of 231 nm of the
nanospheres determined by DLS (also called hydrodynamic diameter) is
consistent with the results from the TEM observation. The larger size
measured by DLS was due to the solvent effect at the hydrated state.

Fig. 2 shows the FT-IR spectra of CAP@CS, CS and CAP. The broad
adsorption peak at 3500- 3300 cm−1 is ascribed to the NeH and OeH
stretching vibration of CS in Fig. 2b [65], while the peak at 2880 cm−1

is attributed to the CeH symmetric stretching vibration. The peaks at
1656 and 1590 cm−1 are due to the NeH bending vibrations which
belong to the amino groups [66]. The peaks at 1423, 1371 and
1318 cm−1 indicate the CeH bending vibration, and the peak at
1014 cm−1 indicates the CeOeC skeletal stretching. For the spectra of
capsaicin (i.e., spectrum c), the peaks at 3300 and 3600 cm−1

correspond to the NeH stretching vibration and OeH stretching vi-
bration, respectively. The peaks at 2853 and 2923 cm−1 are assigned to
the CeH stretching vibration, and the peak at 1650 cm−1 is ascribed to
the C]O stretching vibration [67]. For CAP@CS nanocapsules (i.e.,
spectrum a), the spectrum is similar to that of CS, while the peaks at
2853 and 2923 cm−1 correspond to the CeH stretching vibration of
CAP. Meanwhile, the peak at 1650 cm−1 is ascribed to the C]O
stretching vibration of CAP, indicating that CAP is contained in the
prepared nanocapsules. Furthermore, the observed new absorption
peak at 1735 cm−1 corresponds to the formation of hydrogen bonds
between the carbonyl group of chitosan and the hydroxyl group of
capsaicin [35], indicating the interaction between the chitosan and
capsaicin.

The zeta potentials of CS, CAP and CAP@CS nanocapsules, as listed
in Table S1, are +38.14, −11.28, and +18.74 mV, respectively. It is
proven that the negatively charged surface of capsaicin is coated by
positively charged chitosan. The results further confirm the interaction
between chitosan and capsaicin, and are consistent with the results of
FT-IR.

Fig. 1. TEM image and size distribution of CAP@CS core-shell nanocapsules.
The diameter and zeta potential were detected in water solution (pH=7).

Fig. 2. FT- IR spectra of (a) CAP@CS, (b) CS and (c) CAP, respectively. The
inset shows the molecular formula of chitosan and capsaicin.
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3.2. pH responsive performance and mechanism of CAP@CS nanocapsules

Fig. 3a shows the cumulative percentage of released capsaicin in
dialysate with various pH (4–8.5). The amount of released capsaicin
was observed to increase with reducing the pH value. Initially, the
amount of released capsaicin in dialysate (pH 4 and 5) increases ra-
pidly, while that in dialysate of pH 7 and 8.5 increases slowly. At pH 4,
the cumulative release of capsaicin increases to about 59.6%, triple
times of 15.9% and 10.02% at pH 7 and pH 8, respectively. The cu-
mulative release of capsaicin at pH 4 and 5 does not change after 4 h,
while the released capsaicin at pH 7 and 8.5 reaches constant after
about 9 h. Since bacterial reproduction can reduce the environmental
pH, the release of capsaicin in response to the solution pH shows that

the prepared CAP@CS nanocapsules provide a promising material
triggered by bacterial activity for antibiofouling which will be tested in
the next session.

The controlled release of CAP@CS nanocapsules is probably related
to the structural change of the capsules upon treatment by dialysis
solutions with various pH [45,51,52]. To further understand the
structural changes of CAP@CS nanocapsules under different pH con-
ditions, the size of the CS@CAP nanocapsules after dialysis in different
dialysates (pH 4, 5, 6, 7 and 8.5) was measured by DLS, Fig. 3b. The
calculated average sizes of the CS@CAP nanocapsules are 384, 352,
327, 231, and 212 nm under pH values of 4, 5, 6, 7 and 8.5, respec-
tively. The increased size with the decrease of the dialysate pH is well
consistent with the UV–Vis results. The increased hydrated size of
CAP@CS under acidic conditions (e.g., pH 4 and 5.5) is due to the
swelling of capsules by protonation of the amino groups, which facil-
itates the release of pre-stored capsaicin. With the increase of pH value,
the capsules become smaller due to the deprotonation of amino groups.
The smallest size of the capsules obtained at pH 8.5 is almost the same
as that of the capsules without any release. Additionally, the TEM
images of CAP@CS pH 4 and pH 8.5 were also detected and presented
in the inset image of Fig. 4. The diameter of CAP@CS is 430 and
240 nm at pH 4 and pH 8.5, respectively and the morphology of
CAP@CS remains stable at pH 4.

Based on the results of UV–Vis and DLS measurements, the me-
chanism for the pH responsive releasing behavior of CAP@CS nano-
capsules is illustrated in Fig. 3c. Since the pKa of chitosan is about 6.5,
the eNH2 groups change to the eNH3

+ groups with the protonation of
amino groups when the pH of dialysate is decreased to pH 6, resulting
in an increase of positive charges and the electrostatic interaction in
system [36,45,53]. Since the amino groups are located on the side chain
of chitosan, the diffusion channel of small molecules becomes large,
promoting the release of capsaicin encapsulated in chitosan. Therefore,

Fig. 3. Cumulative release of capsaicin under different pH conditions (a), size distribution of the CAP@CS nanocapsules under different pH conditions (b), and the
proposed mechanism of the pH responsive releasing of CAP@CS nanocapsules (c).

Fig. 4. The zeta potential of CAP@CS nanocapsules at varying pH values. Inset
(a, b) are the TEM images of CAP@CS at pH 8.5 and pH 4 respectively.
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both the release rate of capsaicin and the cumulative released amount
increase with decreasing the pH value. When the environmental pH
increases to pH 7, the polymer network starts to shrink due to the amino
deprotonation, inhibiting the release of capsaicin. In addition, the
maximum cumulative release of capsaicin can only reach 59.6%, it can
be explained by the electrostatic interaction between chitosan and
capsaicin.

To demonstrate the protonation process of amino groups on chit-
osan more intuitively, the zeta potential of CAP@CS after dialysis in
different dialysates (pH 4, 5, 6, 7 and 8.5) was measured. Fig. 4 presents
the values of zeta potential increased with the decreased pH values. The
increasing zeta potential values indicates the changing from NH2 to
NH3

+ at amino groups on chitosan through combining with H+ in acid
environment. On the contrary, NH3

+ converts back to NH2 through
dehydrogenation under alkaline condition, leading to decreased zeta
potential values. Hence, capsaicin can release from nanoparticles
during the protonation process of chitosan. Therefore, this results of
zeta potential can be combined with the results of DLS and releasing
experiments to demonstrate the presence of structural changes in
chitosan leading to its pH response performance.

3.3. pH-responsive antibacterial property of the CAP@CS nanocapsules

Fig. 5 shows the colony counting results and bacteriostasis of CS,
CAP, and CAP@CS capsules against the adhesion of E.coil, S.aureus and
P. aeruginosa. The bacteriostasis is calculated by equation (a) [68–71]:

= − ÷ ×Bacteriostasis (A B) A 100 (2)

where A is the number of bacteria under control, and B is the number of
bacteria of the experimental samples.

It is seen from Fig. 5 (a, b) that the capsaicin possesses an excellent
antibacterial property. The bacteriostasis efficiencies against E.coli,
S.aureus and P. aeruginosa are up to 98.21%, 98.79% and 98.91%, re-
spectively. It is primarily attributed to the strong irritation of capsaicin
to bacteria. The bacteriostasis efficiencies of chitosan against E.coli,
S.aureus and P. aeruginosa are 82.88%, 76.47% and 84.71%, respec-
tively. The antibacterial property of chitosan is ascribed to the

positively charged amino groups which can kill bacteria through the
interaction between the positively charged CS and the negatively
charged bacteria. The results also demonstrate that CAP@CS nano-
capsules are more effective for antibacterial adhesion than single CS

Fig. 5. The number of E.coli, S.aureus, P. aeruginosa and bacteriostasis of CS, CAP, CAP@CS (a) (b), and those as a function of pH of the dialysate (c), (d). The
experiments were done with bacteria out of the culture directly and all tests were repeated at least 3 times.

Fig. 6. Fluorescent live/dead stain images of BLANK, CAP@CS nanocapsules,
CAP and CS. The E.coli bacteria suspension was incubated with physiological
saline solution, CAP@CS, CAP and CS for 18 h respectively and was stained
with the BacLight live/dead kit assay. Red and green dots refer to dead and live
bacteria, respectively. The scale bar is 10 μm. The experiments were done with
bacteria out of the culture directly and all tests were repeated at least 3 times.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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sample, with 95.91%, 95.37% and 95.37% of bacteriostasis against
E.coli, S.aureus and P. aeruginosa, respectively. The enhanced anti-
bacterial property is partly due to the sustained release of capsaicin
from the CAP@CS nanocapsules, and partly by the bactericidal prop-
erties of chitosan. Moreover, capsaicin is initially embedded in the
capsule. It could not kill bacteria as quickly as pure capsaicin. With
adhesion and growth of bacteria, the decreased solution pH around the
nanocapsules causes the protonation of chitosan. The swelling effect of
nanocapsules will cause capsaicin to release rapidly. Hence, the con-
trolled release of capsaicin from the CS@CAP nanocapsules is in re-
sponse to the pH change for antibiofouling.

To verify the pH-triggered antibacterial property of the CAP@CS
nanocapsules, the bacteriostasis of dialysates with various pH values
was tested by the plate count method as well. The results shown in
Fig. 5 (b, d) demonstrate that, with the increase of the dialysate pH, the
antibacterial effect of dialysate is reduced gradually. According to the
proposed mechanism stated above, the bacteriostasis is achieved by the
release of capsaicin from the nanocapsules with the decrease of the pH
value of dialysate. At high pH values, the shrinkage of nanocapsules
reduced the released capsaicin amount, resulting in a lower bacter-
iostasis.

The bacteriostatic effect can be seen directly from the fluorescence
images in Figs. 6 and 7. It is seen that the capsaicin possesses the best
antibacterial performance, and the CAP@CS nanocapsules show a
better antibacterial property than pure chitosan. Moreover, the bac-
teriostasis of dialysate decreases with increasing the pH value. Since
antibacterial property is one of the antifouling aspects which can re-
strict bacteria adherent and prevent the fouling process earlier, pH
responsive CAP@CS with remarkable antibacterial property have great
potential applications in antifouling.

3.4. Cyclic stability of the prepared CAP@CS nanocapsules

In reality, the pH value of the marine environment around the
bioattached structures may change from alkaline/neutral to acidic with
the multiplication of bacteria. After the bacteria are killed by the re-
leased biocides and removed from the structure surface, the environ-
mental pH can change back to neutral/alkaline gradually. An alternate
cycling test to simulate the release process of nanocapsules under pH 4
and 8.5 dialysates was conducted, Fig. 8. The amount of released cap-
saicin increases with increasing the time, and the cumulative release
amount reaches 41.7% after 5 h. There are about 20% capsaicin saved
compared to the result after dialyzing at pH 4 for 5 h. With increasing
the pH value from 4 to 8.5, the capsaicin release becomes slower. Al-
though the release rate of capsaicin decreases gradually as the number
of cycles increases, which probably results from the reduced con-
centration of encapsuled capsaicin, the release rate at pH 4 is still
higher than that at pH 8.

Furthermore, the size of nanocapsule particles after each cycle is
measured by DLS and the results are shown in the inset (a) of Fig. 8. The
average diameters of CAP@CS nanocapsules at pH 4 and 8.5 are about
320 and 220 nm, respectively, indicating the expansion of the nano-
capsules at pH 4 and the shrinkage at pH 8.5. The bacteriostasis of
CAP@CS nanocapsules after 5 alternate cycles performs well, with a
bacteriostasis of 82.23%, 81.13% and 80.43% against E.coli, S.aureus
and P. aeruginosa, respectively. It shows a great cycling stability of the
CAP@CS nanocapsules, which contribute to the recyclable process of
protonation and deprotonation.

To further demonstrate the cyclic stability of the CAP@CS nano-
capsules, the process of placing CAP@CS in PBS solution with alternate
(pH4 and pH 8) was repeated 15 times and the result was presented in

Fig. 7. Fluorescent live/dead stain images of BLANK, pH 4, pH 5, pH 6, pH 7
and pH 8.5 dialysates. The E.coli bacteria suspension was incubated with phy-
siological saline solution, pH 4, pH 5, pH 6, pH 7 and pH 8.5 dialysates for 18 h
respectively and was stained with the BacLight live/dead kit assay. Red and
green dots refer to dead and live bacteria, respectively. The scale bar is 10 μm.
The experiments were done with bacteria out of the culture directly and all tests
were repeated at least 3 times. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Cumulative release percentage of CAP under alternate cycling test. Inset
(a) shows the change of the diameter of CAP@CS under two pH values. Inset (b)
shows the cumulative release of CAP during intervals (0.5 h) under different pH
values.
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Fig. 9. The sizes of CAP@CS which represent the swelling degree of
nanocapsules are about 350 nm at pH 4 and 250 nm at pH 8.5 in 15
cycles, respectively, indicating that the pH response property can
maintain for at least 15 times. This phenomenon is caused by the re-
peated protonation and deprotonation process of amino groups on the
chitosan [36]. The amino groups on chitosan can change from NH2 to
NH3

+ through combining with H+ in acid environment. The electro-
static interactions of the positively charged ions can lead to segment
rejection, which provides the release channel for capsaicin. On the
contrary, nanocapsules shrink under alkaline condition with NH3

+

converting back to NH2 through dehydrogenation [48–50]. Therefore,
the prepared CAP@CS nanocapsules can repeat pH response under al-
ternate pH through repeated binding and desorption of hydrion. Ad-
ditionally, the increased size of nanoparticles at pH 8.5 can be attribute
to the swelling effect caused by long-term immersion in the buffer after
cycles.

To further demonstrate the protonation and deprotonation process
of chitosan and research the dispersivity and stability of CAP@CS na-
nocapsules, the zeta potential values of CAP@CS nanocapsules under
alternate pH (pH 4 and pH 8.5) during 15 cycles were also detected.
The results are presented in Fig. 9b. The results present that the zeta
potential values were almost constant after 15 cycles, indicating that
the protonation and deprotonation process of amino groups on the
chitosan still remain stable. CAP@CS still possesses the ability to adsorb
and desorb the hydrogen ions. The slightly decreased potential can be
explained by the decreased stability of the system which is caused by
the increased diameter of nanocapsules with long-term immersion in
PBS. The result indicates that the CAP@CS nanocapsules can remain
stable in the environment with alternate pH, which endows the
CAP@CS nanocapsules with the potential to be used in marine anti-
fouling applications.

4. Conclusions

The pH responsive CAP@CS nanocapsules with a high cycling sta-
bility and antibacterial property were successfully prepared as novel
antifouling agents by microemulsion polymerization. Depending on the
environmental pH being acid or alkaline, the nanocapsules can expand
or contract due to the protonation or deprotonation of chitosan, af-
fecting the release of capsaicin. The environmental acidification can be
caused by bacterial reproduction in the marine environment, the re-
lease of capsaicin can be triggered by the changed pH. The antibacterial
property of dialysate is found to increase with decreasing the pH value
due to the release of capsaicin in the acidic environment. The CAP@CS
nanocapsules maintained the pH responsive property, and demon-
strated a considerable bacteriostasis after cyclic alternate dialysis under
acid and alkali conditions with combined cyclic stability. The prepared

pH responsive CAP@CS nanocapsules can serve as novel antifouling
agents for marine antifouling.
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