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Phase Diagrams and Phase Separation 
 

Books 
 
MF Ashby and DA Jones, Engineering Materials Vol 
2, Pergamon 
 
P Haasen, Physical Metallurgy,  
 
G Strobl, The Physics of Polymers, Springer 
 
Introduction 
 
Mixing two (or more) components together can lead 
to new properties: 
Metal alloys e.g. steel, bronze, brass�. 
Polymers e.g. rubber toughened systems. 
 
Can either get complete mixing on the 
atomic/molecular level, or phase separation. 
 
Phase Diagrams allow us to map out what happens 
under different conditions (specifically of 
concentration and temperature). 
 
 

 
 

Free Energy of Mixing 
 

Entropy of Mixing 
nA atoms of A 
nB atoms of B 
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Total atoms N = nA + nB 
 
Then Smix = k ln W 
    = k ln

N!
nA!nb!

 

 
This can be rewritten in terms of concentrations of 
the two types of atoms: 
  nA/N = cA    nB/N = cB 
 
and using Stirling's approximation 
 

Smix = -Nk (cAln cA + cBln cB) 
 

S m
ix

/ k
N

A B0.5  
 This is a parabolic curve. 
 
 
 
There is always a positive entropy gain on mixing 
(note the logarithms are negative) � so that entropic 
considerations alone will lead to a homogeneous 
mixture. 
 
The infinite slope at cA=0 and 1 means that it is very 
hard to remove final few impurities from a mixture. 
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This is the situation if no molecular interactions to 
lead to enthalpic contribution to the free energy (this 
corresponds to the athermal or ideal mixing case). 
 
Enthalpic Contribution 
 
Assume a coordination number Z. 
 
Within a mean field approximation there are 
 nAA bonds of A-A type = 1/2 NcAZcA = 1/2 NZcA

2 

 nBB bonds of B-B type = 1/2 NcBZcB = 1/2 NZ(1-
cA)2 

and  nAB bonds of A-B type = NZcA(1-cA) 
 
where the factor 1/2 comes in to avoid double counting 
and cB = (1-cA). 
 
 
 
If the bond energies are EAA, EBB and EAB respectively, 
then the energy of interaction is (writing cA as simply 
c) 
 
 1/2 NZ [cEAA + (1-c)EBB + c(1-c) (2EAB - EAA � 
EBB)] 
 
 
 energy of 2 separate starting materials 
 
∴∴∴∴  Umix = 1/2 NZ c(1-c) (2EAB � EAA � EBB) 
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The term (2EAB � EAA � EBB) determines whether 
mixing or demixing occurs. 
 
Define  χχχχkT = Z/2 (2EAB � EAA � EBB) 
 
where χχχχ is known as the interaction parameter, and is 
dimensionless. 
 
(The definition of χ χ χ χ in this way, including the kT term, 
is for historical reasons). 
 

Fmix/ kT = c ln c + (1-c) ln (1-c) + χχχχ kT c(1-c) 
 
 
 

Three cases to consider 
 
�   χχχχ=0  athermal or ideal solution case. 
 

F m
ix

/ k
T

Fmix = -TSmix

 
 Fmix  is always negative. 
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�  χ>0  χ>0  χ>0  χ>0   i.e. 2EAB> EAA + EBB 
 

 
2 local minima result 
 
 
 
�   χχχχ< 0 

 
 

 
One deep minimum 
 

F m
ix

/ k
T χχχχc(1-c) -TSmix

Fmix

F m
ix

/ k
T χχχχc(1-c)

-TSmix

Resultant 
Fmix
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These curves correspond to the case for one particular 
T. 
 
In order to plot out a phase diagram, we need to be 
able to see how temperature affects these curves. 
 
And we need to know whether or not these curves 
imply phase separation. 
 
Finally we need to know, if phase separation occurs, 
how much of each phase is present. 
 
 
 

Lever Rule for Determining Proportions of Phases 
 

Imagine we have a system with 2 phases present 
(labelled 1 and 2), and two types of atoms A and B. 
 
In phase 1 concentration of A = c1 
In phase 2 concentration of A = c2 
 
and that there is x of phase 1 present 
  and  (1-x) of phase 2 present. 
 
Total of N atoms, overall concentration of A = c 
 
∴∴∴∴  no of A atoms is Nc = Nxc1 + N(1-x) c2 
 

� x =  
c − c2

c1 − c2
=

n
l

  

 
� Lever Rule cc1 c2

m n

l
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Similarly 1-x=
c − c1

c1 − c2
=

m
l

 and x
1− x

=
c − c2

c − c1
=

n
m

 

Thus, when one wants to find the average of some 
quantity such as F, it is usually sufficient (neglecting 
surface effects) to take a weighted average. 
 
Consider the free energy F as F(c) 

 
F(c) = F2 + (F1 � F2) QR/PR 
 
By similar triangles, ����  F(c ) = SQ in the diagram. 
 
 
Therefore one can find free energy of any intermediate 
composition by drawing straight line between the free 
energies of the two constituent phases. 
 
Can now use this to interpret free energy curves. 
 
 
Consider cases of χχχχ=0 or negative; free energy curve 
had a single minimum. 

F

c

F1

c1 c2c

F2
P Q R

S
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As pure components (A and B)  F(c ) = F 

 
This can be lowered by going to compositions A1,B1 to 
give free energy F1 etc 
 
And as A and B continue to dissolve more and more of 
each other, free energy continues to drop. 
 
Minimum energy for homogeneous single phase, 
energy Fn  
 
 i.e no phase separation occurs in this case. 
 
Composition overall determines the state of the 
mixture. 
 
 
 
 
 

FA

FB

A BC

F

A1

B1
F1

Fn
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Minimum free energy will not be given (in general) by 
the minimum in the free energy curve. 
 
 
e.g. starting with composition c, if this were to result in 
composition corresponding to the minimum on the 
curve cmin, would necessarily also have phase with 
composition c' present. 
 

    

Necessary condition for homogeneous mixing to occur 
is for 
 

d 2 f
dc2 ≥ 0 everywhere 

 
 
However when χχχχ is positive, this inequality does not 
hold, and the behaviour is very different. 
 

 
 
 
Start with homogeneous free energy F, for concentration c. 

ccmin

c'
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This can split into A1 and B1; energy drops to F1. 
 
Minimum in energy occurs at F3 when the 
representative points on the free energy curve are 
joined by the lowest straight line: common tangent 
construction. 
 
In this case, have phase separation into compositions 
cA and cB, with phases αααα and ββββ. 
 
For compositions   c < cA have αααα phase 
    cA < c < cB have αααα + ββββ 
     cB<c have just ββββ.    
Proportions of αααα and ββββ given by Lever rule. 
 
For c<cA A dissolves B 
For cB<c B dissolves A 
 
cA and cB define solubility limits. 
 

F

F1
A1

B1

F3
A3 B3

FA

FB

A BcA cBc
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This common tangent construction can be extended to 
quite complicated situations, with several minima, 
which then give rise to quite complicated free energy 
curves and hence phase diagrams. 
 
For plotting a phase diagram we need to know how 
solubility limits (as determined by the common 
tangent construction) vary with temperature. 
 
Have seen that if d2F/dc2 everywhere ≥0 have a 
homogeneous solution. 
 
Phase separation  occurs when free energy curve has 
regions of negative curvature. 
 
This permits us to evaluate the limits of solubility in 
terms of χχχχ. 
 
For the symmetric case (i.e FA = FB i.e terms involving 
EAA and EBB are assumed equal) 
 
Fmix/ kT = c ln c + (1-c) ln (1-c) + χχχχc (1-c) per site 
 

∴
d2 F
dc2 = kT(

1
c

+
1

1− c
− 2χ)  

 
Critical value when d2F/dc2 = 0 
 

� c =
1
2

±
1
2

1−
2
χ

 

 
    
For a regular solution χχχχ ∝∝∝∝  1/T = A/T 
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Then limits of solubility vary with temperature 
according to  
 

c =
1
2

±
1
2

1−
2T
A

 

 
i.e. as T raised the two compositions of phases αααα and ββββ 
converge, until at Tcrit = A/2 there is no further 
separation and a homogeneous mixture results. 
 
In general, critical value of χχχχ = 2. 
 
There is no solution for c for χ <χ <χ <χ < 2  2  2  2 so there is no phase 
separation. 
 
Also, for the symmetrical case, the common tangent 
construction reduces to the condition 
 
 df/dc = 0  (i.e. horizontal tangent) 
 
This equation defines the binodal or coexistence  
curve. 
 

χbinodal =
1

2c −1
ln(

c
1− c

) 

 
 
For the regular solution case, with χ∝ 1/Τ χ∝ 1/Τ χ∝ 1/Τ χ∝ 1/Τ this allows 
us to plot out how the binodal behaves. 
 
Some comments on this Approach 
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This approach of a 'symmetrical' AB mixture is very 
similar to the Ising model, where the 2 states 
correspond to opposite spins (although of course A 
cannot transform to B as spins can). 
 
The approach used has been a mean field theory. 
This will fail: 
� near a critical point: will give the wrong critical 

point and the wrong critical exponents. In 
practice most of the phase diagram will be well 
away from this point, so this is not too severe. 

� for strongly negative χχχχ.  In this case there are 
strong attractions between unlike atoms and the 
idea of random distributions breaks down.  This 
can lead to order-disorder transitions. 

 
In general it is difficult to calculate χχχχ from 1st 
principles. 
 
Picture described here works best for liquid-liquid 
phase separation.  Melting may complicate matters. 
 
For solid-solid transitions have additional problems, 
leading to very complicated phase diagrams, due to 
 Strain energy 
 Other intermediate compounds eg AB2. 
 
 
 
 
However for the regular solution model we now can 
construct a phase diagram � which contains all the 
essential physics. 
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χχχχ<2 , only  a single minimum ���� homogeneous mixture    
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Knowing the form of the free energy curves as a 
function of T means that we can map out the limits of 
solubility etc. 

 
 

 
Plotting out the locus of the binodal enables us to see 
the shape of the phase diagram. 
 

 

df/dc = 0
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The binodal or coexistence curve describes the limits 
of solid solubility. 
 
Have seen condition for homogeneous mixing 
everywhere is d2f/dc2 ≥ 0 everywhere. 
 
The locus d2f/dc2 = 0 is called the spinodal curve. 
 
We need to distinguish how phase separation occurs 
inside this curve from between binodal and spinodal. 
 

Spinodal Curve and Spinodal Decomposition 
 

In the two phase region, two kinds of decomposition 
can occur. 
1. Nucleation and Growth � which we have already 

talked about, and is the most familiar. 
 
2. Spinodal Decomposition 
 
In the nucleation and growth regime we know that a 
nucleus of a critical size has to form before it is 
energetically favourable for it to grow. 
 
Nucleation and growth corresponds to a metastable 
region of the phase diagram. 
 
Spinodal decomposition occurs when any composition 
fluctuation is unstable � the unstable region of the 
phase diagram. 
 
Section of free energy curve: 
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Start at composition c, split into 2 slightly different 
compositions c1 and c2  to give net lowering of energy. 
 
Where the curvature is negative, any composition 
fluctuation leads to a drop in F, and is therefore 
unstable. 
 
 
 
This contrasts with region between spinodal and 
binodal: 

 
 

d2f/ dc2 = 0
limits of spinodal 
decomposition

C
C1

C2

d2f/ dc2 = 0
limits of spinodal 
decomposition C

C1

C2

common tangent construction
αααα

ββββ
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Net increase in F as compositions diverge � hence 
nucleation barrier, even though ultimately end up with 
overall lowering of energy when split into phases αααα 
and ββββ. 
 
Since any composition fluctuation is stable in the 
spinodal region, which wavelength dominates? 
 

    
    

Large fluctuations grow comparatively slowly because 
atoms have to diffuse over large distances. 
 
Small fluctuations are suppressed, because they 
involve a lot of diffuse interfaces. 
 
However the fact that interfaces aren't sharp means 
that we have to think carefully about how to account 
for the interfacial energy. 
 
Local free energy density depends on the composition 
at that point and in the vicinity, since this will 
determine the sharpness of the interface. 
 
Local free energy therefore can be written (1D case) 
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F = A f (c,
∂c
dx� ,

∂ 2c
dx2 ,....)dx  

where A is a constant 
 

Expand as Taylor series 
 

f (c,
∂c
∂x

,
∂ 2c
∂x 2 ...) = fo (c)+ k11

∂c
∂x

+ k12
∂c
∂x
� 
� 

� 
� 

2

+ k21
∂ 2c
∂x2 + ... 

 
Discarding higher order terms, and noting that k11 
must be zero by symmetry 
 

F = A fo(c) + k12 (
∂c
dx

)2 + k21
∂ 2c
∂x 2

� 
� � 

� 
� � 

� dx  

 
Which can be shown to lead to 
 

F = A [ fo� (c) + K
∂c
∂x
� 
� 

� 
� 

2

]dx  

 
Where K is the gradient energy coefficient  
 

K = k12 −
∂k21

∂c
 

 
This theory is due to Cahn and Hilliard for metal 
alloys. An equivalent theory for magnetic domains is 
due to Landau and Ginsburg. 
 
System will try  to equilibrate by having a uniform 
chemical potential. 
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General transport equation, flux of A, JA 
 

  −JA = M
∂
∂x

(µA − µB)  Onsager relation 

 
 
 
 
M is an Onsager coefficient 
µA and µB are the chemical potentials of A and B 
respectively. 
 
(µA - µB) is the free energy to remove 1 atom of A and 
replace it by B atom 
 

  µA − µB =
∂
dc

fo (c) + K(
∂c
∂x

)2� 
� 

� 
�  

 

  =
∂fo
∂c

+ 2K
∂ 2c
∂x 2  

 

−JA = M
∂ 2 fo
∂c2

∂c
∂x

+ 2MK
∂ 3x
∂x3  

 
For early times, c will not differ greatly from overall 
concentration co.  Can then make assumptions M, 
∂∂∂∂2fo/∂∂∂∂c2 and K are independent of c, i.e. linearise � 
linear Cahn-Hilliard theory. 
 
Now, continuity equation is 
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∂c
∂t

= −
∂J
∂x

 

   

  =M
∂ 2 fo
∂c2

∂ 2c
∂x2 + 2MK

∂ 4c
∂x 4     [1] 

 
And if the term involving K, the gradient energy term, 
can be neglected, this equation is equivalent to a 
standard diffusion equation with an effective diffusion 
coefficient Deff given by 
 

  Deff = M
∂ 2 fo
∂c2  

   
 
Note that this diffusion coefficient now contains 
thermodynamics, and is not simply a transport 
coefficient. 
 
M contains transport information and is always 
positive. 
 
 
But we know that within the spinodal regime ∂∂∂∂2fo/∂∂∂∂c2 is 
always negative, by definition. 
 
Thus Deff is negative � 'uphill diffusion'. 
 
All fluctuations tend to encourage concentration 
fluctuations to increase, so that neighbouring regions 
get more and more different. 
 
This is in contrast to most diffusion. 
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The contrast between Spinodal Decomposition and 

Nucleation and Growth. 
 

 
Now return to the full equation involving the gradient 
energy term. 
 
General solution to the diffusion equation is 
 

c(x,t) =  cos  (qx) exp  – (Dq2t) +  co   

 
 
 
 
 
 
For equation [1] this becomes 
 

αααα

ββββ

cA
l1 l2

downhill 
diffusion

droplets 
grow

coarsening occurs, but by uphill diffusion

Nucleation and Growth

Spinodal Decomposition
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c(x, t) =  co + cos  (qx) exp[ – (Deff q
2t(1+

2Kq2

fo
" )  ] 

 
if the intitial composition is co, where fo" is the second 
derivative of fo wrt composition. 
 
This form of the equation enables us to see which 
wavelengths grow and which shrink. 
 
The amplitude of the composition fluctuation of 
wavevector q changes with an amplification factor  
 

 R(q) = −Deff (1+
2Kq2

fo"
)q2  

  
 
Recall fo" is always negative 
 

Wavevector q

Am
pl

ifi
ca

tio
n 

fa
ct

or
 R

(q
)

0

+ve

-ve

q
max

 
 
 
The fastest growing wavelength is given by  
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qmax =
1
2

fo"
K
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What does this Morphology look like? 
 

For nucleation and growth we are used to seeing 
droplets of one phase nucleating in the other. 
 
For spinodal decomposition typically see (e.g. in an 
optical microscope) a random, interconnected 
structure, with a characteristic lengthscale related to 
qmax. 
 
From such images, difficult to get a good measure of 
the average lengthscale. 
 
Easier to do this using scattering methods from which 
qmax can be directly obtained. 
 
Scattering shows a broad Bragg-like peak, from 
which qmax can be read off. 
 
The scattering radiation can be light, X-rays� 
depending on actual lengthscale.   
 
Light scattering works well for polymers, because 
lengthscales are large, but for atomic species X-rays 
need to be used as much finer structures. 
 
This simple linearised theory will only work for early 
times, during which time qmax will be constant. 
 
As time increases non-linear terms come into play, 
and the analysis gets more complicated. 
 
Domain size R(t); Interface width w(t) 
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R(t)

R(t)

w(t)

R(t)

w(�)

φ

x

φ

x

φ

x

φφφφcoex
1

φφφφcoex
2

φφφφcoex
1

φφφφcoex
2

φφφφcoex
1

φφφφcoex
2

 
 
 
 
 
 
 
 
 
At early times, linear theory OK; one lengthscale 
(corresponding to qmax) 
 
Intermediate times � analysis very complicated.  Two 
lengthscales important 
 Size of domains 
 Width of interface 
 

Early 
R(t)~w(t) 
Both increase 
 
Intermediate 
R(t)≠w(t) 
R(t) increases 
w(t) decreases 
 
Late stage 
w(t) = w(∞∞∞∞) 
constant 
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Late times � simple theory again with only one 
lengthscale (interfaces are sharp). Compositions have 
now reached those of coexisting phases; coarsening 
continues to occur. 
 
During late stage growth, large droplets grow at the 
expense of small ones.   
 
Morphology may cease to be interconnected, and 
starts to resemble that of nucleation and growth 
regime. 
 
This phenomenon of coarsening also occurs in the 
nucleation and growth regime, and is known as 
Ostwald ripening. 
 
 
 

 
 

Why do Small Droplets Shrink and Large Ones 
Grow? 

 
Imagine adding one atom from an ideal solution to a 
precipitate particle, which thereby grows by ∆∆∆∆r. 
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(Same basic argument applies in both metastable and 
unstable regimes.) 
 
∆∆∆∆F = 8πrγ∆γ∆γ∆γ∆r + ∆∆∆∆Fv4πr2∆∆∆∆r - kT ln c    
 
 
surface energy bulk free energy entropy change 
change   change 
 
 

At equilibrium, ∆∆∆∆F = 0. 
 
Put ΩΩΩΩ = 4πr2∆∆∆∆r  
 

Then  0 =
2γΩ

r
+ ∆FvΩ − kT ln c  

 
  ∴ c = exp(

∆FvΩ
kT

)exp
2γΩ
rkT

 

 
Now c∞ = exp

∆FvΩ
kT

 is the concentration in 

equilibrium with a flat surface 
 
   cr = c∞ exp(

2γΩ
rkT

) 

 
The local concentration depends on particle size. 
 
Concentration highest just outside small particles, 
and the atoms will diffuse away to try to recover c∞∞∞∞. 
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Hence small particles shrink, whilst overall volume 
fraction remains essentially constant (otherwise c∞∞∞∞ 
would be changing). 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
n(r ) = no/unit 
volume with 
radius r 
 
 
 
 
Can work out 
how particle 

size scales with time by a heuristic argument. 
 

n(r ) = no/unit volume 
with radius r 

volume 
fraction 
in 2nd 
phase

nucln
growth with 
Ostwald 
ripening

time

r

n(r) late timeearly  
time
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Flux ∝∝∝∝  chemical potential gradient across interface 
   ∝

dc
dr

     cr = c∞ exp(
2γΩ
rkT

) 

 
∴

dc
dr

= −
1
r2 cr  

 
Flux also determines how radius grows or shrinks 
 

∴ flux ∝ −
dr
dt

∴ dr
dt

∝ 1
r2 cr

 

 
���� r3 ∝∝∝∝  t  or 
   r ∝∝∝∝  t1/3   Lifshitz-Slyozov law 
 
This is found to give good agreement with experiment 
when diffusion, rather than hydrodynamics, is 
dominating. 
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Utilising Phase Diagrams 
 

Phase diagrams are inherently for equilibrium.   
 
In practice equilibrium may not always pertain, and 
one can end up with structures which are far from 
equilibrium but are 'frozen in' because there is 
insufficient thermal energy to allow further 
transformation to occur. 
 
Thus must always bear in mind kinetics as well as 
thermodynamics. 
 
Case Study I � Zone-refining Silicon 
 
Silicon chips are only possible because native silicon, 
which naturally contains sufficient impurities to mess 
up any device, can be purified by a method known as 
zone-refining. 
 
 
 
 
 
 
 
 
 
Starting with co, when this is melted will be in 
equilibrium with a solid with concentration kco (k<1) 
level of impurities present. 
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Thus the process of melting and solidification leads to 
rejection of impurities into remaining liquid, whose 
impurity concentration goes up. 
 
By passing a heater over a solid bar, can effectively 
push impurities along. 
 
By doing this several times, end up with very pure Si 
(at one end). 
 
 
Case Study II � Hardening of aluminium by copper 
 
In this case exactly what happens, depends on 
thermal history � e.g. cooling rate, ageing etc. 
 

T

concentration of 
impurities

Liquid

Solid

L+S

kco co
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At the so-called eutectic point Te, 3 phases are in 
equilibrium: L, αααα and θθθθ. 
 
No degrees of freedom. 
 
Corresponds to the composition with the lowest 
melting point. 
 
At Te, upon cooling, all remaining liquid solidifies 
isothermally. 
 
~4% Cu in AL corresponds to Duralumins, designed 
with Cu present to harden Al, which is typically a 
fairly soft material. 
 
Above 500ûC 4% alloy is single phase αααα. 
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Below 500ûC θθθθ (CuAl2) phase starts to form. 
 
Proportion dependent on T and given by Lever Rule. 
 
However how the microstructure develops depends 
on rate of cooling. 
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Cool slowly � low driving force for nucleating CuAl2 
precipitates. 
 
Few nuclei, but these then grow quite large. 
 

    
 
Cool fast � large driving force for nucleation, and 
therefore many nuclei form which then do not grow 
much. 
 

 
    
    
Material which has been fast cooled is much harder. 
 
However if you cool too fast, can kinetically frustrate 
this process, and Cu remains in supersaturated αααα 
solid solution. 
 

Large, well-separated 
precipitates, typically at grain 
boundaries, which do not 
provide much barrier to 
dislocation motion 

Much finer structure - 
more obstacles to 
dislocation motion 
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Harden now by 'age-hardening' i.e. hold at low T 
(typically around 150ûC) for long time (~100 hours). 
 
Fine precipitates will now form during this heat 
treatment, by a series of steps. 
 
 
1.1.1.1.    Solid solution � Cu randomly distributed on lattice.    
 
2.2.2.2.    Small 'Guinier-Preston' zones form � small discs of 

Cu form on 001 Al lattice planes.    
    
3.3.3.3.    These zones coarsen and form θθθθ" phase, which has 

coherent lattice wrt Al lattice.  This gives rise to 
'coherency strain' which strain field impedes 
dislocation motion.  In this case size of lattice 
mismatch and distances involved mean that lattice 
planes can still bend to accommodate this 
mismatch.    

    
4.4.4.4.    Further coarsening and formation of θθθθ', which is 

incoherent (on edges) with Al lattice.    
    
5.5.5.5.    Final θθθθ phase forms, mainly nucleating at grain 

boundaries i.e. heterogeneous nucleation. Because 
completely incoherent, shape now not determined 
by lattice.    

    
Alloy hardest when θθθθ" phase present, since particles 
have to cut through precipitates.  
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Later stages is overaged, and the large θθθθ precipitates 
provide little obstacle, as dislocations can bow round 
the large precipitate particles. 
 

    


