

Phase 1b/2 Combination Study of the BET Inhibitor ZEN-3694 with the PARP Inhibitor Talazoparib for the Treatment of TNBC Patients without germline BRCA1/2 Mutations Eric Campeau, TNBC Drug Development Summit, April 29, 2021

> Induction of synthetic lethality with PARP and BET inhibitors in DNA repair-competent cancer cells

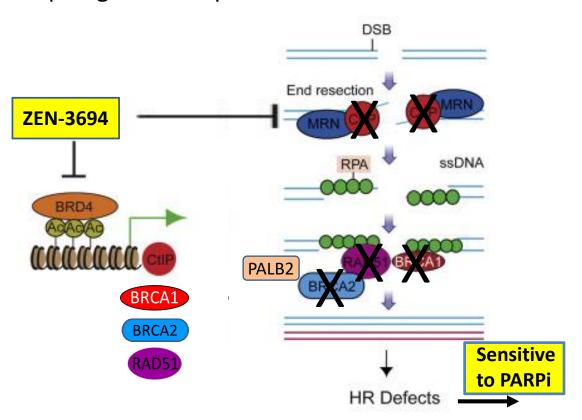
> Design of the ZEN003694-004 clinical trial of ZEN-3694 + talazoparib in non gBRCA1/2m TNBC patients

> Results from Dose Escalation and Stage 1 and evidence of clinical activity in non gBRCA1/2m patients

> Differentiation of BETi + PARPi vs. other combinations in patients with advanced TNBC

> Induction of synthetic lethality with PARP and BET inhibitors in DNA repair-competent cancer cells

> Design of the ZEN003694-004 clinical trial of ZEN-3694 + talazoparib in non gBRCA1/2m TNBC patients


> Results from Dose Escalation and Stage 1 and evidence of clinical activity in non gBRCA1/2m patients

➤ Differentiation of BETi + PARPi vs. other combinations in patients with advanced TNBC

Induction of homologous recombination deficiency by ZEN-3694 and sensitization to PARP inhibitors in BRCAwt cells

- In breast cancer, only ~20% of patients are eligible to receive a PARPi (germline BRCA1/2 mutant)
- Additional clinical activity in advanced breast cancer is currently limited to somatic BRCA1/2 or germline PALB2 mutations, not in other DNA repair genes
- Acquired resistance limits the clinical activity of PARPi (recovery of DNA repair capacity)
- ZEN-3694 reduces the mRNA levels of several DNA repair genes as a potential mechanism of sensitization to PARPi
- ⇒ BRCAwt tumors
- ⇒ BRCA1/2 mutant tumors PARPi-resistant

> Induction of synthetic lethality with PARP and BET inhibitors in DNA repair-competent cancer cells

> Design of the ZEN003694-004 clinical trial of ZEN-3694 + talazoparib in non gBRCA1/2m TNBC patients

> Results from Dose Escalation and Stage 1 and evidence of clinical activity in non gBRCA1/2m patients

➤ Differentiation of BETi + PARPi vs. other combinations in patients with advanced TNBC

ZEN-3694 + talazoparib trial design (Phase 2, Pfizer/Zenith collaboration)

Patients with advanced TNBC and no germline BRCA1/2 mutations

Locally advanced/metastatic TNBC

- No germline mutations in BRCA1 and BRCA2 (gBRCA1/2m) (CLIA test)
- No prior progression during platinum treatment
- No prior exposure to BETi or PARPi

Dose Escalation

Patients with at least one prior cytotoxic chemotherapy

Simon 2-Stage Dose Expansion

< 2 prior chemotherapy regimens for mTNBC</pre>

Objective: Show safety and activity of ZEN-3694 + talazoparib

Design: Dose escalation followed by Simon 2-stage, n= 17 1st stage, n=20 2nd stage

Patient population: TNBC: non-germline BRCA1/2 mutations, locally advanced or metastatic

Endpoints: Part 1: Safety, pharmacokinetics/pharmacodynamics, maximum tolerated dose, Phase 2 dose (RP2D)

Part 2: Objective response rate (ORR), clinical benefit rate (CBR), duration of response (DOR),

progression free survival (PFS)

NCT03901469

Patient baseline characteristics (Dose escalation + Stage 1)

December 2020

	Total (n = 32)
Age (median years)	56 (28 - 74)
ECOG	
0	21 (66%)
1	11 (34%)
Time from initial breast cancer diagnosis to ZEN-3694 (median mo.)	52.0 (5.0 – 342.0)
Duration of last prior treatment (Tx) regimen in metastatic setting (median weeks)	14.9 (2.9 – 384.6)
Primary locations of metastatic disease	
Liver	12 (38%)
Lung	15 (47%)
Lymph nodes	16 (50%)
Number of prior Tx regimens in metastatic setting: median (range)	2 (0 - 4)
0	2 (6%)
1	12 (38%)
2	7 (22%)
3	5 (16%)
4	6 (19%)
Prior anthracycline and/or taxane	30 (94%)
Prior platinum	8 (25%)
Prior checkpoint inhibitor	8 (25%)

Dose escalation and selection of the recommended phase 2 dose (RP2D)

		ZEN-3694				
		48 mg (QD)	36 mg (QD)			
TALAZOPARIB	1 mg (QD)	Dose Escalation Cohort 1 2/6 patients with DLT (TCP)	Dose Escalation Cohort 3 0/3 patient with DLT			
	0.75 mg (QD)	Dose Escalation Cohort 2 1/6 patient with DLT (TCP) Dose selected for Simon 2-stage				

48 mg QD ZEN-3694 + 0.75 mg QD talazoparib selected as RP2D

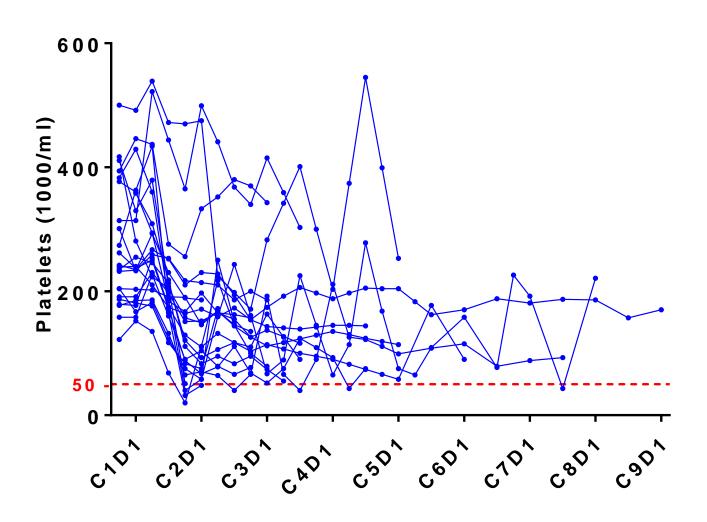
DLT = dose-limiting toxicity

QD = daily

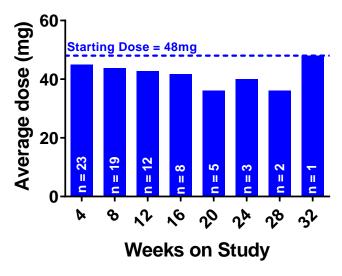
TCP = thrombocytopenia

Common treatment-related adverse events (AEs)

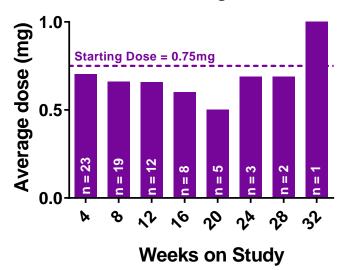
Grade 3/4 AEs across all cohorts	DE Cohort 1 48 mg ZEN + 1.0 mg Tala (n = 6)		DE Cohort 2 48 mg ZEN + 0.75 mg Tala (n = 6)		DE Cohort 3 36 mg ZEN + 1.0 mg Tala (n = 3)		Simon Stage 1 48 mg ZEN + 0.75 mg Tala (n = 17)		Total n = 32	
Conorts	Any Grade	Grade 3/4	Any Grade	Grade 3/4	Any Grade	Grade 3/4	Any Grade	Grade 3/4	Any Grade	Grade 3/4
ALT increase			1				4	2 (G3)	5 (15.6%)	2 (G3)
AST increase	1		1				3	1 (G3)	5 (15.6%)	1 (G3)
Diarrhea	2	1 (G3)			1		1		4 (12.5%)	1 (G3)
Hyperglycemia	1						1	1 (G3)	2 (6.3%)	1 (G3)
Nausea	3		4	1(G3)			6	1 (G3)	13 (40.6%)	2 (G3)
Neutropenia	1		2	2(G3)			2		5 (15.6%)	2 (G3)
Thrombocytopenia	6	3 (G3), 2 (G4) [#]	5	3 (G3), 1 (G4) [#]	1	1 (G3)	5	5 (G3), 1 (G4)	17 (53.1%)	12 (G3), 4 (G4) [#]


[^]ALT/AST self resolved

Thrombocytopenia reversible with dose hold and reduction


^{*}DLTs (thrombocytopenia) = two patients in Cohort 1, one patient in Cohort 2

Manageable thrombocytopenia and maintenance of dose intensity for ZEN-3694 and TALA through first eight cycles

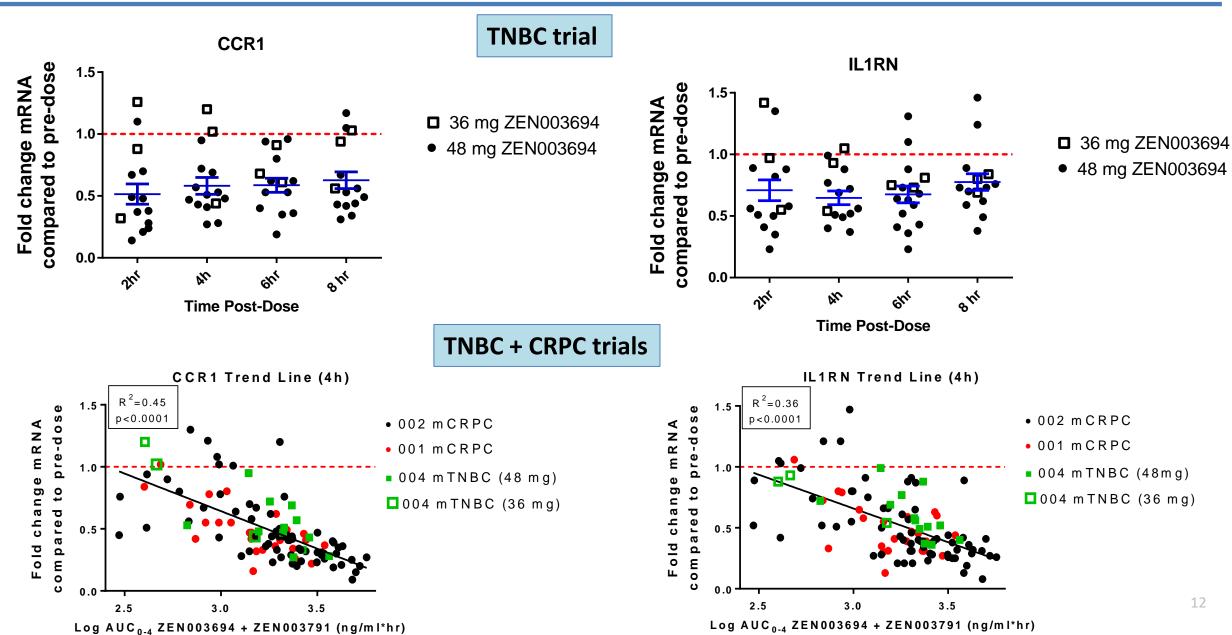


ZEN-3694 Average Dose

TALA Average Dose

> Induction of synthetic lethality with PARP and BET inhibitors in DNA repair-competent cancer cells

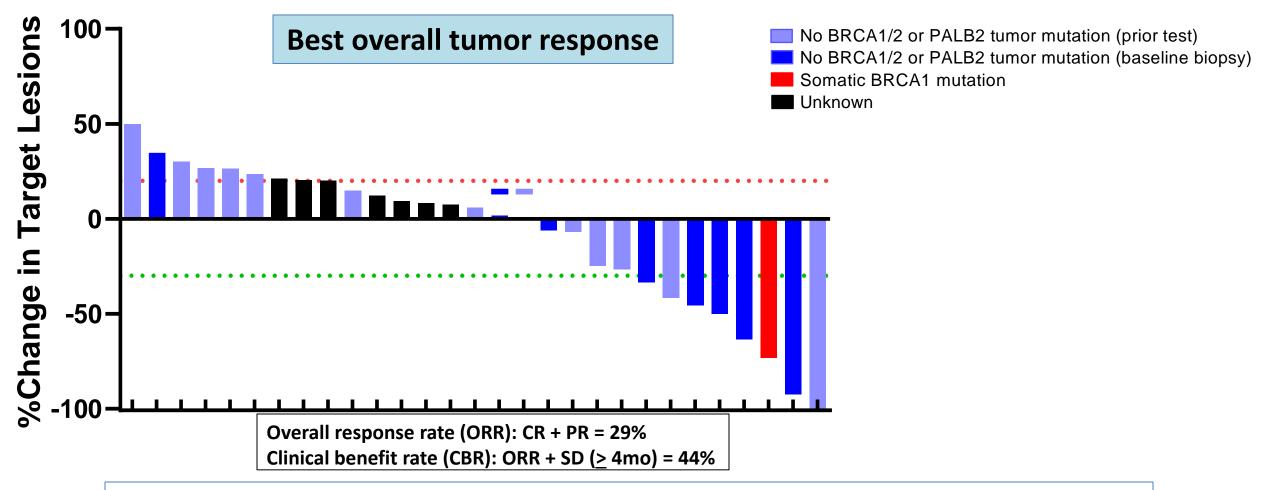
➤ Design of the ZEN003694-004 clinical trial of ZEN-3694 + talazoparib in non gBRCA1/2m TNBC patients


> Results from Dose Escalation and Stage 1 and evidence of clinical activity in non gBRCA1/2m patients

➤ Differentiation of BETi + PARPi vs. other combinations in patients with TNBC

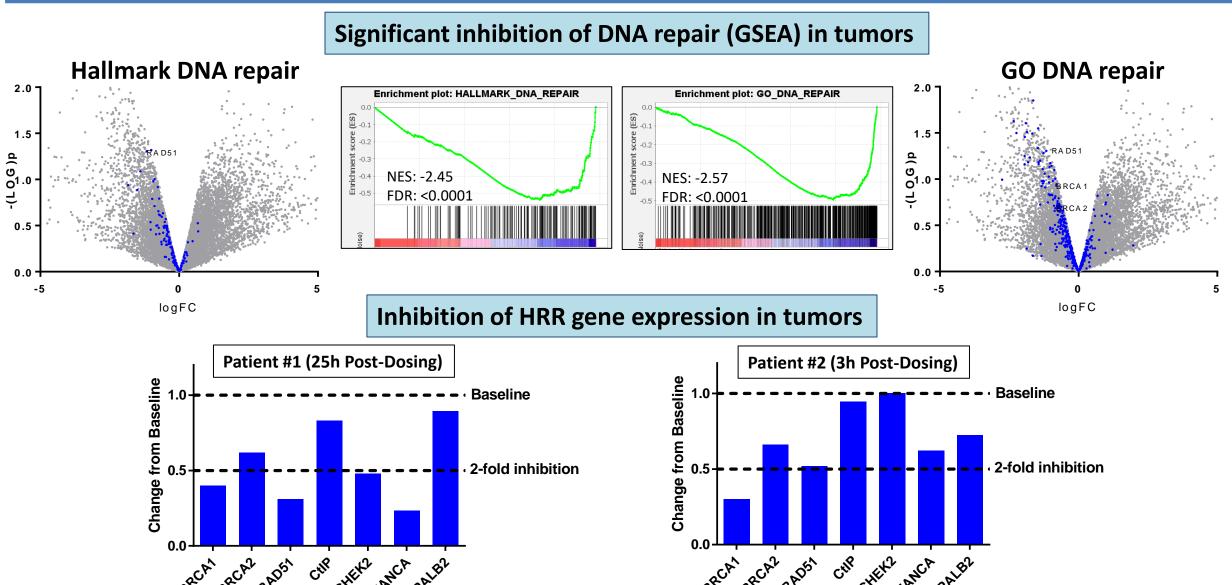
Sustained whole blood target engagement for > 8 hours

Similar exposure-dependent target engagement as prior trials in prostate cancer



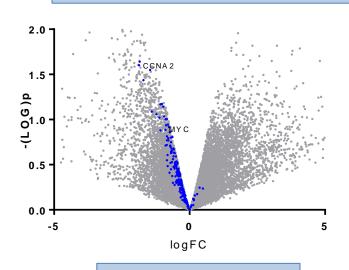
Activity of ZEN-3694 + talazoparib in HRRwt TNBC tumors

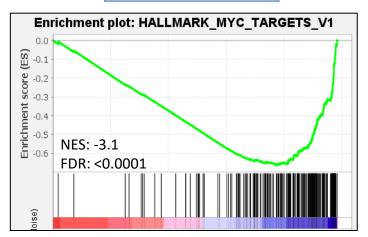
Dose escalation + Stage 1 (December 2020)

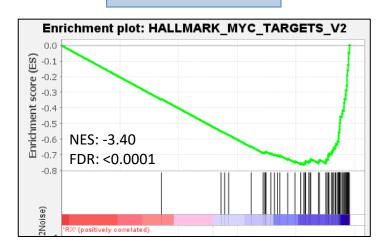


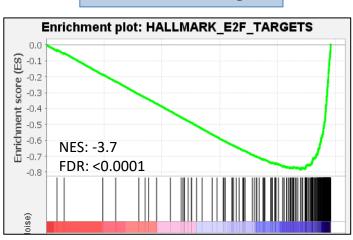
- Patients screened for absence of gBRCA1/2m for enrollment on trial
- CLIA sequencing of biopsies from patients rule out tumor mutations in BRCA1/2 or PALB2
- ⇒ Combination activity unlikely due to single agent talazoparib

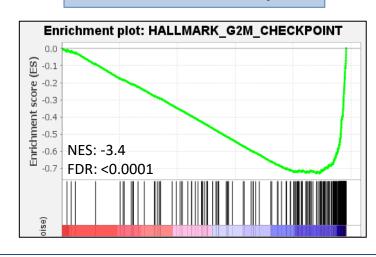
Inhibition of DNA repair and HRR gene expression in tumors from two TNBC patients On-Treatment

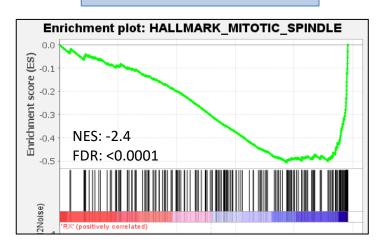



Significant inhibition of oncogenic hallmarks in tumor biopsies On-Treatment (GSEA)




Hallmark MYC V1


Hallmark MYC V2


Hallmark E2F targets

Hallmark G2/M checkpoint

Hallmark mitotic spindle

> Induction of synthetic lethality with PARP and BET inhibitors in DNA repair-competent cancer cells

➤ Design of the ZEN003694-004 clinical trial of ZEN-3694 + talazoparib in non gBRCA1/2m TNBC patients

> Results from Dose Escalation and Stage 1 and evidence of clinical activity in non gBRCA1/2m patients

> Differentiation of BETi + PARPi vs. other combinations in patients with advanced TNBC

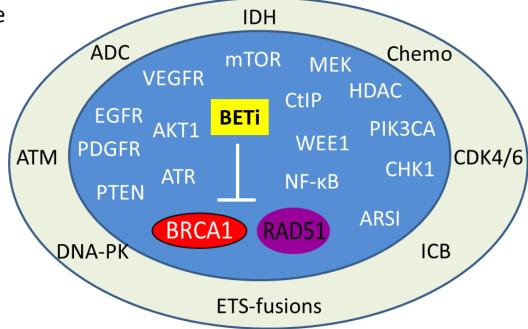
Clinical activity of PARP inhibitors in advanced breast cancer

Limited activity in BRCA1/2 wild-type patients

D. II.		BRCA1/2 and PALB2 status			
Pathway	Agent(s)	MUTANT	"WT"		
	ZEN-3694 + TALA		✓		
ZEN + TALA vs.	ВЕТі		*		
single agents	PARPi	✓	×		
	ATRi	*	×		
	ATRi + PARPi	✓	*		
DNA damage	ATRi + carboplatin	(*)	(*)		
response	WEE1	(*)	(*)		
	WEE1 + PARPi	✓ (toxic)	*		
	AKTi + PARPi	✓	×		
	AKTi + paclitaxel	*	*		
PI3K/AKT/mTOR	panPI3Ki	*	×		
	PIK3CAi + PARPi	(*)	(*)		
	mTORi + PARPi	×	×		
МАРК	EGFRi + PARPi		(*)		
Immunotherapy	αPD-1 + PARPi	✓	(*)		

Initial clinical results (advanced breast cancer):

- Limited activity of PARPi outside BRCA1/2m or PALB2m
- ⇒ ~ 10% tumor response rates in unselected populations
- ⇒ Need to identify additional biomarkers of response
- Potential to increase and extend current PARPi activity
- ⇒ Increase response rates and/or duration of response?
- ⇒ Promising strategy
- Most agents currently tested do not sensitize to PARPi
- ⇒ Limited evidence of creation of "BRCAness" phenotype in the clinic


^{√ =} evidence of clinical activity

^{★=} limited clinical activity in unselected patient population or compared to single agent
(✓) or (★) = initial clinical evidence (currently low number of TNBC cases)

What is the difference from other inhibitors with the same proposed mechanism?

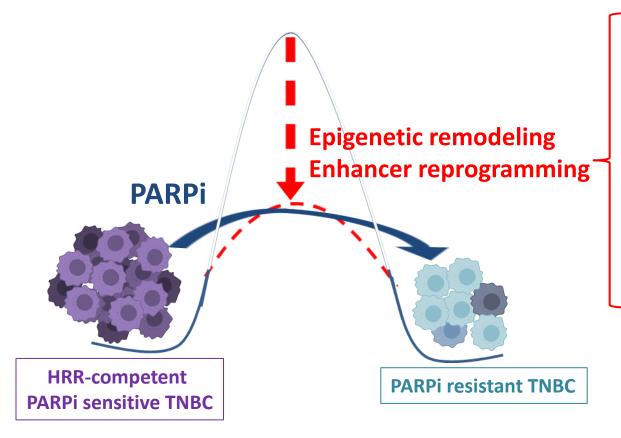
- Inhibition of several pathways have been shown to increase sensitivity to PARPi in preclinical models
- Mitigated success in the clinic at this time

= Inhibition shown to affect RAD51 and/or BRCA1 mRNA or protein levels and increase sensitivity to PARPi

= Inhibition shown to increase sensitivity to PARPi

ADC = Antibody-drug conjugate

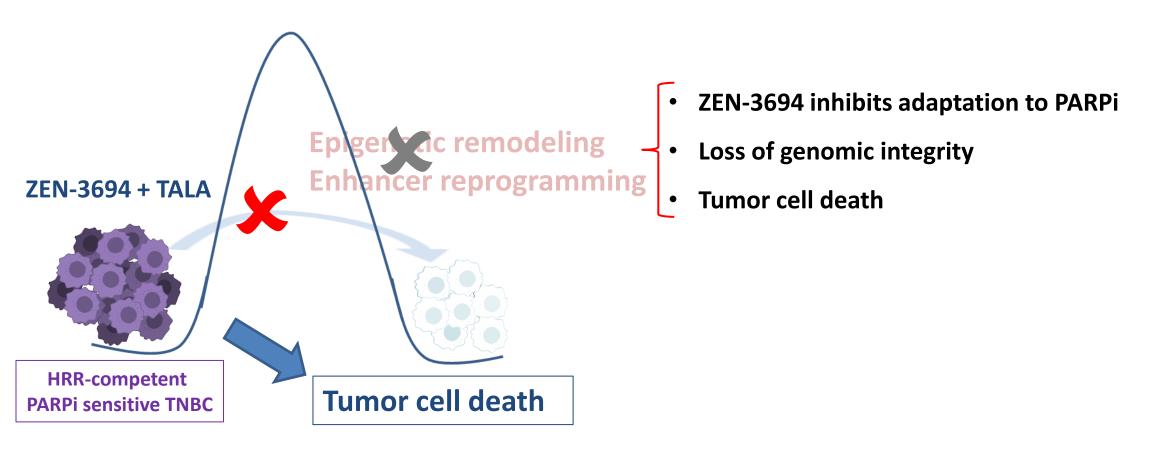
ICB = Immune checkpoint blockade (immunotherapy)


ARSI = Androgen receptor signaling inhibitor (enzalutamide, abiraterone, apalutamide, darolutamide)

Why would ZEN-3694 be different?

BET-dependent mechanism of resistance to PARP inhibitors

Single agent PARPi in BRCA wild-type advanced TNBC



- PARPi induces DNA damage (PARP trapping) and inhibits DNA repair (BER), replication, and transcription
- <u>BET-dependent</u> induction of DNA damage response
- <u>BET-dependent</u> transcriptional reprogramming to maintain genomic integrity
- Induction of alternate DNA repair pathways
- Resistance to PARP inhibitors

BET-dependent mechanism of resistance to PARP inhibitors

- Combination of PARPi with other agents might be limited by epigenetic plasticity of TNBC tumors
- ZEN-3694 targets epigenetic resistance mechanisms

Summary and conclusions

- Combination of ZEN-3694 + TALA demonstrated evidence of anti-tumor activity in previously treated patients with metastatic TNBC without gBRCA1/2 mutations.
- The combination is generally well-tolerated. Thrombocytopenia is the most common adverse event and dose-limiting toxicity, but it is manageable with dose adjustments. High dose intensity was maintained.
- PK is predictable, and PD data show meaningful and durable target engagement.
- Evidence that ZEN-3694 can target tumor adaptation to PARP inhibitors
- ZEN-3694 + talazoparib Simon Stage 2 is ongoing
- Translational Program to identify factors involved in response to combination regimen ongoing

Acknowledgements

Patients and their families

<u>Investigators</u>

- Philippe Aftimos (Jules Bordet)
- Valentina Boni (START Madrid)
- Susan Domchek (UPenn)
- Ayca Gucalp (MSKCC)
- Erika Hamilton (Sarah Cannon)
- Jennifer Litton (MD Anderson)
- Lida Mina (MD Anderson)
- Mafalda Oliveira (VHIO)
- Kevin Punie (UZ Leuven)
- Mark Robson (MSKCC)
- Payal D Shah (UPenn)
- Priyanka Sharma (UKansas)

<u>Pfizer</u>

- Akos Czibere
- Yanke Yu

Zenith

- Sarah Attwell
- Lisa Bauman
- Emily Johnson
- Sanjay Lakhotia
- Karen Norek
- Michael H Silverman
- Margo Snyder
- Philip Wegge