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Pharmacogenomics and the prevention of vascular 
complications in diabetes mellitus

With prevalence rates constantly rising, diabe-
tes mellitus has become a major public health 
issue. Long-term sequelae of the disease include 
both microvascular and macrovascular compli-
cations, damaging virtually every vascular bed, 
and particularly damaging the kidneys, eyes and 
heart. Diabetes mellitus is the leading cause of 
blindness in the Western world. Over 30% of all 
individuals with diabetes mellitus will eventu-
ally develop end-stage renal disease. Over 35% 
of all hospitalizations for cardiovascular disease 
(CVD) occur in individuals with diabetes mel-
litus. Current paradigms of pharmacoprevention 
of diabetic vascular complications have focused 
on not only reducing hyperglycemia, but also 
on reducing other contributing factors known 
to contribute to vascular disease, but which are 
not necessarily specific for diabetes mellitus (i.e., 
lipid-lowering therapies, see Figure 1) [1].

Pharmacogenetics and pharmacogenomics 
are based on the hypothesis that an individual’s 
unique genetic fingerprint will lead to unique 
responses to therapeutic agents. These differ-
ences stem from genetic polymorphisms asso-
ciated with modified activity, or expression of 
enzymes that may modulate the response to a 
certain drug. These polymorphisms may result 
in differences in the pharmacokinetics of a given 
drug affecting absorption, secretion, excretion 
or first-pass metabolism. Additionally, these 
polymorphisms may confer differences in the 
activities of enzymes that are the drug’s molecu-
lar target or members in the affected molecular 
pathway [1]. Differential responses to therapy 

have been noted in several of the most promi-
nent pharmacotherapies for diabetes mellitus 
and dyslipidemia. This report will review some 
of the diabetes mellitus-associated pharmaco-
genetic relationships, with a particular focus on 
the association between haptoglobin genotype 
and the response to vitamin E.

Statins
Statins, inhibitors of the enzyme HMG‑CoA 
reductase (HMGCR) that catalyzes the rate-
limiting step of cellular cholesterol synthesis, are 
the most commonly used cholesterol-lowering 
drugs. While numerous polymorphisms have 
been tested, only a few have been consistently 
correlated with response to statin therapy. 
Perhaps the most studied pharmacogenetic rela-
tionship to statin therapy is that of the ApoE 
polymorphisms. The different isoforms of ApoE 
seem to have different affinities to the low-den-
sity lipoprotein (LDL) receptor, thus affecting 
the clearance of ApoE-presenting lipoproteins. 
High clearance rates lead to stronger inhibition 
of HMGCR, thus making statin therapy less 
effective. In line with this theory, several studies 
have shown favorable outcomes of statin therapy 
in carriers of the E2 allele, which has the low-
est affinity for the LDL receptor, while efficacy 
in carriers of the E4 allele was decreased [2,3]. 
However, this relationship was not observed in 
all studies, as some studies found either no cor-
relation between ApoE genotype and response 
to statin therapy [3], or increased response among 
carriers of the E4 allele [4]. 

While the majority of patients benefit from front-line therapies for diabetes and dyslipidemia, others 
present with diminished responses. These differences in drug efficacy appear to be due, in large part, to 
genetic polymorphisms affecting pharmacokinetics and drug-target interactions. Many studies have been 
conducted in an attempt to elucidate the pharmacogenetic relationship between a wide range of 
polymorphisms and their effects on responsiveness to statins, hypoglycemics, insulin sensitizers, 
antihypertensives and antioxidants. Regarding most polymorphisms, the results of association studies have 
not been validated consistently across different population groups. This review will present some of these 
pharmacogenetic relationships, focusing on the haptoglobin polymorphism and the responsiveness to 
vitamin E supplementation.
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Polymorphisms of the cholesteryl ester transfer 
protein (CETP) enzyme, which exchanges tri-
glycerides and cholesteryl esters between differ-
ent lipoproteins and takes part in the metabolism 
of high-density lipoprotein (HDL), also seem 
to confer a differential response to statin treat-
ment. Diabetes mellitus carriers of the B1 allele, 
which is found in strong linkage disequilibrium 
with the A269C polymorphism of the promoter 
of CETP, presented with lower baseline HDL 
levels and higher baseline triglyceride levels, but 
showed better HDL and triglyceride responses to 
atorvastatin therapy [5]. Clinically, statin treat-
ment was most beneficial to carriers of the B1 
allele, in terms of attenuating the progression of 
coronary atherosclerosis [6].

Thiazolidinediones
The family of thiazolidinediones (TZDs), which 
includes rosiglitazone and pioglitazone, act as 

agonists of the peroxisome proliferator-activated 
receptor-g (PPAR‑g). PPAR‑g is an important 
transcription factor that modulates the expres-
sion of several genes involved in glucose and 
fat metabolism, and is also involved in adipo-
genesis, adipocyte differentiation and cytokine 
production by adipocytes. TZDs were shown 
to have many therapuetic effects in diabetics 
and prediabetics, amongst which are insulin 
sensitization, reduction of fasting glucose and 
glycated hemoglobin A

1c
 (HbA

1c
) levels, anti-

inflammatory and anti-thrombotic effects and 
improvement of lipid profile [7]. However, stud-
ies have shown that a high percentage of patients 
are nonresponsive to TZD therapy, leading to 
extensive research on the pharmacogenetics of 
these drugs. 

The Pro12Ala nonsynonymous polymorphism 
of PPAR‑g2, which is mainly expressed in adi-
pose tissue, was extensively studied in relation 

Type 2 diabetes

DyslipidemiaHyperglycemiaInsulin resistance

TZDs – PPAR-γ agonists,
metformin – activator of the AMPK pathway

Statins – HMG-CoA Red.
inhibitors

Increased extravascular
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Figure 1. Type 2 diabetes mellitus complications and treatments. ACE: Angiotensin-converting enzyme; ARB: Angiotensin receptor 
blocker; HDL: High-density lipoprotein; HMG-CoA Red.: HMG-CoA reductase; Hp: Haptoglobin; LDL: Low-density lipoprotein; 
PPAR‑g: Peroxisome proliferator-activated receptor-g; RAAS: Renin–angiotensin–aldosterone system; TZD: Thiazolidinedione.
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to the risk of diabetes mellitus and the response 
to TZD treatment in preventing the onset of 
diabetes mellitus. This allele was shown to have 
decreased transcriptional activity following 
activation by PPAR‑g agonists [8]. Although the 
12Ala allele seems to be associated, in certain 
populations, with higher risk for Type 2 diabetes 
mellitus [9] and with prediabetic phenotypes [10], 
most trials have demonstrated that it does not 
modulate the response to TZD therapy [11–13].

Other polymorphisms suspected to affect the 
response to TZDs are listed in Table 1.

Antihypertensive treatment & the 
angiotensin-converting enzyme 
insertion/deletion polymorphism
The insertion/deletion (I/D) polymorphism of 
angiotensin-converting enzyme (ACE) seems to 
modify plasma ACE concentrations [14], the D 
allele correlating with higher concentrations of 
the enzyme. Studies concerning the ability of 
ACE inhibitors to prevent proteinuria and albu-
minuria, surrogate markers of diabetic nephropa-
thy, have yielded conflicting results, the major-
ity finding that the D allele is associated with 
decreased renal protection [15–18], but some claim-
ing the opposite [19–21]. Acting directly on the 
angiotensin 1 receptor (AT1), angiotensin recep-
tor blockers (ARBs) represent an alternative treat-
ment for diabetic nephropathy that may not be 
influenced by the ACE I/D polymorphism [22,23].

Metformin & the organic cation 
transporter family
Metformin, a biguanide compound, is consid-
ered to be one of the most successful antidiabetic 
drugs due to its ability to increase insulin sen-
sitivity and to decrease blood glucose levels via 
mechanisms that include decreasing gut absorp-
tion of glucose, decreasing glucose production 
by the liver and improving glucose utilization. 
Besides its hypoglycemic effects, metformin is 
also known to improve lipid metabolism and 
vascular function [24]. Although the precise 
molecular mechanism of metformin action is 
unknown, it is believed to activate AMPK [25] 

in the liver and enhance tyrosine kinase activity 
of insulin receptors in skeletal muscle and fat 
tissue [26].

The pharmacokinetic properties of metformin 
are dependent on the organic cation transporter 
(OCT) family of proteins. OCT1 is integral 
for metformin uptake by the liver [27], prob-
ably accounting for normal distribution of the 
drug [28]. OCT2 mediates the secretion of metfor-
min in the renal tubular system, a function that 
does not demand its extensive metabolism [26].

The SLC22A1 gene, which encodes the OCT1 
protein, and the SLC22A2 gene, which encodes 
the OCT2 protein, have been shown to have 
numerous polymorphic loci. A study on different 
nonsynonymous polymorphisms of the SLC22A1 
gene demonstrated that seven of the 12 alleles 
known to exist in humans are associated with the 
production of an OCT1 protein that is either par-
tially functional or nonfunctional, thus decreas-
ing metformin influx into the cells. A common 
characteristic of all reduced or nonfunctional 
alleles for OCT is a decrease in metformin-
induced AMPK activation. Healthy volunteers 
carrying these alleles do not respond to metfor-
min in an oral glucose tolerance test [29]. Of note, 
these findings were contradicted in a small-scale 
retrospective study where OCT1 polymorphisms 
were found to only slightly modulate the response 
to metformin [30]. 

As expected from the expression patterns of 
the OCT1 and OCT2 proteins in different tis-
sues, OCT1 reduced-activity alleles were asso-
ciated with higher area under the curve (AUC) 
and C

max 
values, and lower oral values of dis-

tribution (V
d
/F), probably stemming from the 

decreased hepatic uptake of metformin [31]. 
Activity of the different SLC22A2 alleles was 
studied mostly using 1‑methyl‑4‑phenylpyri-
dinium (MPP+) [26]. While being a known sub-
strate of the OCT family, MPP+ may not accu-
rately reflect the influence of nonsynonymous 
polymorphisms on metformin transport, since 
some of the nonsynonymous polymorphisms of 
SLC22A1 were associated with decreased met-
formin transport while maintaining normal 

Table 1. Polymorphisms possibly affecting response to thiazolidinedione therapy.

Protein Variant/polymorphism Results Ref.

Perilipin 11482G>A 11482A associated with decreased weight gain [53]

Adiponectin SNP45 T/G
SNP276 G/T

45 G/G and 276 G/G associated with smaller reduction in fasting 
plasma glucose, HbA

1c
 and smaller increase in adiponectin

[54]

Lipoprotein lipase S447X S/S genotype is associated with greater reduction in fasting plasma 
glucose, but also with greater weight gain

[55]

HbA
1c

: Glycated hemoglobin; SNP: Single nucleotide polymorphism.
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MPP+ transport, and vice versa [26]. However, 
a recent study demonstrated the ability of three 
different SLC22A2 alleles to decrease metformin 
transport in an in vitro model. Healthy carriers 
of these alleles were characterized by increased 
metformin AUC and C

max
, and decreased renal 

clearance (Cl
renal

), probably due to decreased 
secretion of the drug (Cl

sec
) [31].

Although evidence for the possible modu-
lation of response to metformin by SLC22A1 
and SLC22A2 polymorphisms is mounting, 
clinical studies showing differential response of 
Type 2 diabetics to metformin that correlates to 
OCT1/OCT2 activity have not yet been reported. 

Vitamin E & haptoglobin
Haptoglobin (Hp), a liver-produced plasma 
glycoprotein, is mostly known for its abil-
ity to sequester free hemoglobin (Hb), once 
the latter is released from red blood cells [32]. 
Extracorpuscular Hb can act as a biological 
Fenton reagent by releasing heme iron, initiat-
ing production of highly reactive oxygen spe-
cies (ROS) and causing oxidative damage to 
surrounding tissue [33]. However, Hp binding 
to Hb prevents ROS production by Hb, thereby 
decreasing the oxidative potential of Hb [34,35]. 
The concentration of Hp in the blood is much 
higher than that of free Hb, the molar ratio 
reaching 400:1, thus allowing rapid scavenging 
of free Hb [36]. The Hp–Hb complex is cleared 
both from the intravascular and extravascular 
compartment by the CD163 Hp–Hb receptor 
expressed on monocytes/macrophages [37].

�� Hp genotype & relation to 
oxidative stress: in vitro studies
The Hp gene is located at chromosomal locus 
16q22, and has two common alleles, Hp1 and 
Hp2, the prevalence of the Hp1 allele being 0.4 
and that of the Hp2 allele being 0.6. In most 
Western populations, the prevalence of the 
Hp 1–1 genotype is 16%, Hp 2–2 is 36% and 
Hp 2–1 is 48% [32]. The Hp2 allele represents a 
duplication of exons 3 and 4 of the Hp1 allele, 

which probably occurred early in human evo-
lution. This duplication is responsible for the 
differences in shape and structure of the Hp pro-
teins found in individuals with the three differ-
ent Hp genotypes. Individuals with the Hp 2–2 
genotype have cyclic multimeric Hp, those 
with the Hp1–1 genotype have linear dimeric 
Hp, while in Hp  2–1 genotype individuals, 
heteromeric linear polymers of Hp are found [38].

The different Hp genotypes confer differ-
ent degrees of protection from Hb-mediated 
oxidation. Hp 1–1 acts as a more potent anti-
oxidant than Hp 2–2 [35], not as a result of dif-
ferent binding affinities to Hb, but rather due 
to the increased ability of the Hp 1–1 com-
plex to shield heme iron contained in the Hb 
molecule from its aqueous surrounding. The 
higher accessibility of iron within the Hp 2–2–
Hb complex compared with the Hp 1–1–Hb 
complex leads to increased production of ROS. 
Oxidative modification or glycosylation of 
Hb, which occurs in diabetes mellitus, further 
increases the difference in the accessibility of 
heme iron in the Hp complexes [39]. Oxidative 
stress and hyperglycemic conditions are also 
known to downregulate the expression of 
the CD163 receptor on macrophages, either 
by shedding of the receptor or by decreasing 
mRNA transcription [40,41]. Furthermore, the 
Hb–Hp 2–2 clearance rate by CD163 is slower 
than for Hb–Hp 1–1 [42], resulting in prolonged 
presence of the redox active Hp 2–2–Hb com-
plex in both the intravascular and extravascular 
compartment in Hp 2–2 individuals. 

Another novel proatherogenic effect of the 
impaired Hb–Hp clearance in Hp 2–2 diabe-
tes mellitus individuals has recently been elu-
cidated. Hp can compete with lecithin choles-
terol acyltransferase (LCAT) for the binding 
site on ApoA1, thus decreasing the activity of 
LCAT and preventing HDL maturation [43]. 
Furthermore, when bound to HDL, the Hb–Hp 
complex may oxidize, via its redox active heme 
iron, HDL lipids and proteins, compromising 
HDL functions [44]. 

Table 2. Risk of cardiovascular disease conferred by the Hp 2–2 genotype.

Study Outcome Ref.

Strong Heart Study Three- to five-fold increased CVD in Hp 2–2 vs non-Hp 2–2 [56]

Rambam Eightfold increased death or CHF following MI in Hp 2–2 vs Hp 1–1 [57]

Munich Twofold increased MI in Hp 2–2 vs non-Hp 2–2 [58]

EDC Twofold increased CAD in Hp 2–2 vs Hp 1–1; intermediate risk in Hp 2–1 [59]

ICARE Twofold increased MI, stroke or cardiovascular death in Hp 2–2 vs non-Hp 2–2 [51]

CAD: Coronary artery disease; CHF: Congestive heart failure; CVD: Cardiovascular disease; EDC: Pittsburgh Epidemiology of Diabetes Complications Study;  
ICARE: Israel Cardiovascular Events Reduction with Vitamin E Study; MI: Myocardial infarction.
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�� Effect of Hp genotype on oxidative 
stress in vivo
The in vitro studies described above have also 
been examined in vivo. In the settings of dia-
betes mellitus, levels of redox active heme-iron 
are increased in Hp 2–2 compared with Hp 1–1 
mice and humans [1]. Similarly, mouse peritoneal 
macrophages (MPMs) isolated from Hp 2–2 
diabetes mellitus mice present with greater oxi-
dative stress than those isolated from Hp 1–1 
diabetes mellitus mice [39]. Humans and mice 
with the Hp 2–2 genotype and diabetes mel-
litus have increased levels of redox active iron in 
their blood and increased levels of redox active 
iron deposited in various tissues [39]. In humans, 
Hp 2–2 individuals have lower vitamin C lev-
els as compared with Hp 1–1 individuals [38]. 
HDL of both Hp 2–2 mice and Hp 2–2 humans 
suffering from diabetes mellitus was shown to 
contain higher levels of lipid peroxides compared 
with Hp 1–1 diabetes mellitus individuals [44]. 
Additionally, cholesterol efflux from injected 
3H-cholesterol-loaded macrophages was reduced 
in Hp 2–2 mice [45].

�� Translation of the increased 
oxidative stress to increased  
morbidity & mortality in mice  
& humans with the Hp 2–2 genotype 
& diabetes mellitus
Hp 2–2 diabetes mellitus mice have been shown 
to be at a higher risk for developing nephropathy 
[46], retinopathy [47] and atherosclerosis [45,48] 
compared with Hp 1–1 diabetes mellitus mice. 
Occlusion of the left anterior descending artery 
resulted in a larger infarct in Hp 2–2 mice, and 
following myocardial ischemia and reperfusion, 
levels of lipid oxidation products are increased 
in Hp 2–2 mice [49]. 

In humans, several longitudinal studies from 
distinct ethnic groups and geographic areas 
comprising over 30,000 individuals have clearly 
identified Hp genotype as a risk factor for the 
development of cardiovascular diseases in the 
presence of diabetes mellitus. Individuals with 
the Hp 2–2 genotype appear to have a two- to 
five-fold increase in the risk of CVD (see Table 2).

�� Vitamin E & the Hp 2–2 genotype
Vitamin E is a group of eight lipophilic anti-
oxidants, which are produced only in plants. 
Being lipophilic molecules, these antioxidants 
are localized mostly to hydrophobic environ-
ments, such as cell membranes and lipoproteins 
where they can easily scavenge lipid peroxides, 
thus attenuating the oxidation cascade and 

preventing tissue damage. It has been previously 
demonstrated that levels of vitamin E, along 
with several other antioxidants, are decreased 
in diabetes mellitus [50]. 

While it was expected that vitamin E supple-
mentation to diabetics would be beneficial in 
terms of decreasing cardiovascular complica-
tions by decreasing the oxidative stress that is 
associated with the disease, several meta-analyses 
have demonstrated that the indiscriminate use of 
vitamin E is not associated with any discernible 
clinical benefit. However, among Hp 2–2 diabe-
tes mellitus participants, vitamin E supplemen-
tation has recently been shown to significantly 
decrease the risk for CVD [51,52]. The ability of 
vitamin E to improve HDL function and reduce 
the levels of HDL-associated lipid peroxides 
among Hp 2–2, but not among Hp 1–1 diabe-
tes mellitus individuals [44], provides a plausible 
explanation for this pharmacogenetic relation-
ship between the Hp genotype and vitamin E 
supplementation.

Future perspective
Genetic factors clearly influence drug respon-
siveness. Pharmacogenomics is the cornerstone 
of personalized medicine and promises to 
reduce healthcare costs and improve standards. 
However, the promise of pharmacogenomics 
has yet to be realized. One reason for this lack 
of success in finding genetic markers that con-
sistently and reliably predict responsiveness to 
drug therapy is the nature of the genetic mark-
ers that have been used in studies performed to 
date. Nearly all pharmacogenomic studies have 
searched for an association between a single 
nucleotide polymorphism that is only indirectly 
linked to a disease pathway via linkage and 
responsiveness to a drug. However, population 
stratification may limit the ability to extrapo-
late from one population to another based on 
such genetic markers, and explains why many 
apparent pharmacogenomic interactions are 
frequently not confirmed in populations from 
distinct ethnic groups or geographic areas. The 
Hp polymorphism described here does not suf-
fer from this pitfall, as the gene itself is directly 
linked to the pathophysiology of the disease, and 
the drug therapy (vitamin E) directly intervenes 
on the allele–disease interaction. Finally, it is 
critical that any pharmacogenomic interaction 
that is first observed in a retrospective analysis 
of a clinical trial be confirmed in a prospec-
tive study, due to concerns for potential bias in 
patient ascertainment and in survivorship bias. 
Another aspect of pharmacogenomic studies that 

Pharmacogenomics & the prevention of vascular complications in diabetes mellitus Special Report



Therapy (2009) 6(4)536 future science group

Special Report Farbstein & LevySpecial Report Farbstein & Levy

should be taken into account is that a patient 
may carry several polymorphisms. In the face 
of this possibility, it is important to under-
stand not only the effect of isolated polymor-
phisms, but the interaction between them as 
well. Pharmacogenomics is clearly the key for 
optimized treatment and prevention of diabe-
tes mellitus-related complications, but further 
research is needed to fulfill its potential.
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Executive summary

Pharmacogenetics of statin therapy
�� There are numerous candidate genes.
�� ApoE polymorphisms were extensively studied, yielding tentative results.
�� No long-term large-scale clinical trials have been undertaken to date.

Pharmacogenetics of thiazolidinediones therapy
�� There are numerous candidate genes. 
�� The Pro12Ala polymorphism, which has been demonstrated to decrease the risk of diabetes mellitus, does not modulate response  

to therapy.
�� Other candidate genes were shown to have an effect only in small-scale trials.

Pharmacogenetics of ACE inhibitors & ARBs
�� Represents how pharmacogenetics may assist in choosing adequate therapy.
�� The effect of the angiotensin-converting enzyme (ACE) DD polymorphism on response to ACE inhibitors is debated.
�� The effect of the ACE DD polymorphism on response to angiotensin receptor blocker (ARB) treatment awaits large-scale trials.

Pharmacogenetics of metformin
�� The pharmacogenetics of metformin are based on the organic cation transporter (OCT) family that governs metformin distribution  

and clearance.
�� OCT1 polymorphisms have been implicated in both responsiveness to treatment and pharmacokinetics.
�� OCT2 polymorphisms have been implicated in pharmacokinetics.
�� There are currently no large-scale clinical trials showing either short-term or long-term efficiency.

Pharmacogenetics of haptoglobin
�� The pharmacogenetics of haptoglobin are based on the differences in antioxidant activity, which is higher in Hp 1–1 and Hp 2–1 

genotypes compared with the Hp 2–2 genotype.
�� The efficacy of vitamin E in Hp 2–2 individuals has been shown in the retrospective analysis of one trial and one prospective study.

Future perspective
�� Functional polymorphisms with relevance to the pathophysiology of the disease are more likely to predict responsiveness to therapy in 

different populations.
�� Large-scale clinical trials are needed to distinguish between significant and nonsignificant pharmacogenetic effects.
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