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PHL424: Nuclear Shell Model 



Hans-Jürgen Wollersheim - 2017 Indian Institute of Technology Ropar 

Themes and challenges in modern science 

 Complexity out of simplicity – Microscopic 
How the world, with all its apparent complexity and diversity can be constructed 
out of a few elementary building blocks and their interactions 

 

 

 Simplicity out of complexity – Macroscopic 
 

How the world of complex systems can display such remarkable regularity and 
simplicity 

 

 

 

 

 

vibration                         rotation                         fission 

individual excitations 
of nucleons 
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The nuclear force 

The nuclear force is short-range, but does not allow for 
compression of nuclear matter. 

Yukawa – potential: 

𝑉𝑉0 𝑟𝑟 = 𝑔𝑔𝑠𝑠 ∙
1
𝑟𝑟
∙ 𝑒𝑒−

𝑚𝑚𝜋𝜋𝑐𝑐
ℏ ∙𝑟𝑟 

π 

σ 

ω,ρ 

m(π) ≈ 140 MeV/c2 

m(σ) ≈ 500-600 MeV/c2 

m(ω) ≈ 784 MeV/c2 
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The deuteron 

mass (MeV/c2) 1875.61 
 

charge (e) 1 
 

Iπ 1+ 
 

binding energy (MeV) 2.2245 
 

magnetic moment (μN) 0.8574 
 

quadrupole moment (b) 0.0029 

0.8798 μN = μS ( 𝐻𝐻12 ) → the deuteron can not be a pure s state! ~ 96% s and 4% d. 

 not spherical consistent with s/d-ratio = 96/4 

n 
p 

The deuteron is an ideal candidate for  tests of our basic understanding of nuclear physics 
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Structure of the nuclear force 

Structure of the nuclear force is more complex than e.g. Coulomb force. It results from its 
structure as residual interaction of the colorless nucleons. 

central force V0(r) 

spin dependent central force 

not central tensor force 

spin-orbit (ℓ·s) term 

results from deuteron properties (96% 3S1 state) 

results from neutron-proton scattering (spin-spin interaction) 

results from deuteron properties (4% 3D1 state) 

results from scattering of polarized protons (left/right asymmetry) 

𝐿𝐿𝐽𝐽2𝑆𝑆+1  

𝐿𝐿𝐽𝐽2𝑆𝑆+1  

𝑉𝑉 𝑟𝑟 = 𝑉𝑉0 𝑟𝑟  

           +𝑉𝑉𝑠𝑠𝑠𝑠 𝑟𝑟 ∙ 𝑠𝑠1 ∙ 𝑠𝑠2 ∙
1
ℏ2 

           +𝑉𝑉𝑇𝑇 𝑟𝑟 ∙
3
ℏ2

𝑠𝑠1 ∙ 𝑥⃗𝑥 𝑠𝑠2 ∙ 𝑥⃗𝑥
𝑟𝑟2 − 𝑠𝑠1 ∙ 𝑠𝑠2 

           +𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ∙ 𝑠𝑠1 + 𝑠𝑠2 ∙ ℓ ∙
1
ℏ2 

central potential  
spin-spin interaction  
tensor force  
spin-orbit interaction  
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Structure of the nuclear force 

 spin-spin force: 

~𝑉𝑉𝑠𝑠𝑠𝑠 𝑟𝑟 ∙ 𝑠𝑠1 ∙ 𝑠𝑠2 /ℏ2 

1
2
�↑↓⟩ − |↓↑⟩  

|↑↑⟩ |↓↓⟩ 
1
2
�↑↓⟩ + |↓↑⟩  s = 1, ℓ = 0 

s = 0, ℓ = 1 

different eigenvalues for 
triplet and singlet states 

 tensor force: 

~𝑉𝑉𝑇𝑇 𝑟𝑟 ∙
3
ℏ2

𝑠𝑠1 ∙ 𝑥⃗𝑥 𝑠𝑠2 ∙ 𝑥⃗𝑥
𝑟𝑟2

− 𝑠𝑠1 ∙ 𝑠𝑠2 
small deformation of deuterium 
maximum magnetic dipole moments  

𝑥⃗𝑥 

𝑥⃗𝑥 

attractive   repulsive 

 ℓ·s coupling: 

~𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ∙ ℓ ∙ 𝑠𝑠  scattering of protons on polarized protons 
asymmetry of counting rates 
- left scattering:   ℓ ∙ 𝑠𝑠 > 0 
- right scattering: ℓ ∙ 𝑠𝑠 < 0 

ℓ·s coupling:  
- no net contribution in the center of nucleus 
- radial dependence at the surface of the nucleus  𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ∝

1
𝑟𝑟
∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
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Many-body forces 

internal forces governing a 3He nucleus 

Remember: Nucleons are finite-mass composite particles, can be excited to resonances. Dominant contribution  Δ(1232 MeV) 

tidal effects lead to 3-body forces 
in earth-sun-moon system 

The force on one nucleon does not only depend on 
the position of the other nucleons, but also on the 
distance between the other nucleons! These are 
called many-body forces. 
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The Fermi gas model 

neutron potential 

proton potential 

protons neutrons 

•  The Fermi gas model assumes that protons and neutrons are moving freely within the 
nuclear volume. They are distinguishable fermions (s = ½) filling two separate potential 
wells obeying the Pauli principle (↑↓-pair). 

•   The model assumes that all fermions occupy the lowest energy states available to them to 
the highest occupied state (Fermi energy), and that there is no excitation across the Fermi 
energy (i.e. zero temperature). 

•  The Fermi energy is common for protons and neutrons in stable nuclei. 
•  If the Fermi energy for protons and neutrons are different then the β-decay transforms one 

type of nucleons into the other until the common Fermi energy (stability) is reached. 
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Number of nucleon states 

Heisenberg Uncertainty Principle:    ∆𝑥𝑥 ∙ ∆𝑝𝑝 ≥ 1
2
ℏ 

states in phase space 

The volume of one particle in phase space: 2𝜋𝜋 ∙ ℏ 

The number of nucleon states in a volume V: 

𝑛𝑛 =
∬𝑑𝑑3𝑟𝑟 𝑑𝑑3𝑝𝑝

2𝜋𝜋 ∙ ℏ 3 =
𝑉𝑉 ∙ 4𝜋𝜋 ∫ 𝑝𝑝2 𝑑𝑑𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

0
2𝜋𝜋 ∙ ℏ 3  

At temperature T = 0, i.e. for the nucleus in its ground state, the lowest states will be filled 
up to the maximum momentum, called the Fermi momentum pF. The number of these states 
follows from integration from 0 to pmax = pF. 

𝑛𝑛 =
𝑉𝑉 ∙ 4𝜋𝜋 ∫ 𝑝𝑝2𝑑𝑑𝑑𝑑𝑝𝑝𝐹𝐹

0
2𝜋𝜋 ∙ ℏ 3 =

𝑉𝑉 ∙ 4𝜋𝜋 ∙ 𝑝𝑝𝐹𝐹3

2𝜋𝜋 ∙ ℏ 3 ∙ 3
     →      𝑛𝑛 =

𝑉𝑉 ∙ 𝑝𝑝𝐹𝐹3

6𝜋𝜋2ℏ3
 

Since an energy state can contain two fermions of the same species, we can have 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛:    𝑁𝑁 =
𝑉𝑉 ∙ 𝑝𝑝𝐹𝐹𝑛𝑛 3

3𝜋𝜋2ℏ3
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:    𝑍𝑍 =

𝑉𝑉 ∙ 𝑝𝑝𝐹𝐹
𝑝𝑝 3

3𝜋𝜋2ℏ3
 

 𝑝𝑝𝐹𝐹𝑛𝑛 is the Fermi momentum for neutrons, 𝑝𝑝𝐹𝐹
𝑝𝑝 for protons 
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Fermi momentum 

Use 𝑅𝑅 = 𝑟𝑟0 ∙ 𝐴𝐴1 3⁄  𝑓𝑓𝑓𝑓                                           𝑉𝑉 = 4𝜋𝜋
3
𝑅𝑅3 = 4𝜋𝜋

3
𝑟𝑟03 ∙ 𝐴𝐴  

The density of nucleons in a nucleus = number of nucleons in a volume V: 

𝑛𝑛 = 2 ∙
𝑉𝑉 ∙ 𝑝𝑝𝐹𝐹3

6𝜋𝜋2ℏ3
= 2 ∙

4𝜋𝜋
3
𝑟𝑟03 ∙ 𝐴𝐴 ∙

𝑝𝑝𝐹𝐹3

6𝜋𝜋2ℏ3
=
4𝐴𝐴
9𝜋𝜋

𝑟𝑟03 ∙ 𝑝𝑝𝐹𝐹3

ℏ3
 

Fermi momentum pF: 

two spin states 

𝑝𝑝𝐹𝐹 =
6𝜋𝜋2ℏ3𝑛𝑛
2𝑉𝑉

1/3

=
9𝜋𝜋ℏ3

4𝐴𝐴
𝑛𝑛
𝑟𝑟03

1/3

=
9𝜋𝜋 ∙ 𝑛𝑛
4𝐴𝐴

1/3

∙
ℏ
𝑟𝑟0

 

After assuming that the proton and neutron potential wells have the same radius, we find for 
a nucleus with n = Z = N = A/2 the Fermi momentum pF. 

𝑝𝑝𝐹𝐹 = 𝑝𝑝𝐹𝐹𝑛𝑛 = 𝑝𝑝𝐹𝐹
𝑝𝑝 =

9𝜋𝜋
8

1/3

∙
ℏ
𝑟𝑟0
≈ 250 𝑀𝑀𝑀𝑀𝑀𝑀/𝑐𝑐 

Fermi energy:   𝐸𝐸𝐹𝐹 = 𝑝𝑝𝐹𝐹
2

2𝑚𝑚𝑁𝑁
≈ 33 𝑀𝑀𝑀𝑀𝑀𝑀 

The nucleons move freely inside 
the nucleus with large momenta 

mN = 938 MeV/c2 – the nucleon mass 
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Nucleon potential 

The difference B´ between the top of the well and 
the Fermi level is the average binding energy per 
nucleon B/A = 7 – 8 MeV. 
 
→ The depth of the potential V0 and the Fermi 
energy are independent of the mass number A: 

𝑉𝑉0 = 𝐸𝐸𝐹𝐹 + 𝐵𝐵𝐵 ≈ 40 𝑀𝑀𝑀𝑀𝑀𝑀 

Heavy nuclei have a surplus of neutrons. Since the Fermi level of the protons and neutrons in 
a stable nucleus have to be equal (otherwise the nucleus would enter a more energetically 
favorable state through β-decay) this implies that the depth of the potential well as it is 
experienced by the neutron gas has to be larger than of the proton gas. 
 

Protons are therefore on average less strongly bound in nuclei than neutrons. This may be 
understood as a consequence of the Coulomb repulsion of the charged protons and leads to an 
extra term in the potential: 

𝑉𝑉𝐶𝐶 = 𝑍𝑍 − 1
𝛼𝛼 ∙ ℏ𝑐𝑐
𝑅𝑅

 

Protonen: 33MeV + 7MeV, Neutronen: 43MeV + 7 MeV 
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The Fermi gas model and the neutron star 

radius of a neutron star ~ 10.7 km 

Assumption: neutron star as cold neutron gas with constant density 
- 1.5 sun masses: M = 3·1030 kg (mN = 1.67·10-27 kg), number of neutrons: n = 1.8·1057 

Fermi momentum pF for cold neutron gas: 

𝑝𝑝𝐹𝐹 =
9𝜋𝜋 ∙ 𝑛𝑛

4

1/3

∙
ℏ
𝑅𝑅

 R is the radius of the neutron star 

Average kinetic energy per neutron: 

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘
𝑁𝑁� =

3
5
∙
𝑝𝑝𝐹𝐹2

2𝑚𝑚𝑁𝑁
=

9𝜋𝜋 ∙ 𝑛𝑛
4

2/3

∙
3ℏ2

10 ∙ 𝑚𝑚𝑁𝑁
∙

1
𝑅𝑅2

 =
𝐶𝐶
𝑅𝑅2

 

Gravitational energy of a star with constant density has an average potential energy per neutron: 

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁� = −

3
5
∙
𝐺𝐺 ∙ 𝑛𝑛 ∙ 𝑚𝑚𝑛𝑛

2

𝑅𝑅
 = −

𝐷𝐷
𝑅𝑅

 𝐺𝐺 = 6.67 ∙ 10−11    
𝑚𝑚3

𝑘𝑘𝑘𝑘 ∙ 𝑠𝑠2
 

Minimum total energy per neutron: 
𝑑𝑑
𝑑𝑑𝑑𝑑 𝐸𝐸/𝑁𝑁 =

𝑑𝑑
𝑑𝑑𝑑𝑑 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘/𝑁𝑁 + 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝/𝑁𝑁 = 0 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐶𝐶
𝑅𝑅2 −

𝐷𝐷
𝑅𝑅 = −

2𝐶𝐶
𝑅𝑅3 +

𝐷𝐷
𝑅𝑅2 = 0 

𝑅𝑅 =
2𝐶𝐶
𝐷𝐷

     →      𝑅𝑅 =
ℏ2 ∙ 9𝜋𝜋/4 2/3

𝐺𝐺 ∙ 𝑚𝑚𝑁𝑁
3 ∙ 𝑛𝑛1/3  

http://3.bp.blogspot.com/-x1Q-8gT6sQg/Tbcsem4K-ZI/AAAAAAAAAFI/u0y9SS8lv0k/s1600/neutron-star-magnetar-ga.jpg
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Shell structure in nuclei 

28 
28 50 

50 

82 

82 
126 

Neutron 
Proton 

Deviations from the Bethe-Weizsäcker mass formula: 

mass number A 

B/
A 

(M
eV

 p
er

 n
uc

le
on

) 

2
4
2 He

8
16
8O

20
40
20Ca

28
48
20Ca

126
208
82 Pb

especially stable: 
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Shell structure in nuclei 

• deviations from the Bethe-Weizsäcker mass formula: large binding energies 

208Pb 

132Sn 
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2-neutron binding energies = 2-neutron ´separation´energies 

Sn 

Ba 

Sm 
Hf 

Pb 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 

Neutron Number 

S(
2n

) M
eV

 

N = 82 

N = 84 

N = 126 

𝑆𝑆2𝑛𝑛 = 𝐵𝐵𝐵𝐵 𝑁𝑁,𝑍𝑍 − 𝐵𝐵𝐵𝐵 𝑁𝑁 − 2,𝑍𝑍  
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Shell structure in nuclei 

 
 
 
 
 
 
 high energies of the first excited 2+ state 
 
 
 
 
 
 
 
 
 small nuclear deformations 
     transition probabilities measured in single particle units (spu) 

Nuclei with magic numbers  
of neutrons/protons  𝐸𝐸21+  

𝐵𝐵 𝐸𝐸𝐸; 21+ → 0+  
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Shell structure in nuclei 

𝐸𝐸21+  

𝐵𝐵 𝐸𝐸𝐸; 21+ → 0+  

Maria Goeppert-Mayer        J. Hans D. Jensen 
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Nuclear potential 

𝐻𝐻� = �
𝑝̂𝑝𝑖𝑖2

2𝑚𝑚𝑖𝑖
+ �𝑉𝑉� 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗

𝐴𝐴

𝑖𝑖<𝑗𝑗

𝐴𝐴

𝑖𝑖=1

 

𝐻𝐻� = �
𝑝̂𝑝𝑖𝑖2

2𝑚𝑚𝑖𝑖
+ 𝑉𝑉� 𝑟𝑟𝑖𝑖

𝐴𝐴

𝑖𝑖=1

+ �𝑉𝑉� 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗

𝐴𝐴

𝑖𝑖<𝑗𝑗

−�𝑉𝑉� 𝑟𝑟𝑖𝑖

𝐴𝐴

𝑖𝑖=1

 

−
ℏ2

2𝑚𝑚
𝛻𝛻2 + 𝑉𝑉 𝑟𝑟 − 𝜀𝜀 Ψ 𝑟𝑟 = 0 

Ψ 𝑟𝑟 =
𝑢𝑢ℓ 𝑟𝑟
𝑟𝑟

∙ 𝑌𝑌ℓ𝑚𝑚 𝜗𝜗,𝜑𝜑 ∙ Χ𝑚𝑚𝑠𝑠  

𝑉𝑉 𝑟𝑟 =
−𝑉𝑉0

1 + 𝑒𝑒 𝑟𝑟−𝑅𝑅0 𝑎𝑎⁄  

In the average nuclear potential V(r): 
 

a) harmonic oscillator 
b) square well potential 
c) Woods-Saxon potential 

 
the nucleons move freely 
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Nuclear shell model 

𝐻𝐻� = �
𝑝̂𝑝𝑖𝑖2

2𝑚𝑚𝑖𝑖
+ 𝑉𝑉� 𝑟𝑟𝑖𝑖

𝐴𝐴

𝑖𝑖=1

 
harmonic 
oscillator 

square-well 
potential 

realistic potential 
+ spin-orbit coupling 

V 

V0 

0 
r 

1s 

1p 

1d 
2s 

1g 

2p 

2d 
1h/3s 

2f 
1i 
3p 

2g 
3d 
4s 

1d 

ω 0

ω 1

ω 2

ω 3

ω 4

ω 5

ω 6

2 

8 

20 

40 

70 

112 

168 

1s1/2 

1p1/2 
1p3/2 

1d5/2 
1d3/2 
2g1/2 

1f7/2 
1f5/2 
3p3/2 
2p1/2 
1g9/2 
1g7/2 
2d5/2 
2d1/2 
1h11/2 
3s1/2 
1h9/2 
2f7/2 
2p3/2 
1i13/2 
3p1/2 
2f5/2 
2g9/2 
1i11/2 
3d5/2 
2g7/2 
3d3/2 
4s1/2 

2 

8 

20 
28 

50 

82 

126 

168 
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Woods-Saxon potential 

The spin-orbit term has its origin in the relativistic description of the single particle motion inside the nucleus 

( )
dr

rdV

( )rV r

 Woods-Saxon does not reproduce the correct magic numbers 
    (2, 8, 20, 40, 70, 112, 168)WS  (2, 8, 20, 28, 50, 82, 126)exp 
 Meyer und Jensen (1949): strong spin-orbit interaction 

−
ℏ2

2𝑚𝑚
𝛻𝛻2 + 𝑉𝑉 𝑟𝑟 + 𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ∙ ℓ ∙ 𝑠𝑠 − 𝜀𝜀 Ψ 𝑟𝑟 = 0 

𝑉𝑉ℓ𝑠𝑠 𝑟𝑟 ~ − 𝜆𝜆 ∙
1
𝑟𝑟
∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

     𝑚𝑚𝑚𝑚𝑚𝑚     𝜆𝜆 > 0 

𝐽𝐽 

𝑠𝑠 
ℓ 
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Woods-Saxon potential (jj-coupling) 

The nuclear potential with spin-orbit term: 
 
 
 
 
 
 
spin-orbit interaction leads to a large splitting for large ℓ. 

𝚥𝚥 = ℓ + 𝑠𝑠 ⇒      ℓ ∙ 𝑠𝑠 =
1
2 ∙ 𝑗𝑗2 − ℓ2 − 𝑠𝑠2 ∙ ℏ2 

=
1
2 𝑗𝑗 𝑗𝑗 + 1 − ℓ ℓ+ 1 − 𝑠𝑠 𝑠𝑠 + 1 ∙ ℏ2 

𝑉𝑉 𝑟𝑟 +
ℓ
2
∙ 𝑉𝑉ℓ𝑠𝑠     𝑓𝑓𝑓𝑓𝑓𝑓   𝑗𝑗 = ℓ + 1/2 

𝑉𝑉 𝑟𝑟 −
ℓ + 1

2
𝑉𝑉ℓ𝑠𝑠     𝑓𝑓𝑓𝑓𝑓𝑓   𝑗𝑗 = ℓ − 1/2 

𝑗𝑗 = ℓ ± 1/2 

𝑗𝑗 = ℓ − 1/2 

𝑗𝑗 = ℓ + 1/2 

− ℓ + 1 /2 ∙ 𝑉𝑉ℓ𝑠𝑠  

ℓ/2 ∙ 𝑉𝑉ℓ𝑠𝑠  
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Woods-Saxon potential 

The spin-orbit term 
 

 lowers the j = ℓ+1/2 orbital from the 
     higher oscillator shell (intruder states) 
 

 reproduces the magic numbers 
    large energy gaps → very stable nuclei 

Important consequences: 
 lowering orbitals from higher lying N+1 shell 
   having different parity than orbitals from the N shell 
 

 strong interaction preserves the parity. The lowered orbitals  
   with different parity are rather pure states and do not mix  
   within the shell 

ℓ − 1/2 

ℓ + 1/2 

∆𝐸𝐸ℓ𝑠𝑠 =
2ℓ + 1

2 ∙ ℏ2 ∙ 𝑉𝑉ℓ𝑠𝑠  
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Shell model – mass dependence of single-particle energies 

 Mass dependence of the neutron 
    energies: 
 
 number  of neutrons in each level: 

𝐸𝐸~𝑅𝑅−2 

2 ∙ 2ℓ + 1  
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Success of the extreme single-particle shell model 

 Ground state spin and parity: 
 

    Every orbital has 2j+1 magnetic sub-states,  
    completely filled orbitals have spin J=0, 
    they do not contribute to the nuclear spin. 
 

    For a nucleus with one nucleon outside a  
    completely occupied orbital the nuclear spin 
    is given by the single nucleon. 
 

                             n ℓ j → J 
                             (-)ℓ = π 
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Success of the extreme single-particle shell model 

 Magnetic moments: 
    The g-factor gj is given by: 
 
 
    with  
 
 
 
 
 
 
 
    Simple relation for the g-factor  
    of single-particle states   

𝜇𝜇𝑗𝑗 = 𝑔𝑔ℓ ∙ ℓ + 𝑔𝑔𝑠𝑠 ∙ 𝑠𝑠 = 𝑔𝑔𝑗𝑗 ∙ 𝚥𝚥 ⇒    𝜇𝜇𝑗𝑗 = 𝑔𝑔ℓ ∙ ℓ + 𝑔𝑔𝑠𝑠 ∙ 𝑠𝑠 ∙
𝚥𝚥
𝑗𝑗

∙
𝚥𝚥
𝑗𝑗

 

ℓ2 = 𝚥𝚥 − 𝑠𝑠 2 = 𝚥𝚥2 − 2 ∙ 𝚥𝚥 ∙ 𝑠𝑠 + 𝑠𝑠2 𝑠𝑠2 = 𝚥𝚥 − ℓ
2

= 𝚥𝚥2 − 2 ∙ 𝚥𝚥 ∙ ℓ + ℓ2 

𝜇⃗𝜇𝑗𝑗 =
𝑔𝑔ℓ ∙ 𝑗𝑗 𝑗𝑗 + 1 + ℓ ℓ+ 1 − 3/4 + 𝑔𝑔𝑠𝑠 ∙ 𝑗𝑗 𝑗𝑗 + 1 − ℓ ℓ+ 1 + 3/4

2 ∙ 𝑗𝑗 𝑗𝑗 + 1 ∙ 𝚥𝚥 

𝑔𝑔𝑗𝑗 =
1
2 ∙ 𝑔𝑔ℓ + 𝑔𝑔𝑠𝑠 +

1
2 ∙

ℓ ℓ+ 1 − 𝑠𝑠 𝑠𝑠 + 1
2𝑗𝑗 𝑗𝑗 + 1 ∙ 𝑔𝑔ℓ − 𝑔𝑔𝑠𝑠  

𝜇𝜇
𝜇𝜇𝑁𝑁

= 𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑔𝑔ℓ ±
𝑔𝑔𝑠𝑠 − 𝑔𝑔ℓ
2ℓ + 1     𝑓𝑓𝑓𝑓𝑓𝑓    𝑗𝑗 = ℓ ± 1 

nucleus   state        Jπ         model    experiment 
μ/μN 
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Success of the extreme single-particle shell model 

 magnetic moments: 
  
 
 
     
 g-factor of nukleons: 
proton:       gℓ = 1;     gs = +5.585  
neutron:     gℓ = 0;     gs = -3.82  
 
 

proton: 
 
 

 
neutron: 

𝜇𝜇𝑧𝑧 =
           𝑔𝑔ℓ ∙ 𝑗𝑗 −

1
2 +

1
2 ∙ 𝑔𝑔𝑠𝑠 ∙ 𝜇𝜇𝑁𝑁     𝑓𝑓𝑓𝑓𝑓𝑓     𝑗𝑗 = ℓ + 1/2

𝑗𝑗
𝑗𝑗 + 1 ∙ 𝑔𝑔ℓ ∙ 𝑗𝑗 +

3
2 −

1
2 ∙ 𝑔𝑔𝑠𝑠 ∙ 𝜇𝜇𝑁𝑁     𝑓𝑓𝑓𝑓𝑓𝑓     𝑗𝑗 = ℓ − 1/2

 

𝜇𝜇𝑧𝑧 =
          𝑗𝑗 + 2.293 ∙ 𝜇𝜇𝑁𝑁     𝑓𝑓𝑓𝑓𝑓𝑓     𝑗𝑗 = ℓ + 1/2

𝑗𝑗 − 2.293 ∙
𝑗𝑗

𝑗𝑗 + 1 ∙ 𝜇𝜇𝑁𝑁     𝑓𝑓𝑓𝑓𝑓𝑓     𝑗𝑗 = ℓ − 1/2  

𝜇𝜇𝑧𝑧 =
          −1.91 ∙ 𝜇𝜇𝑁𝑁     𝑓𝑓𝑓𝑓𝑓𝑓     𝑗𝑗 = ℓ + 1/2

+1.91 ∙
𝑗𝑗

𝑗𝑗 + 1 ∙ 𝜇𝜇𝑁𝑁     𝑓𝑓𝑓𝑓𝑓𝑓     𝑗𝑗 = ℓ − 1/2  
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Magnetic moments: Schmidt lines 

magnetic moments: neutron   

magnetic moments: proton   
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The three structures of the shell model 
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Systematics of the Te isotopes (Z=52) 

 Neutron number       68        70        72       74       76        78          80        82 

 Val. Neutr. number  14        12        10         8         6          4            2          0 
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