Photon Mapping Made Easy -

Tin-Tin Yu, John Lowther and Ching-Kuang Shene
Department of Computer Science
Michigan Technological University
Houghton, Ml 49931

{tiyu,john,shene}@mtu.edu

ABSTRACT

This paper presents the authors’ introduction of photon
mapping in an undergraduate computer graphics course,
Software was designed as a pedagogical and demonstration
tool which permitted students to practice and learn photon
mapping. Classroom experience and examples that illus-
trate soft shadows, color bleeding, indirect illumination and
caustic are also discussed.

Categories and Subject Descriptors

1.3.7 [Three-Dimensional Graphics and Realism]|: Ray-
tracing; K.3.2 [Computers and Education]: Computer
science education

General Terms
Photon Mapping, Ray Tracing

Keywords
Photon Mapping, Ray Tracing

1. MOTIVATION

The programming approach is the most popular approach
in teaching introductory computer graphics courses. How-
ever, it does have some serious drawbacks [4]. First, stu-
dents usually do not know if the created image is correct.
C. A. R. Hoare once said: “You can’t teach beginning pro-
grammers top-down design because they don’t know which
way is up.” Likewise, it is difficult to teach graphics pro-
gramming to beginners because they do not know what the
anticipated effect should be. As a result, we need an easy
way for students to recognize the effect of each graphics pa-
rameter before they start to program. GraphicsMentor is a
tool designed for this purpose [5, 7]. Second, the program-
ming approach depends on local illumination-based graphics

*This work is partially supported by the National Science
Foundation under grant DUE-0127401. The third author is
also supported by an IBM Eclipse Innovation Award 2003.

Permission to make digital or hard copies of all or part of this work for

APIs which, in general, do not support shadow generation,
reflection and refraction. Third, the design and modeling
component is unlikely to be touched upon because students
may dedicate too much time on programming and because
a typical graphics API has a limited modeling capability.

To overcome this “local illumination” bias and maintain a
well-balanced graphics syllabus, we teach students ray trac-
ing. Our experience, as reported in [6], shows that students
like ray tracing and learn global illumination models effec-
tively and efficiently from exercises designed to explore the
advantages of global illumination models and disadvantages
of local illumination models. With this knowledge in hand,
in our Advanced Computer Graphics course, we present
ray tracing implementation details and discuss major short-
comings of ray tracing. We do cover radiosity in our course.
However, radiosity theory is complex and, reflection and re-
fraction are not available unless more theory is discussed.
This is a very frustrating fact, and leads us to find a simple,
easy to understand, and powerful enough global illumination
based rendering method between ray tracing and radiosity.
The answer is photon mapping.

In the following, Section 2 elaborates why photon map-
ping is a natural and reasonable choice, Section 3 briefly
discusses the theory of photon mapping, Section 4 presents
the details of our software tool designed to help students
explore photon mapping and generate images, Section 5
demonstrates the quality of our system with a number of
examples, Section 6 summarizes our classroom experience,
and, finally, Section 7 has our conclusions.

2. WHY PHOTON MAPPING?

Traditional ray tracing systems trace rays from an eye (or
a camera) rather than from light sources, and one light ray
from a hit point to each light source is used to determine the
shadow color of that point. As a result, traditional ray trac-
ing techniques are not able to correctly generate shadows
(and hence caustic) of refractive objects, produce indirect
illumination from reflective objects, and implement diffuse
reflection (e.g., no color bleeding). Although soft shadows
are possible, one must use area lights that can significantly
increase processing time. On the other hand, radiosity pro-
vides soft shadows, color bleeding and indirect illumination

personal or classroom use is granted without fee provided that copies are for free; however, it does not handle specular reflection, has
not made or distributed for profit or commercial advantage and that copies difficulty in processing transparency (i.e., reflection and re-
bear this notice and the full citation on the first page. To copy otherwise, to fraction), requires the scene to be subdivided into polygons,

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SIGCSE’05February 23-27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/11/0002%5.00.

and is very time consuming. A second pass (e.g., ray trac-
ing) is needed to produce reflection and refraction.
Instead of complicating the radiosity implementation by

post ray tracing, an easier way would collect illumination in-
formation of the scene by a pre-trace from light sources. This
is the basic idea of photon mapping. Since students have
learned ray tracing, converting the process of tracing from
the camera to tracing from each light source with some data
structure manipulations is not very difficult. Furthermore,
since photo mapping can easily generate area light sources,
color bleeding, soft shadows, indirect illumination and caus-
tic, we believe it would be easier for students to learn and
program these effects via photon mapping rather than with
radiosity. The major advantages of photon mapping are (1)
using photons to simulate the transport of individual pho-
ton energy, (2) being able to calculate global illumination
effects, (3) capable of handling arbitrary geometry rather
than polygonal scenes, (4) low memory consumption, and
(5) producing correct rendering results, even though noise
could be introduced. Consequently, after the discussion of
ray tracing and radiosity, our course adds a 5-hour presen-
tation on photon mapping to its global illumination module.

3. WHAT ISPHOTON MAPPING?

The basic idea of photon mapping is very simple [3]. It
tries to decouple the representation of a scene from its ge-
ometry and stores illumination information in a global data
structure, the photon map. Photon mapping is a two-pass
method. The first pass builds the photon map by tracing
photons from each light source (Section 3.1), and the second
pass renders the scene using the information stored in the
photon map (Section 3.2).

3.1 Passl: Light Emission and Photon Scat-
tering

The first pass of photon mapping consists of two steps:
light emission and photon scattering. In the first step, pho-
tons are generated and shot into the scene. A light source
with higher intensity will produce more photons, and the
direction of each photon is randomly selected based on the
type of the light source (e.g., spherical, rectangle, or direc-
tional). The processing of these photons is similar to ray
tracing with one difference: photons propagate flux while
rays gather radiance. When a photon hits an object, it can
be reflected, transmitted, or absorbed. If a photon hits a
specular object (e.g., a mirror), it is reflected with its in-
tensity scaled by the reflection index of that object. On the
other hand, if a photon hits a diffuse surface, it is stored in
the photon map and reflected. The direction of this “dif-
fusely” reflected photon is a randomly chosen vector that is
above the intersection point with a probability proportional
to the cosine of the angle with the normal. This can be
implemented by playing “Russian roulette.”

The “Russian roulette” technique removes unimportant
photons and ensures the same power. In the specular case,
a random number ¢ € [0,1] is generated, and if ¢ € [0, f),
where f is the reflection index, the photo is reflected. Oth-
erwise, it is absorbed. In the diffuse case, a random number
g € [0,1] is generated, and the photon is diffused (resp.,
reflected) if ¢ € [0,d] (resp., ¢ € (d,d + s]), where d and
s are the diffuse reflection and specular reflection indices,
respectively. Otherwise, it is absorbed.

The photon hit information is stored in a photon map,
which is usually a balanced kd-tree [1]. Each node of the
kd-tree stores the information of a photon hit, which include
the coordinates of the hit point (z,vy, z) (used as the key for

building the tree), color intensity (r, g, b), incident direction
of the photon, and other important information. Since the
number of photons and their hit points may be very large,
some form of compression may be needed; however, in an
undergraduate course, we skip compression concerns. While
the concept of kd-tree is simple, the implementation of a
balanced kd-tree is a non-trivial task. Fortunately, good
balanced kd-tree code is available [3]. After all photons are
shot and the kd-tree is built, the first pass completes.

3.2 Pass2: RadianceEstimate and Rendering

The second pass renders the scene with the help of the
photon map built in the first pass. A traditional ray tracing
procedure is performed by shooting rays from the camera.
When a ray hits a point P on a surface, the illumination
information (i.e., flux) of the neighboring photons collected
from the first pass and stored in the photon map will be
added to the radiance information collected from ray tracing
at P. Let the normal vector at P be N and » > 0 be a
predefined small value. Consider all photons in the sphere
S(P,r) of center P and radius r (Figure 1).

Figure 1: Radiance Estimate

Not every photon in S(P,r) would contribute to the ra-
diance at P. In fact, a photon with incident direction d can
contribute only if d-N > 0, because if d-IN < 0, its direction
goes inside of the surface. If a photon does not contribute,
it is ignored in this radiance estimate for point P. From the
illumination equation, the radiance contribution of a photon
with incidence direction is:

intensity x (d - N) x diffuse-factor

Let the sum of all radiance contribution be s. The radiance
estimate at P is s/(nr?), where mr? is the area of a great
circle of sphere S. Therefore, the color at P is the sum of
this radiance contribution and the radiance calculated from
ray tracing. This method is theoretically sound; however,
due to its required mathematics, we do not offer any proof.
The sum of the radiance estimate and the radiance collected
from ray tracing may be larger than one, and normalization
is needed. Additionally, if the number of photons that can
contribute to radiance estimate is too small, they are all
ignored because the computed radiance estimate from very
few photons may produce blurred images.

4. SOFTWARE DESIGN

This software that supports ray tracing and photon map-
ping is the cumulative work of many undergraduate stu-
dents. It grew out from various undergraduate student re-
search projects on ray tracing and photon mapping. The

current design consists of an API written in C++ classes
with a structure as shown in Figure 2. Under GICore, GIType
defines various data types, GIObjIntersection provides the
ray-object intersection mechanism, and GILightSrc handles
light sources. GIType defines object types and light source
types via GIObjType and GILightSrcType. A user may in-
herit these classes to extend their functionality.

@

m |GIObjIntersection| |GILightSrc|
|GIOBjType | |GILiqhtSrcType|
[ezExtobjType| [c1ExtLight...| [cIExtobjIntersection| [6IExtLightszd|

Figure 2: System Programming API

To write a program that performs photon mapping, a user
must include the header file GICore.h, define a scene class
derived from the base class GIScene, and provide a construc-
tor. Figure 3 shows that the scene MyScene has a rectangu-
lar area light, a red sphere and a white floor, Figure 4 has
the main program that actually renders the scene, and Fig-
ure 5(a) is the result of running this program. Therefore, it is
very easy for a user to render a scene using photon mapping.
If the call to method EnablePhotonMapping() is removed,
the system will only ray trace the scene. Figure 5(b) is a
ray traced example.

class MyScene : public GIScene

{
public:
void ConstructScene();
};
void MyScene: :ConstructScene()
{
GI_FLOAT 1=-1.0, r=1.0, t=5.5, b=7.5, h=5.25;
this->backgroundColor = GI_RGB(0.0,0.0,0.0);
AddRectAreaLlight (
Vector3(0,-1,0), // normal
Vector3(1l,h,t), Vector3(r,h,t), // vertices:
Vector3(r,h,b), Vector3(l,h,b),
1.00, // brightness,
GI_RGB(0.95, 0.85, 0.90)); // light color
AddSphere (// red sphere
Vector3(1.65,1.000,5.5), 1.995, // center & radius
red_plastic); // material (pre-defined)
AddPlane (// white floor
Vector3(0,1,0), Vector3(0,-1.0,0), // normal & vertex
white_plastic_dull);// material (pre-defined)
}

Figure 3: Scene Constructor

5. EXAMPLES

Figure 6 demonstrates the quality of our photon mapping
API. The scene consists of a box and a glass sphere, with
a rectangular light source (i.e., area light) on the ceiling
(Figure 5(b)). Thus, we expect to have soft shadows, color
bleeding from the green wall to the left side of the box, and

int main(int argc, char **argv)

{
MyScene *scene = new MyScene(); // create MyScene
GIImage img; // image area
int width = 400, height = 400%3.0/4.0;

GICamera cam = CreateCamera(
Vector3(0, 3.20, -24),
Vector3(0, -0.05, 1),

// position
// look-at direction

Vector3(0, 1, 0), // up-vector
45.0, // view angle
width/height); // aspect ratio

scene->EnablePhotonMapping(); // use photon mapping
img = CreateImage(width, height); // create image

scene->MaxRayPerLightSrc = 10 * 1000;
scene->MaxRayTraceDepth = 3;
scene->MaxPhotonTraceDepth = 6;
scene->photonMap.MaxPhotonSearchRadius = 2.0;
scene->ConstructScene(); // scene construction
scene->Render (cam, img); // render the scene
SaveImgPPM("test.ppm", img); // Save to file
free(img.data); // free image memory
return O;

Figure 4: The Main Program

(a)

Figure 5: Sample Photon Mapping and Ray Tracing
Images

some form of caustic produced by the glass ball. In Figure 6,
the first image shows the photon hit positions and the sec-
ond has the rendered result. We choose to use 1,000 photons
with » = 4.0, 10,000 photons with » = 2.0, 100,000 photons
with 7 = 1.0 and 200,000 photons with » = 0.4. Note that
the radius for radiance estimate is inversely proportional to
the number of photons shot. The color bleeding effect is
weak when the number of photons is small; however, as the
number of photons increases, the effect of color bleeding is
more evident as shown by the color on the left side of the
box. The ceiling above the box also shows a touch of white.
Caustic of the glass ball also becomes clearer as the number
of photons shot increases. In fact, in the case of 200,000
photons, the glass sphere generates a very pleasant and soft
caustic. The effect of soft shadows also becomes more real-
istic as the number of photons shot increases. Figure 5(b)
is the same scene generated by ray tracing. Compared this
result with Figure 6(d), it shows a huge difference.

Figure 7 is an example that illustrates the effect of indirect
illumination. This scene has an object between the light
source and the left wall, and a reflective floor. If this scene
is ray traced, the left portion of the ceiling would become
dark. With photon mapping, some photons will be bounced
to the ceiling, left wall, and even the back side of the blocking
object (Figure 7(a)). As a result, these areas are illuminated
indirectly by the light reflected from the floor (Figure 7(b)).

(d) 200,000 photons r = 0.4

Figure 6: A Few Photon Mapping Examples

If a glass sphere is bombarded with concentrated photons
from a spot light, we will be able to generate very realis-
tic caustic effects. In this case, two photon maps may be
needed, one for general rendering while the other for caustic
generation. Figure 8, created by undergraduate Josh Ander-
son with his own caustic code, shows a beautiful and realistic
caustic. However, if we use only one photon map to record
all photon hits without concentrated photons, caustic may
be soft as shown in Figure 9, which is actually Figure 6(d)
enlarged to reveal the effect.

6. CLASSROOM EXPERIENCE

Photon mapping was taught twice in our Advanced Com-
puter Graphics course, a course designed for those who
have completed an introductory course and are interested in
more advanced topics beyond graphics programming. Class
size was small with around 10 students, most of them were

(a)

Figure 7: Indirect Illumination

Figure 8: Strong Caustic

undergraduates with a few graduate students. The orga-
nization of this course is topic-oriented and project-based.
We present about ten topics and each student is required
to perform a term project, which includes a report, an im-
plementation, and a presentation with demonstration. In
the past, students did ray tracing, photon mapping, radios-
ity, advanced texture mapping, mesh simplification, geom-
etry compression, multiresolution modeling, morphing and
non-photorealistic rendering. We have a long history in ray
tracing and photon mapping development by undergraduate
students in directed study and other courses. As a result,
students who are interested in photon mapping have sample
source code to use. Interestingly enough, every student pre-
ferred to write their own version of ray tracer and photon
mapping system with a difference emphasis (e.g., real-time
photon mapping and caustic).

Most students in our class are very competent in ray trac-
ing. Figure 10 shows two student ray traced images using
POV-Ray [9]. Hence, we only present the way of building
a recursive ray tracer and refer those who are interested to
two standard references [2, 8], followed by the discussion of
several problems of recursive ray tracing. This usually takes
three lecture hours. Then, we spend about six hours on ra-
diosity to address the shortcomings of ray tracing. Topics
include the basic heat transfer theory, the radiosity equa-
tion, gathering and shooting, progressive refinement, form
factor computation, substructuring and adaptive subdivi-
sion. After the radiosity discussion, students have a thor-
ough understanding of the basics as well as pros and cons
of both global illumination based methods. Photon map-
ping is introduced as a compromise between ray tracing and

Figure 9: Soft Caustic

radiosity. Since it is easy to understand, students have no
difficulty in following the lectures and greatly enjoy photon
mapping. This is demonstrated by the success of students’
work on photon mapping. For example, Figure 8 is the first
successful implementation of caustic using photon mapping.
An early version of the software presented here was imple-
mented by the first author of this paper when he was an
undergraduate student.

Figure 10: Two Student Ray Tracing Images

Since the size of the class was small and since students fol-
low different research/study paths for the second half of this
course with many one-on-one discussions, we believe course
evaluation would not help draw any significant conclusion
in such a non-traditional course setting.

7. CONCLUSIONS

We have presented our approach of discussing photon map-
ping in our Advanced Computer Graphics course. The
major contribution of our work is evidence showing that it
is possible to teach global illumination rendering with ray
tracing and photon mapping to undergraduate students with
very good and convincing results. Our ultimate goal is to
provide a good and easy-to-use software tool for students in
an introduction computer graphics course to explore, prac-
tice and perform photon mapping rendering. Although our
software is an API, we plan to add a command processor for
users to specify the scene without programming. A long-
term goal would be integrating GraphicsMentor and our ray
tracing and photon mapping system into a single unit so that
students can design a scene using GraphicsMentor and render
it with local illumination, ray tracing and photon mapping.
In this way, instructors may use this new system to discuss

and demonstrate both local and global illumination render-
ing methods, and students will have a system to practice ray
tracing and photon mapping. A radiosity component is also
planned. We do hope our effort to making global illumina-
tion rendering method available in an introductory course
can soon be realized.

8. REFERENCES

[1] J. L. Bentley, Multidimensional Binary Search Trees
in Database Applications, IEEE Transactions on
Software Engineering, Vol. 5 (1979), No. 4 (July), pp.
333-340.

[2] Andrew S, Glassner (editor), An Introduction to Ray
Tracing, Academic Press, 1989.

[3] Henrik Wann Jensen, Realistic Image Synthesis Using
Photon Mapping, A K Peters, 2001.

[4] John L. Lowther and Ching-Kuang Shene, Rendering
+ Modeling + Animation + Postprocessing =
Computer Graphics, The Journal of Computing in
Small Colleges, Vol. 16 (2000), No. 1 (November), pp.
20-28. (reprinted in Computer Graphics, Vol. 34
(2000), No. 4 (November), pp. 15-18.

[5] Dejan Nikolic and Ching-Kuang Shene,
GraphicsMentor: A Tool for Learning Graphics
Fundamentals, ACM 33rd Annual SIGCSE Technical
Symposium, 2002, pp. 242-246.

[6] Ching-Kuang Shene, Raytracing as a Tool for
Learning Computer Graphics, ASEE/IEEE 32nd
Frontiers in Education, 2002, Volume III, pp.
(S4G-T7)-(S4G-13).

[7] Ching-Kuang Shene, Teaching and Learning Computer

Graphics Made Easy with GraphicsMentor, Interactive

Multimedia Electronic Journal of Computer-Enhanced

Learning, October, 2002 (online journal).

Peter Shirley, Realistic Ray Tracing, A K Peters, 2000.

Chris Young and Drew Wells, Ray Tracing Creations,

Second Edition, Waite Group Press, 1994.

)

Acknowledgments

The third author appreciates the hospitality of Dr. Horng-
jinh Chang, the former President of Tamkang University,
Taipei, Taiwan, and Dr. Chuan-Jen Chyan, Chair of De-
partment of Mathematics, for a short-term visit in the sum-
mer of 2004 during which the writing of this paper and other
research activities were carried out.

