Gamma- and X-Ray Interactions in Matter

Chapter 7

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Compton interaction

- Inelastic photon scattering by an electron
- Main assumption: the electron struck by the incoming photon is *unbound* and *stationary*
 - The largest contribution from binding is under condition of high Z, low energy
 - Under these conditions photoelectric effect is dominant
- Consider two aspects: kinematics and cross sections

Compton interaction: Kinematics

- An earlier theory of γ -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of *h*y or φ
- The failure of the Thomson theory to describe high-energy photon scattering necessitated the development of Compton's theory

Compton interaction: Kinematics

- The collision kinetics is based upon conservation of both energy and momentum
- Energy conservation requires

$$T = h\upsilon - h\upsilon'$$

- Conservation of momentum along the (0°) direction $h\upsilon = h\upsilon' \cos\varphi + pc \cos\theta$
- Conservation of momentum perpendicular to the direction of incidence:

 $h\upsilon'\sin\varphi = pc\sin\theta$

Compton interaction: Kinematics

- *pc* can be written in terms of $T : pc = \sqrt{T(T + 2m_0c^2)}$ where m_0 is the electron's rest mass
- We get a set of three simultaneous equations in these five parameters: hv, hv', T, θ , and ϕ :

$$h\upsilon' = \frac{h\upsilon}{1 + (h\upsilon/m_0c^2)(1 - \cos\varphi)}$$
$$T = h\upsilon - h\upsilon'$$
$$\cot\theta = \left(1 + \frac{h\upsilon}{m_0c^2}\right)\tan\left(\frac{\varphi}{2}\right)$$

Compton interaction: Cross sections Interaction cross section

Cross section describes the probability of interaction

- Thomson: *elastic* scattering on a free electron, no energy is transferred to electron
- Differential cross section (per electron for a photon scattered at angle φ , per unit solid angle)

$$\frac{d_e \sigma_T}{d\Omega} = \frac{r_0^2}{2} \left(1 + \cos^2 \varphi \right)$$

- classical radius of electron

 $\begin{array}{ll} \max \text{ at } & \varphi = 0,180^{\circ} \\ \frac{1}{2} \max \text{ at } & \varphi = 90^{\circ} \end{array}$

Compton interaction: Cross sections Interaction cross section

Thomson: elastic scattering on free electron - total cross section (integrated over all directions)

$$_{e}\sigma_{T} = \frac{8\pi r_{0}^{2}}{3} = 6.65 \cdot 10^{-25} \text{ cm}^{2}/\text{electron}$$

$$r_0 = \frac{e^2}{m_0 c^2}$$
 - classical radius of electron

Works well for low photon energies, $\langle m_0 c^2 \rangle$ Overestimates for photon energies $\rangle 0.01 \text{MeV}$ (factor of 2 for 0.4 MeV)

Compton interaction: Cross sections Interaction cross section

- This cross section (can be thought of as an effective target area) is equal to the probability of a Thomson-scattering event occurring when a single photon passes through a layer containing one electron per cm²
- It is also the fraction of a large number of incident photons that scatter in passing through the same layer, e.g., approximately 665 events for 10²⁷ photons
- As long as the fraction of photons interacting in a layer of matter by *all processes combined* remains less than about 0.05, the fraction may be assumed to be proportional to absorber thickness; for greater thicknesses the exponential relation must be used

Klein-Nishina: Compton scattering on free electron but includes Dirac's quantum relativistic theory
Differential cross section:

$$\frac{d_e \sigma_{K-N}}{d\Omega_{\varphi}} = \frac{r_0^2}{2} \left(\frac{hv}{hv}\right) \left(\frac{hv}{hv} + \frac{hv}{hv} - \sin^2\varphi\right)$$

For elastic scattering – reduces to Thomson's expression
Needed at high photon energy

Compton interaction: Cross sections Energy-transfer cross section

Total cross section -> fraction of energy diverted into Compton interactions -> fraction of energy transferred to electrons -> dose

Photoelectric effect: Kinematics

Most important at low photon energies

• Interaction with atomic-shell electrons tightly bound with

potential energy $E_b < hv$

• Photon is completely absorbed • Kinetic energy to electron:

independent of scattering angle

• Atom acquires some momentum

 $T = h \nu - E_h$

cross sections

hν $mom = h \nu/c$. e.= Tg ≅ 0 mom. = pa · No universal analytical expression for

Photoelectric effect: Directional distribution

For higher photon energies electrons tend to scatter in forward direction ($\theta = 0$ is forbidden since it is perpendicular to the vector E)

Photoelectric effect: Cross sections **Interaction cross section**

Total interaction cross section per atom, in cm²/atom

$$a^{\tau} \cong k \frac{Z^{n}}{(h\nu)^{n}}$$

$$k = Const$$

$$m, n - \text{energy dependent}$$

$$m \cong 3, n \cong 4 \text{ at } h\nu = 0.1 \text{ MeV}$$

$$\tau \cong \frac{Z^{4}}{(h\nu)^{3}}$$
fass attenuation coefficient
$$\frac{\tau}{\rho} \cong \left(\frac{Z}{h\nu}\right)^{3}$$

Photoelectric effect: Cross sections Energy-transfer cross section

Fraction of energy transferred to all electrons

$$\frac{T}{hv} = \frac{hv - E_b}{hv}$$

Vacancy created by a photon in the inner shell has to be filled through Auger process, additionally contributing to kerma.

Final result:

$$\frac{\tau_{ir}}{\rho} = \frac{\tau}{\rho} \left[\frac{hv - P_K Y_K \cdot h\overline{v}_K - (1 - P_K) P_L Y_L \cdot h\overline{v}_L}{hv} \right]$$

Pair production in Electron Coulomb Force Field Triplet production – higher threshold $4m_0c^2 = 2.044 \,\mathrm{MeV}$ required for conservation of momentum

Ratio of cross section for all electrons of the atom to nuclear cross section of the same atom is small:

$$\frac{\kappa(electron)}{\kappa(nucleus)} \cong \frac{1}{CZ}$$

C – parameter depending on energy, close to 1 For Pb the ratio is ~1%

Pair production: Cross sections

Total cross section for pair production per unit mass:

$$\left(\frac{\kappa}{\rho}\right)_{pair} = \left(\frac{\kappa}{\rho}\right)_{nuclear} + \left(\frac{\kappa}{\rho}\right)_{electron}$$

Pair production energy transfer coefficient:

$$\frac{\kappa_{tr}}{\rho} = \frac{\kappa}{\rho} \left(\frac{hv - 2m_0 c^2}{hv} \right)$$

Rayleigh (coherent) scattering

- · Photon is scattered by combined action of whole atom · Photons do not lose energy, redirected through only a small angle
- · No charged particles receive energy, no excitation produced => No contribution to kerma or dose

Ζ

Atomic cross section:
$$\frac{\sigma_R}{\rho} \propto \frac{Z}{(h_V)^2}$$

Typical ratios of Rayleigh to total attenuation coefficient σ_R/μ

Element	$h\nu = 0.01 \text{ MeV}$	0.1 MeV	1.0 MeV
С	0.07	0.02	0
Cu	0.006	0.08	0.007
Pb	0.03	0.03	0.03

Photonuclear Interactions

· Photon with energy exceeding few MeV excites nucleus, which emits proton or neutron

- Contributes to kerma and dose
- Relative amount less that 5% of pair production
- · Usually not included in dosimetry consideration
- Important for shielding design (neutrons)

Total coefficients for attenuation, energy transfer and absorption

Total mass attenuation coefficient for photon interactions add probabilities for photoelectric effect, Compton effect, pair production and Rayleigh scattering

$$\frac{\mu}{\rho} = \frac{\tau}{\rho} + \frac{\sigma}{\rho} + \frac{\kappa}{\rho} + \frac{\sigma_R}{\rho}$$

Total mass energy-transfer coefficient:

$$\begin{split} \frac{\mu_{tr}}{\rho} &= \frac{\tau_{tr}}{\rho} + \frac{\sigma_{tr}}{\rho} + \frac{\kappa_{tr}}{\rho} \\ &= \frac{\tau}{\rho} \left[\frac{h\nu - \rho_K Y_k h \overline{\nu}_K}{h\nu} \right] + \frac{\sigma}{\rho} \left[\frac{\overline{T}}{h\nu} \right] + \frac{\kappa}{\rho} \left[\frac{h\nu - 2m_0 c^2}{h\nu} \right] \end{split}$$

Appendix D

