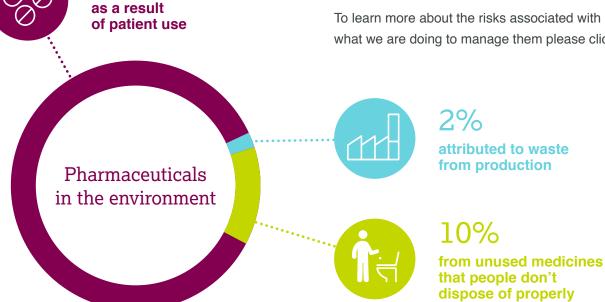


Pharmaceuticals in the Environment

As a responsible healthcare company, we are committed to the health and safety of our society and planet. We make it a priority to effectively manage the risks associated with pharmaceuticals in the environment (PIE).

How do Pharmaceutical Products get into the Environment?


Pharmaceuticals enter the environmental mainly as a result of patient use, where they can pass through our bodies and into waterways. Drug manufacture and the improper disposal of unused medicines also add to the trace levels of pharmaceuticals in rivers, lakes, soils, and, sometimes, drinking water. AstraZeneca recognises that, even in such low concentrations, the risks associated with Pharmaceuticals in the Environment (PIE) should be determined, minimised and managed.

88%

AstraZeneca supports actions based on scientific evidence to address the challenges presented by PIE. These include:

- Assessing the environmental risk of our medicines to support drug marketing authorisations
- Actively managing the environmental risks resulting from our manufacturing
- Supporting industry and government efforts to improve medicine disposal programs and education
- Co-sponsoring research to fill scientific gaps to understand and mitigate the risks of PIE.

To learn more about the risks associated with PIE and what we are doing to manage them please click here.

Societal Concerns about PIE

Trace amounts of pharmaceuticals have been detected in the environment for more than 20 years. As environmental monitoring expands and the methods for measuring pharmaceuticals in the environment become more sophisticated and detection limits get better, the geographical scope and number of pharmaceuticals measured in the environment will grow. We also recognise that these concerns will increase with improved access to medicines and an ageing population where more patients will pass pharmaceutical residues into the environment.

In most cases, environmental monitoring demonstrates that PIE resulting from patient use poses low or insignificant environment risk and the presence of these trace levels does not cause a problem. However, there can be some location-specific environmental risks for some particular pharmaceuticals, especially in regions where there may be inadequate sewage treatment, high populations of people and rivers with low flow conditions. We need to be sure we have tools to identify these 'at risk' situations and to devise appropriate solutions.

The issue of PIE is gaining attention outside the scientific community, with increased scrutiny from media, governments, regulatory agencies, and investors. The concerns about PIE have been recognised by the United Nations Environment Programme and the World Health Organization (WHO) within its Strategic Approach to International Chemicals Management, where Environmentally Persistent Pharmaceutical Pollutants (EPPP) has been included as an emerging policy issue. **For more information on EPPP click here**.

Risks to Human Health and the Environment

There are currently no reports of adverse human health effects attributed to pharmaceuticals in environmental waters. Studies from the World Health Organization concluded, "Trace quantities of pharmaceuticals in drinking water are very unlikely to pose risks to human health because of the substantial margin of exposure or margin of safety between the concentrations detected and the concentrations likely to evoke a pharmacological effect." Further, "Concerns over pharmaceuticals should not divert the attention and valuable resources of water suppliers and regulators from the various bacterial, viral and protozoan waterborne pathogens and other chemical priorities, such as lead and arsenic."

While trace concentrations of pharmaceuticals in drinking water are very unlikely to pose risks to human health, knowledge gaps still exist.

However, the risks associated with long-term exposure to low concentrations of pharmaceuticals and the combined effects of mixtures of pharmaceuticals and other compounds still requires further investigation¹.

It is generally considered that levels of pharmaceuticals in the environment are below those which would result in acute (short-term) effects in wildlife, including aquatic life such as fish. Ongoing, concerns that chronic (long-term) exposure to these trace levels

¹WHO. (2011). Pharmaceuticals in Drinking Water. WHO Press, Geneva, Switzerland. Link to report could result in a potential risk to organisms do exist. Most of these concerns focused on the potential developmental and reproductive effects of medicines that are designed to interact with the human endocrine or hormone system (for example, contraceptives, hormone replacement therapies and certain cancer treatments). It has been shown that some endocrine active chemicals can have chronic impacts on the sexual development of fish. However, these effects are not just limited to pharmaceuticals. They have been shown to also be caused by exposure to natural hormones and other manmade chemicals present in the environment.

Further studies are needed to determine if there are any significant population-level environmental effects arising from long-term and low-level exposure to pharmaceuticals in environmental waters. There is one well known case where a non-AstraZeneca medicine has caused a population level impact on wildlife. The veterinary use of diclofenac in Asia resulted in the death of millions of vultures that fed on treated cattle. This impact was unexpected as the exposure resulted from cultural farming practices not captured in environmental risk assessment guidance and shows the importance for ongoing vigilance.

There is also growing concern over the antimicrobial resistance and the role that antibiotic residues in the environment has in causing resistance to antibiotic treatment.

AstraZeneca's Position

AstraZeneca is committed to ensuring the effective environmental management of our products across the whole of the product life cycle – from drug development and manufacture through to patient use and disposal.

To do this we:

- Conduct an Environmental Risk Assessment (ERA) before the approval of a new medicine. We do this by generating environmental fate and toxicity data according to international standards. In an ERA we identify safe concentrations of a pharmaceutical. We submit the resulting data to Regulatory Authorities as formal ERA reports. The environmental risk associated with biological therapies is considered negligible and they currently require a case-by-case exemption for an ERA.
- Make our ERA data available via our webpages and in Appendix 1 of this document.
- Establish safe discharge concentrations for our manufacturing operations and report our compliance against these safe discharge standards.
- Conduct ecopharmacovigilance (EPV) to ensure that our ERAs and safe discharge concentrations remain up to date and reflect the latest science². Our EPV process reviews emerging science and literature, looking for new information that might change the way we assess the environmental risks associated with our APIs. Our EPV is critical in helping us to ensure the environmental safety of our products.

²Holm et al (2013) Ecopharmacovigilance in Practice: Challenges and Potential Opportunities. Drug Safety Volume 36, Issue 7, pp 533–546.

- Actively encourage our patients to return unwanted medicines for safe disposal through collection schemes. We support initiatives aimed at improving patient awareness of medicines and sharps takeback, in addition to contributing to the funding of a number of collection schemes.
- Conduct targeted environmental research to address our critical knowledge gaps and improve the level of environmental protection we offer.

Safe Discharges of Active Pharmaceutical Ingredients

While waste from the manufacture of medicines is only a small proportion of the pharmaceuticals found in the environment, it is an area that AstraZeneca can make a direct impact.

While there are currently no regulatory requirements, we set safe discharge concentrations for our own production sites and those of our suppliers.

We have two safe discharge concentrations for each pharmaceutical; one for long-term exposure called an Environmental Reference Concentration (ERC) and one for short-term exposure called a Maximum Tolerable Concentration (MTCs). Our safe discharge approach⁴ is based on established environmental quality standards and considers indirect exposure of fish-eating mammals and humans, as well as pharmaceutical impacts on aquatic wildlife (e.g. algae, invertebrates and fish). These values must not be exceeded in the environmental waters downstream of our pharmaceutical production sites.

We actively share our Environmental Reference Concentration and Maximum Tolerable Concentration methodology with key suppliers and require them to risk assess and manage emissions associated with the APIs they manufacture or formulate on our behalf. These values are described in Appendix 2. We have an annual review programme to confirm compliance with these safe discharge concentrations.

From 2009–2011 we conducted a comprehensive site effluent project, which measured API effluent concentrations across all our own manufacturing sites globally. The project demonstrated a good correlation between predicted discharge concentration and measured concentrations. To date, the majority of assessments have demonstrated safe discharges without the need for any intervention in our normal effluent-handling processes. In cases where a potential environmental risk has been identified, we have collaborated with the site to understand and manage the relevant discharge. Where a theoretical assessment has been performed, chemical analysis of the effluent at the site boundary may be recommended to reduce any uncertainty within the exposure assessment. If the potential risk remains, intervention to reduce the pharmaceutical concentration in the effluent is required.

Ensuring that our manufacturing discharges are safe is a key design principle when bringing new production and formulation processes on line.

We have described our approach to safe discharges in a recent article in the *Chemical Engineer*⁵.

AstraZeneca also participates in the Pharmaceutical Supply Chain Initiative (PSCI) and the European Federation of Pharmaceutical Industry Association (Efpia) approaches to ensure responsible effluent management.

⁴Murray-smith et al (2012) Managing emissions of active pharmaceutical ingredients from manufacturing facilities: An environmental quality standard approach. Integrated Environmental Assessment and Management, 8: 320–330 ⁵Hargreaves et al (2017). Something in the Water: Managing the safe discharge of active pharmaceutical ingredients during drug production. The Chemical Engineer, November 36-41.

Providing Scientific Leadership

We aim to lead our industry in understanding and mitigating the environmental risks of pharmaceuticals.

AstraZeneca sits on the governance team of the European Federation of Pharmaceutical Industry Associations (Efpia), Medicines for Europe and the Association of European Self-Medication Industry (AESGP) PIE task force that advocates an ecopharmaco-stewardship (EPS) approach. <u>For more</u> <u>information on EPS click here.</u> EPS considers the entire life-cycle of a medicine and addresses the roles and responsibilities of all stakeholders involved in delivering a sustainable approach to

⁶Caldwell, D. J. et al. (2016), A risk-based approach to managing active pharmaceutical ingredients in manufacturing effluent. Environmental Toxicology and Chemistry, 35: 813-822. pharmaceutical use. These stakeholders include government, regulatory agencies, public and private healthcare providers, the pharmaceutical industry, environmental experts, doctors, pharmacists, water treatment companies, and patients.

EPS has three priorities to help manage the environmental risks associated with human pharmaceuticals:

- 1. The identification of the environmental risks of (i) established pharmaceuticals that lack environmental data and (ii) novel pharmaceuticals earlier within pharmaceutical development through intelligent and targeted assessment strategies (IMI iPiE Project)
- Environmentally responsible pharmaceutical manufacturing including the development of best practice approaches to enable manufacturers to minimise losses to the environment⁶, and,
- An extended environmental risk assessment (eERA) framework to manage environmental risks throughout the lifecycle of a medicine and to ensure that ERAs remain up-to-date and relevant.

AstraZeneca actively participates in developing and executing these industry-wide initiatives. For example, company representatives sit on the executive team for the Innovative Medicines Initiative iPiE project and lead its research on the prioritisation of established medicines for environmental testing.

PIE Research

We carefully monitor and actively contribute the scientific research published on PIE, in particular, studies that describe the effects that pharmaceutical products may have on wildlife and human health.

As a science-based company we support the use of science-led environmental risk assessments. We actively collaborate with regulatory, academic, health care and research organisations to identify additional data needs on the environmental transport, fate and effects of pharmaceuticals. We are a partner with the Innovative Medicines Initiative project on PIE (iPIE) and have committed to providing data for analysis and new studies to fill critical data gaps. Select peerreviewed publications resulting from AstraZeneca funded research are highlighted in Appendix 3.

We have a dedicated PIE research programme and we are currently co-sponsoring research to:

- Predict and identify environmental hazards and risks earlier in pharmaceutical development
- Develop and validate approaches to prioritise established APIs that lack environmental data for further investigation
- Assess the environmental impact of our innovative medicines where existing regulatory approaches may not be fit for purpose
- Assess the risks of pharmaceuticals in low-and middle-income countries that have different levels of waste water treatment and different water use and re-use patterns
- Improve the environmental and human health assessment of antibiotics and AMR

IFPMA AMR Alliance and Roadmap on AMR

The emergence of infectious diseases resistant to many antibiotics is an urgent global issue that may compromise basic surgical operations and treatment in the future. While AstraZeneca has prioritised research and development into non-communicable disease, we stand with our colleagues across the industry, health leaders, patients, physicians and governments around the world to develop a multi-stakeholder approach to tackle the global threat that antimicrobial resistance (AMR) poses to society and the barriers that prevent new antibiotics coming to the market.

In January 2016, we signed the Davos Declaration on Combating Antimicrobial Resistance along with over 100 other companies (**AMR Declaration**). The Declaration is a collective call on governments to commit to the investment needed to support the development of new antibiotic therapies. In September 2016, together with 12 other companies, we signed the AMR Roadmap presented to the United Nations General Assembly (**AMR Roadmap**). The AMR Industry Alliance brings together the signatories of the Davos declaration and AMR Roadmap to drive and measure the life-sciences' industry progress to curb antimicrobial resistance.

To tackle the environmental aspects of the threat posed by AMR and our public commitments to the AMR roadmap, we are co-funding research that aims to develop and validate new regulatory protection goals for AMR development in the environment. These projects will establish approaches to define safe environmental levels for antibiotics entering the environment through drug production and patient use⁷.

⁷Le Page, G. et al. (2017). Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environment International, 109, 155-169. doi:https://doi.org/10.1016/j.envint.2017.09.013

MedImmune

Environmental risk data relating to our medicines

As part of AstraZeneca's commitment to making our science accessible, we provide environmental risk summaries for the pharmaceuticals used in our global brands.

The summaries are consistent with the environmental information provided as part of our marketing applications, or where this is not available, from currently available data including reliable scientific literature.

For each pharmaceutical, the potential environmental risk is calculated to determine if any adverse effects on the environment might be expected to occur. To make our environmental risk assessments more environmentally relevant we determine the environmental exposure based on the total consumption of that medicine. This approach provides a much more realistic and protective assessment of environmental risk than our regulatory submissions.

We divide environmental risk into four different categories depending on the ratio between the predicted environmental concentration (PEC), that determines how much of the pharmaceutical we expect to be found in the environment river, and the predicted no effect concentration (PNEC), the level that is safe to wildlife. The four categories we use, described in the next column, are consistent with the classification system³ for environmental information on <u>www.fass.se</u>, the web version of the Swedish Prescribing guide.

³Environmental classification of pharmaceuticals at www.fass.se: Guidance for pharmaceutical companies. 2012. https://www.fass.se/pdf/Environmental_classification_of_pharmaceuticals-120816.pdf

Generic name	AstraZeneca Brand name	Therapy area	Environmental Risk	
Aclidium bromide	Eklira Duaklir (formoterol fumerate)	Respiratory	*	
Anastrozole	Arimidex	Oncology	Insignificant	
Atenolol	Tenormin/Tenormine/ Prenormine/ Atenol Nif-Ten (nifedipine) Tenoretic, (chlorthalidone)	Cardiovascular & Metabolic Disease	Insignificant	
Bambuterol hydrochloride	Bambec and Oxeol	Respiratory	Insignificant	
<u>Bicalutamide</u>	Casodex	Oncology	Insignificant	
Budesonide	Pulmicort Rhiocort Symbicort (formoterol fumerate)	Respiratory	Insignificant	
Bupivacaine hydrochloride	Marcaine and Sensorcaine	Neuroscience	*	
Candesartan cilexetil	Atacand Atacand Duo (Felodipine) Atacand Plus (hydrochlorothiazide)	Cardiovascular & Insignifica Metabolic Disease		
Ceftaroline fosamil	Zinforo	Infection and Vaccines	Insignificant	
<u>Chlorthalidone</u>	Tenoretic (atenolol)	Cardiovascular & Metabolic Disease	Insignificant	
<u>Dapagliflozin</u>	Forxiga Xigduo (metformin) Qtern (saxagliptin)	Cardiovascular & Metabolic Disease	Insignificant	
<u>Esomeprazole</u> sodium/magnesium	Nexium Vimovo (naproxen)	Gastrointestinal	Insignificant	
<u>Exenatide</u>	Bydureon	Cardiovascular & Metabolic Disease	Insignificant**	
Felodipine	Plendil/Modip/Splendil/ Munobal/ Flodil Atacand Duo (candesartan)	Cardiovascular & Metabolic Disease	Low	
Formoterol fumarate	Oxis Symbicort (budesonide) Duaklir (Aclidium bromide)	Respiratory Insignificant		
Fulvestrant	Faslodex	Oncology Low		
Gefitinib	Iressa	Oncology	Insignificant	
Goserelin acetate	Zoladex	Oncology	Insignificant**	
<u>Hydrochlorothiazide</u>	Zestoretic (lisinopril dehydrate) Atacand Plus (candesartan cilexetil)	Cardiovascular & Insignificant Metabolic Disease		
Influenza vaccine, live, attenuated	Fluenz Tetra/ Flumist Quadrivalent	Infection and Low**		
<u>Isosorbide-5-</u> mononitrate	Imdur/Duronitrin	Cardiovascular & * Metabolic Disease		
Lidocaine hydrochloride	Xylocaine EMLA (prilocaine)	Neuroscience Insignificant		
Lisinopril dihydrate	Zestril Zestoretic (hydrochlorothiazide)	Cardiovascular & Insignificant Metabolic Disease		
Mepivacaine hydrochloride	Carbocaine	Neuroscience *		
<u>Meropenem</u>	Merrem/Meronem	Infection and Vaccines	Insignificant	
<u>Metformin</u> hydrochloride	Kombiglyze (saxagliptin) Xigduo (dapagliflozin)	Cardiovascular & Metabolic Disease	Low	

The risk categories are as follows:

- PEC/PNEC \leq 0.1 Use of the substance has been considered to result in insignificant environmental risk.
- $0.1 < PEC/PNEC \le 1$ Use of the substance has been considered to result in low environmental risk.
- 1 < PEC/PNEC ≤ 10 Use of the substance has been considered to result in moderate environmental risk.
- PEC/PNEC > 10 Use of the substance has been considered to result in high environmental risk.

The table opposite provides an overview of the environmental risk of AstraZeneca's medicines. This information will be updated as new data become available. The active pharmaceutical ingredients are listed alphabetically by their generic name. Where an API is used in a combination product (a medicine that contains more than one API) the brand name is followed by the generic name of the additional API contained within the product, in parenthesis.

For human pharmaceuticals, it is primarily the aquatic compartment that is of interest, since human medicines may be excreted partly or wholly unchanged by patients, subsequently entering the sewage system and ultimately rivers and other surface waters. The PEC is calculated using a worst-case scenario, assuming no metabolism by the patient or removal/degradation of the API during sewage treatment and using the total sales volumes for the API in the European country with the highest per capita use¹. The sales volumes are based on all human medicines containing the API, including products marketed by other companies, where applicable. The PNEC is estimated by division of the lowest value for toxicity with the relevant assessment factor, as outlined by the European Chemicals Agency² and European Medicines Agency³.

Generic name	AstraZeneca Brand name	Therapy area	Environmental Risk
Metoprolol succinate/tartrate	Seloken/Seloken ZOK/ Toprol-XL/ Betaloc/Betaloc ZOK Logimax (felodipine)	Cardiovascular & Metabolic Disease	Low
Naloxegol	Movantik/Moventig	Neuroscience	Insignificant
Naproxen	Vimovo (espmeprazole)	Gastrointestinal	Low
<u>Nifedipine</u>	Nif-Ten (atenolol)	Cardiovascular & Metabolic Disease	*
<u>Olaparib</u>	Lynparza	Oncology	Insignificant
<u>Omeprazole</u>	Losec/Gastroloc/Mopral/ Omepral/ Prilosec	Gastrointestinal	Insignificant***
Osimertinib mesylate	Tagrisso	Oncology	Insignificant
Palivizumab	Synagis	Infection and Vaccines	Insignificant**
Pramlintide	Symlin	Cardiovascular & Metabolic Disease	Insignificant**
Prilocaine hydrochloride	Citanest Citanest Adrenaline (adrenaline) EMLA (lidocaine)	Neuroscience	Insignificant
Propofol	Diprivan	Neuroscience	Low
Propranolol hydrochloride	Inderal	Cardiovascular & Metabolic Disease	Low
Quetiapine fumarate	Seroquel	Neuroscience	Low
<u>Ramipril</u>	Ramace/Hypren/ Pramace/Unipril/ Vesdil. Unimax (felodipine)	Cardiovascular & Insignifican Metabolic Disease	
Roflumilast	Daxas	Respiratory	Insignificant
Ropivacaine hydrochloride monohydrate	Naropin	Neuroscience	Insignificant
Rosuvastatin calcium	Crestor	Cardiovascular & Metabolic Disease	Low
<u>Saxagliptin</u>	Onglyza Kombiglyze (metformin) Qtern (dapagliflozin)	Cardiovascular & Metabolic Disease	Insignificant
Tamoxifen citrate	Nolvadex	Oncology	Low
Terbutaline sulphate	Bricanyl Respules	Respiratory Insignificant	
<u>Ticagrelor</u>	Brilinta/Brilique	Cardiovascular & Insignificant Metabolic Disease	
Vandetanib	Caprelsa	Oncology	Insignificant
Zafirlukast	Accolate/Accoleit/ Vanticon	Respiratory Insignificant	
Zolmitriptan	Zomig/Zomig Rapimelt/ Zomig Nasal Spray/Zomigon	Neuroscience	Insignificant

* Omeprazole is the R-enantiomer of the racemate Esomeprazole (S-enantiomer). In the absence of comprehensive environmental data for omeprazole, the more scientifically robust long-term data set for esomeprazole has been used to calculate the PNEC and total sales of both esomeprazole and omeprazole are included in the calculation of the PEC.

- Per capita use calculated from kg sales data provided by IMS Health, MIDAS International 1: Data 2016 (Visit IMS Health) for 22 European markets (Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Romania, Slovakia, Spain, Sweden, Switzerland and United Kingdom), and population data taken from Eurostat (Visit Eurostat).
- Guidance on information requirements and chemical safety assessment, 2008, Chapter 2: R.10: Characterisation of dose [concentration]-response for environment (<u>View guidance</u>) Guideline on the Environmental Risk Assessment of Medicinal Products for HumanUse,

Insufficient data available

^{**} A PEC/PNEC ratio has not been calculated. The active pharmaceutical ingredient consists of amino acids/peptides/proteins/carbohydrates/lipids, due to their nature, these products are expected to undergo very rapid and extensive degradation and are unlikely to result in a significant risk to the environment.

^{3:} 2006, EMEA/CPMP/SWP/4447/00 corr2 (View guide).

Safe discharge concentrations relating to our medicines

The table opposite provides an overview of the safe discharge concentrations for AstraZeneca's medicines. Safe concentrations are provided for discharges entering freshwater and marine environments, depending on where the API manufacturing or formulation site discharges. Our safe discharge approach is based on established environmental quality standards and considers indirect exposure of fish-eating mammals and humans, as well as pharmaceutical impacts on aquatic wildlife (e.g. algae, invertebrates and fish). These values must not be exceeded in the waters downstream of our pharmaceutical production sites. The lowest of the two safe discharge concentrations for each pharmaceutical; one for long-term exposure called an Environmental Reference Concentrations (ERC) and one for short-term exposure called a Maximum Tolerable Concentrations (MTCs) are provided for freshwater and marine sites.

Active Pharmaceutical Ingredient	Lowest ERC for discharges to freshwater (µg/L)	Lowest MTC for discharges to freshwater (µg/L)	Lowest ERC for discharges to salt water [marine] (µg/L)	Lowest MTC for discharges to salt water [marine] (µg/L)
active pharmaceutical ingredient with generic value	0.1	0.1	0.1	0.1
allopurinol	14	14	1.4	14
anastrozole	0.17	0.17	0.1	0.17
atenolol	150	210	15	33
avibactam	200	1200	20	120
bambuterol	71	140	7.1	71
bicalutamide	1	2.5	0.1	1
budesonide	0.024	0.024	0.024	0.024
bupivacaine	12	12	3.9	12
candesartan	4.2	4.2	4.2	4.2
candesartan cilexetil	0.012	3.9	0.0012	3.9
cediranib	0.032	0.8	0.0032	0.3
ceftaroline	0.61	0.61	0.061	0.061
ceftazidime	1.3	1.3	0.13	0.13
chlorthalidone	70	100	8	80
clomethiazole	62	620	6.2	62
dapagliflozin	4.2	4.2	4.2	4.2
esomeprazole	83	210	8.3	42
felodipine	0.005	0.5	0.0005	0.05
formoterol	0.006	0.16	0.006	0.16
fulvestrant	0.00057	0.0057	0.000057	0.00057
gefitinib	0.52	8.3	0.052	2.2
hydrochlorothiazide	6.3	53	0.63	34
isosorbide-5-mononitrate	120	127	12	120
lesinurad	200	211	20	120
lidocaine	67	67	11	67
lisinopril	8.4	8.4	8.4	8.4
mepivacaine	59	140	5.9	59
meropenum	1.1	1.5	0.15	0.15
metformin	100	1300	10	130
metoprolol	7.3	73	0.73	7.3
naloxegol	200	210	20	120
naproxen	4.2	270	0.42	27
olaparib	0.24	0.24	0.024	0.024
omeprazole	83	419	8.3	41.9
osimertinib	0.075	0.75	0.0075	0.075
prilocaine	3.2	3.2	3.2	3.2
propofol	0.37	3.7	0.037	0.37
propranolol	0.23	4.6	0.023	0.46
quetiapine	8	84	0.8	15
ramipril	0.052	0.052	0.052	0.052
roflumilast	0.084	0.28	0.0084	0.084
ropivacaine	26	340	3.4	34
rosuvastatin	1.8	14	0.18	14
saxagliptin	4	14	0.4	14
selumetinib	4.4	4.4	4.2	4.2
tamoxifen	0.2	0.49	0.049	0.049
terbutaline	3.5	3.5	3.5	3.5
ticagrelor	3.5	3.5	5.3	5.3
vandetanib	0.67	3	0.067	0.3
zafirlukast	13	37	1.3	3.7
zolmitriptan	2.1	2.1	2.1	2.1

Selected peer reviewed publications to advance the science on the environmental risks of pharmaceuticals

Improve the environmental and human health assessment of antibiotics and AMR

Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P Topp E. 2013. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environmental Health Perspectives 121(9): 993-1001

Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, . . . Topp E. 2015. Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms Environment International 85: 189-205

Jong M-C, Su J-Q, Bunce JT, Harwood CR, Snape JR, Zhu Y-G, Graham DW. 2018. Co-optimization of sponge-core bioreactors for removing total nitrogen and antibiotic resistance genes from domestic wastewater. Science of The Total Environment 634: 1417-1423

Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, . . Wernersson A-S. 2018. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International 117: 132-138

231-238

in endocrine disrupter assessment -

four key recommendations for aquatic

invertebrate research. Ecotoxicology 16:

Le Page G, Gunnarsson L, Snape J, Tyler CR. 2017. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance Environment International 109: 155-169

Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, ... Zhu Y-G. 2013. Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environmental Health Perspectives 121(8): 878-885

Assess the risks of pharmaceuticals in low-and middleincome countries that have different levels of waste water treatment and different water use and re-use patterns

Bagnis S, Fitzsimons M, Snape JR, Tappin A, Comber S. 2018. Sorption of active pharmaceutical ingredients in untreated wastewater effluent and effect of	A, Comber S. 2016. Pharmaceuticals in soils of lower income countries:	Oppor 533-54
wastewater emuent and errect of dilution in freshwater: Implications for an "impact zone" environmental risk assessment approach. Science of The Total Environment 624: 333-341	Physico-chemical fate and risks from wastewater irrigation. Environment International 94: 712-723	Hutchir of end develo adapti
Bagnis S, Fitzsimons MF, Snape J, Tappin A, Comber S. 2018. Processes	Lees K, Fitzsimons M, Snape J, Tappin A, Comber S. 2018. Soil sterilisation	Enviror
of distribution of pharmaceuticals in surface freshwaters: implications for risk assessment. Environmental Chemistry Letters	methods for use in OECD 106: How effective are they? Chemosphere 209: 61-67	Hutchir and de disrup in vivo 131:75
Assess the environmental imp medicines where existing regu may not be fit for purpose		Hutchir Ecolog
Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Versteeg D. 2006. Toxicogenomics in Regulatory Ecotoxicology.	Länge R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP. 2001. Effects of the synthetic oestrogen17	for end enviro 383-38

Miller TH, Bury NR, Owen SF, MacRae Arnold KE, Boxall ABA, Brown AR, Cuthbert RJ, Gaw S, Hutchinson TH, JI, Barron LP. 2018. A review of the Jobling S. Madden JC. Metcalfe CD. pharmaceutical exposome in aquatic Naidoo V, Shore RF, Smits JE, Taggart MA, Thompson HM. 2013. Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biology Letters 9: 0492

Environmental Science & Technology

40(13): 4055-4065

Anette K, Alder AC, Escher BI, Duis K, Fenner K, Garric J, Hutchinson TH, Lapen DR, Péry A, Römbke J, Snape J, Ternes T, Topp E, Wehrhan A, Knacker T. 2010. Environmental risk assessment of human pharmaceuticals in the European Union: A case study with the β-blocker atenolol. Integrated Environmental Assessment and Management 6(S1): 514-523

Owen SF, Giltrow E, Huggett DB, Hutchinson TH, Saye J-A, Winter MJ, Sumpter JP. 2007. Comparative physiology, pharmacology and toxicology of β -blockers: mammals versus fish. Aquatic Toxicology 82:145- 162

a -ethinylestradiol over the life-cycle

of the fathead minnow. Environmental Toxicology and Chemistry 20: 1216 - 1227

fauna. Environmental Pollution 239:

129-146

Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Van Der Kraak G. 2012. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environmental Health Perspectives 120(9): 1221-1229	Panter GH, Hutchinson TH, Länge R, Lye C, Sumpter JP, Zerulla M, Tyler CR. 2002. Utility of a juvenile fathead minnow screening assay for detecting (anti-) estrogenic substances. Environmental Toxicology and Chemistry 21: 319-326
Brockmeier EK, Hodges G, Hutchinson TH, Butler E, Falciani F. 2017. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicological Sciences, 158(2): 252-262	Panter GH, Hutchinson TH, Hurd KS, Bamforth J, Stanley RD, Wheeler JR, Tyler CR. 2010. Effects of a weak oestrogenic active chemical(4-tert-pentylphenol) on pair-breeding and F1 development in the fathead minnow. Aquatic Toxicology 97: 314-323
Caldwell D, Mastrocco F, Hutchinson TH, Långe R, Heijerick D, Janssen C, Anderson P, Sumpter J. 2008. Derivation of an aquatic Predicted No-Effect- Concentration for the synthetic hormone, 17 a -ethinylestradiol. Environmental Science & Technology 42:7046-7054	Readman GD, Owen SF, Murrell JC, Knowles TG. 2013. Do fish perceive anaesthetics as aversive? PLoS One 8: 73773
Diamond J, Altenburger R, Coors A, Dyer SD, Focazio M, Kidd K, Zhang X. 2018. Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. Environmental Toxicology and Chemistry 37(3): 690-702	Readman GD, Owen SF, Knowles TG, Murrell JC. 2017. Species specific anaesthetics for fish anaesthesia and euthanasia. Scientific Reports 7(1): 7102
Heckmann LH, Sibly RM,Connon R, Hooper HL, Hutchinson TH, Maund SJ, Hill CJ, Bouetard A, Callaghan A. 2008. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology 9:R40	Snape JR, Maund SJ, Pickford DB, Hutchinson TH. 2004. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicology 67(2): 143-154
Holm G, Snape JR, Murray-Smith R, Talbot J, Taylor D, Sörme P. 2013. Implementing Ecopharmacovigilance in Practice: Challenges and Potential Opportunities. Drug Safety 36(7): 533-546	Thorpe KL, Hutchinson TH, Hetheridge MJ, Scholze M, Sumpter JP, Tyler CR. 2001. Assessing the Biological Potency of Binary Mixtures of Environmental Estrogens using Vitellogenin Induction in Juvenile Rainbow Trout (Oncorhynchus mykiss). Environmental Science & Technology 35: 2476-2481
Hutchinson TH. 2002. Impacts of endocrine disrupters on fish development: opportunities for adapting OECD Test Guideline 210. Environmental Sciences 9: 439-450	Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G, Sumpter JP, Tyler CR. 2003. Relative potencies and combination effects of steroidal oestrogens in fish. Environmental Science & Technology 37: 1142-1149
Hutchinson TH. 2002. Reproductive and developmental effects of endocrine disrupters in invertebrates: in vitro and in vivo approaches. Toxicology Letters 131:75-81	Van Aggelen G, Ankley GT, Baldwin WS, Bearden DW, Benson WH, Chipman JK, Yu L. 2010. Integrating Omic Technologies into Aquatic Ecological Risk Assessment and Environmental Monitoring: Hurdles, Achievements, and Future Outlook. Environmental Health Perspectives 118(1): 1-5.
Hutchinson TH, Pickford DB. 2003. Ecological risk assessment and testing for endocrine disruption in the aquatic environment. Toxicology 181-182: 383-387	Williams TD, Caunter JE, Lillicrap AD, Hutchinson TH, Gillings EG, Duffell S. 2007. Evaluation of the reproductive effects of tamoxifen citrate in partial and full life-cycle studies using fathead minnows. Environmental Toxicology and Chemistry 26: 695-707
Hutchinson TH, Barrett S, Busby M, Constable D, Hartmann A, Hayes E, Huggett D, Länge R, Lillicrap AD, Straub JO, Thompson RS. 2003. A strategy to reduce the numbers of fish used in acute ecotoxicity testing of pharmaceuticals. Environmental Toxicology and Chemistry 22: 3031-3036	Winter MJ, Redfern WS, Hayfield AJ, Owen SF, Valentin J-P, Hutchinson TH. 2008. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. Journal of Pharmacological and Toxicological Methods 57:176-187
Hutchinson TH. 2007. Small is useful in endocrine disrupter assessment –	Winter MJ, Lillicrap AD, Caunter JE, Schaffner C, Alder AC, Ramil M, Ternes

/inter MJ, Lillicrap AD, Caunte Schaffner C, Alder AC, Ramil M, Ternes TA, Giltrow E, Sumpter JP, Hutchinson TH. 2008. Defining the chronic impacts of atenolol on embryo-larval development and reproduction in the fathead minnow (Pimephales promelas) Aquatic Toxicology 86(3): 361-369

Assess the environmental impact of our innovative medicines where existing regulatory approaches

Assess the environmental impact of our innovative medicines where existing regulatory approaches may not be fit for purpose		Green JM, Metz J, Lee O, Trznadel M, Takesono A, Brown AR, Owen SF, Kudoh T, Tyler CR. 2016. High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals	Patel A, Panter GH, Trollope HT, Glennon YC, Owen SF, Sumpter JP, Rand-Weaver M. 2016. Testing the "read-across hypothesis" by investigating the effects of ibuprofen on fish. Chemosphere 163,
Baron MG, Mintram KS, Owen SF, Hetheridge MJ, Jha AN. 2017. Pharmaceutical Metabolism in Fish:	Martin TJ, Goodhead AK, Snape JR, Davenport RJ. 2018. Improving the ecological relevance of aquatic bacterial communities in biodegradability screening assessments. Science of The Total Environment 627: 1552-1559	Using a Novel Translucent Transgenic Zebrafish. Environmental science & technology 50 (12): 6536-6545	592-600
Using a 3-D Hepatic In Vitro Model to Assess Clearance. PLoS ONE 12(1): e0168837.		Hutchinson TH, Ankley GT, Segner H, Tyler CR. 2006. Screening and testing for endocrine disruption in fish - biomarkers as "signposts not	Rand-Weaver M, Margiotta-Casaluci L, Patel A, Panter GH, Owen SF, Sumpter JP. 2013. The read-across hypothesis and environmental risk assessment of
Baron MG, Purcell WM, Jackson SK, Owen SF, Jha AN. 2012. Towards a more representative in vitro method for fish	Maunder RJ, Baron MG, Owen SF, Jha AN. 2017. Investigations to extend viability of a rainbow trout primary	traffic lights" in risk assessment. Environmental Health Perspectives 114 (Suppl 1): 106–114	pharmaceuticals. Environmental Science & Technology 47(20): 11384-11395
ecotoxicology: morphological and biochemical characterisation of three- dimensional spheroidal hepatocytes. Ecotoxicology 21 (8), 2419-2429	gill cell culture. Ecotoxicology 26(10): 1314-1326	Iguchi T, Irie F,Urushitani H, Tooi O, Kawashima Y, Roberts M, Norrgren L, Hutchinson TH. 2006. Availability of in vitro vitellogenin assay for screening of estrogenic and anti-estrogenic	Schnell S, Stott LC, Hogstrand C, Wood CM, Kelly SP, Pärt P, Owen SF, Bury NR. 2016. Procedures for the reconstruction, primary culture and experimental use of rainbow trout gill epithelia. Nature
Bartram AE, Winter MJ, Huggett DB, McCormack P, Oven SF. 2012. In vivo and in vitro liver and gill EROD activity in rainbow trout exposed to the	Miller TH, Gallidabino MD, MacRae JR, Owen SF, Bury NR, Barron LP. 2018. Prediction of bioconcentration factors in fish and invertebrates using	activities of environmental chemicals. Environmental Sciences 13: 161-183 Jones HS, Trollope HT, Hutchinson	Protocols 11(3): 490-498 Stott LC, Schnell S, Hogstrand C, Owen
beta-blocker propranolol. Environmental Toxicology & Chemistry 27: 573-582 Bickley LK, Brown AR, Hosken DJ,	machine learning. Science of the Total Environment Miller TH, Bury NR, Owen SF, Barron LP.	TH, Panter GH, Chipman KJ. 2012. Metabolism of ibuprofen in zebra fish larvae. Xenobiotica 42: 1069-1075	SF, Bury NR. 2015. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive
Hamilton PB, Le Page G, Paull GC, Owen SF, Tyler CR. 2013. Interactive effects of inbreeding and endocrine disruption on	2017. Uptake, biotransformation and elimination of selected pharmaceuticals in a freshwater invertebrate measured	Kowalczyk A, Martin TJ, Price OR,	and facilitated transport. Aquatic Toxicology 159: 127-137 Thorpe KL, Benstead R, Hutchinson TH, Tyler CR. 2007. Associations between altered vitellogenin concentrations and adverse health effects in fathead minnow. Aquatic Toxicology 85: 176-183
reproduction in a model laboratory fish. Evolutionary applications 6 (2), 279-289	using liquid chromatography tandem mass spectrometry. Chemosphere 183: 389-400	Snape JR, van Egmond RA, Finnegan CJ,Bending GD. 2015. Refinement of biodegradation tests methodologies and the proposed utility of new	
Brown AR, Owen SF, Peters J, Zhang Y, Soffker M, Paull GC, Hosken DJ, Wahab MA, Tyler CR. 2015. Climate change and pollution speed declines in zebrafish	Miller TH, Baz-Lomba JA, Harman C, Reid MJ, Owen SF, Bury NR, Thomas KV, Barron LP. 2017. The First Attempt at Non-Linear in Silico Prediction of	Ba2-Lomba JA, Harman C, microbial ecology techniques. Dwen SF, Bury NR, Thomas Ecotoxicology and Environmental LP. 2017. The First Attempt Safety 111: 9-22 The are in Silico Prediction of Langan LM, Owen SF, Jha AN. 2018. Thorpe Integrative Samplers (POCIS). Establishment and long-term TH, Ty Intal Science & Technology 50 maintenance of primary intestinal expert -7981 epithelial cells cultured from the means	
populations. Proceedings of the National Academy of Sciences, 201416269	Sampling Rates for Polar Organic Chemical Integrative Samplers (POCIS). Environmental Science & Technology 50 (15): 7973-7981		Thorpe KL, Benstead R, Hutchinson TH, Tyler CR. 2007. An optimised experimental test procedure for measuring chemical effects on reproduction in the fathead minnow,
Brown AR, Bickley LK, Ryan TA, Paull GC, Hamilton PB, Owen SF, Sharpe AD, Tyler CR. 2012. Differences in sexual	Miller TH, McEneff GL, Stott LC, Owen SF, Bury NR, Barron LP. 2016. Assessing the reliability of uptake and elimination	rainbow trout, Oncorhynchus mykiss. Biology Open 7(3): bio032870 Langan LM, Arossa S, Owen SF, Jha AN. 2018. Assessing the impact of benzo [a] pyrene with the in vitro fish gut model: an integrated approach for eco-genotoxicological studies.	Pimephales promelas. Aquatic Toxicology 81: 90-98
development in inbred and outbred zebrafish (Danio rerio) and implications for chemical testing. Aquatic toxicology 112, 27-38	kinetics modelling approaches for estimating bioconcentration factors in the freshwater invertebrate, Gammarus pulex. Science of the Total Environment 547: 396-404		Uchea C, Owen SF, Chipman JK. 2015. Functional xenobiotic metabolism and efflux transporters in trout hepatocyte spheroid cultures. Toxicology Research 4 (2): 494-507
Brown AR, Bickley LK, Le Page G, Hosken DJ, Paull GC, Hamilton PB, Owen SF, Robinson J, Sharpe AD, Tyler CR.	2B, Owen Owen SF, Bury NR, Barron LP. 2015. Environmental Mutagenesis 620: 33-64 r CR. Pharmaceuticals in the freshwater invertebrate, Gammarus pulex, h Langan LM, Owen SF, Trznadel M, Dodd NJ, Jackson SK, Purcell WM, Jha determined using pulverised liquid tbred AN. 2018. Spheroid size does not impact metabolism of the β-blocker propranolol in 3D intestinal fish model. Chemical. mass spectrometry. Science of the Total Frontiers in Pharmacology	Uchea C, Sarda S, Schulz-Utermoehl	
2011. Are Toxicological Responses in Laboratory (Inbred) Zebrafish Representative of Those in Outbred (Wild) Populations?- A Case Study with an Endocrine Disrupting Chemical. Environmental science & technology 45		Dodd NJ, Jackson SK, Purcell WM, Jha AN. 2018. Spheroid size does not impact metabolism of the β-blocker propranolol in 3D intestinal fish model. Frontiers in Pharmacology	T, Owen S, Chipman KJ. 2013. In vitro models of xenobiotic metabolism in trout for use in environmental bioaccumulation studies. Xenobiotica 43(5): 421-431
(9), 4166-4172 Brown AR, Hosken DJ, Balloux F, Bickley LK, LePage G, Owen SF, Hetheridge MJ, Tyler CR. 2009. Genetic variation, inbreeding and chemical exposure – combined effects in wildlife and critical	Owen SF, Huggett DB, Hutchinson TH, Hetheridge MJ, McCormack P, Kinter LB, Ericson JF, Constantine LA, Sumpter JP. 2010. The value of repeating studies and multiple controls: replicated 28-day	Margiotta-Casaluci L, Owen SF, Huerta B, Rodriguez-Mozaz S, Kugathas S, Barceló D, Rand-Weaver M, Sumpter JP. 2016. Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish. Scientific Reports 6, 21978	Verbruggen B, Gunnarsson L, Kristiansson E, Österlund T, Owen SF, Snape JR, Tyler CR. 2018. ECOdrug: a database connecting drugs and conservation of their targets across species. Nucleic Acids Research 46(D1): D930-D936
considerations for ecotoxicology. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364, 337-3390	growth studies of rainbow trout exposed to clofibric acid. Environmental toxicology and chemistry 29(12): 2831-2839	Margiotta-Casaluci L, Owen SF, Cumming RI, de Polo A, Winter MJ, Panter GH, Rand- Weaver M, Sumpter JP. 2014. Quantitative Cross-Species Extrapolation between	Winter MJ, Windell D, Metz J, Matthews P, Pinion J, Brown JT, Hetheridge MJ, Ball JS, Owen SF, Redfern WS, Moger J, Randall AD, Tyler CR. 2017.
Burns EE, Carter L J, Snape J, Thomas- Oates J, Boxall ABA. 2018. Application of prioritization approaches to optimize environmental monitoring and testing	Owen SF, Huggett DB, Hutchinson TH, Hetheridge MJ, Kinter LB, Ericson JF, Sumpter JP. 2009. Uptake of propranolol,	Humans and Fish: The Case of the Anti-Depressant Fluoxetine. PLoS ONE 9(10): e110467	4-dimensional functional profiling in the convulsant-treated larval zebrafish brain. Scientific Reports 7(1): 6581
of pharmaceuticals. Journal of Toxicology and Environmental Health, Part B, 1-27.	a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquatic Toxicology 93(4): 217-224	Martin TJ, Goodhead AK, Acharya K, Head IM, Snape JR, Davenport RJ. 2017. High Throughput Biodegradation-Screening Test to Prioritize and Evaluate Chemical	Winter MJ, Owen SF, Murray-Smith R, Panter GH, Hetheridge MJ, Kinter LB. 2010. Using data from drug discovery and development to aid the aquatic
Goodhead AK, Head IM, Snape JR, Davenport RJ. 2014. Standard inocula preparations reduce the bacterial diversity and reliability of regulatory biodegradation tests. Environmental Science and Pollution Research, 21(16), 9511-9521.	Owen SF, Giltrow E, Huggett DB, Hutchinson TH, Saye JA, Winter MJ, Sumpter JP. 2007. Comparative physiology, pharmacology and toxicology of β-blockers: mammals versus fish. Aquatic Toxicology 82(3): 145-162	Biodegradability. Environmental Science & Technology 51(12): 7236-7244 Martin TJ, Snape JR, Bartram A, Robson	environmental risk assessment of human pharmaceuticals: Concepts, considerations, and challenges. Integrated environmental assessment and management 6(1): 38-51
Green JM, Lange A, Scott A, Trznadel M, Wai HA, Takesono A, Brown AR, Owen SF, Kudoh T, Tyler CR. 2018. Early life exposure to ethinylestradiol enhances subsequent responses to environmental estrogens measured in a novel transgenic zebrafish. Scientific Reports 8(1): 2699.	Panter GH, Hutchinson TH, Hurd KS, Sherren A, Stanley RD, Tyler CR. 2004. Successful detection of(anti-) androgenic and aromatase inhibitors in pre-spawning adult fathead minnows using easily measured endpoints of sexual development. Aquatic Toxicology 70(1):11-21	A, Acharya K, Davenport RJ. 2017. Environmentally Relevant Inoculum Concentrations Improve the Reliability of Persistent Assessments in Biodegradation Screening Tests. Environmental Science & Technology 51(5): 3065-3073	