The nucleon building blocks...

Name	up quark (u)	down quark (d)
mass (MeV)	$1.7-3.1$	$4.1-5.7$
charge (e)	$+2 / 3$	$-1 / 3$
spin	$1 / 2$	$1 / 2$

The nuclear building blocks...

Complexity out of simplicity - Microscopic

How the world, with all its apparent complexity and diversity can be constructed out of a few elementary building blocks and their interactions
individual excitations of nucleons

Simplicity out of complexity - Macroscopic

How the world of complex systems can display such remarkable regularity and simplicity
vibration rotation fission

The nuclear force

The nuclear force is short-range, but does not allow for compression of nuclear matter.

> Yukawa - potential:

$$
V_{0}(r)=g_{s} \cdot \frac{1}{r} \cdot e^{-\left(\frac{m_{\pi} c}{\hbar}\right) \cdot r}
$$

ω, ρ

$$
\begin{aligned}
& m(\pi) \approx 140 \mathrm{MeV} / \mathrm{c}^{2} \\
& m(\sigma) \approx 500-600 \mathrm{MeV} / \mathrm{c}^{2} \\
& m(\omega) \approx 784 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$
charge (e)
I^{π}
binding energy (MeV)
magnetic moment $\left(\mu_{\mathrm{N}}\right)$

The deuteron is an ideal candidate for tests of our basic understanding of nuclear physics

Structure of the nuclear force

Structure of the nuclear force is more complex than e.g. Coulomb force. It results from its structure as residual interaction of the colorless nucleons.
central force $\mathrm{V}_{0}(\mathrm{r})$
results from deuteron properties ($96 \%{ }^{3} S_{1}$ state)

$$
{ }^{2 S+1} L_{J}
$$

spin dependent central force

results from neutron-proton scattering (spin-spin interaction)
not central tensor force
results from deuteron properties ($4 \%^{3} \mathrm{D}_{1}$ state) $\quad{ }^{2 S+1} L_{J}$
spin-orbit ($\ell \cdot \mathrm{s}$) term
results from scattering of polarized protons (left/right asymmetry)

$$
\begin{aligned}
V(r) & =V_{0}(r) & & \text { central potential } \\
& +V_{S S}(r) \cdot \overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}} \cdot \frac{1}{\hbar^{2}} & & \text { spin-spin interaction } \\
& +V_{T}(r) \cdot \frac{3}{\hbar^{2}} \frac{\left(\overrightarrow{s_{1}} \cdot \vec{x}\right)\left(\overrightarrow{s_{2}} \cdot \vec{x}\right)}{r^{2}}-\overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}} & & \text { tensor force } \\
& +V_{\ell s}(r) \cdot\left(\overrightarrow{s_{1}}+\overrightarrow{s_{2}}\right) \cdot \vec{\ell} \cdot \frac{1}{\hbar^{2}} & & \text { spin-orbit interaction }
\end{aligned}
$$

* spin-spin force:

$$
\sim V_{S S}(r) \cdot \overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}} / \hbar^{2}
$$

different eigenvalues for triplet and singlet states

$$
\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \quad s=0, \ell=1
$$

$$
|\uparrow \uparrow\rangle \quad \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \quad|\downarrow \downarrow\rangle \quad s=1, \ell=0
$$

* tensor force:
$\sim V_{T}(r) \cdot \frac{3}{\hbar^{2}} \frac{\left(\overrightarrow{s_{1}} \cdot \vec{x}\right)\left(\overrightarrow{s_{2}} \cdot \vec{x}\right)}{r^{2}}-\overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}}$
small deformation of deuterium maximum magnetic dipole moments

* $\ell \cdot$ s coupling:

$$
\sim V_{\ell s}(r) \cdot(\vec{\ell} \cdot \vec{s})
$$

scattering of protons on polarized protons asymmetry of counting rates

- left scattering: $\vec{e} \cdot \vec{s}>0$
- right scattering: $\vec{e} \cdot \vec{s}<0$

$\ell \cdot \mathrm{s}$ coupling:

- no net contribution in the center of nucleus
- radial dependence at the surface of the nucleus $\quad V_{\ell s}(r) \propto \frac{1}{r} \cdot \frac{d \rho}{d r}$

The force on one nucleon does not only depend on the position of the other nucleons, but also on the distance between the other nucleons! These are called many-body forces.
tidal effects lead to 3-body forces in earth-sun-moon system

Remember: Nucleons are finite-mass composite particles, can be excited to resonances. Dominant contribution $\Delta(1232 \mathrm{MeV})$

- The Fermi gas model assumes that protons and neutrons are moving freely within the nuclear volume. They are distinguishable fermions ($\mathrm{s}=1 / 2$) filling two separate potential wells obeying the Pauli principle ($\uparrow \downarrow$-pair).
- The model assumes that all fermions occupy the lowest energy states available to them to the highest occupied state (Fermi energy), and that there is no excitation across the Fermi energy (i.e. zero temperature).
- The Fermi energy is common for protons and neutrons in stable nuclei.
- If the Fermi energy for protons and neutrons are different then the β-decay transforms one type of nucleons into the other until the common Fermi energy (stability) is reached.

Number of nucleon states

Heisenberg Uncertainty Principle: $\quad \Delta x \cdot \Delta p \geq \frac{1}{2} \hbar$
The volume of one particle in phase space: $2 \pi \cdot \hbar$
The number of nucleon states in a volume V:

$$
n=\frac{\iint d^{3} r d^{3} p}{(2 \pi \cdot \hbar)^{3}}=\frac{V \cdot 4 \pi \int_{0}^{p_{\max }} p^{2} d p}{(2 \pi \cdot \hbar)^{3}}
$$

At temperature $\mathrm{T}=0$, i.e. for the nucleus in its ground state, the lowest states will be filled up to the maximum momentum, called the Fermi momentum p_{F}. The number of these states follows from integration from 0 to $\mathrm{p}_{\text {max }}=\mathrm{p}_{\mathrm{F}}$.

$$
n=\frac{V \cdot 4 \pi \int_{0}^{p_{F}} p^{2} d p}{(2 \pi \cdot \hbar)^{3}}=\frac{V \cdot 4 \pi \cdot p_{F}^{3}}{(2 \pi \cdot \hbar)^{3} \cdot 3} \rightarrow n=\frac{V \cdot p_{F}^{3}}{6 \pi^{2} \hbar^{3}}
$$

Since an energy state can contain two fermions of the same species, we can have

$$
\text { neutrons: } \quad N=\frac{V \cdot\left(p_{F}^{n}\right)^{3}}{3 \pi^{2} \hbar^{3}} \quad \text { protons: } Z=\frac{V \cdot\left(p_{F}^{p}\right)^{3}}{3 \pi^{2} \hbar^{3}}
$$

p_{F}^{n} is the Fermi momentum for neutrons, p_{F}^{p} for protons

Use $R=r_{0} \cdot A^{1 / 3} f m$

$$
V=\frac{4 \pi}{3} R^{3}=\frac{4 \pi}{3} r_{0}^{3} \cdot A
$$

The density of nucleons in a nucleus = number of nucleons in a volume V :

$$
n=2 \cdot \frac{V \cdot p_{F}^{3}}{6 \pi^{2} \hbar^{3}}=2 \cdot \frac{4 \pi}{3} r_{0}^{3} \cdot A \cdot \frac{p_{F}^{3}}{6 \pi^{2} \hbar^{3}}=\frac{4 A}{9 \pi} \frac{r_{0}^{3} \cdot p_{F}^{3}}{\hbar^{3}}
$$

Fermi momentum p_{F} :

$$
p_{F}=\left(\frac{6 \pi^{2} \hbar^{3} n}{2 V}\right)^{1 / 3}=\left(\frac{9 \pi \hbar^{3}}{4 A} \frac{n}{r_{0}^{3}}\right)^{1 / 3}=\left(\frac{9 \pi \cdot n}{4 A}\right)^{1 / 3} \cdot \frac{\hbar}{r_{0}}
$$

After assuming that the proton and neutron potential wells have the same radius, we find for a nucleus with $\mathrm{n}=\mathrm{Z}=\mathrm{N}=\mathrm{A} / 2$ the Fermi momentum p_{F}.

$$
p_{F}=p_{F}^{n}=p_{F}^{p}=\left(\frac{9 \pi}{8}\right)^{1 / 3} \cdot \frac{\hbar}{r_{0}} \approx 250 \mathrm{MeV} / c
$$

The nucleons move freely inside the nucleus with large momenta

Fermi energy: $E_{F}=\frac{p_{F}^{2}}{2 m_{N}} \approx 33 \mathrm{MeV}$

$$
\mathrm{m}_{\mathrm{N}}=938 \mathrm{MeV} / \mathrm{c}^{2}-\text { the nucleon mass }
$$

The difference B' between the top of the well and the Fermi level is the average binding energy per nucleon $\mathrm{B} / \mathrm{A}=7-8 \mathrm{MeV}$.
\rightarrow The depth of the potential V_{0} and the Fermi energy are independent of the mass number A :

$$
V_{0}=E_{F}+B^{\prime} \approx 40 \mathrm{MeV}
$$

Heavy nuclei have a surplus of neutrons. Since the Fermi level of the protons and neutrons in a stable nucleus have to be equal (otherwise the nucleus would enter a more energetically favorable state through β-decay) this implies that the depth of the potential well as it is experienced by the neutron gas has to be larger than of the proton gas.

Protons are therefore on average less strongly bound in nuclei than neutrons. This may be understood as a consequence of the Coulomb repulsion of the charged protons and leads to an extra term in the potential:

$$
V_{C}=(Z-1) \frac{\alpha \cdot \hbar c}{R}
$$

The Fermi gas model and the neutron star

Assumption: neutron star as cold neutron gas with constant density
-1.5 sun masses: $\mathrm{M}=3 \cdot 10^{30} \mathrm{~kg}\left(\mathrm{~m}_{\mathrm{N}}=1.67 \cdot 10^{-27} \mathrm{~kg}\right.$), number of neutrons: $\mathrm{n}=1.8 \cdot 10^{57}$
Fermi momentum p_{F} for cold neutron gas:

$$
p_{F}=\left(\frac{9 \pi \cdot n}{4}\right)^{1 / 3} \cdot \frac{\hbar}{R} \quad \mathrm{R} \text { is the radius of the neutron star }
$$

Average kinetic energy per neutron:

$$
\left\langle E_{k i n} / N\right\rangle=\frac{3}{5} \cdot \frac{p_{F}^{2}}{2 m_{N}}=\left(\frac{9 \pi \cdot n}{4}\right)^{2 / 3} \cdot \frac{3 \hbar^{2}}{10 \cdot m_{N}} \cdot \frac{1}{R^{2}}=\frac{C}{R^{2}}
$$

Gravitational energy of a star with constant density has an average potential energy per neutron:

$$
\left\langle E_{p o t} / N\right\rangle=-\frac{3}{5} \cdot \frac{G \cdot n \cdot m_{n}^{2}}{R}=-\frac{D}{R} \quad G=6.67 \cdot 10^{-11} \frac{m^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

Minimum total energy per neutron:

$$
\begin{aligned}
& \frac{d}{d R}\langle E / N\rangle=\frac{d}{d R}\left[\left\langle E_{\text {kin }} / N\right\rangle+\left\langle E_{\text {pot }} / N\right\rangle\right]=0 \\
& \frac{d}{d R}\left[\frac{C}{R^{2}}-\frac{D}{R}\right]=-\frac{2 C}{R^{3}}+\frac{D}{R^{2}}=0 \\
& R=\frac{2 C}{D} \quad \rightarrow \quad R=\frac{\hbar^{2} \cdot(9 \pi / 4)^{2 / 3}}{G \cdot m_{N}^{3} \cdot n^{1 / 3}}
\end{aligned}
$$

Shell structure in nuclei

Deviations from the Bethe-Weizsäcker mass formula:

Shell structure in nuclei

- deviations from the Bethe-Weizsäcker mass formula: large binding energies

2-neutron binding energies = 2 -neutron 'separation' energies

$$
S_{2 n}=B E(N, Z)-B E(N-2, Z)
$$

Nuclei with magic numbers of neutrons/protons

$>$ high energies of the first excited 2^{+}state

> small nuclear deformations
transition probabilities measured in single particle units (spu)

Shell structure in nuclei

S. Raman et al., Atomic Data \& Nuclear Data Tables 78, 1

Maria Goeppert-Mayer

J. Hans D. Jensen

Table 1 -- Nuclear Shell Structure (from Elementary Theory of Nuclear Shell Structure, Maria Goeppert Mayer \& J. Hans D. Jensen, John Wiley \& Sons, Inc., New York, 1955.)

$$
\begin{aligned}
\widehat{H} & =\sum_{i=1}^{A} \frac{\hat{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j}^{A} \hat{V}\left(r_{i}, r_{j}\right) \\
\widehat{H} & =\sum_{i=1}^{A}\left[\frac{\hat{p}_{i}^{2}}{2 m_{i}}+\hat{V}\left(r_{i}\right)\right]+\left[\sum_{i<j}^{A} \hat{V}\left(r_{i}, r_{j}\right)+\sum_{i=1}^{A} \hat{V}\left(r_{i}\right)\right]
\end{aligned}
$$

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)-\varepsilon\right] \Psi(r)=0
$$

$$
\Psi(r)=\frac{u_{\ell}(r)}{r} \cdot Y_{\ell m}(\vartheta, \varphi) \cdot \mathrm{X}_{m_{s}}
$$

In the average nuclear potential $\mathrm{V}(\mathrm{r})$:
a) harmonic oscillator
b) square well potential
c) Woods-Saxon potential
the nucleons move freely

$$
\widehat{H}=\sum_{i=1}^{A}\left[\frac{\hat{p}_{i}^{2}}{2 m_{i}}+\hat{V}\left(r_{i}\right)\right]
$$

harmonic square-well realistic potential oscillator potential + spin-orbit coupling

$>$ Woods-Saxon does not reproduce the correct magic numbers $(2,8,20,40,70,112,168)_{\mathrm{WS}}(2,8,20,28,50,82,126)_{\text {exp }}$
Meyer und Jensen (1949): strong spin-orbit interaction

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)+V_{\ell s}(r) \cdot \vec{\ell} \cdot \vec{s}-\varepsilon\right] \Psi(r)=0} \\
& V_{\ell s}(r) \sim-\lambda \cdot \frac{1}{r} \cdot \frac{d V}{d r} \quad \text { mit } \quad \lambda>0
\end{aligned}
$$

The spin-orbit term has its origin in the relativistic description of the single particle motion inside the nucleus

Woods-Saxon potential (jj-coupling)

$$
\begin{aligned}
\vec{\jmath}=\vec{\ell}+\vec{s} \quad \Rightarrow \quad\langle\ell \cdot s\rangle & =\frac{1}{2} \cdot\left[\left\langle j^{2}\right\rangle-\left\langle\ell^{2}\right\rangle-\left\langle s^{2}\right\rangle\right] \cdot \hbar^{2} \\
& =\frac{1}{2}[j(j+1)-\ell(\ell+1)-s(s+1)] \cdot \hbar^{2}
\end{aligned}
$$

The nuclear potential with spin-orbit term:

$$
\begin{aligned}
& V(r)+\frac{\ell}{2} \cdot V_{\ell s} \quad \text { for } j=\ell+1 / 2 \\
& V(r)-\frac{\ell+1}{2} V_{\ell s} \quad \text { for } j=\ell-1 / 2
\end{aligned}
$$

spin-orbit interaction leads to a large splitting for large ℓ.

$$
\overline{j=\ell \pm 1 / 2}-\frac{{ }_{j=\ell-1 / 2}-(\ell+1) / 2 \cdot\left\langle V_{\ell s}\right\rangle}{\overline{j=\ell+1 / 2}} \ell / 2 \cdot\left\langle V_{\ell s}\right\rangle
$$

Woods-Saxon potential

$>$ Mass dependence of the neutron energies: $\quad E \sim R^{-2}$
number of neutrons in each level:
$2 \cdot(2 \ell+1)$

Success of the extreme single-particle shell model

Z	Isotope	Observed J^{π}	Shell model $n l j$
3		$\left(3 / 2^{-}\right)$	$1 p_{3 / 2}$
5	${ }^{9} \mathrm{Li}$	$3 / 2^{-}$	$1 p_{3 / 2}$
7	${ }^{13} \mathrm{~B}$	$1 / 2^{-}$	$1 p_{1 / 2}$
9	${ }^{21} \mathrm{~F}$	$5 / 2^{+}$	$1 d_{5 / 2}$
11	${ }^{25} \mathrm{Na}$	$5 / 2^{+}$	$1 d_{5 / 2}$
13	${ }^{29} \mathrm{Al}$	$5 / 2^{+}$	$1 d_{5 / 2}$
15	${ }^{33} \mathrm{P}$	$1 / 2^{+}$	$2 s_{1 / 2}$
17	${ }^{37} \mathrm{Cl}$	$3 / 2^{+}$	$1 d_{3 / 2}$
19	${ }^{41} \mathrm{~K}$	$3 / 2^{+}$	$1 d_{3 / 2}$
21	${ }^{45} \mathrm{Sc}$	$7 / 2^{-}$	$1 f_{7 / 2}$
23	${ }^{49} \mathrm{Va}$	$7 / 2^{-}$	$1 f_{7 / 2}$
25	${ }^{53} \mathrm{Mn}$	$7 / 2^{-}$	$1 f_{7 / 2}$
27	${ }^{57} \mathrm{Co}$	$7 / 2^{-}$	$1 f_{7 / 2}$
29	${ }^{61} \mathrm{Cu}$	$3 / 2^{-}$	$2 p_{3 / 2}$
31	${ }^{65} \mathrm{Ga}$	$3 / 2^{-}$	$2 p_{3 / 2}$
33	${ }^{69} \mathrm{As}$	$\left(5 / 2^{-}\right)$	$1 f_{5 / 2}$
35	${ }^{73} \mathrm{Br}$	$\left(3 / 2^{-}\right)$	$1 f_{5 / 2}$

$>$ Ground state spin and parity:

Every orbital has $2 \mathrm{j}+1$ magnetic sub-states, completely filled orbitals have spin $\mathrm{J}=0$, they do not contribute to the nuclear spin.

For a nucleus with one nucleon outside a completely occupied orbital the nuclear spin is given by the single nucleon.

$$
\begin{aligned}
& n \ell \boldsymbol{j} \rightarrow \boldsymbol{J} \\
& (-)^{\ell}=\boldsymbol{\pi}
\end{aligned}
$$

Success of the extreme single-particle shell model

Magnetic moments:

The g-factor g_{j} is given by:

$$
\overrightarrow{\mu_{j}}=g_{\ell} \cdot \vec{\ell}+g_{s} \cdot \vec{s}=g_{j} \cdot \vec{\jmath} \quad \Rightarrow \overrightarrow{\mu_{j}}=\left[\left(g_{\ell} \cdot \vec{\ell}+g_{s} \cdot \vec{s}\right) \cdot \frac{\vec{j}}{|j|}\right] \cdot \frac{\vec{\jmath}}{|j|}
$$

with $\quad \vec{\ell}^{2}=(\vec{\jmath}-\vec{s})^{2}=\vec{\jmath}^{2}-2 \cdot \vec{\jmath} \cdot \vec{s}+\vec{s}^{2} \quad \vec{s}^{2}=(\vec{\jmath}-\vec{l})^{2}=\vec{j}^{2}-2 \cdot \vec{\jmath} \cdot \vec{\ell}+\vec{\ell}^{2}$

$$
\begin{aligned}
\vec{\mu}_{j} & =\frac{g_{\ell} \cdot\{j(j+1)+\ell(\ell+1)-3 / 4\}+g_{s} \cdot\{j(j+1)-\ell(\ell+1)+3 / 4\}}{2 \cdot j(j+1)} \cdot \vec{\jmath} \\
g_{j} & =\frac{1}{2} \cdot\left(g_{\ell}+g_{s}\right)+\frac{1}{2} \cdot \frac{\ell(\ell+1)-s(s+1)}{2 j(j+1)} \cdot\left(g_{\ell}-g_{s}\right)
\end{aligned}
$$

Simple relation for the g-factor of single-particle states

$$
\frac{\mu}{\mu_{N}}=g_{\text {nucleus }}=g_{\ell} \pm \frac{\left(g_{s}-g_{\ell}\right)}{2 \ell+1} \quad \text { for } \quad j=\ell \pm 1
$$

			μ / μ_{N}	
nucleus	state	$\mathrm{J} \pi$	model	
experiment				
${ }^{15} \mathrm{~N}$	$\mathrm{p}-1 p_{1 / 2}^{-1}$	$1 / 2^{-}$	$-0,264$	$-0,283$
${ }^{15} \mathrm{O}$	$\mathrm{n}-1 p_{1 / 2}^{-1}$	$1 / 2^{-}$	$+0,638$	$+0,719$
${ }^{17} \mathrm{O}$	$\mathrm{n}-1 d_{5 / 2}$	$5 / 2^{+}$	$-1,913$	$-1,894$
${ }^{17} \mathrm{~F}$	$\mathrm{p}-1 d_{5 / 2}$	$5 / 2^{+}$	$+4,722$	$+4,793$

magnetic moments:

$$
\left\langle\mu_{z}\right\rangle=\left\{\begin{array}{rll}
{\left[g_{\ell} \cdot\left(j-\frac{1}{2}\right)+\frac{1}{2} \cdot g_{s}\right] \cdot \mu_{N}} & \text { for } & j=\ell+1 / 2 \\
\frac{j}{j+1} \cdot\left[g_{\ell} \cdot\left(j+\frac{3}{2}\right)-\frac{1}{2} \cdot g_{s}\right] \cdot \mu_{N} & \text { for } & j=\ell-1 / 2
\end{array}\right\}
$$

$>\boldsymbol{g}$-factor of nukleons:
proton: $\quad g_{\ell}=1 ; \quad g_{\mathrm{s}}=+5.585$
neutron: $\quad g_{\ell}=0 ; \quad g_{s}=-3.82$
proton:

$$
\begin{aligned}
& \left\langle\mu_{z}\right\rangle=\left\{\begin{array}{rlr}
(j+2.293) \cdot \mu_{N} & \text { for } & j=\ell+1 / 2 \\
(j-2.293) \cdot \frac{j}{j+1} \cdot \mu_{N} & \text { for } & j=\ell-1 / 2
\end{array}\right\} \\
& \left\langle\mu_{z}\right\rangle=\left\{\begin{array}{rrr}
-1.91 \cdot \mu_{N} & \text { for } & j=\ell+1 / 2 \\
+1.91 \cdot \frac{j}{j+1} \cdot \mu_{N} & \text { for } & j=\ell-1 / 2
\end{array}\right\}
\end{aligned}
$$

magnetic moments: neutron

The three structures of the shell model

Evolution of nuclear structure (as a function of nucleon number)

Magic
(sph. vib.)

