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Abstract

The increasing availability of rich longitudinal Electronic Health Records (EHR)
has driven the development of AI methods aimed at generating valuable clinical
insights. Despite the large coverage of patients in EHRs, cohorts extracted to
derive outcome predictive models for specific phenotypes often result in small and
imbalanced data sets that are of limited practical use for Al modeling. In this paper,
we propose an Ontology driven Multi-Task Learning framework called OMTL that
is able to cope with these data limitations for EHR modeling by leveraging external
knowledge. The model is especially designed for situations where we want to study
patients for a set of related disease categorizations, and interested in potentially
different outcomes corresponding to different categories. More specifically, OMTL
leverages phenotype similarity according to a predefined ontology to learn the
outcome prediction tasks. The model structure allows for an increased sharing of
data representations across phenotype profiles such that the information sharing
is regulated by the ontological and patient level similarities. We evaluate the
benefit of leveraging an ontology to relate tasks in a multi-task learning settings and
demonstrate the efficacy of OMTL on several real outcome prediction problems
on patients from the MIMIC III database over state-of-the-art multi-task learning
schemes.

1 Introduction

The increasing availability of rich longitudinal patient records from large EHR has enabled novel
data-driven analysis on such observational data towards clinical hypothesis generation and testing.
EHR patient data can cover several aspects of patient history such as diagnosis, medication, and lab
tests resulting in a diverse set of patient attributes.

Despite the large number of patients covered in these data sets, formulating a query to extract a
cohort for the outcome of interest often results in a very modest number of data points being returned,
hindering the effectiveness and reproducibility of deep learning techniques on these data sets. Let us
consider a scernario where we want to study patients who have experienced Rheumatic disease of
hearth valve and Mitral valve stenosis on the well-known MIMIC III data set [10]]. Such a query only
returns 210 ICU stays, down from the original 42000 stays present in the complete data set. In another
case, on an EHR database spanning more than 55 million patients, querying for patients within
the age group 21 — 40 and having experienced concussions that led to mild cognitive impairments
returns fewer than 1100 patients. Further characterization of this cohort to focus only on patients that
eventually experienced dementia takes that number below 200.

Furthermore, such histories are often sparse and difficult to be directly utilized for simple analysis.
Indeed, being observational in nature, EHR data sets often exhibit widely varying regularity of
encounters as well as diseases coverage. This data imbalance can manifest itself as a ‘vanishing data’
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problem during cohort analysis of specific diseases of interest with low coverage. Any analysis on
such data sets can be impractical and suffer from significant lack of robustness.

Interestingly, a significant amount of domain knowledge relating medical concepts is readily avail-
able in several medical ontology. Phenotypes corresponding to observable physical properties of
patients [1], including diseases have been organized in ontologies and expressed within EHR systems.
We postulate that leveraging phenotypical relations within EHR data sets to tie and jointly learn
multiple learning outcomes in a multi-task learning setup could provide solutions to this vanishing
data problem and lead to more robust prediction models.

In this paper, we propose OMTL, a novel phenotypical ontology-driven framework for multi-task
learning. The main tenant of our approach is to ground the structure of the proposed multi-task
framework on phenotyical medical concepts relations between patients from different medical cohorts.
Using OMTL allows us to cope with the lack of data for training specific outcomes by leveraging
existing knowledge encapsulated in ontologies. Learning outcomes for different phenotypes may bor-
row representation expressiveness during training for the prediction of several outcomes. This sharing
allows OMTL to generate prediction models for patient phenotyical cohorts even for phenotypes with
little amount of patient observations by leveraging data from other phenotypical cohorts.

Moreover, OMTL enables sharing information among phenotypes based on the ontology which allows
the model to decouple the outcome learning from the representation learning of similar diseases.
In this case, the model allows studying patients with related diseases with different outcomes. For
example, it can learn about mortality prediction for diabetic patients and readmission prediction for
patients with hypertension by sharing information between diabetes and hypertension.

The contributions of this paper are 3 folds:

1. We proposed a systematic way to tie different phenotypical outcome using existing domain
knowledge in the form of ontologies of medical concepts (e.g. SNOMED CT [4]]).

2. We propose a novel hierarchical deep learning architecture using gating mechanisms mirror-
ing the structure of a domain ontology.

3. We demonstrate the efficacy of the proposed approach on the prediction of several outcomes
on patients from the MIMIC III database.

In the remainder of the paper, we start with a review of related work before exposing in details the
proposed method OMTL. We then present the experimental results geared towards the evaluation of
the gain achieved by leveraging domain ontologies to link together multiple tasks in OMTL.

2 Related Work

Multi-task learning: Multi-task learning has received a great deal of attention in the last few years.
More notably, [[12]] adapts Mixture-of-Experts (MoE) structure to jointly learn multiple outcomes
by sharing a single expert, backed by gating networks to specialize for each outcome and learn the
relationships jointly. In [8} 2], authors focus on using hierarchical relationships to learn multiple
outcomes. Specifically, a two-level hierarchy has been used to regularize a learned model to share
information among related outcomes. [21] extended these approaches with multi-level hierarchies.
They proposed a cascade approach to progressively learn outcomes at prior levels to boost learning
performance on outcomes in immediately subsequent levels.

The model proposed in [[14] learns intermediate representations for predictive tasks at multiple
scales for the same input via a cascade of connected layers. In [15]], the authors proposed a way
to incorporate a set of carefully selected semantic NLP tasks into the multi-task model. The tasks
that are “easy” to learn are supervised at the lower levels of the architecture while more complex
interactions are kept at deeper layers. A soft-ordering of the shared layers was proposed in [[13] to
learn both the layers and the order of layers for each task.

OMTL is motivated by such efforts to learn phenotype specific predictive models in a multi-task
setting to share information across outcomes. It is also important to note that OMTL uses an ontology
based hierarchy, but more crucially, decouples tasks from hierarchies such that representations learned
for different phenotypes can be further specialized w.r.t. different tasks such as readmission and



mortality prediction. In most of the cases, the shared layers are integrated in parallel orders, where
the outcome of one layer is fed into the next layer.

Knowledge graph: Structured domain knowledge, often in the form of graphs, have been applied in
various applications to achieve more robust inferences over only data-driven models. [18] presents a
framework to enable the use of various kinds of external knowledge bases to retrieve answers relevant
to a given question. It provides a graph based model which maps the text phrases to concepts in the
external knowledge graph with several strategies: concepts only, one-hop, and two-hop. Finally, the
extracted graph is used as an input to a neural network model for entailment.

Outcome prediction from EHR: Over the years, many researchers have developed predictive
models on EHR for the prediction of various adverse events such as early identification of heart
failure [16], readmission prediction [19], and recently acute kidney injury prediction [17]. Other
notable works include [20]] where the authors presented a multi-level attention mechanism to derive
patient specific representations. Specifically, the authors split the trajectory of patients into sub-
sequences and use within-subsequence and between-subsequence attention levels sequentially to
arrive at patient representations in order to handle various data issues such as data sparsity and noise.
Of note is also the work by [7]] where the authors present four clinical prediction benchmarks using
data derived from the publicly available Medical Information Mart for Intensive Care (MIMIC-III)
database, including In-hospital mortality, Decompensation, Length of stay, and Acute care phenotype
classification. In addition, it proposes a deep learning model called multi-task Recurrent Neural
Networks to empirically validate the four prediction benchmarking tasks. This benchmark has been
used as the basis for evaluating the effectiveness of OMTL.

3 Methods

To tackle the vanishing data problem, OMTL uses augmented patients having similar phenotypical
profiles to the original cohort being studied. Specifically, OMTL builds on the recently published
work of [12] using a multi-task mixture-of-experts model to share information across different
learning tasks. This model essentially learns different shared patient data representations (called
experts) fed as inputs for each individual learning outcomes. OMTL takes this multi-task learning
approach further by leveraging the relationship and ontological distance among phenotypes to share
information between learning tasks.

We assume the existence of an ontology for the domain, such as SNOMED [4] and CSS [6]], that
represents the semantic phenotypical relationships among the medical concepts describing the data
fields of interest (e.g. diagnosis codes). We represent this ontology with a directed acyclic graph over
of a set of nodes (e.g. diagnosis codes) and edges expressing parent-child semantic relationships
between the nodes. Let X = {z; € R% V i} be the EHR data where ; is the data record i (e.g. an
intensive care unit visit or an admission for a patient), and d is the number of feature

For each data record, we assume the presence of all phenotypical medical concepts tied to the record.
Using that information, we construct a subgraph G of the ontology with only the nodes corresponding
to medical concepts that are present in X. Within G, the set of user-specified phenotypes of interest
corresponding to the cohort under study (collection of medical concepts) are represented by a subset
of nodes, which we call core nodes C (blue nodes in G depicted in Figure[I). The process for obtaining
such a graph is described in details in the supplementary materials.

Any outcome prediction on X can be formulated as a mapping from X into an outcome set Y. To
enable sharing across outcomes, we break down this mapping as follows. We first define an encoding
function £ generating representations as:

E:X—>Z (1)
where Z = {z; € RY }, d’ is the dimension of the representation, and z; represents the representation

for record ¢. For this representation to be useful, we enforce an unsupervised reconstruction process
by learning a reconstruction function R:

R:Z—X 2

'For simplicity we assume that z; € R? but it is straightforward to apply the method to temporal data where
T € RTXd



Figure 1: A directed acyclic subgraph that encompasses nodes represented in the dataset. The nodes
in blue (i.e. core nodes) are of specific interest to the user.

The generated representation can be used as an input to a standard supervised machine learning
algorithm to predict the outcome of interest Y = {y;;V ¢}. This can be achieved by learning an
outcome prediction function Eg:

Es:Z —Y 3)

Learning the parameters for the mappings £, R and g can be achieved by minimizing the following
objective function:

L= )\ZHR (1) —leg—l—Zf(Sg £(@)),u:) @)

£1 £2

where, £ is the reconstruction loss function and L5 is the total outcome prediction loss that aggregates
the losses ¢ (e.g. cross entropy for classification and mean square error for regression) at the node
levels corresponding to the potentially different outcomes. A € R is a hyper-parameter that weighs
the importance of the two losses.

Learning a representation and a predictive model for one task is relatively straightforward by op-
timizing Equation {@). However, learning such representations for multiple patient cohorts with
different phenotypical profiles and multiple predictive tasks simultaneously is a challenging problem.
OMTL tackles the problem by using a structured hierarchical network that mimics G and account for
dissimilar coverage of patients across nodes. We formalize OMTL by first describing a multi-task
learner and, subsequently, complete the formalization by describing how we include the hierarchical
ontological structure as part of the model.

3.1 Multi-gate Mixture of Experts for Multi-task

Inspired by [12] a multi-gate mixture of experts approach can be used to learn £ in a multi-task
settings as in Figure 2] (a). Input data flows from the top into a mixture of E expert nodes responsible
for clustering the input data subspace to facilitate representation computations. We denote these
expert nodes as F.(-),1 < e < E. These expert nodes are neural networks producing a representation
E.(x;) given input z;.

The outputs of these expert nodes are consumed by an array of P representation nodes denoted
P,(.),1 < p < P. Each P, maps directly into one medical concept (i.e. the number of representation
nodes is equal to the number of nodes in the subgraph G defined in the previous section). Each of
these P, nodes ingest experts outputs via a gating function G, to learn how to combine information
from all expert nodes for the generation of representations for the current medical concept. The gating
node G, controls the combination of expert nodes to produce the input M, to the representation
node P,. These are typically very simple networks that produce combination weights for the experts
at each representation node via following Equation:

Gp(z;) = Softmax(q:i W, +b,) € R¥

5
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Figure 2: (a) Multi-gate mixture of experts architecture. (b) OMTL: The model is explained using
only 3 nodes Py, P», Ps (medical concepts) to minimize confusion. The modules that are the same as
in the baseline model are faded out for clarity, while the new additional modules are plotted in bold.

where W), € RE, b, € R are parameters to be learned by the gate network during training, and
Gy (z;) is the entry e in the vector Gp(;). The input M (x;) is then passed to the representation
node P, to produce representations

Ep(xi) = Pp(Mp(z:)) 6)
for the current medical concept p.

The representations are then passed as input to the outcome nodes. The outcome nodes leverage
the representations to predict these outcomes. It is quite important to note that the model can be
optimized for multiple outcomes of interest and each representation node can have different and
multiple outcomes, e.g. we can associate mortality prediction for certain medical concepts and
readmission prediction for another (possibly overlapping) subset of medical concepts. For example,
in Figure(a), the medical concept P is associated with two outcomes O} and OF while the medical
concept Ps is associated with the outcome O3.

This model is trained in a multi-task setting allowing expert nodes and representation nodes to share
learned representations and support outcome nodes in their prediction tasks. The loss function to be
optimized is

1 2 1 o o
c:xﬁ; ij (Rp(Ep(@:)) — a2) +ﬁzi: pz; > U(05Ep(wi)),ug) (D)

€ o .
x; has p #; has p © assoc. with p

L4 L"l

where R, is the reconstruction network that reconstructs the input ; from the representation &, (x;),
¢ is the prediction loss function (e.g. cross entropy for classification) and y{ is the label for the
outcome o for the visit 4. The second sum in £, runs over all representation nodes (medical concepts)
that z; expresses forcing the representation from all nodes to be useful for the reconstruction of the
original input. While the second sum in L5 runs over all core nodes C that z; expresses, based on the
user interest in specific phenotypes, the third sum runs over all outcome nodes o that are associated
with the representation nodes p.

3.2 Hierarchical Multi-task Approach with OMTL

Optimizing Equation can be used to solve the multi-task problem outlined above. However,
depending on the choice of the phenotypes of interest, there can be a significant variation in the
number of patients spanned by the representation nodes. For example, nodes corresponding to a
higher level concept will typically span a much greater number of patients than the ones spanned by
concepts at a leaf level of the ontology where concepts are very specialized. Interestingly, such nodes
are semantically related via the medical concept ontology. Therefore, the generated representations
across different medical concepts should share similar semantic relationships. OMTL aims to increase
the information sharing among nodes using the ontology.



The learning architecture for OMTL is depicted in Figure|2|(b). Compared to the architecture shown
in Figure [2] (a), the representation nodes are now connected by mirroring the sub-graph G. The
representation nodes without ancestors in G can be computed using the same gating principle outlined
in Equation @) However, for a node with ancestors (such as Ps in Figure@] (b)), the model shares
both the representation from the expert nodes and its parents. Assuming that P; has n parents,
the resultant representation &; at P; is an aggregation of two vectors: (i) M, computed using the
combination of experts as given by Equation @) and, (ii) P; computed using the combination of the
representations from the parents as:

Hj (xl) = Softmax(xi . Wj + bj)

Pilwi) = > HE(z:)E(x;) ®)
k=1

The input to the node P; will be the aggregation of M; and P;. The outcomes &;(x;) can be
computed using the same procedure outlined in Equation @ OMTL encourages information sharing
among the nodes using the graphical structure informed by the ontology. More specifically, the
ancestors of a representation node will be less affected by the ‘vanishing data’ problem and the
structure thereby acts as a forcing mechanism to help the network to learn the representation nodes
and outcome with higher efficacy. During the forward and backward pass of the training, data z; is
only routed to representation nodes corresponding to phenotypes expressed in ;.

4 [Experiments

In this section, we present an experimental evaluation of OMTL focusing on the impact provided by
leveraging an ontology in a multi-task framework. We first describe the data used in the experiments
including the construction of patient cohorts. We then present the experimental setup before presenting
experimental results.

4.1 Data Description

We train and evaluate all models on data extracted from the publicly available MIMIC-IIT (Medical
Information Mart for Intensive Care) data set [10], a large, single-center database of patients admitted
to critical care units at a large tertiary hospital. While MIMIC-III includes several facets of patient
medical records, we focus our experiments on the vital signs, observations and diagnosis codes from
the cohort construction proposed in [7].

Since MIMIC-III tracks diagnosis codes in the ICD-9 format, only preserving a shallow two-level
hierarchical structure of medical concepts, we map all the observed ICD-9 diagnosis codes to
SNOMED CT codes, and construct a graph with a sufficiently deep hierarchy of medical concepts.
As aresult, we obtain a complex knowledge graph where each node is associated with a set of ICU
stays. Next, we exploit a data augmentation algorith to extract cohorts for training our models as
follows. Given the knowledge graph and a few core nodes (e.g., specific SNOMED nodes identified
by domain experts for a certain phenotype), we aim to include more SNOMED nodes to augment
the ICU stays for analysis. The data augmentation algorithm starts from this set of nodes and grows
the set by choosing a series of predecessors using an MCMC sampler. We apply this node growth
for a predefined number of iterations to obtain connected graphs with sufficient nodes and stays for
training. In this manner, we obtain 3 data sets for different cohorts: liver disorder, heart disorder, and
kidney disorder for which our predictive outcomes are phenotypes ‘“Disorders of lipid metabolism”,
“Acute myocardial infarction’, and “Chronic kidney disease", respectively, and in-hospital mortality
prediction on both cohorts. The extracted graphs for all data sets are shown in Figure ]

More statistical details on the selected cohorts can be found in Table (1] The corresponding data are
multivariate time series for each ICU stay. As typical with real-world data, these data contain missing
values. To address this issue, we replace these missing values with an average of carry-forward,
carry-backward and mean imputation methods. We then flatten the time series data to a single time
point using the mean values of each feature and each ICU stay. For each visit, we extracted 41
features for analysis.

2The details for the data augmentation algorithm used are described in the supplementary material.



Table 1: Statistics of datasets.

Dataset # Core nodes # Nodes # Visits (+)

Liver Mortality 5 26 4767 (837)

Liver Pheno 5 26 9073 (1474)
Heart Mortality 3 21 13067 (1867)
Heart Pheno 3 21 24135 (4039)
Kidney Mortality 1 78 20316 (2749)
Kidney Pheno 1 78 39108 (5588)

4.2 Experimental Setup

As mentioned in the Methods section, our goal is to share information among outcomes of interest
at a few core nodes of interest C. To realize the benefits of the augmented nodes without restricting
the outcomes to be homegenous across the nodes, we train OMTL by optimizing for outcome loss at
the core nodes along with reconstruction loss at all nodes. Under this setup, our primary objective
is to test the hypothesis that adding the structure information from the ontology helps the model to
produce more accurate predictions. To test this hypothesis, we propose to compare OMTL against the
multi-task mixture of expert models [12] trained using the loss structure outline in Equation|/} This
model referred as MMOE in the rest of this section, uses mixture of experts [9] to share information
among outcomes without using any prior knowledge about the semantic outcome-relationship. In
addition, we compare the proposed method to mixture of experts (MOE) [3]] where mulitple experts
were utilized but no gates, and the most commonly used shared-bottom (SB) multi-task deep learning
structure [3] where there is only one expert.

OMTL augments MMOE with a gating mechanism {H;;V;} enforcing the ontological structural
relationship across representation nodes as described in the Methods section. To train OMTL, we
first train it without considering the hierarchy to learn the experts and their corresponding gates G.
We freeze these components and subsequently fine-tune for the outcomes and representations at the
nodes by admitting the hierarchical structure.

Implementation details: Each module (expert, representation, reconstruction, outcome) is imple-
mented as a one layer feed-forward neural network. We used 3 experts for MOE, MMOE, and
OMTL. The size of the expert, reconstruction, representation modules are 41 x 5, 5 x 41, 5 x 5,
respectively. The activation functions are Leaky ReL.U for experts, Softplus for the representation
layers, and ReLU for the reconstruction. Each expert has a dropout layer for regularization. The size
of the gate G, is 41 x 3 and the size of the gate I is 41 x n; where n; is the number of parents for
the representation node j. We performed hyper-parameter tuning and found good performance and
stability across all models by setting the batch size to 64, learning rate to 0.001, dropout to 0.5, A to
0.0001, and using Adam as the optimizer [11]]. We evaluated the models using stratified 5-fold cross
validation. the cross validation was done so as to ensure we have the same distribution of positive
and negative examples in each node. All models were evaluated on exactly the same folds for fair
comparison.

4.3 Multi-task Outcome Results
We compare all baselines with OMTL using AUC. The results are shown in Table 2| and Figure

Table 2: AUC under ROC for all models.
Dataset SB MOE MMOE OMTL

Liver Disease Mortality 0.715 0.742  0.715 0.750
Liver Disease Phenotype 0.572 0592 0.576 0.626
Heart Disease Mortality 0.723 0.700  0.713 0.770
Heart Disease Phenotype 0.535 0.537 0.561 0.593
Kidney Disease Mortality ~ 0.728 0.674  0.697 0.728
Kidney Disease Phenotype 0.743  0.736  0.749 0.749




Table 3: AUC under PRC for all models.
Dataset SB MOE MMOE OMTL

Liver Disease Mortality 0.414 0.448 0.429  0.478
Liver Disease Phenotype 0.086 0.106 0.084  0.109
Heart Disease Mortality 0.211 0.221 0.242  0.262
Heart Disease Phenotype 0.180 0.182 0.202  0.214
Kidney Disease Mortality ~ 0.252  0.219 0.233  0.267
Kidney Disease Phenotype 0.806 0.798 0.806  0.806

der Phenotype
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Figure 3: ROC for all experiments.

In general, we can see from Table [2] that the AUC gain that the structure is adding to MMOE ranges
from 5%-9% for the liver disorder data with ontological graph shown in Figure ] (a). It is worth
noting that the core nodes in this graph are well-connected to each other. We hypothesize that the
benefit of using the structural information among such well-connected core nodes helps OMTL to
attain a significant boost in sharing information and hence provides more accurate predictions than

MMOE.

The gain in the heart disorder graph, which is shown in Figure d] (b), ranges from 2% to 6%. The AUC
gain is not as significant as in the liver disorder case. A possible explanation for this is that the core
nodes are less connected to each other. In such situation, the training may benefit by leveraging more
outcome nodes. Similar conclusion are seen in the kidney graph. In the next section, we investigate
this hypothesis.

Since the datasets are highly imbalanced, we also show the AUC under the precision recall curve
(PRC) as shown in Figure [5|and Table 3| The OMTL model outperforms MMOE in the precision
which indicates that it is able to predict the rare positive class more accurately than MMOE.

5 Conclusion

We proposed OMTL, a novel multi-task learning approach to analyze EHR data. OMTL models
outcomes by incorporating existing ontology of phenotypical information in the multi-task setup.
We have demonstrated the utility of this approach by comparing against state-of-the-art knowledge
agnostic multi-task framework over a set of datasets. Our ongoing efforts are aimed at deploying the
framework for large scale EHR analysis.
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Figure 4: (a) Liver disorder graph. (b) Heart disorder graph. (c) Kidney disorder graph. Core nodes
are shown in red, and augmented nodes are shown in blue. The labeled indices are used to describe
the details of each node in the supplementary materials.
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Figure 5: PRC for all experiments.
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