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Phase Locked Loops (PLL) are ubiquitous circuits used in
countless communication and engineering applications.

Components include a VCO, a frequency divider, a phase
detector (PD), and a loop filter.
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Phase Locked Loops

A PLL is a truly mixed-signal circuit, involving the co-design
of RF, digital, and analog building blocks.

A non-linear negative feedback loop that locks the phase of a
VCO to a reference signal.

Applications include generating a clean, tunable, and stable
reference (LO) frequency, a process referred to as frequency
synthesis

Other applications: Frequency modulation and demodulation
(a natural “FM” modulator/demodulator). Clock recovery for
high speed communication, and the generation of phase
synchronous clock signals in microprocessors.

Electronic PLLs are common, but optical and mechanical also
used.

Niknejad PLLs and Frequency Synthesis



Frequency Synthesizer

In a frequency synthesizer, the VCO is usually realized using
an LC tank (best phase noise), or alternatively a ring
oscillator (higher phase noise, smaller area).

The reference is derived from a precision XTAL oscillator. The
divider brings down the high frequency of the VCO signal to
the range of the reference frequency. The PD compares the
phase and produces an error signal, which is smoothed out by
the loop filter and applied to the VCO.

When the system locks, the output phase of the VCO is
locked to the XTAL. That means that the frequency is also
locked. The output frequency fout is therefore an integer
multiple of the reference fref

fref = fout/N fout = N × fref
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Programmable Divider

By making the divider N programmable, we can tune the
VCO frequency in either integer steps of the reference
(integer-N architecture) or in fractional amounts (fractional-N
architecture).

∆f = (N + p)fref − Nfref = pfref

In a fractional divider, p < 1 and is realized by dithering the
divider between N and N + 1 using a sigma-delta modulator.

In practice, the programmable divider is made of up
asynchronous high-speed dividers followed by programmable
CMOS dividers (counters).

The high speed dividers are sometimes in CML, which runs
faster than CMOS, and has superior noise immunity and
generation due to the differential nature. Injection locked or
TSPC dividers are also useful for very low power high
frequency operation.
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Capture Range and Linear Model

A PLL is described by several parameters, such as the locking
range, or the range of frequencies for which it will stay locked.
The capture range is the frequency range for which it will lock
from an initially unlocked state. The capture range is smaller
than the locking range.

These parameters are hard to derive analytically and require
simulation. But the dynamics of the loop, such as settling
time, the noise transfer characteristics (phase noise), can be
derived from a linear model.

Therefore it is useful to derive a linear model by assuming the
system is close to lock, or in lock. The most convenient
variable is phase, and not frequency, in the linear model.
Since phase and frequency are related, it’s easy to go back
and forth.
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K V CO FVCO = KVCOVctrl

KVCO =
∂FVCO
∂Vctrl

The VCO tuning curve is generally non-linear and given by a
plot of output frequency versus control voltage. But when the
PLL is in lock, the control voltage Vctrl varies only around a
small region around the lock point. We can therefore model
the VCO linearly.

Since we are interested in the phase, and observing that
frequency is the time derivative of phase, we can derive

ΦVCO =
1

s
FVCO =

KVCO

s
Vctrl

The VCO is therefore an implicit integrator in the loop. This
is an important fact to consider when designing a PLL.
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Divider Linear Model

From a voltage input-output characteristic, the divider is a
non-linear block that simply acts like a counter. For N input
edges, only one output edge occurs.

But in terms of phase, it’s a linear block

FDiv =
FVCO
N

ΦDiv =

∫ t

−∞
FDiv (τ)dτ =

∫ t

−∞

FVCO
N

(τ)dτ

=
1

N

∫ t

−∞
FVCO(τ)dτ =

1

N
ΦVCO

The linear gain is just the division ratio.
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Multiplier Phase Detector

The most classic phase detector (PD) is a multiplier. Consider
the product of two sinusoids offset by some phase φ. The
product is simply given by

e(t) = AB cos(ωt) cos(ωt+φ) =
AB

2
(cos(φ)− cos(2ωt + φ))

After a low-pass filter (LPF), the high frequency term at twice
the frequency is filtered out

< e(t) >=
AB

2
cos(φ)

The slope of the phase detector around zero is given by

KPD =
de(t)

dφ
= −AB

2
sinφ
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Multiplier Phase Detector (cont)

In locked condition, the phase deviations are small and we can
make the simple linear approximation

KPD ≈ −
AB

2

Note that this system will lock the VCO onto the quadrature
of the reference signal.

The negative sign is not much concern, because it can be
absorbed into other gain blocks which have positive or
negative gains, depending on how they are designed. We must
ensure that the overall loop has negative phase shift to form
negative feedback.

Some designers reserve the option to swap the inputs of the
PD just to be sure they can change things in case they make
an error!
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XOR Phase Detector

Ref

Div
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The differential XOR gate acts very much like a multiplier.
The best way to derive the transfer function is just to draw
some ideal digital signals at the inputs and outputs and to
find the average level of the output signal.

Note that the output is at twice the input frequency (just like
the multiplier) and a D C shift, which depends on the relative
balance of the waveforms.

The average value of the output is a linear function of the
phase difference, which is exactly what we want.
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XOR Phase Detector
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A sketch of the transfer curve shows that the system will also
lock in quadrature (if perfectly balanced). The slope of the
line determines the PD gain, KPD = 1

π

Note that in quadrature the duty cycle of the positive and
negative outputs is balanced, which produces a zero average
output.

Also note that the PD function is also periodic, much like the
multiplier. In fact, the schematic of a XOR (CML) and a
multiplier are very similar except for the signal levels.
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Phase Detector Linear Model

As we have seen, the phase detector is actually a non-linear
block that only extracts the phase on an average sense. We
use the PD average behavior in the linear model.

On average, the PD produces an error signal by taking the
difference between the reference phase and the divided VCO
phase. The PD gain is related to the slope of the transfer
function

e(t) = KPD(Φref (t)− ΦDiv )
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Loop Filter

The loop filter is an linear filter that smooths out the error
signal and is a critical part of the system under the control of
the designer.

Passive RC and active filters are both used to realize the loop
filter.

Ideally the voltage on the control node of a VCO should settle
to a DC value to avoid reference spurs. In other words, if we
apply a periodic waveform on the control line, we get FM
side-bands which are undesirable. Since the PD block is
non-linear and non-ideal, even in lock it can produce a
waveform that needs to be filtered to minimize reference
spurs.
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Complete Linear Model

KPD H(s)
φerr VCφREF φLO

φdiv

KVCO
s

+ ∑

1
N

The loop gain is given by

A(s) =
KPDH(s)KVCO

Ns
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Closed-Loop Gain

The closed loop gain is given by

G (s) =
A

1 + Af
=

KPDH(s)KVCO

s

1 + KPDH(s)KVCO

Ns

This is simplified to

G (s)/N =
KPDH(s)KVCO

N

s + KPDH(s)KVCO
N
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Noise Transfer Function

If we consider the phase noise coming out of the VCO, its
transfer function to the output is different and given by (also
the transfer function for the error signal)

E (s) =
1

1 + A(s)
=

s

s + KPDH(s)KVCO
N

The VCO noise is therefore attenuated by the loop gain,
which is very nice since the reference is usually much more
spectrally pure than the VCO (it is typically constructed using
a high-Q quartz resonator) whereas the VCO uses a low Q
on-chip tank (inductor + varactor).

Note that when the loop gain drops (outside of the bandwidth
of the PLL), the noise of the PLL is essentially governed by
the free-running noise of the VCO.
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Case 1: No Loop Filter
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If we omit a loop filter, H(s) = 1, the loop gain is given by
A(s) = 1

NsKPDKVCO and the closed loop gain and error
function are low-pass and high-pass respectively

G (s) =
KPDKVCO

s + KPD
KVCO
N

E (s) =
s

s + KPD
KVCO
N
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Case 1 (cont)

The system has a 90◦ phase margin, and the loop bandwidth
is given by

ωc =
KPDKVCO

N

Within the loop bandwidth, the output phase follows the
input phase and the noise of the VCO is rejected. Outside of
the band, the phase is determined by the free running VCO.
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Case 2: 1 Pole LPF
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A simple LPF is used

H(s) =
1

1 + s
ωp

This renders the closed-loop response to be a second order
function

G (s) =
ω2
0

s2 + ω0s
Q + ω2

0
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Case 2: 1 Pole LPF (cont)

The natural frequency is given by

ω0 =

√
KPD

KVCO

N
ωp

The Quality factor is given by

Q =

√
KPDKVCO

Nωp

Since the transfer function is second order, the dynamics are
well known (peaking behavior).

One adjusts ωp and the loop gain to set the phase margin.
Loop gain increase reduces phase margin for a given ωp.
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Steady-State Step Response

The steady-state response of the system is given by the Final
Value Theorem. For instance, the final value of the error
signal is given by

lim
t→∞

Φe(t) = lim
s→0

sE (s)φin(t)

If the input is a step function, φin = ∆φ/s, so we have

lim
s→0

s
s

s + KPD
KVCO
N H(s)

∆φ

s

= lim
s→0

s

s + KPD
KVCO
N H(s)

∆φ = 0
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Frequency Step

On the other hand, if the frequency of the input goes through
a step change, that corresponds to a ramp function to the
phase

φin =
∆ω

s2

which means the at the error due to a frequency step is given
by

lim
s→0

s
s

s + KPD
KVCO
N H(s)

∆ω

s2
=

∆ω

KPD
KVCO
N H(0)

Unless the loop filter H(s) has infinite DC gain, the loop will
have a non-zero phase error if there is a frequency step.

To remedy this, we should add another integrator into the
loop. PLL’s are characterized by the number of integrators in
the loop. So far we have been using a type-I PLL, which has
only 1 integrator (the VCO itself).
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Charge Pump Integrator

Qout=Icpφerr

C

Vout

Iup

Idown

UP

DN
H(s) = I (s)× 1

sC
= (Iup−Idown)

1

sC

A popular way to build a second integrator into the loop (note
the first is the VCO) is to use a current source and a load
capacitance.

The current source is implemented by two sources that can
pump current into and out of the capacitor. The UP and DN
(Down) signals are controlled by a Phase Frequency Detector
(PFD).
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Lead/Lag Filter

RC1

iin
Vout

C2

H(s) =
1 + s

ωz

s(C1 + C2)
(

1 + s
ωp

)
ωz =

1

R1C2

ωp =
C1 + C2

R1C1C2

Often the load capacitance is replaced with a lead/lag filter
impedance to improve the stability of the loop. Typically the
capacitor C2 is much larger than C1, so the pole occurs at a
much higher frequency.

H(s) ≈ 1

sC2
(1 + s/ωz)
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Phase-Frequency Detector
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DIV

UP
R

D Q

R
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REF
DIV
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The charge pump is usually driven by a Phase-Frequency
Detector (PFD), which is an edge sensitive circuit that
measures the arrival time of the reference edge relative the
divider edge. When a single edge arrives, the output goes high
until the second edge arrives, at which time the output signal
is reset to ground.

The “UP” signal will output a one if the reference edge arrives
before the divider. Likewise, the “DOWN” signal will produce
a one if the divided edge arrives before the reference edge.
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Phase-Frequency Detector (cont)

Unlike the XOR/multiplier, the circuit is sensitive to not only
the phase difference, but also the sign of the phase difference.

If VCO clock is faster than the reference (higher frequency),
then its edges will always arrive earlier, which will activate the
“DOWN” signal which will slow down the VCO. This
functionality allows it to function as a frequency detector.

The transfer characteristic is derived by observing the average
output signal.

<E(t)>

φerr2ϖ 4ϖ

-2ϖ-4ϖ
1

-1

KPD

φerr0 2ϖ 4ϖ-2ϖ-4ϖ

1/(2ϖ)
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PFD + Charge Pump

REF
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D Q
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Vctrl
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Icp
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By using the up and down signals to control the charge pump,
we can dump or remove charge from the integrating capacitor,
and control the VCO. The functionality the PD and the first
integrator are built-in to this block.
If neither the up/down signal is activated, the capacitors hold
the charge and the VCO frequency is fixed. This happens in
steady state.
Any leakage or mismatch between the up/down currents will
cause ripples on the control line and therefore reference spurs
to be generated. The charge pump devices are sized to
minimize the mismatch.
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Loop Gain / Closed Loop Gain
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The overall transfer function is now type-II (two integrators)
and third-order. There is always some peaking in the transfer
curves.
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Charge Pump Runt Pulses

Runt PulseRegular Pulse

Dead Zone

<E(t)>

φerr

Assume that the frequency/phase of the divider and reference
are nearly matched so that the phase error is small. Ideally a
shorter and shorter duty cycle signal would be generated, but
as the duty cycle approaches the rise time of the pulses, the
pulse amplitude will begin to decay, thus lowering the gain of
the PDF. We see that the gain of the PDF flattens for small
inputs.
The solution to this problem is to force the up/down pulses to
have a minimum on-time. To produce a small output,
therefore, both up and down signals will remain on
simultaneously.
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Noise Analysis

KPD H(s)φn,REF φLO
KVCO
s

+ ∑

1
N

ICP ∑∑

∑

in,cp φn,vco

φn,div

∑

vn,lf

Consider a PLL with a charge pump in the loop. Since the
gain of the charge pump is ICP · Z (s), and Z (s) is used to
realize the loop gain filter, Z (s) = H(s), we now have another
knob to tune the loop gain.
Earlier we derived the transfer function from the input and
VCO output ports. The expression is easily modified to
include the charge pump

STF =
Φout

Φref
=

KPD ICPKVCOH(s)
s

1 + KPD ICPKVCOH(s)
Ns

=
KPD ICPKVCOH(s)

s + KPD ICP
KVCO
N H(s)
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Phase Noise Summary

As before, the transfer function for the VCO noise is given by
(HPF)

NTF1 =
Φout

ΦN,VCO
=

1

1 + KPD ICPKVCOH(s)
Ns

=
s

s + KPD ICPKVCOH(s)
N

Since the charge pump is an active circuit, we compute the
noise transfer from the CP to the output (LPF)

NTF2 =
Φout

ΦN,CP
=

H(s)KVCO
s

1 + KPD ICPKVCOH(s)
Ns

=
KVCOH(s)

s + KPD ICPKVCOH(s)
N

The total output noise is given by

Nout(s) = Nref (s)|STF (s)|2+NVCO(s)|NTF1(s)|2+NCP |NTF2(s)|2
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Phase Noise Spectrum

103 104 105 106 107 108 109-170

-160

-150

-140

-130

-120

-110

-100

-90

-80

Frequency (Hz)
Ph

as
e 

N
oi

se
 (d

Bc
/H

z)
 

 

VCO
REF
TOT (ωC=0.2MHz)
TOT (ωC=2MHz)
TOT (ωC=20MHz)

The charge pump should be designed to minimize the in-band
noise since its transfer function is low-pass. Recall that any
mismatch between the up and down transistors also creates a
reference spur, which means the devices should be sized and
biased carefully.
The total phase noise profile can be characterized into three
regions: (1) Reference noise dominates in the PLL bandwidth,
(2) the transition band, and (3) outside the loop bandwidth,
where the free-running VCO dominates.
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Loop Dynamics

KPD H(s)φn,REF φLO
KVCO
s

+ ∑

1
N

ICP ∑∑

∑

in,cp φn,vco

φn,div

∑

vn,lf

The transfer function from the input (reference) to the output
is given by

G (s) =
φLO
φn,ref

=
KPD IcpH(s)KVCO

s

1 + KPD IcpH(s)KVCO
s

1
N

where H(s) ≈ 1
sC2

(1 + s/ωz).
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Loop Dynamics (cont)

The transfer function is therefore

G (s) =
KPD Icp

1
sC2

(1 + s/ωz)KVCO
s

1 + KPD Icp
1

sC2
(1 + s/ωz)KVCO

s
1
N

=
KPD

Icp
C2

(1 + s/ωz)KVCO

s2 + KPD
Icp
C2
KVCO

1
N (1 + s/ωz)

Focusing on the denominator, we can put it into standard
second order from

D(s) = s2 + (s/ωz)KPD
Icp
C2

KVCO
1

N
+ KPD

Icp
C2

KVCO
1

N

= s2 +
sω0

Q
+ ω2

0
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Loop Natural Frequency and Quality Factor

By equation the above two equations, we have

ω0 =

√
KPD

Icp
C2

KVCO
1

N

The amount of ringing in the loop depends on the Q value.
The Q is given by

ω0

Q
=
ω2
0

ωz

or
Q =

ωz

ω0

The location of the zero controls the stability of the loop
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Location of Poles

The poles are found easily since it’s a second order transfer
function

s1,2 =

−ω0
Q ±

√(
ω0
Q

)2
− 4ω2

0

2

To realize an undamped system (real poles), the Q < 1/2.
Otherwise there will be jitter peaking in the transfer function.
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“Critically Damped” System

If we take Q = 1/2, we have two poles at

s1,2 =
−ω0

2Q
= −ω0

The location of the zero is ωz = Qω0 = 0.5ω0. The overall
transfer function is given by

G (s) = G (0)
1 + 2s/ω0

(1 + s/ω0)2

Due to the zero, the system still overshoots slightly and the
loop bandwidth is given by ω−3dB ≈ 2.5ω0.
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Underdamped System

To ensure a damped response, one may choose Q � 1, say
Q = 0.1, which implies a very low frequency zero, ωz = Qω0.
This requires a large capacitor!

A useful approximation for a low Q system is the following

s2 +
sω0

Q
+ ω2

0 ≈ (s +
ω0

Q
)(s + Qω0)

The utility of this approximation is that the second pole is at
the zero frequency ωz = Qω0, which cancels the zero in the
transfer function

G (s) =
KVCOKPD

Icp
C2

(1 + s/ωz)

(s + ω0
Q )(s + ωz)

G (s) =
KVCOKPD

Icp
ωzC2

(1 + s/ωz)

(s + ω0
Q )(1 + s/ωz)
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Underdamped System (cont)

The overall transfer function simplifies and acts like a single
pole system

G (s) =
KVCOKPD

Icp
ωzC2

(s + ω0
Q )

The pole is given by

ω−3dB =
ω0

Q
=

1

Q

√
KPD

Icp
C2

KVCO
1

N

Keep in mind that this is an approximation and in reality the
pole/zero don’t cancel exactly. Also we neglected the higher
order pole of the lead/lag filter. There are more poles in the
system as well ... simulate to be sure !
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Choice of Loop Bandwidth

Even though we modeled the PLL as a continuous time
system, in reality most implementations are a discrete time
system. This is due to the fact that the PDF compares edges
of the reference to the divided clock, and only generates an
error signal once per reference edge.
One implication of the discrete time system is that the
bandwidth must be smaller than the reference frequency,
typically 1/10’th of the reference is a popular choice.
XTAL oscillators are available up to a few hundred megahertz.
In an Integer-N architecture, the reference frequency is set to
the channel spacing, which means the loop dynamics are
controlled by the reference frequency. Accurate synthesizers
are therefore slow.
A fractional-N synthesizer in theory decouples the choice of
reference frequency from the resolution of the PLL, but in
practice fractional spurs force low bandwidths. Realization of
a high bandwidth fractional-N PLL is an active research topic.
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Simulation Tools

These equations are a good starting point in the design of a
PLL. The next step is a system level simulation in matlab or
an analysis with the complete transfer function.

Next, you should remind yourself that our linear model is an
approximation.

A simulation framework that can model the actual dynamics,
including the non-linearity, is very important. Full SPICE level
simulation is too slow (hours to days) for design, but is a
must for verification.

Verilog-A is a great choice to model the PLL, and even
include some of the blocks at the transistor level.
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CppSim

A great free tool that runs very fast (C++ based platform)
and includes support for verilog components is available and
highly recommended: cppsim.org
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