

HF Mobile Set-up and Operation

Phil Salas - AD5X ad5x@arrl.net

Richardson, Texas

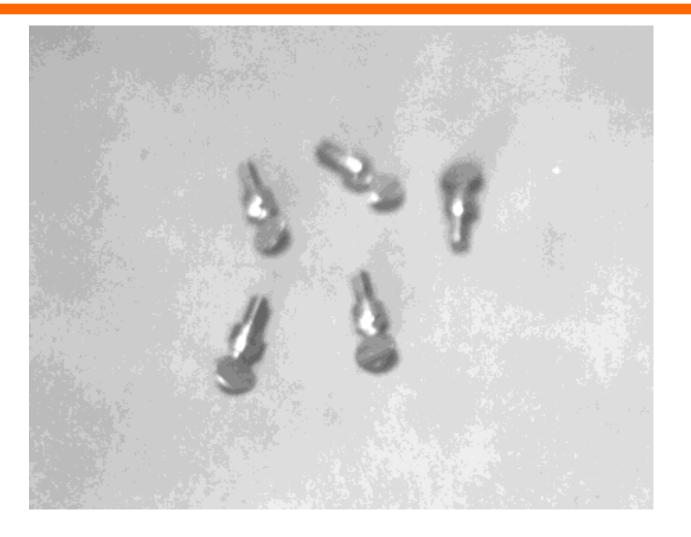
HF Mobile

Easy to put new radios into cars

- Alinco DX-70T/TH
- Icom IC-706/MKII/MKIIG
- Kenwood TS-50S
- Yaesu FT-100/100D/857ND

We'll look at:

- Transceiver mounting
- Powering
- Noise reduction
- Antenna location, theory, and types



Transceiver Installation

Mount the radio for accessibility and visibility

- Don't interfere with car operation and safety equipment!
- Provide <u>SHORT</u> ground connection at the radio.
- Use a CD-player-to-cassette adapter for great sound
- Make a permanent mount, but provide for easy removal of the radio
 - Make thumbscrews (4mm X 20 mm screws)

Richardson, Texas

Power directly from the battery

- Use #12 wire or larger
- Fuse positive & negative power leads right at the battery
 - Use blade-type fuses and fuse holders
- Use 30-amp PowerPole connectors

Antenna Connections

Use a high-quality ball-mount on left side of car

- Less prone to hitting overhead tree branches
- Use Home Depot "appliance" paint on antennas and ball-mount to match car
- Use trunk-lip, mag-mount, hatch-back mounts only as last resort.
 - Measured 15 ohms higher ground loss on hatch-back vs ball mount on Ford Explorer

•Use LMR-200 or LMR-240 (RG-58/8X size) coax.

• Both are 100% shielded

Noise Reduction

- Noise problems are normally your greatest challenge!
- Test noise level with & without 20 meter antenna, with & without car engine running.
 - Determines whether noise is radiated or conducted
- Conducted power line noise:
 - Use RS 270-055 20-amp 12-volt in-line filter.

- Connect tinned copper braid from hood to body
- Connect tinned copper braid from trunk or hatchback to body
- Connect tinned copper braid from engine to body
- Connect tinned copper braid from exhaust pipe to body at engine end, and tail pipe end.
 - Tail pipe looks like $\lambda/4$ on 20 meters!
- Put coaxial bypass capacitors on all fan and air conditioning leads
 - RS272-1085

Short Antennas

- Radiation resistance is preparting all to both height² and frequency²
- As frequency decreases and length decreases, radiation resistance <u>plummets</u>!
- Low radiation resistance can become an insignificant part of the total system resistance
 - Ground loss
 - Coil loss

This can significantly affect your antenna efficiency

Short Antennas (Cont.)

Short antennas look capacitive

- 3.75 pf/ft
- 34 pf for a 9-foot antenna

 You can resonate the capacitance with the loading inductor, leaving just the radiation resistance (and other losses)

- L = $1/[(2\pi f)^2 C]$ (Henries, Hertz, Farads)
 - Base Loading
- L = $2/[(2\pi f)^2 C]$ (Henries, Hertz, Farads)
 - Center Loading

40 meter example

Assume a 40 meter 9-foot base-loaded antenna:

• $L = 1/[(2\pi 7.2 \times 10^6) 2(34 \times 10^{-12})] = 14.5 \mu hy$

For coil Q = 300 R_L = 2πfL/Q = 2π(7.2)(14.5)/300 = 2.2 Ω

Radiation resistance (base loading)

- $R_R = 2.9X10^{-6}(hf)^2$ (h=inches, f=MHz)
- $R_R = 2.9X10^{-6}(108X7.2)^2 = 1.8 \Omega$

 The coil loss is greater than the radiation resistance! Plus we probably have at least 10 Ω of ground loss.

Radiation resistance for center loading:

- $R_R = 6.7 \times 10^{-6} (hf)^2$
- In this example, $R_R = 4 \Omega$

However, the center loading coil has twice the inductance of a base coil, and so has twice the loss.

Antenna Efficiency

•You can find the power loss easily:

• Power Loss (dB) = 10 LOG $[R_R/(R_R + R_L + R_G)]$

Base vs Center loading comparison

Loading	Reqd L	<u>R</u>	<u>R_G</u>	<u>R</u> _	Loss
Base	14.5 μhy	1.8	10	2.2	8.9 dB
Center	29.0 µhy	4.0	10	4.4	6.6 dB

Efficiency Summary

Use center loading

- About 1/2 S-unit improvement
- Use high-Q coils
 - Large wire (with at least 1-turn wire separation)
 - Air wound

High-Q means reduced operating bandwidth!

- But more power is radiated
- •Use the highest frequency HF band available
 - Doubling the frequency (7→14 Mhz) *quadruples* the radiation resistance.

Туре	<u>2:1 SWR BW (40m)</u>		
Hamstick	50 kHz		
Hustler "Standard"	40-50 kHz		
Hustler "Super"	50-80 kHz		
Outbacker	50 kHz		
Carolina BugKatcher	30 kHz		
Big DK3	50 kHz		

Antenna Efficiency

- What type of antenna efficiency differences do we see for the previous antennas? This is relatively easy to determine:
 - Determine the inductive reactance of the base or center loading coil
 - Find the antenna system Q
 - $Q_L = 360F_{MHz}/(2:1 \text{ SWR BW}_{kHz})$
 - Calculate radiation resistance
 - Determine Efficiency

AD5X QVS Efficiency (30 kHz BW)

 $L = 2/[(2\pi F)^2 C] = 2/(2\pi 7.15 \times 10^6)^2 (26 \times 10^{-12})$ $= 38 \mu Hy$ (for a 7-foot antenna length) $\mathbf{R}_{I} = 2\pi F L / Q_{II} = 2\pi 7.15 \times 38 / 300 = 5.7 \Omega$ $\mathbf{R}_{R} = 6.7 \times 10^{-6} (hF)^{2} = 2.4 \Omega$ $\mathbf{Q}_{\rm I} = 360 F_{\rm MHz} / (2:1 \text{ SWR BW}_{\rm kHz}) = 360 \times 7.15 / 30$ = 85.8 $\mathbf{A}_{\text{Total}} = X_1 / Q_1 = 1707 / 85.8 = 20 \Omega$ $\mathbf{R}_{G} = \mathbf{R}_{Total} - \mathbf{R}_{I} - \mathbf{R}_{R} = 20-5.7-2.4 = 12 \Omega$ Efficiency = 2.4/(2.4+5.7+12) = 12%

Richardson, Texas

AD5X QVS Efficiency (50 kHz BW)

AD5X QVS Efficiency (80 kHz BW)

Mobile Antenna "Tricks"

Hamsticks

- Replace two #6 setscrews with one #6 thumbscrew
- Use each on two bands with 1/8" shorter brass rod
 - 40/30m, 20/17m, 15/12m
- Use capacitive base matching
 - 560 pf for 40m, 150 pf for 20 &17m
- Carolina BugKatcher
 - Replace two #6 setscrews with one #6 thumbscrew
 - Use capacitive base matching
 - 680 pf/40m, 220 pf/20m, 150 pf/17m, 52 pf/15m, 24 pf/12m

Mobile Antenna "Tricks" (cont.)

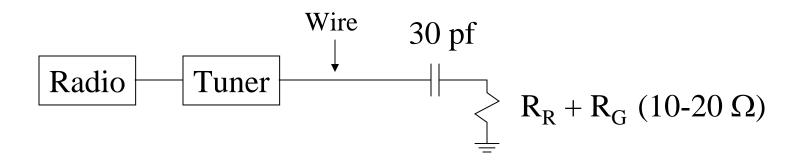
Outbacker

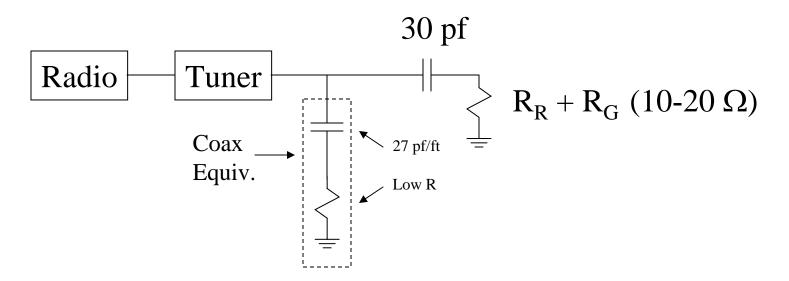
- Screw 7/16" SS nut over normal thumb bushing
 - Makes tightening and adjusting whip easier
- Bug Catchers
 - Capacity hats should be well above loading coil
 - Want to increase capacitance to ground, not capacitance to loading coil!

All Antennas

Keep loading coil ABOVE car roof

Auto-tuners


Auto-tuners at base of 8-foot whips


- Consider "Q" of auto-tuner coils
 - Auto-tuners don't normally have nice big air-wound inductors
 - Low "Q" series-L increases loss
- Interconnect to antenna with wire, not coax
 - Wire will radiate inside your car
 - Coax will cost you <u>at least</u> 1/2 your power

It is BEST to resonate/match the antenna!!

Auto-tuners (Cont.)

Richardson, Texas

General "Tricks"

Always use stainless steel hardware

 1/8 NPT brass plumbing pieces are tapered 3/8X24 threads.

• Can be chased with 3/8X24 tap.

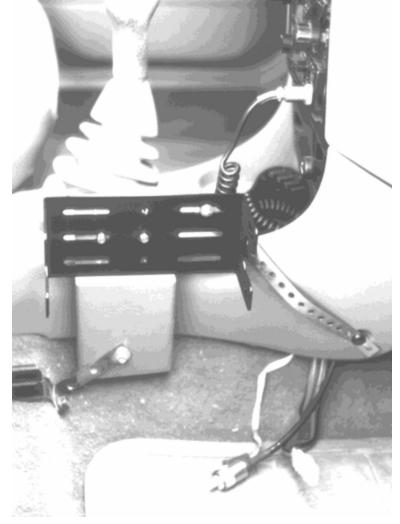
 You can screw a single-hole SO-239 into a 3/8 NPT brass adapter.

 Use a "UHF-T" with capacitors soldered into PL-259 connectors for base matching

Build a base capacitive matching box

- RS275-1385 rotary switch
- RS270-235 aluminum box
- Appropriate capacitors
 - 300V minimum
 - Silver Mica preferred

Consider making your own antenna!


References

- Don Johnson, "40+5 Years Of HF Mobileering", World Radio.
- Dave Ingram, "The Modern Amateur's Mobile Handbook", MFJ Enterprises, Inc.
- Walt Maxwell, "Reflections", ARRL.
- The ARRL Antenna Book", 16th Edition, Chapter 16.
- Bruce Brown, "Optimum Design Of Short Coil-Loaded High Frequency Mobile Antennas", The ARRL Antenna Compendium Volume 1.
- J.S. Belrose, "Short Antennas For Mobile Operation", QST September 1953.
- Don Johnson, "Everything you forgot to ask about HF Mobileering", World Radio.

HF Installation in Geo

Phil Salas – AD5X

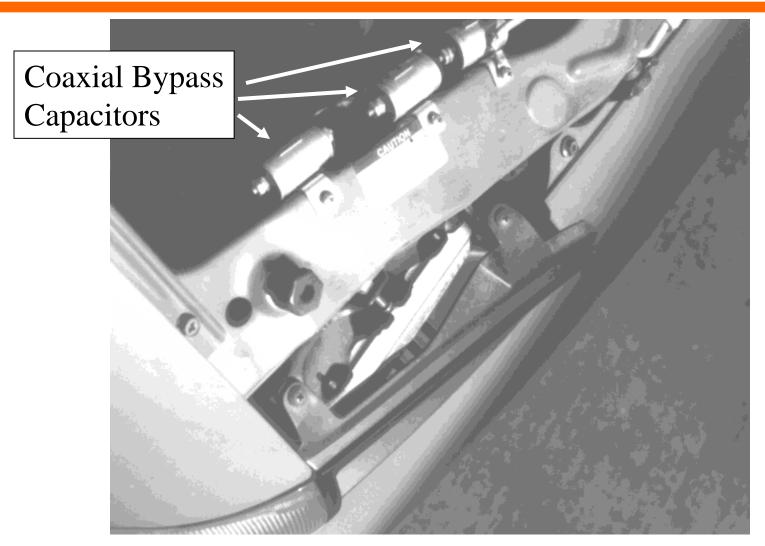
Richardson, Texas

IC-706 in Geo

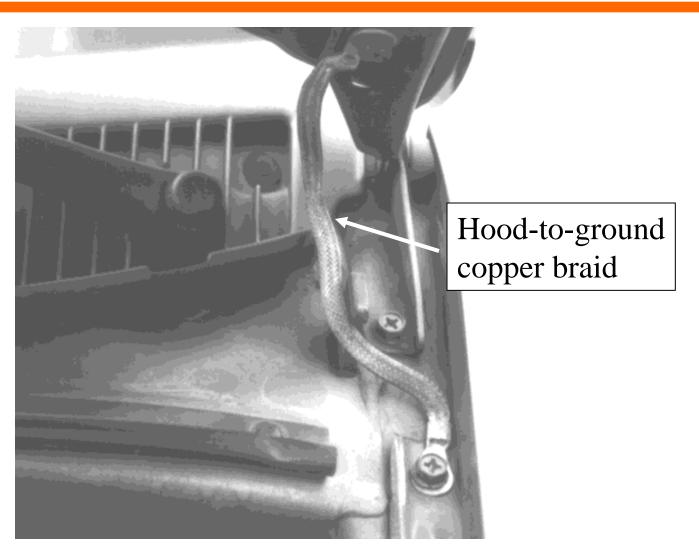
Richardson, Texas

Richardson, Texas

Phil Salas – AD5X



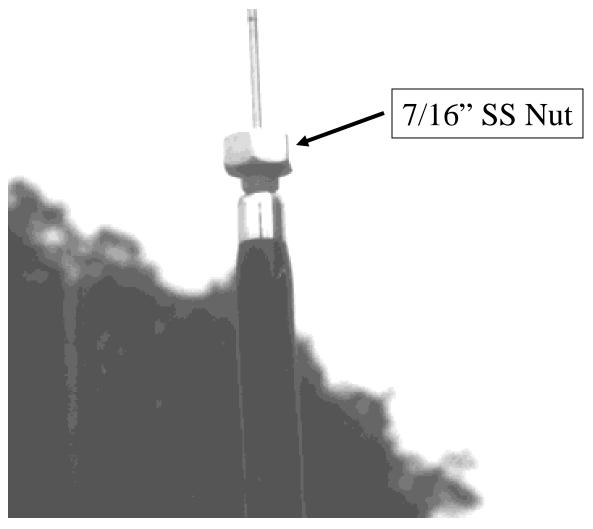
Richardson, Texas


Caps on Geo

Richardson, Texas

Braid on Hood

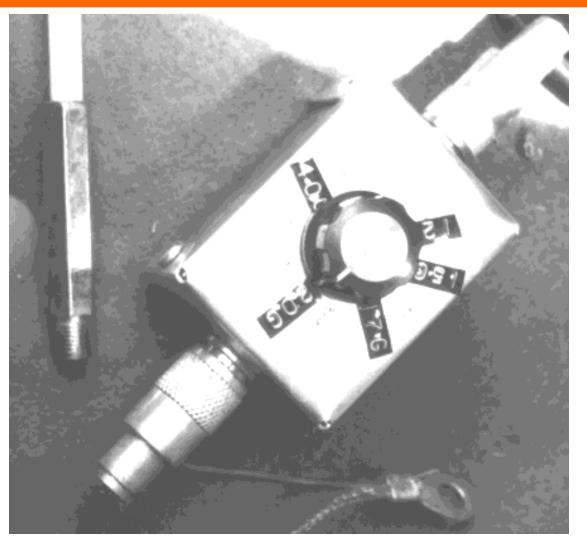
Richardson, Texas


Outbacker on Geo

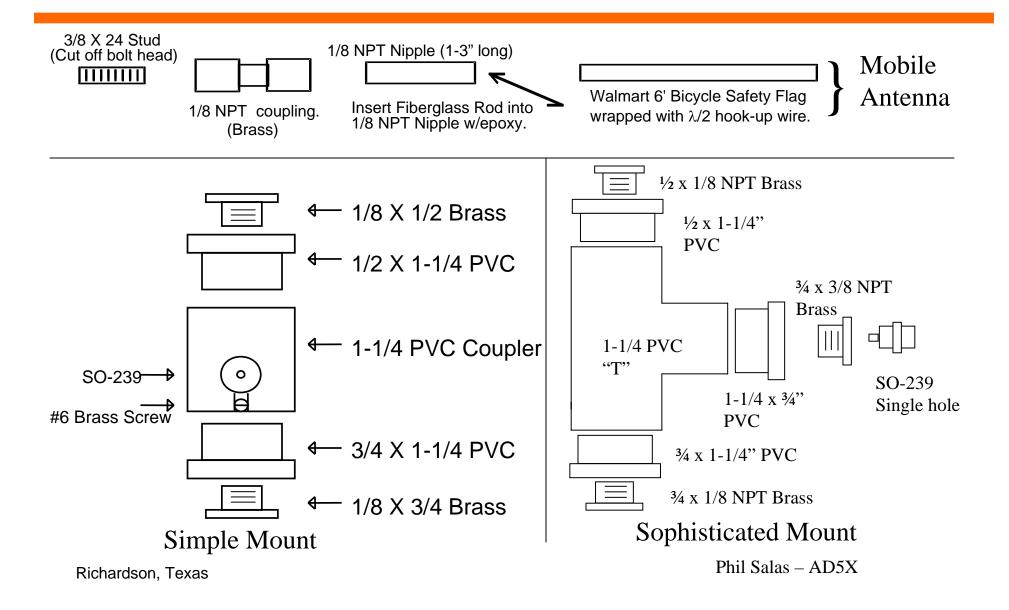
Richardson, Texas

Easy Adjust for Outbacker

Richardson, Texas


Screwdriver on Geo

Richardson, Texas


Capacitor Matching Box

Richardson, Texas

Homebrew Antenna/Mounts

