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Phase-Locked Loops, Demodulation, and Averaging Approximation Time-Scale
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Abstract. Among the many applications of the phase-locked loop (PLL), a device used extensively in telecom-
munications and electronics, is the demodulation of modulated carrier signals. The PLL contains a
voltage controlled oscillator (VCO) that tracks a reference signal whose frequency may be changing.
This is accomplished through a feedback mechanism—the VCO’s frequency is adjusted by a control
signal that, after filtering, depends mostly on the phase difference between the reference and VCO
output. Phase-lock describes an operating state for which this phase difference remains constant.
During nearly phase-locked operation, the filtered signal controlling the VCO approximates the de-
modulation of the reference. A standard model is used to give a rigorous mathematical explanation
of the described operation of the PLL in a physically realistic operating regime. While the model
does not allow strict phase-locking, a theorem is formulated and proved that predicts operation
near an attracting torus with quasi-periodic flow in the state space. The proof uses high-order
averaging, a new result on extension of the averaging estimate to the forward infinite time-scale,
and continuation theory for invariant manifolds. For the averaged system (equivalent to a simpli-
fied model that assumes ideal filtering), we obtain an approximation for solutions on an attracting
invariant torus (for quasi-periodic reference signal modulation of sufficiently small amplitude and
frequency), in which the dominant response of the filtered control signal is the demodulation of the
reference signal, up to a rescaling and constant shift. Furthermore, we show that the full model
(allowing nonideal filtering) also has an attracting torus, on which solutions exhibit the same dom-
inant response. In addition, some results on continuation of invariant manifolds, which may have
applications beyond the PLL, are proved.
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1. Introduction. The phase-locked loop (PLL) is a ubiquitous device widely used in
telecommunications, signal processing, and computer electronics for applications ranging from
demodulation, extracting messages in signals with background noise, and frequency synthesis
to distributing clock timing pulses in microprocessors. It is designed as a feedback loop com-
prised of an oscillator whose instantaneous frequency is modulated by a control signal formed
from a (low-pass) filtered combination of the oscillator output and a reference signal. In case
the reference and oscillator output signals are (phase or frequency) modulated sinusoids and
are combined by multiplication, their product can be written as a sum of sinusoids whose
arguments are the sum and difference of the respective phases of the reference and oscillator
output signals. In this case, whenever the instantaneous frequencies of the reference and os-
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PHASE-LOCKED LOOPS 675

cillator output signals remain near a constant carrier frequency (i.e., the modulation is small),
the sum term will be mostly blocked by the low-pass filter, the difference term will pass rel-
atively unattenuated, and the dominant control signal modulating the oscillator’s frequency
will depend on the phase difference between the reference and oscillator output. Ideally, this
feedback mechanism causes the oscillator output to track the reference signal.

While much excellent work on modeling and applications of PLLs is available, most models
in the PLL literature are derived from the physical argument given above: small modulation
frequency (in comparison to the constant carrier frequency) and presumed ideal low-pass
filter behavior are used as justification for assuming that the control signal modulating the
oscillator’s instantaneous frequency depends only on the phase difference between the reference
signal and the oscillator output (see, for example, [1], [15], [11], [21], [4], [2], [8], [5]). The
resulting traditional model takes the form of a damped, driven pendulum-type ODE for the
phase difference, in which time dependent driving arises from modulation of the reference
signal. (In case the reference signal is unmodulated, the driving reduces to a constant torque
proportional to the difference between the free running oscillator frequency and the carrier
frequency of the reference.)

Notable exceptions are [16], [12], and [6], which present full models retaining the high
frequency sum term arising from the product of the reference and oscillator output signals, so
that after (nonideal) low-pass filtering, the control signal depends on both the difference and,
to a lesser extent, the sum (sometimes called the ripple) of the reference and oscillator output
phases. The PLL model in [6] is limited to reference signals that are pure sinusoids with no
modulation.

In [16], a combination of averaging and multiple time-scale techniques is used to obtain
a simplified model in which the high frequency sum term has been eliminated (although the
ripple amplitude persists due to the particular averaging technique and generalized model of
the oscillator used). A detailed qualitative analysis of the averaged system is performed—in
the case of no modulation or time independent modulation of the reference signal, linearized
stability of rest points is determined, and the conditions for their existence are used to ascertain
hold and pull-in frequency intervals for the PLL, which are then extended in a somewhat
dubious manner to the case of time dependent modulation. No mathematically rigorous
estimates are given for how closely or on which time-scale the averaged system approximates
the full system; rather, numerical simulations are presented in an attempt to justify the
approximation.

A more mathematical treatment is provided by [12], including analysis of both the averaged
and full systems and a more general exposition of dynamics on the torus. However, for the
most part, the PLL application in [12] is restricted to the case of an unmodulated reference
signal. One brief example involving modulation of the reference is presented, but only for
the averaged system where the phase sum term has been dropped. Furthermore, analysis of
the full system in [12] relies heavily on perturbation of an artificial small parameter placed
arbitrarily as a coefficient of the phase sum term, but not the phase difference term. (This
artificial small parameter should not be confused with the small parameter ε that allows the
averaging procedure described below; the parameter ε below arises from physical quantities
and appears as a coefficient in both the phase sum and phase difference terms.)
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676 CARMEN CHICONE AND MICHAEL T. HEITZMAN

The full models in both [16] and [12] take the form of a nonautonomous ODE,

(1.1) ẋ = εF (x, t, ε),

in which x is a slowly varying state vector due to the small parameter ε. The averaged system
is then given by the autonomous ODE,

(1.2) ẋ = εF̄ (x, ε),

where

(1.3) F̄ (x, ε) := lim
T→+∞

1

T

∫ T

0
F (x, t, ε) dt.

A standard result in averaging theory states that, with appropriate conditions on F , solutions
of (1.2) approximate solutions of (1.1) to order ε on a time-scale of order 1/ε (see [19], for
example).

Our approach differs from both [16] and [12], with a focus on the PLL application to
demodulation and a mathematically rigorous time extension of the approximation by an av-
eraged system to the forward infinite time-scale. Similar to [16] and [12], we develop a full
PLL model that retains the phase sum term arising from the product of the reference and
oscillator output signals. Our full model can be expressed in the action-angle form

ẋ =

N∑
p=K

εpfp(x, θ, ε),

θ̇ = Ω+O(ε),(1.4)

where the fast angle θ ∈ T1 (the one-dimensional torus) denotes the sum of the reference and
oscillator output phases, K and N are positive integers, Ω is a positive constant representing
twice the carrier frequency, and ε is a small positive parameter (various powers of which
represent the small ratio of modulation frequency to carrier frequency, small modulation
amplitude, and small ratio of the low-pass filter inverse time constant to the carrier frequency).
The components of the slow action vector x include the low-pass filter output, the reference
and oscillator output phase difference, and the reference signal modulation phase.

A rigorous method of averaging for action-angle systems of the form (1.4) can be described
as follows (see [19] for an excellent modern reference on averaging theory). There exists a
smooth, near-identity transformation of the form I+O(εK), 2π-periodic in θ, which transforms
the full system (1.4) into the equivalent system

ẋ =
N∑
p=K

εpf̃p(x, ε) +O(εN+1),

θ̇ = Ω+O(ε),(1.5)

where the dependence in the (slow) action vector field on the (fast) angle θ has been pushed
to order εN+1. Truncation of system (1.5) to order εN decouples the action vector x from the
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PHASE-LOCKED LOOPS 677

angle θ, yielding the (Nth-order) averaged system

(1.6) ẋ =
N∑
p=K

εpf̃p(x, ε),

which for our particular choice of ε scaling (see (5.4)) corresponds exactly to the simplified
system of the traditional PLL model, obtained by discarding the high frequency phase sum
term due to physical reasoning.

Gronwall’s inequality can be used to show that solutions of the averaged system (1.6)
approximate the action component of solutions of the transformed-not-truncated system (1.5)
to order εN−K+1 on a time-scale of 1/εK , which in turn approximates the action component
of solutions of the full system (1.4) to order εK . Thus, for K ≤ N − K + 1, solutions of
the averaged system (1.6) approximate the action components of solutions of the original full
system (1.4) to order εK on a time-scale of 1/εK (for our model, K = 2 and N = 6). This is
a standard result of higher-order averaging.

We extend this standard result to the forward infinite time-scale by employing a technique
introduced by Sanchez-Palencia in [18] and Sanders in [20]. They use contraction in the flow
of the action variable of the truncated system to compensate for the exponential growth terms
that arise in the standard Gronwall estimate of the difference between the solutions of the
truncated and not truncated systems. In [20], Sanders obtains the desired forward infinite time
extension of the approximation of the averaged system to the not truncated system in case
the averaged system has a hyperbolic attracting rest point (corresponding to an attracting
limit cycle in the action-angle system). For our PLL model, in case the modulation of the
reference signal is quasi-periodic and ε is sufficiently small, the averaged system (1.6) has a
hyperbolic attracting torus rather than a rest point. Thus, Sanders’ result cannot be directly
applied. Fortunately, the basic techniques used by Sanders can be modified to our flow with
an attracting torus.

As previously mentioned, the main application of the PLL we consider is in demodula-
tion. For the averaged system (1.6) (corresponding to the traditional simplified PLL model),
we obtain an approximate formula for solutions on the attracting torus (for quasi-periodic
reference signal modulation and sufficiently small ε), in which the dominant response of the
low-pass filter output is the demodulation of the reference signal, up to a rescaling and con-
stant shift. Additionally, we show that the full system (1.4) also has an attracting torus,
on which solutions exhibit the same dominant response (asymptotically in time). Further-
more, the near-identity transformation provides high frequency correction terms that restore
some of the high frequency content lost in the averaging process, allowing for an improved
approximation. These correction terms could have direct application in PLL design for de-
modulation, suggesting a value for the total loop gain that will likely minimize distortion of
the demodulation of the reference signal appearing in the low-pass filter output.

The paper is organized as follows. Section 2 introduces the model differential equations
for the PLL used in demodulation circuits. Section 3 contains a statement and analysis
of the simplified model that is most often encountered in the engineering literature, and
section 4 contains a discussion of the most basic features of the full model. In particular, for
the simplified model, strict phase-lock (constant phase difference between the reference and
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678 CARMEN CHICONE AND MICHAEL T. HEITZMAN

y1−→ PD
y2−→ LPF

y3−→
y4 ↖ ↙ y3

VCO

Figure 1. PLL feedback loop.

oscillator output) is possible only in the case of no modulation (for which “hold” and “pull-in”
frequency intervals are traditionally obtained), whereas in the full model strict phase-lock is
not possible at all. In section 5 the full model is recast in dimensionless form, and small
parameters, which are physically realistic, are identified. High-order averaging of the full
model is performed and discussed in section 6, and estimates of the difference between solutions
of the full and averaged systems are provided on the forward infinite time-scale. Continuation
theory for invariant manifolds is used in section 7 to determine approximate solutions of
the averaged system on an attracting torus. In section 8, the approximate solutions for the
averaged system, combined with the averaging estimates and transformation from section 6,
are used to obtain approximate solutions for the full system on its attracting torus (whose
existence is again obtained by using continuation theory).

The theorem stating that the averaging estimates can be extended to the infinite time-scale
is proved in Appendix A. Appendix B states theorems on the continuation and attraction
of invariant manifolds in case the unperturbed torus consists of rest points or supports a
translation flow. While more general results have been proved by Hale [10], Hirsch, Pugh,
and Shub [13], and Fenichel [7] for the normally hyperbolic case, the special cases of those
results employed in this paper are more easily and efficiently obtained with proofs, given in
Appendix B, that are based on the implicit function theorem. In Appendix C, a continuation
theory for invariant manifolds is developed and applied to a class of systems (action-angle form
with several angles) that are more general than the specific equations used to model the PLL.
In these latter appendices we formulate and prove new continuation results for non–normally
hyperbolic invariant manifolds. These results should have applications beyond the PLL.

2. PLL governing equations. In telecommunications, messages are often transmitted by
encoding them as modulations of the phase or frequency of carrier signals. The process of
extracting the modulation of a carrier signal (and hence reconstructing the message) is called
demodulation, a task which is often accomplished by PLLs.

A (phase or frequency) modulated sinusoid can be represented by a function of the form

t �→ A sin θ(t),

where the real number A is the amplitude and the real-valued function t �→ θ(t) gives the
phase at time t. The time derivative of the phase, θ̇(t), is called the instantaneous (angular)
frequency. In case θ(t) = ωt + α(t) for some ω > 0 and real-valued function α, the function
α can be viewed as a modulation of the phase, and its time derivative, α̇, can be viewed as a
modulation of the constant frequency ω.

A PLL consists of three main components: a phase detector (PD), low-pass filter (LPF),
and voltage controlled oscillator (VCO). In Figure 1, the input (or reference) signal, y1, andD
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PHASE-LOCKED LOOPS 679

the output of the VCO, y4, are modulated sinusoids that are combined in the PD (often a
multiplier mixer). The PD output, y2, depends on the phase difference between y1 and y4,
among other things. This is fed through the LPF, which produces y3, an improved measure
of the phase difference between y1 and y4 (under appropriate conditions). The instantaneous
operating frequency of the VCO is governed by y3, so that ideally the frequency of y4 is shifted
closer to the frequency of y1. If y1 and y4 maintain exactly the same instantaneous frequency,
their phase difference is constant, and they are said to be in phase-lock. Assuming that the
instantaneous VCO frequency is a linear function of y3, then during phase-lock, y3 would be
the demodulation of the modulated input y1 (up to additive and multiplicative constants).
Thus, when used as a demodulator, the LPF output, y3, is the output of the PLL device. A
more mathematically precise description proceeds as follows.

Suppose that the input and VCO output signals have the form

y1(t) = f(θin(t)),(2.1)

y4(t) = g(θ(t)),(2.2)

where f (respectively, g) is a 2π-periodic function of the input phase θin (respectively, the
VCO output phase θ). Treating the PD as a multiplier mixer, the PD output y2 is given by

y2(t) = Kpy1(t)y4(t)

= Kpf(θin(t))g(θ(t)),(2.3)

where Kp is a positive constant, not to be confused with the PD sensitivity, from which it
differs by factors of 1/2 and the amplitudes of y1 and y2 (see (2.14)).

In case the LPF is a lead-lag filter (an RC filter commonly used in PLL applications), the
relationship between y2 and y3 is given by the following ODE:

(2.4) y3 + τ1ẏ3 = y2 + τ2ẏ2,

where τ1 and τ2 are nonnegative constants. In most applications, τ2 � τ1 (see [21, p. 110]).
For simplicity, we treat the case τ2 = 0, in which the LPF reduces to a lag filter and (2.4)
reduces to the ODE

(2.5) y3 + τ1ẏ3 = y2.

We assume that the instantaneous frequency of the VCO output is controlled by y3 through
the linear relationship

(2.6) θ̇ = ω0 +Kvy3,

where the positive constant ω0 is called the free-running VCO angular frequency and Kv is a
positive constant called the VCO sensitivity.

Equations (2.1)–(2.3) combined with (2.5)–(2.6) yield the coupled ODE system

ẏ3 = − 1

τ1
y3 +

Kp

τ1
f(θin)g(θ),

θ̇ = ω0 +Kvy3(2.7)
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680 CARMEN CHICONE AND MICHAEL T. HEITZMAN

for the LPF voltage output, y3, and the VCO output phase, θ. Alternatively, θ may be
eliminated from the system by integration, yielding the single integro-differential equation

(2.8) y3 + τ1ẏ3 = Kpf(θin)g

(
ω0t+Kv

∫ t

0
y3(s) ds

)
,

where (without loss of generality) we have assumed that θ(0) = 0.
One more alternative is to eliminate y3 from (2.7), yielding the second-order ODE

(2.9) τ1θ̈ + θ̇ −KvKpf(θin(t))g(θ) = ω0.

In case the function g is sinusoidal, (2.9) describes a damped pendulum driven by parametric
forcing plus a constant torque.

By changing variables to the phase difference

(2.10) φ := θin − θ,

system (2.7) is recast as

φ̇ = −Kvy3 + θ̇in − ω0,

ẏ3 = − 1

τ1
y3 +

Kp

τ1
f(θin)g(θin − φ),(2.11)

and (2.9) becomes

(2.12) τ1φ̈+ φ̇+KvKpf(θin)g(θin − φ) = τ1θ̈in + θ̇in − ω0.

Let f and g be sinusoids given by

(2.13) f(θ) = Af sin θ, g(θ) = Ag cos θ,

where Af and Ag are positive constants (the amplitudes of y1 and y4). The PD output, y2,
can then be written as

y2 = Kpf(θin)g(θin − φ)

= KpAfAg sin θin cos(θin − φ)

= Kd(sinφ+ sin(2θin − φ)),(2.14)

where Kd := KpAfAg/2 represents the phase detector sensitivity. Recall from (2.10) that φ is
the phase difference between the input and VCO output signals; thus 2θin − φ is their phase
sum.

In this case, (2.11) and (2.12) are transformed into the system

φ̇ = −Kvy3 + θ̇in − ω0,

Kvẏ3 = −Kv

τ1
y3 +

K0

τ1
(sinφ+ sin(2θin − φ))(2.15)
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and the second-order differential equation

(2.16) τ1φ̈+ φ̇+K0 sinφ+K0 sin(2θin − φ) = τ1θ̈in + θ̇in − ω0,

respectively, where K0 := KdKv is called the total loop gain. In a simplified model that
discards the term K0 sin(2θin − φ) (due to filtering or averaging, as described in the next
section), and assuming steady state operation for small phase difference φ and constant θ̇in,
the differential equation reduces to the statement

θ̇in − ω0 = K0φ.

In other words, the phase difference between the input and the free running VCO is linearly
related to their frequency difference by K0.

3. Simplified model. The traditional simplified PLL model found extensively in the en-
gineering literature (see [1], [15], [11], [21], [4], [2], [8], [5], for example) is derived by assuming
that the modulation frequency is small compared to the carrier frequency, and that the LPF
behaves as an ideal LPF. Recall that y2, the PD output (given by (2.14)), is fed into the LPF.
In many applications, the input y1 is a modulated signal whose instantaneous frequency, θ̇in,
is near the carrier frequency, ωc 	 1. During phase-locked operation, the phase difference φ
is constant. Thus, if the PLL operates in the nearly phase-locked regime (i.e., φ̇ ≈ 0), then
sin(2θin − φ) is a high frequency term (with instantaneous frequency 2θ̇in − φ̇ ≈ 2ωc) that
will be mostly blocked by the LPF, whereas sinφ is a low frequency term (with instantaneous
frequency φ̇ ≈ 0) that will pass through the LPF mostly unattenuated. Based on this physical
reasoning, the term containing sin(2θin − φ) is dropped from (2.15) and (2.16) to obtain the
simplified system

φ̇ = −Kvy3 + θ̇in − ω0,

Kvẏ3 = −Kv

τ1
y3 +

K0

τ1
sinφ(3.1)

and the simplified second-order ODE

(3.2) τ1φ̈+ φ̇+K0 sinφ = τ1θ̈in + θ̇in − ω0,

respectively. These ODEs also model the motion of a damped, driven pendulum.
The physical argument leading from the full equations (2.15) or (2.16) to the simplified

equations (3.1) or (3.2) can be understood in a mathematical sense using the theory of averag-
ing. Heuristically, φ is a slow angle compared to the fast angle θin. Naively averaging over the
fast angle θin in (2.15) and (2.16) (while retaining θ̇in as a known function) yields (3.1) and
(3.2). In other words, on a time interval over which φ remains essentially constant (compared
to θin, which in the same time interval traverses many cycles), (2.16) and (3.2) should exhibit
similar dynamics. In the following sections, we make this naive averaging argument mathe-
matically rigorous by employing an averaging transformation and obtaining an appropriate
estimate for the difference between the solutions of the averaged and not averaged equations.
Furthermore, using techniques from [20], we extend the time interval of the validity of the
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682 CARMEN CHICONE AND MICHAEL T. HEITZMAN

averaging approximation by taking advantage of the existence of an attractor in the averaged
ODEs.

First, we continue analysis of the simplified ODE (3.2) (or the equivalent system (3.1))
in relation to the physical operation of the PLL. In case the input signal y1 is phase- or
frequency modulated, we may write

(3.3) θin(t) = ωct+ α(t),

where ωc is the constant carrier angular frequency and α(t) is the modulation of the phase. For
phase modulation (PM), the message would be α(t), whereas for frequency modulation (FM),
the message would be α̇(t). During phase-lock, we have θ̇in ≡ θ̇. In this case, differentiating
(3.3) and combining with (2.6) yields

(3.4) y3 =
ωc − ω0

Kv
+

1

Kv
α̇.

Equation (3.4) can also be obtained by setting φ̇ ≡ 0 in the first equation of system (3.1). Thus,
during phase-lock, the LPF output gives the demodulation (up to additive and multiplicative
constants) of an FM modulated input signal.

Let us assume that y1 = f ◦ θin is an FM modulated signal, with instantaneous frequency

(3.5) θ̇in(t) = ωc(1 +Mx(t)),

where ωc > 0 is the carrier frequency, M ≥ 0 is a constant scaling of the modulation, and x(t)
is a bounded message signal of the form

(3.6) x(t) = h(ψ(t)),

where h : Tn → R and ψ : R → Tn with ψ̇ = ωm ∈ Rn for some n ∈ N. If the components
of the vector ωm are rationally related, then the message signal x is a periodic function of t.
Otherwise, x is quasi-periodic. In either case, (3.2) becomes

(3.7) φ̈+
1

τ1
φ̇+

K0

τ1
sinφ = ωcMẋ(t) +

ωcM

τ1
x(t) +

ωc − ω0

τ1
.

If the input y1 were an unmodulated sinusoid (M = 0, i.e., zero message), then the driving
term would simply be a constant torque proportional to Δω := ωc − ω0. In case M = 0 and
Δω = 0, (3.7) has the form of an undriven, damped pendulum. In this case, there are two
fixed points: a stable fixed point at (φ, φ̇) = (0, 0) and a saddle point at (φ, φ̇) = (π, 0). In case
0 < |Δω| < K0, the two fixed points will be shifted towards each other, and for |Δω| = K0

the two fixed points merge into one. For |Δω| > K0, there are no fixed points; rather, this
regime has a unique stable limit cycle (corresponding to the whirling pendulum). For small

damping (approximately 1
τ1
< π2

16K0), this stable limit cycle persists even for |Δω| < K0,

until a homoclinic bifurcation occurs at |Δω| = b, where b ≈ 4
π

√
K0
τ1

(see [9, p. 202], [22,

Figure 8.5.10], or [12, Figure 3.8]). The region b < |Δω| < K0 is bistable with two coexisting
attractors: the stable fixed point and the stable limit cycle. For |Δω| > K0 the limit cycle is
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the only attractor, and for |Δω| < b < K0 the stable fixed point is the only attractor. In the
latter regime, phase-lock (i.e., φ̇ ≡ 0) is approached asymptotically for all initial conditions.
In the bistable regime, phase-lock is approached for those initial conditions in the basin of
attraction of the fixed point, while phase-lock does not occur for initial conditions in the
basin of attraction of the limit cycle. Using terminology from the PLL literature, we may call

2K0 the width of the hold interval and 2b ≈ 8
π

√
K0
τ1

the width of the pull-in interval. Note,

however, that the analysis in this paragraph has been for the case M = 0, i.e., no modulation
or message in the input signal.

If modulation is added, forM > 0 sufficiently small, the stable fixed point will be perturbed
into a stable periodic orbit (if x is periodic) or, more generally, an n-dimensional torus (if x is
quasi-periodic). In either case, phase-lock does not occur in the strict sense (φ̇ ≡ 0); rather, φ̇
will be near zero on the attracting limit cycle or torus. Thus, even in the simplified PLL model,
for input signals with nonzero modulation (i.e., nonzero message), strict phase-lock will not
be approached, even asymptotically. At best, a state of near phase-lock will be approached
asymptotically.

In case the input phase θin satisfies (3.5) and (3.6), the simplified second-order ODE (3.7),
or equivalently the system (3.1), may be expressed as the first-order autonomous system

φ̇ = −Kvy3 + ωcMh(ψ) + ωc − ω0,

Kvẏ3 = −Kv

τ1
y3 +

K0

τ1
sinφ,

ψ̇ = ωm.(3.8)

4. Full model. Returning to the full model (2.15), or equivalently (2.16), we again consider
an FM input signal with instantaneous frequency

(4.1) θ̇in = ωc(1 +Mx(t)),

where ωc > 0 is the carrier frequency, M ≥ 0 is a constant scaling of the modulation, and x(t)
is a quasi-periodic message signal of the form

(4.2) x(t) = h(ψ(t)),

where h : Tn → R is bounded and ψ : R → Tn with ψ̇ = ωm ∈ Rn for some n ∈ N.
The full system (2.15) may be rewritten as the (3 + n)-dimensional autonomous system

φ̇ = −Kvy3 + ωcMh(ψ) + ωc − ω0,

Kvẏ3 = −Kv

τ1
y3 +

K0

τ1
(sinφ+ sin(2θin − φ)),

ψ̇ = ωm,

θ̇in = ωc + ωcMh(ψ).(4.3)

The full second-order ODE (2.16) for φ is

(4.4) φ̈+
1

τ1
φ̇+

K0

τ1
(sinφ+ sin(2θin − φ)) = ωcMDh(tωm)ωm +

ωcM

τ1
h(ωmt) +

ωc − ω0

τ1
.
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684 CARMEN CHICONE AND MICHAEL T. HEITZMAN

In the strict phase-lock regime, the phase difference φ is constant (i.e., φ̇ ≡ 0). In this
case, in view of the first ODE in display (4.3) and the definition of h, the LPF output voltage
is

(4.5) y3 =
ωc
Kv

Mx(t) +
ωc − ω0

Kv
.

Similar to the simplified model, if the PLL of the full model operates in strict phase-lock, then
the LPF output is the demodulation of the FM modulated input signal (up to additive and
multiplicative constants).

Unfortunately, strict phase-lock is unattainable in the full model, for all periodic or quasi-
periodic messages of the form (4.2), including the case M = 0 (in contrast to the simplified
model). Indeed, by letting Q = 2θin−φ in (4.4) and setting φ̇ ≡ 0, we can see that strict phase-
lock could only be attained for the special class of messages h for which u(t) := ωcMh(ωmt)
satisfies the ODE system

u̇ =
K0

τ1
(sinφ+ sinQ)− 1

τ1
u+

ω0 − ωc
ωc

,

Q̇ = 2ωc + 2u,(4.6)

in which φ is to be considered as a constant parameter. By the first equation of (4.6),
every solution u is bounded by a function of time that decays exponentially to zero, as can
be seen by adding u/τ1 to both sides and making use of an integrating factor. However,
u(t) := ωcMh(ωmt) cannot approach zero if h is periodic or quasi-periodic of the form (4.2),
unless M = 0 or h ≡ 0, in which case u ≡ 0. But u ≡ 0 cannot be a solution of (4.6), because
in that case the first equation would imply that Q is constant, while the second equation
would imply that Q is strictly increasing. Thus, the full PLL model does not allow strict
phase-lock for all periodic or quasi-periodic messages of the form (4.2), even for the case of
the zero message.

Although strict phase-lock is not possible, we will show that (under appropriate conditions)
the PLL in the full model will tend to operate near the phase-locked regime (i.e., φ̇ ≈ 0), and
(4.5) will be the dominant response of the LPF output, asymptotically in time.

5. Dimensionless model. The change of variables

(5.1) s = ω0t, v =
Kv

ω0
y3, Q = 2θin − φ

in system (4.3) yields the dimensionless model equations

φ′ = −v +ΩcMh(ψ) + Ωc − 1,

v′ = −av + k sinφ+ k sinQ,

ψ′ = Ω,

Q′ = v +ΩcMh(ψ) + Ωc + 1,(5.2)

where

(5.3) a =
1

ω0τ1
, k =

K0

ω2
0τ1

, Ωc =
ωc
ω0
, Ω =

ωm
ω0

,
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and the prime denotes differentiation with respect to s.
The (positive) dimensionless quantities a, k, M , |Ωc − 1| and the components of the

dimensionless vector Ω are typically much less than one. Taking advantage of this fact, we
introduce the small parameter ε and write

(5.4) a = αε2, k = κε4, Ω = γε3, Ωc = 1 + βε3, M = mε3.

The powers of ε are chosen to facilitate the application of perturbation and averaging
theory to the analysis of system (5.2). This choice is also consistent with the relative sizes of
physically realistic parameter values. According to the LM565 PLL data sheet [17], its total
loop gain is given by K0 = 33.6 f0/Vc, where f0 is the VCO free running frequency in Hertz,
Vc is the total supply voltage, and the constant 33.6 is measured in Volts. As noted in the
data sheet, for fixed f0 and Vc, this total loop gain can be reduced by connecting a resistor
between pins 6 and 7 of the package. With a total supply voltage of Vc = 24 volts and an
appropriate resistor between pins 6 and 7 to reduce the standard total loop gain by a factor of
1/2, we have K0 = 0.7f0. Choosing a typical value of f0 = 10 kHz, we obtain K0 = 7000 sec−1

and ω0 ≈ 62831.9 rad/sec. Choosing an LPF time constant τ1 = 1.8 × 10−3 sec, and letting
|ωm| = 100 rad/sec and M = 0.001, then yields, approximately,

a = 0.008842, k = 0.000985, |Ω| = 0.00159, M = 0.001,

where | · | denotes a norm on Rn. In this case, letting ε = 0.1 yields approximately

α = 0.8842, κ = 9.85, |γ| = 1.59, m = 1,

for the real parameters α, κ, m, and the real n-dimensional vector γ.
Using the scaling (5.4), system (5.2) is recast in the form

φ′ = −v + ε3(mh(ψ) + β) + ε6βmh(ψ),

v′ = −ε2αv + ε4κ sinφ+ ε4κ sinQ,

ψ′ = ε3γ,

Q′ = 2 + v + ε3(mh(ψ) + β) + ε6βmh(ψ).(5.5)

For ε > 0 and z := v/ε2, system (5.5) becomes

φ′ = −ε2z + ε3(mh(ψ) + β) + ε6βmh(ψ),

z′ = ε2κ sin φ+ ε2κ sinQ− ε2αz,

ψ′ = ε3γ,

Q′ = 2 + ε2z + ε3(mh(ψ) + β) + ε6βmh(ψ),(5.6)

which is the correct form for averaging. Here, φ is the phase difference between the input signal
and the VCO output, z is a dimensionless rescaling of the LPF output, ψ is the modulation
phase, and Q is the fast angle 2θin − φ (i.e., the sum of the input and VCO output phases).
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686 CARMEN CHICONE AND MICHAEL T. HEITZMAN

Naively averaging system (5.6) over the fast angle Q (that is, integrating the first three
components of the vector field with respect to Q over an interval of length 2π, which in this
case amounts to dropping the term with factor sinQ) yields the reduced system

φ′ = −ε2z + ε3(mh(ψ) + β) + ε6βmh(ψ),

z′ = ε2κ sinφ− ε2αz,

ψ′ = ε3γ,(5.7)

which is decoupled from Q and equivalent to system (3.8) and the second-order ODE (3.7),
obtained from physical arguments. A question naturally arises: to what extent do solutions
of the naively averaged system (5.7) approximate solutions of the full system (5.6)?

A partial answer is provided by a more rigorous application of averaging theory. As
illustrated in the next section, there exists a smooth near-identity transformation, of the form
I + O(ε2), that is 2π-periodic in Q and that pushes the Q dependence in the vector field
of the first three equations in (5.6) to O(ε7), without introducing new lower-order terms, so
that at O(ε6), the first three equations of the transformed system are decoupled from Q, and
truncation to O(ε6) yields the reduced system (5.7). Gronwall’s inequality can be used to show
that, on a time-scale of 1/ε2, solutions of the truncated system (5.7) approximate the first
three components of solutions of the transformed full system to O(ε5), which in turn are O(ε2)
close to the first three components of solutions of the original full system (5.6) (due to the
near-identity transformation). Thus, solutions of (5.7) approximate the first three components
of solutions of (5.6) to O(ε2), on a time-scale of 1/ε2. This is a standard result (see [19]) of
higher-order averaging (in this case, sixth-order averaging). However, it is important to note
that in general, “naive” and rigorous higher-order averaging need not agree. The agreement
in this case is a fortuitous consequence of the particular ε-scaling chosen in (5.4), which allows
for the existence of the near-identity transformation with all of the attributes described above.

We will extend the time-scale of the standard result stated above. Making use of attrac-
tion in the averaged system (5.7), we employ techniques from [20] to show that its solutions
approximate the corresponding components of solutions of the full system (5.6) to O(ε2) on
an infinite forward time-scale. Furthermore, the averaging transformation itself yields high
frequency correction terms that improve the approximation to O(ε5), restoring some of the
high frequency content that was lost in the averaging process, or equivalently, that was lost
due to the physical assumption that the LPF perfectly attenuates signals with frequencies at
the order of the carrier frequency.

6. Averaging transformation. Applying the (near identity) change of variables

φ = φ̄+ ε4
κ

4
sinQ− ε6

κ

8
(2z̄ sinQ− α cosQ),

z = z̄ − ε2
κ

2
cosQ+ ε4

κ

4
(α sinQ+ z̄ cosQ) + ε5

κ

4

(
mh(ψ) + β

)
cosQ

+ ε6
κ

8

(
κ

2
sin2Q+ (α2 − z̄2 − κ cos φ̄) cosQ− (αz̄ + κ sin φ̄) sinQ

)
(6.1)
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to (5.6) yields the equivalent system

φ̄′ = −ε2z̄ + ε3(mh(ψ) + β) + ε6βmh(ψ) +O(ε7),

z̄′ = ε2κ sin φ̄− ε2αz̄ +O(ε7),

ψ′ = ε3γ,

Q′ = 2 + ε2z̄ + ε3(mh(ψ) + β)− ε4
κ

2
cosQ

+ ε6βmh(ψ) + ε6
κ

4
(α sinQ+ z̄ cosQ) +O(ε7),(6.2)

where dependence on the fast angle Q in the vector field of the slow variables has been moved
up from order two to seven in ε, which allows decoupling from Q after truncation at order
six. The transformation (6.1) can be obtained in the usual manner by composing a series of
transformations, each of which pushes the dependence on Q in the action variables up by one
order in epsilon (see [19]).

We let (ρ, ζ, ψ) denote the state variables for the truncation to order ε6 of the first three
ODEs of the transformed system (6.2). The truncated system

ρ′ = −ε2ζ + ε3(mh(ψ) + β) + ε6βmh(ψ),

ζ ′ = ε2κ sin ρ− ε2αζ,

ψ′ = ε3γ(6.3)

is equivalent to system (5.7) obtained by naive averaging and system (3.8) obtained by physical
reasoning.

Since the state spaces of the transformed system (6.2) and the truncated system (6.3) are,
respectively, T1×R×Tn×T1 and T1×R×Tn, where all but one of the state variables belong
to compact manifolds, it can be easily verified that solutions of both systems exist for all
forward time. Indeed, this result follows from the exponential decay of the single nonangular
component z̄ (respectively, ζ) due to the damping term −ε2αz̄ (respectively, −ε2αζ) in the
second equation of system (6.2) (respectively, system (6.3)).

Every solution (ρ, ζ, ψ) of the truncated system (6.3) approximates the corresponding
solution (φ̄, z̄, ψ,Q) of the transformed system (6.2) with the same initial data for its first
three coordinates, by the estimate

(6.4) (φ̄, z̄, ψ) = (ρ, ζ, ψ) +O(ε5),

on a time-scale of 1/ε2. This result can be verified by a standard application of Gronwall’s
inequality (see [19]). We will show that the time-scale can be extended from 1/ε2 to infinity.

To prove the time extension, we employ the idea introduced by Sanchez-Palencia in [18]
and Sanders in [20]. They use contraction in the flow of the action variable of the truncated
system to compensate for the exponential growth terms that arise in the standard Gronwall
estimate of the difference between the solutions of the truncated and full systems. In [20],
Sanders obtains the desired extension to infinite time for an action-angle system where the
action variable of the truncated system has a hyperbolic attracting rest point, that is, where
the truncated action-angle system has a hyperbolic attracting limit cycle. For sufficiently
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688 CARMEN CHICONE AND MICHAEL T. HEITZMAN

small ε > 0, our truncated action system (6.3) has a hyperbolic attracting limit cycle (if the
components of γ are rationally related) or an n-dimensional torus (if γ has components that
are not rationally related). When it is coupled with the fast angle, our action-angle system
has a hyperbolic attracting (n+1)-dimensional torus; thus, Sanders’ result cannot be directly
applied. Fortunately, the basic techniques used by Sanders for the limit cycle case can be
modified to our flow with an attracting torus. The details of the proof are in Appendix A,
Lemma A.1 and Theorem A.2, for an abstract system of greater generality than the PLL
application discussed here. As a special case of these results, we have the following theorem.

Theorem 6.1. For sufficiently small ε > 0, there exists an ε-independent product neighbor-
hood D0 × Tn ⊂ T1 × R× Tn such that if (ρ, ζ, ψ) is a solution of the truncated system (6.3)
with initial data in D0 × Tn and (φ̄, z̄, ψ,Q) is a solution of the not truncated transformed
system (6.2) with the same initial data (in the first three coordinates), then both solutions exist
and satisfy the estimate

(φ̄(s), z̄(s), ψ(s)) = (ρ(s), ζ(s), ψ(s)) +O(ε5)

for all s ≥ 0.
Using the transformation (6.1) to return to the original system yields higher-order correc-

tion terms for the approximation by the averaged system.
Corollary 6.2. For ε > 0 sufficiently small there exists a product neighborhood, D0 × Tn ⊂

T1 ×R× Tn, such that if (ρ, ζ, ψ) is a solution of the truncated system (6.3) with initial data
in D0×Tn and (φ, z, ψ,Q) is a solution of the original system (5.6) with the same initial data
(in the first three coordinates), then both solutions exist for all forward time. Moreover, the
solution of system (5.6) is approximated by the solution of (6.3) as follows:

φ(s) = ρ(s) + ε4
κ

4
sin(Q(s)) +O(ε5),

z(s) = ζ(s)− ε2
κ

2
cos(Q(s)) + ε4

κ

4

(
α sin(Q(s)) + ζ(s) cos(Q(s))

)
+O(ε5),

ψ(s) = ε3γs+ ψ(0),

Q(s) = 2θin(s)− ρ(s) +O(ε4),(6.5)

where

θin(s) = θin(0) + (1 + βε3)

(
s+mε3

∫ s

0
h(ψ(ξ)) dξ

)
.

We emphasize that by using a rigorous averaging transformation as opposed to naive aver-
aging, we have not only shown that solutions of (5.6) are approximated by solutions of (6.3),
but we have also obtained high frequency correction terms that improve the approximation.

The utility of the corollary in an application may depend on the extent to which the
solutions of the truncated system (6.3) are known. In the next section, we show that for
sufficiently small ε > 0 system (6.3) has an exponentially attracting invariant manifold con-
sisting of periodic or quasi-periodic solutions that exhibit the expected behavior of the PLL:
asymptotically, the dominant response of the LPF output is the demodulated message signal
(up to a constant rescaling and shift).
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7. Solution of the averaged system. In this section we use the persistence of normally
hyperbolic invariant manifolds (see Appendix B) and perturbation theory to show that, for
sufficiently small ε > 0, system (6.3) has an exponentially attracting invariant torus consisting
of periodic or quasi-periodic solutions for which the dominant response of the LPF output, ζ,
is the demodulated message signal (up to a constant rescaling and shift).

Theorem 7.1. For sufficiently small ε > 0, the ODE (6.3) has an n-dimensional exponen-
tially attracting invariant torus Mavg

ε ⊂ T1 × R × Tn consisting of periodic or quasi-periodic
orbits, and the corresponding solutions are approximated to O(ε3) as stated in the formulas

ρ(s) = ε
α

κ
(mh(ψ) + β) + ε2

m

κ

(
1− α2

κ

)
Dh(ψ)γ

− ε3

(
αm

κ2

(
2− α2

κ

)
D2h(ψ)(γ, γ) − 1

6

(
α

κ
(mh(ψ) + β)

)3
)

+O(ε4),

ζ(s) = ε(mh(ψ) + β)− ε2
αm

κ
Dh(ψ)γ − ε3

m

κ

(
1− α2

κ

)
D2h(ψ)(γ, γ) +O(ε4),

ψ(s) = ε3γs+ ψ(0),(7.1)

where, for each ψ ∈ Tn, D2h(ψ)(·, ·) : Rn × Rn → R denotes the second derivative of h at ψ
as a bilinear form.

Proof. Introducing the slow time τ = ε2s, the truncated system (6.3) becomes

dρ

dτ
= −ζ + ε(mh(ψ) + β) + ε4βmh(ψ),

dζ

dτ
= κ sin ρ− αζ,

dψ

dτ
= εγ.(7.2)

To make use of the theory of continuation of invariant manifolds as described in Appendix B,
system (7.2) can be expressed in the more abstract form

x′ = f(x) +H(x, ψ, ε),

ψ′ = Z(ψ, ε),(7.3)

as in (B.1), where

(7.4) x = (x1, x2) = (ρ, ζ) ∈ T1 × R, ψ ∈ Tn,

f(x) = (f1(x1, x2), f2(x1, x2))

= (−x2, κ sin x1 − αx2),(7.5)

H(x, ψ, ε) = (H1(x1, x2, ψ, ε),H2(x1, x2, ψ, ε))

= (ε(mh(ψ) + β) + ε4βmh(ψ), 0),(7.6)

and

(7.7) Z(ψ, ε) = εγ.
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690 CARMEN CHICONE AND MICHAEL T. HEITZMAN

In the unperturbed case, ε = 0, system (7.3) has a compact manifold of rest points, given
by the trivial graph

Mavg
0 = {(0, ψ) : ψ ∈ Tn} ⊂ T1 × R× Tn.

Note that the first derivative,

Df(0) :=

[
∂f1
∂x1

(0, 0) ∂f1
∂x2

(0, 0)
∂f2
∂x1

(0, 0) ∂f2
∂x2

(0, 0)

]
=

[
0 −1
κ −α

]
,

has eigenvalues −α
2 ±

√
α2−4κ
2 , implying that Mavg

0 is normally hyperbolic for α �= 0. That
is, for ε = 0, the flow of (7.3) has exponential contraction (α > 0) or expansion (α < 0) in
directions normal to Mavg

0 . (In the physical case of the PLL, α > 0 and thusM0 is attracting.)
By Proposition B.7 in Appendix B, the invariant manifold will persist under perturbation for
sufficiently small ε > 0, and the perturbed manifold can be expressed as the graph

(7.8) Mavg
ε = {(Gε(ψ), ψ) : ψ ∈ Tn} ⊂ T1 × R× Tn,

where the function Gε : Tn → T1×R is smooth (to arbitrarily high order) both in its argument
and in the parameter ε. Thus, Gε may be approximated by a series in ε to order N , with N
arbitrarily high:

(7.9) Gε(ψ) = G1(ψ)ε+G2(ψ)ε
2 +G3(ψ)ε

3 + · · ·+GN (ψ)ε
N +O(εN+1),

where Gj : Tn → T1 × R is a smooth function independent of ε, for j = 1, 2, . . . , N . By
Proposition B.9, the perturbed manifold Mavg

ε is also exponentially attracting. Since Mavg
ε

is a graph over ψ, every solution of (7.3) residing on Mavg
ε is periodic (if the components of

γ are rationally related) or quasi-periodic (if γ has components that are irrationally related).
The functions {Gj} can be determined by making use of the invariance of the perturbed

manifold Mavg
ε , where x = Gε(ψ). Differentiation by the chain rule gives

(7.10) x′ = DGε(ψ)ψ′,

which, using (7.3), becomes

(7.11) f(Gε(ψ)) +H(Gε(ψ), ψ, ε) = DGε(ψ)Z(ψ, ε).

To keep track of the components of this vector equation, we let

(7.12) Gε(ψ) = (με(ψ), νε(ψ))

and

(7.13) Gj(ψ) = (μj(ψ), νj(ψ)), j = 1, 2, . . . , N.

Combining (7.5)–(7.7) and (7.12)–(7.13) with (7.11), we obtain the system

− νε(ψ) + ε(mh(ψ) + β) + ε4βmh(ψ) = εDμε(ψ)γ,

κ sin(με(ψ))− ανε(ψ) = εDνε(ψ)γ.(7.14)
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Substitution of

με(ψ) = μ1(ψ)ε + μ2(ψ)ε
2 + · · ·+ μN (ψ)ε

N +O(εN+1),

νε(ψ) = ν1(ψ)ε+ ν2(ψ)ε
2 + · · ·+ νN (ψ)ε

N +O(εN+1)(7.15)

into (7.14), expansion, and collection of powers of ε yields a sequence of algebraic equations
that can be solved for μj and νj, j = 1, . . . , N . For j = 1, 2, 3, we obtain

μ1(ψ) =
α

κ
(mh(ψ) + β),

ν1(ψ) = mh(ψ) + β,

μ2(ψ) =
m

κ

(
1− α2

κ

)
Dh(ψ)γ,

ν2(ψ) = −αm
κ
Dh(ψ)γ,

μ3(ψ) = −αm
κ2

(
2− α2

κ

)
D2h(ψ)(γ, γ) +

1

6

(
α

κ
(mh(ψ) + β)

)3

,

ν3(ψ) = −m
κ

(
1− α2

κ

)
D2h(ψ)(γ, γ).

Returning to previous notation, this yields the following approximation for every solution of
(7.2) residing on the attracting manifold Mavg

ε :

ρ(τ) = ε
α

κ
(mh(ψ) + β) + ε2

m

κ

(
1− α2

κ

)
Dh(ψ)γ

− ε3

(
αm

κ2

(
2− α2

κ

)
D2h(ψ)(γ, γ) − 1

6

(
α

κ
(mh(ψ) + β)

)3
)

+O(ε4),

ζ(τ) = ε(mh(ψ) + β)− ε2
αm

κ
Dh(ψ)γ − ε3

m

κ

(
1− α2

κ

)
D2h(ψ)(γ, γ) +O(ε4),

ψ(τ) = εγτ + ψ(0).(7.16)

Changing back from the slow time τ to s yields the conclusion of the theorem.
Recall that the LPF output in the averaged system is proportional to ζ. Thus, on the

attractor of the averaged system, the dominant response (first order in ε) of the LPF output is
proportional to ε(mh(ψ) + β), which is a rescaling of the message signal h, with an offset due
to the detuning parameter β. The next-order correction term, −ε2 αmκ Dh(ψ)γ, has the effect of
distorting the rescaled offset message. Increasing κ (while holding all other parameters fixed)
will decrease the magnitude of this second-order correction term as well as the third-order
correction term. With ε fixed, an increase in κ amounts to an increase in k, which can be
achieved by increasing K0, the total loop gain, while holding all other parameters fixed. This
suggests that, in order to reduce distortion of the message appearing in the LPF output of
the averaged system, the total loop gain, K0, should be chosen as large as possible (or more
specifically, large enough to make second- and third-order terms as small in magnitude as the
fourth-order terms, assuming ε was chosen small enough so that each higher-order term was
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692 CARMEN CHICONE AND MICHAEL T. HEITZMAN

originally smaller in magnitude than the previous one). In the next section, we show that the
full system has an attractor on which the dominant response of the LPF output is the same,
but that there are additional high frequency correction terms, leading to a suggested finite
value of K0 that will reduce distortion of the message.

8. Solution of the original system. Making the change of variables ψ = εη, the trans-
formed full system (6.2) becomes

φ̄′ = −ε2z̄ + ε3(mh(εη) + β) + ε6βmh(εη) +O(ε7),

z̄′ = ε2κ sin φ̄− ε2αz̄ +O(ε7),

η′ = ε2γ,

Q′ = 2 + ε2z̄ + ε3(mh(εη) + β)− ε4
κ

2
cosQ

+ ε6βmh(εη) + ε6
κ

4
(α sinQ+ z̄ cosQ) +O(ε7).(8.1)

As a special case of Theorem C.5 in Appendix C, we have the following proposition.
Proposition 8.1. For sufficiently small ε > 0, system (8.1) has an attracting invariant torus

of dimension n+ 1, which is a continuation from the trivial manifold {0} × {0} × Tn × T1 at
ε = 0.

Using the change of variables ψ = εη to return to the full (transformed) system (6.2), we
have the following corollary.

Corollary 8.2. System (6.2) has an attracting invariant torus of dimension n+ 1, which is
arbitrarily close to the trivial manifold {0} × {0} × Tn × T1 for ε > 0 sufficiently small.

Returning to the original full system (5.6) by inverting the near-identity transformation
(6.1), we obtain the following corollary.

Corollary 8.3. System (5.6) has an attracting invariant torus of dimension n + 1, Mfull
ε ,

which is arbitrarily close to the trivial manifold {0} × {0} × Tn × T1 for ε > 0 sufficiently
small.

As a special case of Lemma A.1, we have the following contraction lemma for solutions of
the averaged system (6.3).

Lemma 8.4. For ε > 0 sufficiently small, there exist constants C1 > 0, C2 > 0, and
a product neighborhood, D0 × Tn ⊂ T1 × R × Tn, such that for every t0 ≥ 0, t ≥ t0,
(ρ0, ζ0, ψ0), (ρ̂0, ζ̂0, ψ0) ∈ D0×Tn, every pair of solutions (ρ, ζ, ψ) and (ρ̂, ζ̂ , ψ) of the truncated
system (6.3), with initial data (ρ(t0), ζ(t0), ψ(t0)) = (ρ0, ζ0, ψ0) and (ρ̂(t0), ζ̂(t0), ψ(t0)) =
(ρ̂0, ζ̂0, ψ0), satisfy the following contraction estimate:

(8.2) |(ρ(t), ζ(t)) − (ρ̂(t), ζ̂(t))| ≤ C1|(ρ0, ζ0)− (ρ̂0, ζ̂0)|e−C2ε2(t−t0).

Combining these results with Corollary 6.2 and Theorem 7.1, we obtain an approximate
asymptotic formula for solutions of the full system (5.6) on the attractor Mfull

ε , as stated in
the following corollary.

Corollary 8.5. For sufficiently small ε > 0, solutions of (5.6) on the attractor Mfull
ε are
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approximated to O(ε3) by the following:

φ(s) = ε
α

κ
(mh(ψ) + β) + ε2

m

κ

(
1− α2

κ

)
Dh(ψ)γ

− ε3

(
αm

κ2

(
2− α2

κ

)
D2h(ψ)(γ, γ) − 1

6

(
α

κ
(mh(ψ) + β)

)3
)

+ δ1(s) +O(ε4),

z(s) = ε(mh(ψ) + β)− ε2
(
αm

κ
Dh(ψ)γ +

κ

2
cosQ

)

− ε3
m

κ

(
1− α2

κ

)
D2h(ψ)(γ, γ) + δ2(s) +O(ε4),

ψ(s) = ε3γs+ ψ(0),

Q(s) = 2θin(s)− ε
α

κ
(mh(ψ) + β)− ε2

m

κ

(
1− α2

κ

)
Dh(ψ)γ

+ ε3

(
αm

κ2

(
2− α2

κ

)
D2h(ψ)(γ, γ) − 1

6

(
α

κ
(mh(ψ) + β)

)3
)

+O(ε4),(8.3)

where

(8.4) θin(s) = θ0 + (1 + βε3)

(
s+mε3

∫ s

0
h(ψ(ξ)) dξ

)

and |δ1(s)| and |δ2(s)| both approach zero exponentially as s→ +∞.
Proof. For ε > 0 sufficiently small, both Mavg

ε × T1 and Mfull
ε can be chosen to be

arbitrarily close to {0} × {0} × Tn × T1, so that both lie well inside D0 × Tn × T1, where the
approximation given by Corollary 6.2 holds, and where the contraction lemma, Lemma 8.4,
can be applied.

Let (φ, z, ψ,Q) be a solution of the full system (5.6) with initial data on Mfull
ε , and let

(ρ, ζ, ψ) be the solution of the averaged system (6.3) with the same initial data (for the first
three components). Let (ρ̂, ζ̂ , ψ) denote a solution of the averaged system (6.3) with initial
data on Mavg

ε , but with the same initial ψ value. Note that all three solutions have the same
ψ component, namely ψ(s) = ε3γs+ ψ(0). We then have

(8.5) (φ, z) = (ρ̂, ζ̂) +
(
(φ, z)− (ρ, ζ)

)
+
(
(ρ, ζ)− (ρ̂, ζ̂)

)
.

The formulas given in (8.3) then follow from (8.5) by replacing (ρ̂, ζ̂) with the formulas given
by the first two equations of (7.1) in Theorem 7.1, replacing (φ, z) − (ρ, ζ) by the correction
terms given in the first two equations of (6.5) in Corollary 6.2, and bounding |(ρ, ζ)−(ρ̂, ζ̂)| by
an exponentially decreasing function of time, as an application of the contraction lemma 8.4
(and using compactness of the attractors).

Recall that the LPF output is proportional to z. Thus, on the attractor in the full
system, asymptotically in time, for ε sufficiently small, the dominant response (first-order
in ε) of the LPF output is the same as that of the averaged system: it is proportional to
ε(mh(ψ) + β), a rescaling of the message signal with an offset due to the detuning parameter
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694 CARMEN CHICONE AND MICHAEL T. HEITZMAN

β. However, the second-order correction term −ε2(αmκ Dh(ψ)γ + κ
2 cosQ) contains the high

frequency contribution −ε2 κ2 cosQ, which would not appear in the solution of the simplified
system obtained by heuristic physical reasoning or naive averaging. By using a rigorous
averaging transformation, we have obtained an approximate solution that retains this high
frequency contribution appearing in the original full system.

The high frequency contribution to the second-order correction term creates a significant
distinction between the averaged and full systems in determining parameter values that will
reduce distortion of the message in the LPF output. The absolute value of the second-order
correction term in the full system is bounded by ε2( cκ + κ

2 ), where c := αm‖Dh‖|γ|, with | · |
denoting the Euclidean norm and ‖ · ‖ denoting the sup norm. As a function of κ, this bound
is minimized when κ =

√
2c. In terms of physical parameters, this condition translates to a

finite total loop gain value of K0 = ω0

√
2Mτ1‖Dh‖|ωm|, which tends to minimize distortion of

the message in the LPF output. Compare this with the averaged system, where the absolute
value of the second-order correction term is bounded by c/κ, which is minimized by letting κ,
and hence K0, grow infinitely large.

With the appropriate change of variables to return from system (5.6) to the original
system (4.3) in physical units, the dominant response of the LPF output, z = ε(mh(ψ) + β),
transforms to

(8.6) y3(t) =
ω0

Kv
Mx(t) +

ωc − ω0

Kv
,

which is exactly the expression in (4.5) that is obtained heuristically by assuming that the
PLL maintains phase-lock (φ̇ ≡ 0).

Appendix A. Time extension near an attracting torus. In [20], Sanders considered a
system of ODEs in action-angle form expanded in a small parameter ε with one angle variable
andm action variables, where the coupling between the action variables and the angle variable
occurs only in the highest-order term in ε. With the presence of attraction in the lowest-order
term of the action system, it was shown that an appropriate estimate of the difference between
the action components of a solution of the truncated (and decoupled) system and the action
components of the corresponding solution of the full system could be extended to all forward
time under some hypotheses. In particular, the estimate was extended to all forward time
when the truncated action-angle system contained a hyperbolic attracting limit cycle. We
generalize this result by allowing for additional angle variables. Geometrically, this amounts
to replacing the attracting limit cycle in the truncated system with a hyperbolic attracting
multidimensional torus.

Let l,m, n,K,N ∈ N and assume K ≤ N . Consider the full system

ẋ = εKFK(x) +
N∑

p=K+1

εpFp(x, ψ, ε) + εN+1FN+1(x, ψ, θ, ε),

ψ̇ = G(ψ, ε),

θ̇ = H(x, ψ, θ, ε),(A.1)

with the understanding that the sum from K + 1 to N does not appear in the first equation
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in case K = N , and the corresponding truncated system

ẋ = εKFK(x) +

N∑
p=K+1

εpFp(x, ψ, ε),

ψ̇ = G(ψ, ε),

θ̇ = H̃(x, ψ, θ, ε),(A.2)

where x ∈ Rm, ψ ∈ Tn, θ ∈ Tl, and ε ∈ [0, 1]. For the greatest generality in the following
lemma and theorem, the truncation need be taken only in the x-component. The function H̃
could be the same as H, a truncation of H, or something completely different. However, the
function G must be the same in (A.1) and (A.2). In the application of our PLL model, the
order of the ε-dependence of G does not exceed N . In this case, (A.2) could represent the
truncation to order N in ε of all components of the full system (A.1).

Lemma A.1 (contraction lemma). In system (A.2), suppose that the function FK is of class
C2 and that the functions Fp, G, and H̃ are of class C1.

If FK(0) = 0 and all of the eigenvalues of the Jacobian matrix DFK(0) lie in the left-half
of the complex plane, then there are positive constants ε0 < 1, α > 0, and C > 1 (independent
of ε) and nested neighborhoods D1 ⊂ D2 ⊂ D3 of the origin in Rm (independent of ε) with
d1 := dist(D1, ∂D2) > 0 and d2 := dist(D2, ∂D3) > 0 such that, for all ε ∈ [0, ε0], the manifold
Di × Tn × Tl is forward invariant under (A.2) for each i = 1, 2, 3.

Furthermore, for all t0 ≥ 0, t ≥ t0, x
0
1, x

0
2 ∈ D3, ψ

0 ∈ Tn, and θ01, θ
0
2 ∈ Tl, the two solutions

(x1, ψ1, θ1) and (x2, ψ2, θ2) of (A.2) with initial conditions (x1(t0), ψ1(t0), θ1(t0)) = (x01, ψ
0, θ01)

and (x2(t0), ψ2(t0), θ2(t0)) = (x02, ψ
0, θ02), respectively, satisfy the estimate

(A.3) |x1(t)− x2(t)| ≤ C|x01 − x02|e−αε
K(t−t0).

In particular, there exist constants 0 < k < 1 and T > 0, independent of ε, such that the
contraction estimate

(A.4) |x1(t+ t0)− x2(t+ t0)| ≤ k|x1(t0)− x2(t0)|
holds whenever t− t0 ≥ T/εK .

Proof. The first equation of (A.2) may be rewritten as

(A.5) ẋ = εKAx+ εKf(x) + εK+1g(x, ψ, ε),

where A := DFK(0), f(x) := FK(x)−Ax, and

g(x, ψ, ε) :=

N∑
p=K+1

εp−K−1Fp(x, ψ, ε).

As long as a solution (x, ψ, θ) of (A.2) exists, variation of parameters yields, for all t0 ≥ 0
and t ≥ t0,

(A.6) x(t) = eε
K(t−t0)Ax(t0) +

∫ t

t0

eε
K(t−s)A(εKf(x(s)) + εK+1g(x(s), ψ(s), ε)) ds.
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Since the real parts of the eigenvalues of A are all strictly negative, there exist positive
constants C and λ such that, for all s ∈ R,

(A.7) |esA| ≤ Ce−λs.

Since Df(0) = 0, the continuity of the function Df(x) = DFK(x) − A with respect to x at
x = 0 implies that there exists a constant a > 0 sufficiently small (independent of ε) such that

(A.8) Lf := sup
x∈Rm,|x|<a

|Df(x)| < λ

2C
.

By the compactness and continuity, we also have

(A.9) Lg := sup
x∈Rm,|x|<a,ψ∈Tn,ε∈[0,1]

|Dxg(x, ψ, ε)| <∞,

where Dx denotes the derivative with respect to x while holding ψ fixed.
In view of the equations and inequalities (A.6)–(A.9), for t ≥ t0 ≥ 0, the first components

of every pair of solutions (x1, ψ1, θ1) and (x2, ψ2, θ2) of system (A.2), with the same initial
conditions for ψ1 and ψ2, satisfy the inequality

|x1(t)− x2(t)| ≤ |eεK(t−t0)A||x1(t0)− x2(t0)|
+ (εKLf + εK+1Lg)

∫ t

t0

|eεK(t−s)A||x1(s)− x2(s)| ds

≤ Ce−λε
K(t−t0)|x1(t0)− x2(t0)|

+ (εKLf + εK+1Lg)C

∫ t

t0

e−λε
K(t−s)|x1(s)− x2(s)| ds

as long as both solutions exist; therefore, on the corresponding time interval,

eλε
K t|x1(t)− x2(t)| ≤ Ceλε

K t0 |x1(t0)− x2(t0)|
+ (εKLf + εK+1Lg)C

∫ t

t0

eλε
Ks|x1(s)− x2(s)| ds.(A.10)

Gronwall’s inequality implies

(A.11) eλε
K t|x1(t)− x2(t)| ≤ Ceλε

K t0 |x1(t0)− x2(t0)|e(εKLf+ε
K+1Lg)C(t−t0),

and thus

|x1(t)− x2(t)| ≤ C|x1(t0)− x2(t0)|e−((λ−LfC)−LgCε)εK(t−t0)

≤ C|x1(t0)− x2(t0)|e−(λ/2−LgCε)εK(t−t0),(A.12)

where in the last inequality above we have used (A.8). If ε0 > 0 is sufficiently small so that

(A.13) ε0Lg <
λ

2C
,
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then for ε ∈ [0, ε0] inequality (A.12) implies that

(A.14) |x1(t)− x2(t)| ≤ C|x1(t0)− x2(t0)|e−αεK (t−t0),

where

(A.15) α :=
λ

2
− LgCε0 > 0.

For ε ∈ [0, ε0], the estimate (A.14) provides the desired contraction for as long as both solutions
exist.

We will make use of a standard Lyapunov function (whose construction is given for com-
pleteness) to determine nested forward invariant sets for (A.2) where the inequality (A.14) is
valid for all time.

Define the matrix B :=
∫∞
0 etA

T
etA dt, where AT denotes the transpose of the matrix A.

The integral converges since the matrices A and AT each have the same eigenvalues, and thus
each satisfies estimate (A.7). Note that BT = B and, for all x ∈ Rm\{0},

〈x,Bx〉 =
∫ ∞

0
〈x, etAT

etAx〉 dt

=

∫ ∞

0
〈etAx, etAx〉 dt

> 0,(A.16)

where 〈·, ·〉 is the standard Euclidean inner product in Rm. Thus B is a symmetric positive-
definite matrix. Define V : Rm → R by V (x) = 〈x,Bx〉 for all x ∈ Rm. Then V induces the
norm | · |V , defined by |x|V :=

√
V (x). The matrix B satisfies Lyapunov’s equation,

(A.17) ATB +BA = −I,

where I is the m×m identity matrix. To verify this, note that

ATB +BA =

∫ ∞

0
(AT etA

T
etA + etA

T
etAA) dt

=

∫ ∞

0

d

dt
(etA

T
etA) dt

= lim
t→∞ etA

T
etA − I

= −I,(A.18)

where in the last equation we have again used estimate (A.7) for both A and AT .
For all x ∈ Rm,

f(x) = FK(x)−Ax

=

∫ 1

0
(1− τ)[D2FK(τx) · x] · x dτ.(A.19)
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698 CARMEN CHICONE AND MICHAEL T. HEITZMAN

Thus, for |x| < a, we have

(A.20) |f(x)| ≤ κ|x|2,

where κ := supx∈Rm,|x|<a |D2FK(x)| <∞. Then for all x ∈ Rm with |x| ≤ a we have

∇V (x) · FK(x) = 〈FK(x), Bx〉+ 〈x,BFK(x)〉
= 〈x, (ATB +BA)x〉+ 〈f(x), Bx〉+ 〈x,Bf(x)〉
= −|x|2 + 〈f(x), Bx〉+ 〈x,Bf(x)〉
≤ |x|2(−1 + 2κ|B||x|).(A.21)

In view of the inequality (A.21), for r := min{a, 1
4κ|B|} and x ∈ Rm with 0 < |x| ≤ r, we have

(A.22) ∇V (x) · FK(x) < 0.

Let Br(0) := {x ∈ Rm : |x| < r} denote the open ball in Rm centered at the origin with
radius r in the usual Euclidean norm. Since the function V is the square of the norm | · |V
(and all norms on Rm are equivalent), there exists ρ > 0 sufficiently small such that

(A.23) {x ∈ Rm : V (x) < ρ} ⊂ Br(0).

Define

(A.24) Dj :=

{
x ∈ Rm : V (x) <

ρ

4− j

}
, j = 1, 2, 3.

Then 0 ∈ D1 ⊂ D2 ⊂ D3 ⊂ Br(0), and dj := dist(Dj , ∂Dj+1) > 0 for j = 1, 2.
Note that, for j = 1, 2, 3, ∂Dj is a level set of V , and for all x ∈ ∂Dj we have ∇V (x) ·

εKFK(x) < 0. By the continuity of the maps x �→ ∇V (x) · FK(x) and (x, ψ, ε) �→ ∇V (x) ·
g(x, ψ, ε), and the compactness of ∂Dj , T

n, and [0, 1], there exists ε0 > 0 sufficiently small
such that, for all (x, ψ, ε) ∈ ∂Dj × Tn × [0, ε0], we have

∇V (x) · (FK(x) + εg(x, ψ, ε)) < 0.

Thus, for (x, ψ, ε) ∈ ∂Dj × Tn × (0, ε0],

∇V (x) · (εKFK(x) + εK+1g(x, ψ, ε)) < 0.

Therefore, for ε ∈ [0, ε0], Dj × Tn × Tl is forward invariant under (A.2) for j = 1, 2, 3.
If t0 ≥ 0, x01, x

0
2 ∈ D3, ψ

0 ∈ Tn, and θ01, θ
0
2 ∈ Tl, then the two solutions (x1, ψ1, θ1) and

(x2, ψ2, θ2) with initial conditions

(x1(t0), ψ1(t0), θ1(t0)) = (x01, ψ
0, θ01)

and
(x2(t0), ψ2(t0), θ2(t0)) = (x02, ψ

0, θ02),

respectively, satisfy the estimate (A.14) for all t ≥ t0.D
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For T > − ln(1/C)/α and k := e−αT < 1, inequality (A.14) yields

(A.25) |x1(t)− x2(t)| ≤ k|x1(t0)− x2(t0)|
whenever t− t0 > T/εK .

We remark that the contraction lemma, A.1, does not require that the eigenvalues of
DFK(0) be distinct, as was assumed in [20].

Theorem A.2 (time extension). Suppose that in systems (A.1) and (A.2) the function FK
is of class C2 and the functions Fp, G, H, and H̃ are each of class C1 for all integers p such
that K +1 ≤ p ≤ N +1; FK(0) = 0 and all eigenvalues of the Jacobian matrix DFK(0) lie in
the left-half of the complex plane; and the domain D1 ⊂ Rm and the constants ε0, k ∈ (0, 1)
are as in Lemma A.1.

Then, there exist constants ε1 ∈ (0, ε0] and C1 > 0 such that for all ε ∈ [0, ε1], for all
x0, x̄0 ∈ D1 with |x0 − x̄0| = O(ε), and for all ψ0 ∈ Tn, θ0, θ̄0 ∈ Tl, the solution (x, ψ, θ) of
(A.1) with initial condition (x(0), ψ(0), θ(0)) = (x0, ψ0, θ0) and the solution (x̄, ψ̄, θ̄) of (A.2)
with initial condition (x̄(0), ψ̄(0), θ̄(0)) = (x̄0, ψ0, θ̄0) satisfy the estimate

(A.26) |x(t)− x̄(t)| ≤ C1
1 + k

1− k
(|x0 − x̄0|+ εN−K+1)

for all t ≥ 0. In particular, if x0 = x̄0, then |x(t)− x̄(t)| = O(εN−K+1) for all t ≥ 0.
Proof. By the contraction lemma, A.1, there exist ε0 ∈ (0, 1) and nested neighborhoods

0 ∈ D1 ⊂ D2 ⊂ D3 ⊂ Rm, each independent of ε, with d1 := dist(D1, ∂D2) > 0 and
d2 := dist(D2, ∂D3) > 0, such that for all ε ∈ [0, ε0], Di × Tn × Tl is forward invariant under
(A.2), for i = 1, 2, 3. Furthermore, there exist constants k ∈ (0, 1) and T > 0, independent of
ε, such that for all ε ∈ [0, ε0] and t0 ≥ 0 every pair of solutions (x̄1, ψ̄1, θ̄1) and (x̄2, ψ̄2, θ̄2) of
(A.2) with initial conditions x̄1(t0), x̄2(t0) ∈ D3, ψ1(t0) = ψ2(t0) ∈ Tn, and θ̄1(t0), θ̄2(t0) ∈ Tl

satisfies the contraction estimate

(A.27) |x̄1(t+ t0)− x̄2(t+ t0)| ≤ k|x̄1(t0)− x̄2(t0)|
whenever t− t0 ≥ T/εK .

Let η ∈ C∞(Rm, [0, 1]) such that η is unity on D2 and zero on Rm \ D3. Consider the
modified full system,

ẋ = η(x)

(
εKFK(x) +

N∑
p=K+1

εpFp(x, ψ, ε) + εN+1FN+1(x, ψ, θ, ε)

)
,

ψ̇ = G(ψ, ε),

θ̇ = H(x, ψ, θ, ε),(A.28)

and the modified truncated system,

ẋ = η(x)

(
εKFK(x) +

N∑
p=K+1

εpFp(x, ψ, ε)

)
,

ψ̇ = G(ψ, ε),

θ̇ = H̃(x, ψ, θ, ε).(A.29)
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700 CARMEN CHICONE AND MICHAEL T. HEITZMAN

ThenD3×Tn×Tl is forward invariant under (A.28) and (A.29). Furthermore, on D2×Tn×Tl,
solutions of systems (A.1) and (A.28) are the same, and solutions of systems (A.2) and (A.29)
are the same.

Let ε1 ∈ (0, ε0], to be further specified later. Let ε ∈ [0, ε1], x0, x̄0 ∈ D1 such that
|x0 − x̄0| = O(ε), ψ0 ∈ Tn, and θ0, θ̄0 ∈ Tl. Let (x, ψ, θ) be the solution of (A.28) with initial
condition (x(0), ψ(0), θ(0)) = (x0, ψ0, θ0), and let (x̄, ψ̄, θ̄) be the solution of (A.2) with initial
condition (x̄(0), ψ̄(0), θ̄(0)) = (x̄0, ψ0, θ̄0). Since D1×Tn×Tl is forward invariant under (A.2)
(by Lemma A.1), (x̄, ψ̄, θ̄) is also a solution of (A.29).

Integration of (A.28) and (A.29) yields, for all t0 ≥ 0 and t ≥ t0,

x(t) = x(t0) +

∫ t

t0

η(x(s))εKFK(x(s)) ds

+

∫ t

t0

η(x(s))
N∑

p=K+1

εpFp(x(s), ψ(s), ε) ds

+

∫ t

t0

η(x(s))εN+1FN+1(x(s), ψ(s), θ(s), ε) ds(A.30)

and

x̄(t) = x̄(t0) +

∫ t

t0

η(x̄(s))εKFK(x̄(s)) ds

+

∫ t

t0

η(x̄(s))

N∑
p=K+1

εpFp(x̄(s), ψ̄(s), ε) ds.(A.31)

Since ψ̄(s) = ψ(s) for all s ≥ 0, subtracting (A.31) from (A.30) and taking norms yields
the following estimate, for all t ≥ t0:

|x(t)− x̄(t)| ≤ |x(t0)− x̄(t0)|+
∫ t

t0

N∑
p=K

εpL|x(s)− x̄(s)| ds

+ εN+1‖FN+1‖(t− t0),(A.32)

where | · | denotes the standard Euclidean norm, ‖ · ‖ denotes the sup norm over D3 × Tn ×
Tl × [0, 1], and

L := max
K≤p≤N,ε∈[0,1]

{Lip(ηFp)},

where Lip(ηFK) denotes the Lipschitz constant of ηFK over D3, and for K + 1 ≤ p ≤ N ,
Lip(ηFp) denotes the Lipschitz constant of ηFp over D3×Tn. Note that L is independent of ε.

Applying Gronwall’s inequality to (A.32) yields, for all t ≥ t0,

|x(t)− x̄(t)| ≤ (|x(t0)− x̄(t0)|+ ‖FN+1‖(t− t0)
)
eL(t−t0)

∑N
p=K εp

≤ (|x(t0)− x̄(t0)|+ ‖FN+1‖(t− t0)
)
eL(N−K+1)εK(t−t0).(A.33)
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Consider time intervals of the form Ij := [tj , tj+1], where tj := jT/εK for nonnegative

integer j. Let (x̂j, ψ̂j , θ̂j) be the solution of the modified truncated system (A.29) with initial

condition (x̂j(tj), ψ̂j(tj), θ̂j(tj)) = (x(tj), ψ(tj), θ(tj)). Denoting the sup norm over Ij by
‖ · ‖Ij , we will use the triangle inequality and estimates of ‖x− x̂j‖Ij and ‖x̂j − x̄‖Ij to obtain
a recursive estimate of ‖x− x̄‖Ij in terms of ‖x− x̄‖Ij−1 .

Recall that D3 × Tn × Tl is forward invariant under (A.29), and note that ψ̂j = ψ on Ij
for each nonnegative integer j. The same arguments leading to (A.33) therefore yield, for all
t ∈ Ij,

|x(t)− x̂j(t)| ≤
(|x(tj)− x̂j(tj)|+ εN+1‖FN+1‖(t− tj)

)
eL(N−K+1)εK(t−tj)

≤ εN−K+1‖FN+1‖TeL(N−K+1)T .(A.34)

Thus

(A.35) ‖x− x̂j‖Ij ≤ C1ε
N−K+1,

where C1 := max{1, T‖FN+1‖}eL(N−K+1)T .
Since the map t �→ |x̄(t)− x̂j(t)| is continuous, there exists t∗j ∈ Ij such that

(A.36) ‖x̄− x̂j‖Ij = |x̄(t∗j )− x̂j(t
∗
j)|.

Note that t∗j − T/εK ∈ Ij−1. By an application of the contraction estimate (A.27), we have

‖x̄− x̂j‖Ij = |x̄(t∗j )− x̂j(t
∗
j )|

≤ k|x̄(t∗j − T/εK)− x̂j(t
∗
j − T/εK)|

≤ k‖x̄− x̂j‖Ij−1(A.37)

for all j ∈ N.
Combining the triangle inequality, (A.35), and (A.37), we have, for all j ∈ N,

‖x− x̄‖Ij ≤ ‖x− x̂‖Ij + ‖x̂j − x̄‖Ij
≤ C1ε

N−K+1 + k‖x̂j − x̄‖Ij−1

≤ C1ε
N−K+1 + k(‖x̂j − x‖Ij−1 + ‖x− x̄‖Ij−1)

≤ C1ε
N−K+1 + k(C1ε

N−K+1 + ‖x− x̄‖Ij−1)

= C1(k + 1)εN−K+1 + k‖x− x̄‖Ij−1 .(A.38)

Iteration of the above recursive estimate is used to obtain, for all j ∈ N, the inequality

(A.39) ‖x− x̄‖Ij ≤ kC1|x0 − x̄0|+ C1(k + 1)εN−K+1
j∑

p=0

kp.

This can be proved by induction as follows. From (A.33), we obtain the following estimate:

‖x− x̄‖I0 ≤ (|x0 − x̄0|+ εN−K+1T‖FN+1‖)eL(N−K+1)T

≤ C1(|x0 − x̄0|+ εN−K+1).

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

702 CARMEN CHICONE AND MICHAEL T. HEITZMAN

To verify that (A.39) is true for j = 1, note that (A.38) combined with the above estimate
implies

‖x− x̄‖I1 ≤ C1(k + 1)εN−K+1 + k‖x− x̄‖I0
≤ C1(k + 1)εN−K+1 + kC1(|x0 − x̄0|+ εN−K+1)

= kC1|x0 − x̄0|+ C1(2k + 1)εN−K+1

≤ kC1|x0 − x̄0|+ C1(k + 1)2εN−K+1

= kC1|x0 − x̄0|+ C1(k + 1)εN−K+1
1∑
p=0

kp.

For the induction hypothesis, assume that (A.39) is true for j = j∗ for some j∗ ∈ N. To verify
that this implies that (A.39) is true for j = j∗ + 1, we again use (A.38), combined with the
induction hypothesis, to obtain

‖x− x̄‖Ij∗+1 ≤ C1(k + 1)εN−K+1 + k‖x− x̄‖Ij∗
≤ C1(k + 1)εN−K+1

+ k

(
kC1|x0 − x̄0|+ C1(k + 1)εN−K+1

j∗∑
p=0

kp

)

= k2C1|x0 − x̄0|+ C1(k + 1)εN−K+1
j∗+1∑
p=0

kp

≤ kC1|x0 − x̄0|+ C1(k + 1)εN−K+1
j∗+1∑
p=0

kp.

Therefore, by induction, (A.39) is true for all j ∈ N.
Taking the sup over all j ∈ N in (A.39), we obtain

‖x− x̄‖[0,∞) = sup
j∈N

{‖x− x̄‖Ij}

≤ kC1|x0 − x̄0|+C1(k + 1)εN−K+1
∞∑
p=0

kp

= kC1|x0 − x̄0|+C1
1 + k

1− k
εN−K+1

≤ C1
1 + k

1− k
(|x0 − x̄0|+ εN−K+1).(A.40)

Recall that (x̄, ψ̄, θ̄) is a solution of both the truncated system (A.2) and the modified
truncated system (A.29) and resides in D1 × Tn × Tl for all t ≥ 0. Our remaining task is to
ensure that (x, ψ, θ), which was defined as a solution of the modified full system (A.28), is
also a solution of the original full system (A.1). Since |x0− x̄0| = O(ε), there exists a constant
C0 > 0 such that

(A.41) |x0 − x̄0| ≤ C0ε.D
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Combining this with (A.40), we have

‖x− x̄‖[0,∞) ≤ C1
1 + k

1− k
(C0ε+ εN−K+1)

≤ εC1
1 + k

1− k
(C0 + 1).(A.42)

Let ε1 ∈ (0, ε0] be sufficiently small such that

(A.43) ε1C1
1 + k

1− k
(C0 + 1) ≤ d1

2
.

Then, for ε ∈ [0, ε1], we have ‖x − x̄‖[0,∞) ≤ d1/2. Since x̄(t) ∈ D1 for all t ≥ 0, inequal-

ity (A.42) implies that x(t) ∈ D2 for all t ≥ 0. So (x, ψ, θ) ∈ D2 × Tn × Tl for all forward
time, which implies that it is also a solution of (A.1). The conclusion of the theorem then
follows from estimate (A.40).

Appendix B. Continuation of invariant manifolds. In practice, systems of the form

ẋ = f(x) +H(x, ψ, ε),

ψ̇ = Z(ψ, ε)(B.1)

are encountered, where the differential equation ẋ = f(x) in Rm has a compact invariant set
S (perhaps a rest point, a periodic orbit, or a torus), the functions H and Z are 2π-periodic
in each component of the n-vector of angles ψ, the quantity ε is a small (perhaps vector)
parameter,

H(x, ψ, 0) ≡ 0,

and all the functions f , H, and Z are class C∞. Each component of the state variable ψ is an
angular variable that may be restricted to the interval [0, 2π] with its end points identified;
that is, ψ is the usual coordinate on the n-dimensional torus Tn.

Define

(B.2) t �→ (X(t, x, ψ, ε),Ψ(t, ψ, ε))

to be the solution of system (B.1) with initial condition

X(0, x, ψ, ε) = x, Ψ(0, ψ, ε) = ψ,

where, in a slight abuse of notation, x and ψ now denote points in Rm and Tn rather than
functions of time. In other words,

φt(x, ψ) = (X(t, x, ψ, ε),Ψ(t, ψ, ε))

is the flow of the system of differential equations.
Differential equations of the form (B.1) are special because their solutions are periodic

with respect to the angular variables. This is the content of the next proposition.
Proposition B.1. Solutions of system (B.1) are 2π-periodic in each angular variable.
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Proof. Using the flow of the system and with E one of the usual unit basis vectors in Rn,
define a new function of time by

(X̃(t, x, ψ, ε), Ψ̃(t, ψ, ε)) := (X(t, x, ψ + 2πE, ε),Ψ(t, ψ + 2πE, ε)).

This new function is a solution of the ODE with initial condition

(X̃(0, x, ψ, ε), Ψ̃(0, ψ, ε)) = (x, ψ + 2πE).

Since ψ+2πE = ψ on the torus, the flow and this new solution have the same initial condition;
hence, they are equal.

The compact manifold M := {(x, ψ) : x ∈ S and ψ ∈ Tn} is an invariant torus for sys-
tem (B.1) with ε = 0. A natural and basic problem is to determine sufficient conditions for
M to continue with respect to ε; that is, there is some open set J containing the origin of the
parameter space such that for each ε ∈ J there is an invariant manifold Mε homeomorphic to
M, this family of manifolds depends continuously on ε, and M0 = M. This definition may
of course be strengthened to require the manifolds and the continuation to be smooth. Also,
a definition is required to make precise the notion of a family of manifolds depending con-
tinuously (or smoothly) on a parameter. While it is possible to define the desired continuity
in general, often the definition is apparent in each case. For the system (B.1), the definition
of continuity leads naturally to a simple proof of the existence of a continuation that does
not require the machinery for an abstract proof. In the applications, the determination and
verification of hypotheses that imply the desired continuation are often best accomplished
using the structure inherent in the application.

B.1. Continuation when the normal dynamics has a rest point. The simplest, but still
important, case occurs when in system (B.1) the differential equation ẋ = f(x) has a rest
point, which without loss of generality may be taken at the origin; that is, f(0) = 0. The
corresponding manifold M := {(0, ψ) : ψ ∈ Tn} may be considered to be the graph of the
zero function over the torus Tn. This fact suggests seeking a continuation of M as a family of
manifolds each given as the graph of a function over the torus, that is, the graph of a function
which is 2π-periodic in each of its variables.

Let Cr2π(T
n) denote the Banach space of Cr functions that are 2π-periodic in each variable

and Rm-valued on Tn with respect to the usual Cr norm. For each F ∈ Cr2π(T
n) there is a

corresponding graph that gives the manifold {(F (ψ), ψ) : ψ ∈ Tn}.
B.1.1. Existence. The time-τ transform Γ : Cr2π(T

n)× R → Cr2π(T
n) is defined by

Γ(F, ε)(θ) = X(τ, F (Ψ(−τ, θ, ε)),Ψ(−τ, θ, ε), ε).
The function Γ is class Cr. This fact follows from the Ω-lemma using the compactness of Tn

and the smoothness of the flow φt. In fact, by the existence theory for ODEs, the flow of a
differential equation is as smooth (in the initial data and parameters) as the vector field that
defines the differential equation.

The existence of solutions of system (B.1) for all forward time is a technical problem
that may be overcome by noting that we are only interested in the behavior of the flow in
some neighborhood of the unperturbed invariant manifold M. If necessary, we can consider
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a bounded open neighborhood of M and redefine the vector field, using bump functions, to
agree with the original system on this neighborhood and be identically zero in the complement
of some larger neighborhood. The flow of the modified vector field is complete. A continued
invariant manifold that lies in the first mentioned open neighborhood is invariant for the
original vector field. For simplicity, we will assume that the original vector field is complete.

Using the time-τ transform, the displacement function δ : Cr2π(T
n) × R → Cr2π(T

n) is
defined by

δ(F, ε) = Γ(F, ε)− F.

It should be clear that fixed points of the time-τ transform correspond to zeros of the dis-
placement.

Proposition B.2. The graph corresponding to a fixed point of the time-τ transform is in-
variant under the time-τ advance map of the flow.

Proof. Suppose that F is a fixed point of Γ, and consider the graph in Rm × Tn over Tn

given by G := {(F (ψ), ψ) : ψ ∈ Tn}. Choose an arbitrary point (F (ψ), ψ) on G. The position
of the time-τ advance of this point under the flow is

z := (X(τ, F (ψ), ψ, ε),Ψ(τ, ψ, ε)).

There is a θ such that
ψ = Ψ(−τ, θ, ε).

Hence,

z = (X(τ, F (Ψ(−τ, θ, ε)),Ψ(−τ, θ, ε), ε),Ψ(τ,Ψ(−τ, θ, ε), ε))
= (Γ(F )(θ), θ).(B.3)

Because F is a fixed point of the time-τ transform, z = (F (θ), θ); therefore, z ∈ G.
Suppose that F is a function space, U is an open set in F , J is an open set in a Banach

space containing the origin, δ : F×J → F , and δ(F, 0) = 0. We say that F uniquely continues
in U with respect to the parameter ε if there is a function β : J → U , β(0) = F , and β is
unique in the sense that if G ∈ U , ε ∈ J , and δ(G, ε) = 0, then G = β(ε).

The implicit function theorem, in this language, is the following basic result.
Theorem B.3. Suppose that F is a Banach space, U is an open set in F , J is an open set

in a Banach space containing the origin, δ : F × J → F , and δ(F, 0) = 0. The function F
uniquely continues if Dδ(F, 0) : F → F (the derivative of the function H �→ δ(H, 0) evaluated
at F ) is invertible as a bounded linear transformation of F .

Clearly, continuation of a function in Cr2π(T
n) defines continuation of the corresponding

manifold given as its graph. The next lemma is a well-known result.
Proposition B.4. Suppose that system (B.1) has an invariant torus given as the graph of a

function F over the torus Tn. If F continues uniquely as a fixed point of a corresponding time-
τ transform, then every element of the family of graphs in the continuation is an invariant
torus for system (B.1).

Proof. Recall that ϕt denotes the flow of the system (B.1). Let Mε denote the graph of
the continuation of F at ε. Because the continuation is with respect to the graph transform,
we have that ϕτ (Mε) = Mε, where the dependence of the flow on ε is suppressed. By
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Proposition B.1, the image of Mε under the flow remains a graph over the torus. By the
continuity of the flow, there is some (sufficiently small) time T > 0 such that for all |t| ≤ T
the graph ϕt(Mε) remains in an open subset U in the state space Rm×Tn contained in the set
of all points on graphs of functions F in the set U where fixed points of the graph transform
are unique. For each such t, the semigroup property of the flow and the time-τ invariance of
Mε imply that

ϕτ (ϕt(Mε)) = ϕt(ϕτ (Mε)) = ϕt(Mε).

The last equation states that ϕt(Mε) is time-τ invariant. By the uniqueness of the contin-
uation, the manifold ϕt(Mε) must be the manifold Mε. That is, Mε is invariant under the
time-t map for every |t| ≤ T . An arbitrary t may be expressed as t = kT + σ for some integer
k and |σ| < T . Using the semigroup property of the flow, it follows immediately that Mε is
invariant for the time-t map.

As a corollary of Theorem B.3 and Propositions B.2 and B.4, we have the following abstract
result.

Proposition B.5. If r ≥ 1, δ(F, 0) = 0, and zero does not belong to the spectrum of the
operator Dδ(F, 0) on the Banach space Cr2π(T

n), then the invariant manifold given by the
graph of a function F continues uniquely in Cr2π(T

n).
Proof. The condition r ≥ 1 is all that is required to apply the implicit function theo-

rem.
Returning to system (B.1) and in view of the context defined here, the main issue is to

determine conditions on the invariant manifold M := {(0, ψ) : ψ ∈ Tn} that imply its unique
continuation. The first result is simply the representation of the derivative Dδ(0, 0) with
respect to a variational equation derived from system (B.1).

Proposition B.6. The derivative Dδ(0, 0) of the displacement function for system (B.1)
(with f(0) = 0) is the operator on the Banach space Cr2π(T

n) given by

(Dδ(0, 0)F )(ψ) = eτDf(0)F (Ψ(−τ, ψ, 0)) − F (ψ).

Proof. To compute the action of Dδ(0, 0) on tangent vectors (which are simply functions
in the Banach space Cr2π(T

n)), choose a function F ∈ Cr2π(Tn) and consider the curve σ �→ σF
of functions in Cr2π(T

n) passing through the origin. The directional derivative in the direction
F is given by

Dδ(0, 0)F =
d

dσ
δ(σF, 0)

∣∣
σ=0

.

Note that

δ(σF, 0)(ψ) = X(τ, σF (Ψ(−τ, ψ, 0)),Ψ(−τ, ψ, 0), 0) − σF (ψ).

By differentiating with respect to σ and then setting σ = 0, the directional derivative is

(Dδ(0, 0)F )(ψ) = Xx(τ, 0,Ψ(−τ, ψ, 0), 0)F (Ψ(−τ, ψ, 0)) − F (ψ).

The partial derivative Xx can be determined by solving the variational equation

Ẇ = Df(X(t, 0,Ψ(−τ, ψ, 0), 0))W
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obtained by differentiating both sides of the equation

d

dt
X(t, x,Ψ(−τ, ψ, 0), 0) = f(X(t, x,Ψ(−τ, ψ, 0), 0))

with respect to initial data, that is, with respect to x and definingW = Xx(t, 0,Ψ(−τ, ψ, 0), 0).
In addition, the initial condition for the variational equation isW (0) = I, where I is them×m
identity. Because f(0) = 0, the function t �→ X(t, 0,Ψ(−τ, ψ, 0), 0) is identically zero, and the
variational initial value problem reduces to

Ẇ = Df(0)W, W (0) = I.

Its solution is W (t) = etDf(0). Thus,

Xx(τ, 0,Ψ(−τ, ψ, 0), 0) = eτDf(0).

All the ingredients are in place to study the continuation of the invariant torus M =
{(0, ψ) : ψ ∈ Tn}. The simplest case occurs when Z(ψ, 0) ≡ 0; that is, the invariant manifold
M consists entirely of rest points.

Proposition B.7. If in system (B.1), Z(ψ, 0) ≡ 0 and f(0) = 0, then the invariant manifold
M = {(0, ψ) : ψ ∈ Tn} for the system with parameter value ε = 0 consists entirely of rest
points. If, in addition, zero is not an eigenvalue of Df(0), then M uniquely continues in the
system with respect to the parameter ε.

Proof. The hypothesis Z(ψ, 0) ≡ 0 ensures that the invariant manifold at ε = 0 consists
entirely of rest points; in particular, Ψ(t, ψ, 0) = ψ for all t. To complete the proof, it suffices
to show that there is some τ > 0 such that one is not an eigenvalue of eτDf(0) or, equivalently,
zero is not an eigenvalue of τDf(0). The only possibility for the condition not to be true is
for Df(0) to have an eigenvalue βi on the imaginary axis such that τβ is an integer multiple
of 2π. Since Df(0) has a finite number of eigenvalues, simply choose τ sufficiently small such
that all the eigenvalues on the imaginary axis lie in the interval (−2πi, 2πi).

When M does not consist entirely of rest points, the most important case for applications
is translation flow on this torus. In the context of system (B.1) this means f(0) = 0 and
Z(ψ, 0) is a constant vector; that is, the flow on the invariant torus M for ε = 0 is translation
flow. For this case, suppose that ω ∈ Rn and

(B.4) Z(ψ, 0) = 2πω.

The flow is called a rational translation if every component of ω is a rational multiple of the
same real number; it is called an irrational translation otherwise. For translation flow, the
invariant torus M is normally hyperbolic if Df(0) is infinitesimally hyperbolic; that is, every
eigenvalue of Df(0) lies off the imaginary axis. When Df(0) has eigenvalues on the imaginary
axis, there are three cases:

(1) Irrational flow on the invariant torus.
(2) Normally resonant rational flow on the invariant torus; that is, ω = aR for some real

number a and n-vector of rational numbers R, and there is an eigenvalue i2πβ of
Df(0) on the imaginary axis, a vector k ∈ Zn, an integer �, and a resonance relation

β = �a+ k · ω = a(�+ k · R).
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(3) Normally nonresonant rational flow on the invariant torus; that is, rational flow but
no resonance relation exists.

Proposition B.8. For system (B.1), if f(0) = 0 and Df(0) is infinitesimally hyperbolic or
there is normally nonresonant rational flow on the invariant torus M = {(0, ψ) : ψ ∈ Tn},
then M uniquely continues in the system with respect to the parameter ε.

Proof. It suffices to show that for some τ > 0 the number 1 is not in the spectrum of the
operator DΓ(0, 0) acting on Cr2π(T

n) by

(DΓ(0, 0)F )(θ) �→ eτDf(0)F (θ − τγ),

where γ := 2πω is the translation vector as in display (B.4).
The functions in Cr2π(T

n) may be represented by Fourier series,

F (θ) =
∑
k∈Zn

ake
ik·θ,

where ak is a complex n-dimensional vector for each k in the lattice of n-tuples of integers Zn;
in keeping with standard notation, k·θ is the usual inner product of the vector of integers k and
the vector of angles θ. The number 1 is not in the spectrum if the equation DΓ(0, 0)F −F =
G is uniquely solvable for F ∈ Cr2π(T

n) whenever G ∈ Cr2π(T
n). In the space of Fourier

coefficients, the equation is given by

(e−iτk·γeτDf(0) − I)ak = bk.

Thus, the desired result follows if the matrix e−iτk·γeτDf(0) − I is invertible for every k ∈ Zn

and the collection of inverses is uniformly bounded.
By inspection, 1 is not an eigenvalue of the matrix e−iτk·γeτDf(0) when Df(0) is infinites-

imally hyperbolic.
In case Df(0) is not infinitesimally hyperbolic but there is normally nonresonant rational

flow, all eigenvalues on the imaginary axis have the form 2πβi for some real number β and
γ = 2πaR, where a is a positive real number and R is an n-vector of rational numbers. Let
τ = 1/a. Then the set {e−i2πaτk·R : k ∈ Zn} is finite. Moreover, the eigenvalues that happen
to lie on the unit circle for the finite set of matrices e−i2πaτk·R eτDf(0) all belong to the set

{ei2πτa(β/a−k·R) : k ∈ Zn, and 2πβi is an eigenvalue of Df(0)}.
The nonresonance condition implies that 1 is not an element of this set.

Remark. In view of the proof of Proposition B.8, if the flow is an irrational translation,
then the eigenvalues of DΓ(0, 0) are dense in the unit circle. Thus, in case Df(0) is not
infinitesimally hyperbolic, the spectrum of DΓ(0, 0) contains the entire unit circle and in
particular the number 1 is in its spectrum. In this case, the invariant torus does not always
persist. Indeed, in the Hamiltonian case diophantine conditions on the eigenvalues of the flow
on the invariant torus are needed to prove persistence. In cases where the invariant torus does
persist in the Hamiltonian case the results of this section suggest that the persistence might
be destroyed by some non-Hamiltonian perturbation. In the normally resonant case, invariant
tori may break up into island chains of elliptic (or nodal) points and saddles where the stable
and unstable manifolds of adjacent saddles do not coincide; that is, while some periodic orbits
might continue, the torus may not. Thus, it seems that the hypotheses of Proposition B.8
might be necessary for persistence.
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B.1.2. Attraction. In cases where the invariant torus M = {(0, ψ) : ψ ∈ Tn} continues
for small |ε| the remaining problem is to determine whether its structures also continue. The
results presented in this section show that the manifold structure continues and that the
continuation is as smooth as can be expected in the (vector) parameter ε. By well-known
theory, normal hyperbolicity continues. This result can be easily proved without using all of
the machinery of the abstract theory of normally hyperbolic invariant manifolds in some of the
cases we have considered. For non–normally hyperbolic invariant tori, there is no expectation
that their normally resonant structure continues. In fact, for a generic situation, the flow on
the continued torus would likely consist of a finite set of asymptotically stable and saddle-
type periodic orbits with perhaps a chaotic invariant set with saddle structure. Moreover, the
normal dynamics would likely be hyperbolic. Of course, there is no simple theory to cover all
cases. The ε = 0 dynamics and the nature of the perturbation must be taken into account.

Proposition B.9. Suppose that in system (B.1) all eigenvalues of Df(0) lie in the left half
of the complex plane and Mε is a continuation of the invariant torus M := {(0, ψ) : ψ ∈ Tn}.
If |ε| is sufficiently small, then Mε is an attractor with exponentially fast attraction.

Proof. Choose an open set U ⊂ Rm containing the origin, and note that M ⊂ U × Tn.
Define

R(x) = f(x)−Df(0)x,

and consider system (B.1) in the equivalent form

ẋ = Df(0)x+R(x) +H(x, ψ, ε),

ψ̇ = Z(ψ, ε).(B.5)

Choose a class-C∞ bump function ρ : Rm → [0, 1] that is unity on U and zero on the comple-
ment of some bounded open superset of U . The flow of the new system,

ẋ = Df(0)x+ ρ(x)(R(x) +H(x, ψ, ε)),

ψ̇ = Z(ψ, ε),(B.6)

is complete; it agrees with the flow of the original system on U × Tn; and every solution
starting in U is bounded for the modified system.

As usual, define the flow in its obvious components to be

(X(t, x, ψ, ε),Ψ(t, ψ, ε)).

Of course, by definition, X(0, x, ψ, ε) = x and Ψ(0, ψ, ε) = ψ.
The manifolds in the continuation are graphs over the torus Tn of the form

{(F (θ, ε), θ) : θ ∈ Tn}.
The flow on such a graph is given by

(F (Ψ(t, θ, ε), ε),Ψ(t, θ, ε)),

where X(t, F (θ), θ, ε) = F (Ψ(t, θ, ε), ε). For a point (ξ, θ) not necessarily on the graph, the
distance between the trajectory starting at this point and the graph is no larger than

|X(t, ξ, θ, ε) −X(t, F (θ, ε), θ, ε)|.

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

710 CARMEN CHICONE AND MICHAEL T. HEITZMAN

The proof is completed by showing that this quantity decreases exponentially fast to zero.
The desired estimate is obtained by a standard procedure using Gronwall’s inequality.

Rearrange the first equation of the system to the form

ẋ−Df(0)x = R(x) +H(x, ψ, ε),

and note that an equivalent formulation is

d

dt
(e−tDf(0)x) = e−tDf(0)(R(x) +H(x, ψ, ε)).

By integration, we have the integral equation

x(t) = etDf(0)x(0) +

∫ t

0
e(t−s)Df(0)(R(x(s)) +H(x(s), ψ(s), ε)) ds.

For simplification of notation, define

G(x, ψ, ε) := R(x) +H(x, ψ, ε),

X1(t) := X(t, ξ, θ, ε),

X2(t) := X(t, F (θ, ε), θ, ε),

Ψ(t) := Ψ(t, θ, ε),

and note that

X1(t) = etDf(0)ξ +

∫ t

0
e(t−s)Df(0)G(X1(s),Ψ(s), ε) ds,

X2(t) = etDf(0)F (θ, ε) +

∫ t

0
e(t−s)Df(0)G(X2(s),Ψ(s), ε) ds.

Because the eigenvalues of Df(0) are in the left half of the complex plane, there are
positive numbers λ and C such that

|etDf(0)v| ≤ Ce−λt|v|

for every v ∈ Rm and every t ≥ 0. Subtract X2 from X1, take absolute values, and use the
estimate to obtain the inequality

|X1 −X2| ≤ Ce−λt|ξ − F (θ, ε)|
+ C

∫ t

0
e−λ(t−s)|G(X1(s),Ψ(s), ε)−G(X2(s),Ψ(s), ε)| ds.(B.7)

Claim. There is a number M > 0 that may be made as small as desired by restricting the
size of |ξ| and |ε| such that

(B.8) |G(X1(s),Ψ(s), ε)−G(X2(s),Ψ(s), ε)| ≤M |X1(s)−X2(s)|.D
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Assume the claim is true. Use it to estimate the integrand on the right-hand side of
inequality (B.7), multiply both sides of the resulting inequality by etλ, and apply Gronwall’s
inequality to obtain the estimate

(B.9) |X(t, ξ, θ, ε) −X(t, F (θ, ε), θ, ε)| ≤ C|ξ − F (θ, ε)|e(CM−λ)t.

By the claim, M can be made small enough so that CM − λ < 0. Thus, if the claim is true,
the desired exponentially fast attraction to the invariant manifold is proved.

The claim follows from several observations. Using a triangle estimate, the quantity
|G(X1(s),Ψ(s), ε) −G(X2(s),Ψ(s), ε)| does not exceed
(B.10) |R(X1(s))−R(X2(s))|+ |H(X1(s),Ψ(s), ε) −H(X2(s),Ψ(s), ε)|.
The function H(x, ψ, ε) vanishes at ε = 0; therefore, by Taylor’s theorem, there is a function
H such that

H(x, ψ, ε) = H(x, ψ, ε)ε.

The desired estimate to verify the claim for the second term in display (B.10) is made by
using three facts: H is Lipschitz, the second and third arguments of H are the same in the
second term in display (B.10), and |ε| is a factor after making the usual Lipschitz estimate.
The function R in the first term of the display requires a slightly more complicated treatment.
Again, by an argument using Taylor’s theorem, R(x) = r(x)x2, where r(x) is a bilinear form
acting on two copies of x, the latter abbreviated by x2. To estimate the difference, it is
possible to justify the following inequalities:

|r(X1)X
2
1 − r(X2)X

2
2 | ≤ |r(X1)X

2
1 − r(X2)X

2
1 |+ |r(X2)X

2
1 − r(X2)X

2
2 |

≤ |r(X1)− r(X2)||X1|2 + |r(X2)||X1 −X2|2
≤ (Lip[R]|X1|2)|X1 −X2|

+ (max[R]|X1 −X2|)|X1 −X2|.
The factors enclosed in parentheses in the last inequality can be chosen to be as small as
desired: Lip[R] is bounded and |X1| is small by the choice of U , and |X1 − X2| is bounded
and max[R] is small by the choice of U .

While the exponential estimate (B.9) holds in U , in case a cut-off function is employed,
solutions may not stay in U where the modified dynamics agrees with the dynamics of the
original differential equation. But, using the exponential estimate, an orbit starting at ξ does
not move further than C|ξ − F (θ, ε)| from the perturbed invariant torus. Since C does not
depend on the initial condition, we may choose an open set contained in U and containing the
perturbed invariant torus so that solutions starting in this smaller set stay in U .

Appendix C. Continuation of invariant manifolds for transformed (but not truncated)
systems with one fast angle and multiple slow angles. As an abstraction for the full (trans-
formed) model for the PLL (8.1), consider the system

J̇ = εkf(J) +O(εk+1),

η̇ = εkγ +O(εk+1),

θ̇ = ω(J, η) +O(ε),(C.1)
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with state variables (J, η, θ) ∈ Rm × Tn × T1, parameter ε ∈ [0, 1), and where γ ∈ Rn is a
constant vector, k is a positive integer, and ω ∈ C1(Rm × Tn, [ω0,∞)), where ω0 is a strictly
positive real number. Systems of this form arise naturally in the averaging process, after
transforming with a near-identity transformation to push the fast angle dependence to higher
orders, but before truncating. In the case of the PLL application, we have f(0) = 0 and that
Df(0) is invertible, with eigenvalues all distinct and located in the left half of the complex
plane, and ω is a positive constant.

Our goal is to find conditions for which the invariant torus {0}×Tn×T1 for (C.1) at ε = 0
continues under the perturbation ε > 0. One answer is provided by the following theorem.

Theorem C.1. Suppose that system (C.1) is C1, f(0) = 0, and ω(J, η) ≥ ω0 > 0 for all
(J, η) ∈ Rm×Tn. Additionally, suppose that at least one of the following hypotheses is satisfied:

(i) All the eigenvalues of Df(0) have nonzero real parts.
(ii) There exists a real number ν such that all of the components of νγ are rational and

no eigenvalues of Df(0) have the form iNq2/(νq1) for an integer N , where q1 is the
least common denominator of the absolute values of all the components of νγ, and q2
is the greatest common divisor of all of the components of q1νγ.

(iii) n = 1 and Df(0) is invertible.
Then, for sufficiently small ε > 0, the system (C.1) has an invariant torus of dimension n+1
that is a continuation from the invariant torus {0} × Tn × T1 at ε = 0.

Proof. Following the proof of Theorem 7.11 in [3, p. 532], let

(X(t, J, η, ε), Y (t, J, η, ε),Θ(t, J, η, ε))

denote the solution of (C.1) with initial conditions

(C.2) X(0, J, η, ε) = J, Y (0, J, η, ε) = η, Θ(0, J, η, ε) = 0.

Lemma C.2. For every compact set K ⊂ Rm, there exists an open interval L containing 0
and a map T : K×Tn×L→ R such that T (J, η, 0) = 2π/ω(J, η) and Θ(T (J, η, ε), J, η, ε) = 2π
for all J ∈ K, η ∈ Tn, ε ∈ L.

Proof. Note that

Θ(t, J, η, 0) =

∫ t

0
ω(X(s, J, η, 0), Y (s, J, η, 0)) ds

= ω(J, η)t,

and in particular, Θ(2π/ω(J, η), J, η, 0) = 2π. Define

F(t, J, η, ε) := Θ(t, J, η, ε) − 2π.

Then F(2π/ω(J, η), J, η, 0) = 0, and Ft(2π/ω(J, η), J, η, 0) = ω(J, η) ≥ ω0 > 0. The con-
clusion of the lemma follows from the implicit function theorem and the compactness of
K × Tn.

Let K ⊂ Rm be a compact set containing the origin, and let the interval L and map T be
as in the above lemma. Define the parameterized family of Poincaré maps P : K ×Tn×L→
Rm × Tn by

(C.3) P (J, η, ε) := (X(T (J, η, ε), J, η, ε), Y (T (J, η, ε), J, η, ε)).
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Expanding (C.3) in ε about ε = 0 yields

(C.4) P (J, η, ε) = (J, η) + εk
2π

ω(J, η)
(f(J), γ) +O(εk+1).

Consider the graph of a Cr function β : Tn → Rm, that is, the set

M := {(β(η), η) : η ∈ Tn},

and note that M is diffeomorphic to Tn. If M is invariant under the Poincaré map, then the
original system has an invariant torus (the cross product M and the circle corresponding to
θ) of dimension n+ 1.

Note that for some fixed ε the image of a point (β(η), η) on M under the Poincaré map is

(C.5) P (β(η), η, ε) = (β(η), η) + εk
2π

ω(β(η), η)
(f(β(η)), γ) +O(εk+1).

This image lies on M in case

(C.6) β

(
η + εk

2π

ω(β(η), η)
γ +O(εk+1)

)
= β(η) + εk

2π

ω(β(η), η)
f(β(η)) +O(εk+1),

which is equivalent to

(C.7) 0 = −εk 2π

ω(β(η), η)
Dβ(η) · γ + εk

2π

ω(β(η), η)
f(β(η)) +O(εk+1),

where Dβ(η) is the derivative of β with respect to η, which may be viewed as an m × n
Jacobian matrix of partial derivatives. Dividing both sides by εk2π/ω(β(η), η), we have

(C.8) 0 = −Dβ(η) · γ + f(β(η)) +O(ε).

A solution β of (C.8) corresponds to a manifold given as the graph of β over Tn, which is
fixed under the Poincaré map (C.3).

For each positive integer r, define the function space C(r, γ) to be the set of all α ∈
Cr−1(Tn,Rm) such that the map

η �→ (dvD
μα)(η)

exists and is continuous at each η ∈ Tn, for each n-dimensional multi-index μ with |μ| = r−1,
and for each vector v ∈ γ⊥, where dv denotes the directional derivative in the direction v,
defined by

(C.9) (dvα)(η) :=
d

ds

∣∣∣∣
s=0

α(η + sv).

Note that C(r, γ) is a Banach space with the norm

(C.10) ‖α‖C(r,γ) := ‖α‖Cr−1 + sup
(μ,v)∈S

‖dvDμα‖C0 ,

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

714 CARMEN CHICONE AND MICHAEL T. HEITZMAN

where S := {(μ, v) ∈ Nn×Rn : |μ| = r−1, v ∈ γ⊥, |v| = 1}. To verify that C(r, γ) is complete,
it suffices to check that C(1, γ) is complete, since if {αj} is a Cauchy sequence in C(r, γ),
then {Dμαj} is a Cauchy sequence in C(1, γ). The completeness of C(1, γ) can be verified
by the following argument. If {αj} is a Cauchy sequence in C(1, γ), then for every vector
v ∈ Rn, {αj} and {dvαj} are Cauchy sequences in the Banach space C0(T,Rm), so there exist

α, σ ∈ C0(Tn,Rm) such that αj
C0→ α and dvαj

C0→ σ. This implies that dvα = σ, and hence
α ∈ C(1, γ).

Consider the function Γ : Cr(Tn,Rm)×L→ C(r, γ), which maps (β, ε) ∈ Cr(Tn,Rm)×L
to the right-hand side of (C.8); that is, define

(C.11) Γ(β, ε)(η) := −Dβ(η) · γ + f(β(η)) +O(ε).

Note that Γ(0, 0)(η) ≡ 0 and (Γβ(0, 0)β)(η) = −Dβ(η) · γ + Df(0)β(η). We will apply
the implicit function theorem to obtain a unique function β such that Γ(β, ε)(η) ≡ 0 for ε
sufficiently small. Then this function β (which depends on ε) determines a graph Mε :=
{(β(η)), η : η ∈ Tn}, which is invariant under the Poincaré map and is a continuation of the
trivial manifold {0} × Tn at ε = 0.

In order to apply the implicit function theorem, we will show that the operator Γβ(0, 0) :
Cr(Tn,Rm) → C(r, γ), defined by the mapping β �→ −Dβ ·γ+Df(0)β, has a bounded inverse.
For this it is sufficient to show that, given α ∈ C(r, γ), the following PDE can be uniquely
solved for β,

(C.12) −Dβ · γ +Aβ = α,

where A := Df(0), and that there exists a constant C > 0 such that this unique solution β
satisfies ‖β‖Cr ≤ C‖α‖C(r,γ).

For every η ∈ Tn and t ∈ R there exists a point η0 ∈ Tn such that η = η0 + tγ. On the
other hand, for η0 ∈ Tn fixed, the set {η = η0 + tγ : t ∈ R} is a curve in Tn, tangent to γ at
η0. On this curve, the PDE (C.12) becomes

(C.13) −Dβ(η0 + tγ) · γ +Aβ(η0 + tγ) = α(η0 + tγ),

or equivalently

(C.14) − d

dt
β(η0 + tγ) +Aβ(η0 + tγ) = α(η0 + tγ).

Multiplying both sides by −e−tA and collecting the total derivative, we obtain

(C.15)
d

dt
(e−tAβ(η0 + tγ)) = −e−tAα(η0 + tγ).

Integrating both sides from 0 to t, multiplying by etA, and rearranging yields

(C.16) β(η0 + tγ) = etAβ(η0)− etA
∫ t

0
e−sAα(η0 + sγ) ds.
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Substituting η0 = η − tγ, we have

(C.17) β(η) = etAβ(η − tγ)− etA
∫ t

0
e−sAα(η + (s− t)γ) ds.

Note that (C.17) is equivalent to the PDE (C.12) for all t ∈ R. If α and β are functions
on Tn, then we have the periodicity conditions

(C.18) α(η + 2πkEj) = α(η), β(η + 2πkEj) = β(η),

for every integer k and for j = 1, . . . , n, where {E1, . . . , En} is the standard unit basis for Rn.
First, consider case (ii) of the theorem, where there exists a real number ν such that νγ

has all rational components. Let q1 be the least common denominator of the absolute values
of all the components of νγ, and let q2 be the greatest common divisor of all the components
of the vector q1νγ. Then the vector (νq1/q2)γ has all integer components, and we have

(C.19) t∗γ =

n∑
j=1

kj2πEj

for some integers k1, . . . , kn, where t
∗ := 2πνq1/q2. Letting t = t∗ in (C.17) and using (C.18)–

(C.19), we have

(C.20) β(η) = et
∗Aβ(η) − et

∗A
∫ t∗

0
e−sAα(η + sγ) ds,

or equivalently

(C.21) (I − et
∗A)β(η) = −et∗A

∫ t∗

0
e−sAα(η + sγ) ds.

In case A has no eigenvalues of the form iNq2/(νq1), for an integer N , then I − et
∗A is

invertible, and we have

(C.22) β(η) = −(I − et
∗A)−1et

∗A
∫ t∗

0
e−sAα(η + sγ) ds.

Therefore, every solution of the PDE (C.12) must be given by formula (C.22). In partic-
ular, if a solution of PDE (C.12) exists, then it must be unique. On the other hand, it can
be verified that (C.22) does indeed satisfy the PDE (C.12). Therefore (C.22) is the unique
solution of PDE (C.12). Furthermore, it follows from (C.22) that β ∈ Cr(Tn,Rm), and there
exists a uniform constant C > 0 such that ‖β‖Cr ≤ C‖α‖C(r,γ) (see Proposition C.4). This
implies that the operator Γβ(0, 0) has a bounded inverse, and we obtain the theorem under
hypothesis (ii).

Next, consider case (i), where γ has arbitrary real components and no eigenvalues of A lie
on the imaginary axis. Then there exist two A-invariant subspaces of Rm, Es and Eu, such
that Rm = Es ⊕ Eu. Furthermore, there exist positive constants Cs, Cu, λs, λu such that

(C.23) |etAvs| ≤ Cse−λ
st|vs|, t ≥ 0,
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716 CARMEN CHICONE AND MICHAEL T. HEITZMAN

and

(C.24) |etAvu| ≤ Cueλ
ut|vu|, t ≤ 0,

for all vs ∈ Es, vu ∈ Eu, and t ∈ R, where | · | denotes the Euclidean norm on Rm (see [3], for
example).

After making the change of variables τ = t− s in (C.17), we obtain

(C.25) β(η) = etAβ(η − tγ)−
∫ t

0
eτAα(η − τγ) dτ.

The functions α and β have unique decompositions α = αs + αu and β = βs + βu, where
the ranges of αs and βs lie in Es and the ranges of αu and βu lie in Eu. By linearity and
the A-invariance of Es and Eu, the component pairs αs, βs and αu, βu must satisfy (C.25)
separately, i.e.,

(C.26) βs(η) = etAβs(η − tγ)−
∫ t

0
eτAαs(η − τγ) dτ

and

(C.27) βu(η) = etAβu(η − tγ)−
∫ t

0
eτAαu(η − τγ) dτ.

Letting t → +∞ in (C.26) and t → −∞ in (C.27), and making use of (C.23) and (C.24), we
obtain

(C.28) βs(η) = −
∫ ∞

0
eτAαs(η − τγ) dτ

and

(C.29) βu(η) =

∫ 0

−∞
eτAαu(η − τγ) dτ.

Therefore

β(η) = βs(η) + βu(η)

=

∫ 0

−∞
eτAαu(η − τγ) dτ −

∫ ∞

0
eτAαs(η − τγ) dτ.(C.30)

We have shown that every solution of the PDE (C.12) must be given by formula (C.30).
In particular, if a solution of PDE (C.12) exists, then it must be unique. On the other hand, it
can be verified that (C.30) does indeed satisfy the PDE (C.12). Therefore (C.30) is the unique
solution of PDE (C.12). Furthermore, it follows from (C.30) that β ∈ Cr(Tn,Rm), and there
exists a uniform constant C > 0 such that ‖β‖Cr ≤ C‖α‖C(r,γ) (see Proposition C.3). This
implies that the operator Γβ(0, 0) has a bounded inverse, and we obtain the theorem under
hypothesis (i).
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Note that if νγ has all rational components and if all the eigenvalues of A have negative
real parts, then the formulas for β given by (C.22) and (C.30) are equal.

Finally, consider the case of hypothesis (iii), where n = 1, A is an invertible m×m matrix,
and γ is a real number. In this case, the periodicity condition (C.18) reduces to

(C.31) α(η + 2πk) = α(η), β(η + 2πk) = β(η)

for every integer k. Evaluating (C.17) at t = 2π/γ and using (C.31), we obtain

(C.32) β(η) = e
2π
γ
Aβ(η) − e

2π
γ
A
∫ 2π

γ

0
e−sAα(η + sγ) ds

or equivalently

(C.33) (I − e
2π
γ
A)β(η) = −e 2π

γ
A
∫ 2π

γ

0
e−sAα(η + sγ) ds.

Since A is invertible, zero is not an eigenvalue of A. Thus (I − e
2π
γ
A) is invertible, and we

have

(C.34) β(η) = −(I − e
2π
γ
A
)−1e

2π
γ
A
∫ 2π

γ

0
e−sAα(η + sγ) ds.

We have shown that, under hypothesis (iii), every solution of the PDE (C.12) must be given by
formula (C.34). In particular, if a solution of PDE (C.12) exists, then it must be unique. On
the other hand, it can be verified that (C.34) does indeed satisfy the PDE (C.12). Therefore
(C.34) is the unique solution of PDE (C.12). Furthermore, it follows from (C.34) that β ∈
Cr(T1,Rm), and there exists a uniform constant C > 0 such that ‖β‖Cr ≤ C‖α‖C(r,γ). (Note
that for n = 1, C(r, γ) is equivalent to Cr−1(T1,Rm).) This implies that the operator Γβ(0, 0)
has a bounded inverse, and we obtain the theorem under hypothesis (iii).

Proposition C.3. Suppose that the vector γ ∈ Rn, let α ∈ C(r, γ), and let β be defined in
terms of α by (C.30), where no eigenvalues of the matrix A lie on the imaginary axis. Then
β ∈ Cr(Tn,Rm), and there exists a uniform constant C > 0 such that ‖β‖Cr ≤ C‖α‖C(r,γ).

Proof. We treat the case where all eigenvalues of A have negative real parts. The more
general case where the eigenvalues of A have nonzero real parts may be handled by using the
decomposition of Rm into A-invariant subspaces, Rm = Es ⊕ Eu, as outlined in the proof of
Theorem C.1 in the case of hypothesis (i).

Clearly β ∈ Cr−1(Tn,Rm) and

(C.35) (Dμβ)(η) = −
∫ ∞

0
eτADμα(η − τγ) dτ

for every n-dimensional multi-index μ with |μ| ≤ r − 1. To show that β ∈ Cr(Tn,Rm), it
suffices to show that, for every vector v ∈ Rn with |v| = 1, dvD

μβ exists and is continuous.
Let v ∈ Rn with |v| = 1. Then there exists a constant a with |a| ≤ 1 and a vector w ∈ Rn
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with |w| ≤ 1 such that v = aγ + w. Note that dγD
μβ exists and is continuous, since

dγD
μβ(η) = −dγ

∫ ∞

0
eτADμα(η − τγ) dτ

= − d

dt

∣∣∣∣
t=0

∫ ∞

0
eτADμα(η + (t− τ)γ) dτ

= − d

dt

∣∣∣∣
t=0

etA
∫ t

−∞
e−sADμα(η + sγ) ds

= −A
∫ ∞

0
eτADμα(η − τγ) dτ −Dμα(η).(C.36)

Also, dwD
μβ exists and is continuous, since

(C.37) dwD
μβ(η) = −

∫ ∞

0
eτAdwD

μα(η − τγ) dτ.

Then dvD
μβ must exist and be continuous, since

(C.38) dvD
μβ = adγD

μβ + dwD
μβ.

Therefore β ∈ Cr(Tn,Rm).
Since A has all eigenvalues with negative real parts, there exist positive constants λ and

c such that ‖eτA‖ ≤ ce−λτ for all τ ≥ 0. We then have the following estimates:

‖β‖Cr−1 ≤
∣∣∣∣
∫ ∞

0
eτA‖α‖Cr−1 dτ

∣∣∣∣
≤
∣∣∣∣
∫ ∞

0
ce−λτ‖α‖Cr−1 dτ

∣∣∣∣
≤ c

λ
‖α‖Cr−1

≤ c

λ
‖α‖C(r,γ)(C.39)

and

‖dvDμβ‖C0 ≤ a‖dγDμβ‖C0 + ‖dwDμβ‖C0

≤ a‖A‖
∫ ∞

0
ce−λτ‖Dμα‖C0 dτ + a‖Dμα‖C0

+

∫ ∞

0
ce−λτ‖dwDμα‖C0

≤
(
ac‖A‖
λ

+ a+
c

λ

)
‖α‖C(r,γ).(C.40)

Thus we have the following estimate on the Cr norm of β:

‖β‖Cr ≤ ‖β‖Cr−1 + sup
|μ|=r−1,|v|=1

‖dvDμβ‖C0

≤
(
ac‖A‖
λ

+ a+
2c

λ

)
‖α‖C(r,γ).(C.41)

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE-LOCKED LOOPS 719

Proposition C.4. Suppose that the vector νγ ∈ Qn, let α ∈ C(r, γ), and let β be defined
in terms of α by (C.22), where the matrix A has no eigenvalues of the form iNq2/(νq1)
for an integer N , where q1 is the least common denominator of the absolute values of all the
components of νγ, and q2 is the greatest common divisor of all of the components of q1νγ. Then
β ∈ Cr(Tn,Rm), and there exists a uniform constant C > 0 such that ‖β‖Cr ≤ C‖α‖C(r,γ).

Proof. The proof is similar to the proof of Proposition C.3.
Theorem C.5. Suppose that system (C.1) is C1, that f(0) = 0, and that all the eigenvalues

of the matrix A := Df(0) have negative real parts. Then for sufficiently small ε > 0 system
(C.1) has an attracting invariant torus of dimension n+ 1, which is a continuation from the
trivial manifold {0} × Tn × T1 at ε = 0.

Proof. By Theorem C.1 under hypothesis (i), there exists β ∈ Cr(Tn,Rm), depending
smoothly on ε, such that the P -invariant manifold {0} × Tn at ε = 0 continues to the P -
invariant manifold Mε := {(β(η), η) : η ∈ Tn} for ε > 0 sufficiently small, where P is the
Poincaré map defined in (C.3). In particular, since Mε is at least Lipschitz continuous in ε,
there exist positive constants ε0 and M such that

(C.42) ‖β‖C0 ≤Mε

for all ε ∈ (0, ε0).
It remains to show attraction. By a theorem in [13], it suffices to show that

(C.43) sup
η∈Tn

‖ΠDP (β(η), η, ε)‖ < 1,

where Π is the projection onto the normal component of the manifold Mε and ‖ · ‖ denotes
the usual operator norm.

From (C.4), we have that

(C.44) ΠDP (β(η), η, ε) = I + εk
2π

ω(β(η), η)
Df(β(η)) +O(εk+1),

where I denotes the m × m identity matrix. Expanding about J = 0 and using (C.42), we
obtain

(C.45) ΠDP (β(η), η, ε) = I + εk
2π

ω(0, η)
A+O(εk+1).

Thus there exists a positive constant b such that, for every η ∈ Tn,

(C.46) ‖ΠDP (β(η), η, ε)‖ ≤
∥∥∥∥I + εk

2π

ω(0, η)
A

∥∥∥∥+ bεk+1

for ε sufficiently small.
Let a be a positive constant such that every eigenvalue of A has real part less than −a.

By a lemma in [14], there exists a basis of Rm with a corresponding norm | · |H and inner
product 〈·, ·〉H such that

(C.47) 〈Av, v〉H ≤ −a|v|2HD
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for all v ∈ Rm. This implies that

∥∥∥∥I + εk
2π

ω(0, η)
A

∥∥∥∥
2

= sup
|v|H=1

∣∣∣∣
(
I + εk

2π

ω(0, η)
A

)
v

∣∣∣∣
2

H

= sup
|v|H=1

〈(
I + εk

2π

ω(0, η)
A

)
v,

(
I + εk

2π

ω(0, η)
A

)
v

〉
H

= sup
|v|H=1

(
|v|2H + εk

4π

ω(0, η)
〈Av, v〉H + ε2k

4π2

(ω(0, η))2
|Av|2H

)

≤ 1− εk
4π

ω(0, η)
a+ ε2k

4π2

(ω(0, η))2
‖A‖2,(C.48)

and hence

(C.49)

(∥∥∥∥I + εk
2π

ω(0, η)
A

∥∥∥∥+ bεk+1

)2

≤ 1− εk
4πa

ω(0, η)
+O(εk+1),

which implies that

(C.50)

∥∥∥∥I + εk
2π

ω(0, η)
A

∥∥∥∥+ bεk+1 < 1

for ε sufficiently small. Combining this with (C.46), we obtain (C.43) for ε > 0 sufficiently
small. (Recall that ω(0, η) is bounded below by ω0 > 0 and is a continuous function of η on
the compact set Tn.)

Thus Mε is an attracting invariant manifold for the Poincaré map P . Therefore Mε×T1

is an attracting invariant manifold for the ODE system (C.1), which is a continuation of the
invariant manifold {0} × Tn × T1 at ε = 0.
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