

Photonic Inverse Design using the Adjoint Method

Adam Reid - Co-founder and VP Engineering

Lumerical Inc. March 2, 2019

Photonic Inverse Design Using the Adjoint Method

- + Lumopt¹ Python module for adjoint sensitivity analysis
- + FDTD Solutions for 2D/3D simulation
- + SciPy gradient based optimization algorithms
- = Highly efficient optimization of photonic components

Try yourself: Examples and software lumeri.ca/ofc

© Lumerical Inc.

¹github.com/chriskeraly/lumopt

See more @Booth 5438

in company/lumerical

Motivation

- Component design challenging, even for basic components
- We would like a lot:
 - No reflections
 - No loss
 - Insensitive to manufacturing imperfections
 - Works for range of wavelengths
 - Works at different temperatures
- Usually no analytic solution
- Good solutions using PSO
 - Zhang, Y., Yang, S., Eu-Jin Lim, A., Lo, G-Q., Galland, C., Baehr-Jones, T., and Hochberg, M., "A compact and low loss Y-junction for submicron silicon waveguide," Optics Express 21, 1310-1316 (2013).
- Can we do better with adjoint methods?

https://github.com/lukasc-ubc/SiEPIC_EBeam_PDK

Lumerical's Suite of Simulation Tools for Photonics

This demo uses FDTD simulation automated via Python API

Lumopt: Python Based Inverse Design for Lumerical FDTD

- Lumopt: open source adjoint sensitivity analysis
- Collaboration with Lumerical over past year
- Targets integrated photonics
- Now included with FDTD Solutions

Search or jump to... Search or jump to... Pull requests Code Issues Project

Python based continuous adjoint optimization wrapper for Lumerical

Adjoint shape optimization applied to electromagnetic design

Christopher M. Lalau-Keraly,^{1,*} Samarth Bhargava,¹ Owen D. Miller,² and Eli Yablonovitch¹

¹Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA ²Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA *chrisker@eecs.berkeley.edu

Optics Express, Vol 21, Issue 18, 2013 <u>https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-18-21693</u>

https://github.com/chriskeraly/lumopt

S	Issues	Marketpla	ice Explore			♠ +• 💀•
				Watch ✓ 4	Star 5	¥ Fork 2
cts	0	🗐 Wiki	Insights			

Inverse Design vs Forward Design

Parametric Shape based adjoint optimization

Parametric shape

- Defines design space
- **Optimization parameters**

Adjoint sensitivity analysis

- Efficiently compute gradient
- 2 FDTD simulations
- Independent of # parameters

Gradient based optimization • Highly efficient optimization

Uses more physics of device

 p_1

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Example: Full component design flow for Y-Branch

Lumopt in Action

Full component design flow for Y-Branch

- Objective: build a splitter like prior art below
- Use inverse design to build splitter section (1)
- Add waveguide offset arms (2) post-optimization

https://github.com/lukasc-ubc/SiEPIC_EBeam_PDK

A compact and low loss Y-junction for submicron silicon waveguide

Yi Zhang, et al, Optics Express Vol. 21, Issue 1, pp. 1310-1316 (2013)

© Lumerical Inc.

w (1) zation

An Inverse Design Flow

Step 1: Define base simulation

2D simulation

- Uses an effective index for waveguide
- Good approximation
- Fast simulation

Base simulation is defined by Lumerical Script (lsf)

Step 2: Define parametric shape

- Parametric shape defined as Python function
- Function argument is list of parameters
- Function returns list of polygon vertices


```
def taper splitter(params = np.linspace(0.25e-6, 2e-6, 20)):
    ''' Defines a taper where the paramaters are the y coordinates of the nodes of a cubic
   points_x = np.concatenate(([-2.51e-6], np.linspace(-2.5e-6,2.5e-6,20), [2.51e-6]))
   points_y = np.concatenate(([0.25e-6], params, [2e-6]))
   n interpolation points = 100
   px = np.linspace(min(points x), max(points x), n interpolation points)
   interpolator = sp.interpolate.interp1d(points_x, points_y, kind = 'cubic')
   py = interpolator(px)
   py = np.minimum(2.5e-6, py)
   py = np.maximum(np.concatenate((np.ones(50)*0.2e-6, np.ones(50)*0.53e-6)), py)
   px = np.concatenate((px, px[40::][::-1]))
   py = np.concatenate((py, py[40::][::-1]-0.5e-6))
   polygon_points_up = [(x, y) for x, y in zip(px, py)]
   polygon_points_down = [(x, -y) for x, y in zip(px, py)]
   polygon_points = np.array(polygon_points_up[::-1] + polygon_points_down)
   return polygon_points
```


Step 3: Run fast 2D optimization

Step 4: Refine with 3D optimization

- This step is largely the same as 2D simulation
- Takes a bit longer to run
- Should complete with few iterations if **seeded with 2D solution**

Step 5: Save design to GDSII

- Optimized shape and output arms saved to GDSII
- Similar to prior art, but has a few ripples!

Example design

Prior art

Step 5: Y splitter example: Compact model extraction from layout

- Import the final GDSII mask into 3D simulation
- Define ports
- Extract the S-parameters
- Save to data file for INTERCONNECT circuit simulation

Example: Broadband & Compact Y-Branch

Lumopt in Action

Broadband & Compact Splitter

- Can we make a smaller splitter?
- Can we ensure broadband?

- - 20 parameters

https://github.com/lukasc-ubc/SiEPIC_EBeam_PDK

A compact and low loss Y-junction for submicron silicon waveguide Yi Zhang, et al, Optics Express Vol. 21, Issue 1, pp. 1310-1316 (2013)

© Lumerical Inc.

• Parametric shape with output waveguides, • 5x5 footprint footprint • FOM taken over C+L bands

Broadband Inverse Design

- Optimize FOM over a spectrum
- No additional FDTD simulations required!

Step 3: Run fast 2D optimization

This example takes ~60 minutes to run:

Example: Grating coupler

Available soon!!

Double etch grating coupler

Example available soon

Example: Robust Y-Branch

Lumopt in Action

Co-Optimization

Co-optimization:

- Run multiple optimizations concurrently
- Optimizations share same parameters
- Figure of merit or structure can be different

Example uses:

- Dual polarization devices (different FOM) • Multiple wavelengths (different FOM)
- Optimize process corners (different geometry)

Co-optimization: Robust splitter

- Build a splitter tolerant to manufacturing error
- Co-optimize 2 different shapes (same parameters) •
- "Over etch" slightly smaller than nominal
- "Under etch" slightly larger than nominal
- Same FOM function

Co-optimization: Robust splitter

Nice smooth shape!

Upcoming features

Layout using Cadence's Virtuoso CurvyCore Technology

- Non-Manhattan shapes
- Symbolic equations provide accurate mathematical model
- Generates high-quality polygon representations for fabrication
- Ideal for inverse design shapes

Two Approaches to Inverse Design

Parametric Geometry Optimization

- Finds optimal parameters for shape(s)
- Parametric shape defines/limits design space

© Lumerical Inc. PROPRIETARY AND CONFIDENTIAL

Topology Optimization

Supports:

- Broadband
- Quasi-2D
- Constrained feature size
- Co-optimization

Topology Optimization: Broadband (1450-1650nm) TE Splitter

© Lumerical Inc. PROPRIETARY AND CONFIDENTIAL

Next Steps

Try running examples

- Stick to 2D, get results in minutes
- Set max_iter=3 to get suboptimal device fast •

Try some modifications

- Change device footprint •
- Change bandwidth
- Change number of optimization parameters
- Try pCell suggestions in tutorial

More examples available in applications gallery

New

Search Examples

See more Exhibit Hall Booth 5438

