Photonic Inverse Design using the Adjoint Method

Adam Reid - Co-founder and VP Engineering

Lumerical Inc.
March 2, 2019

Photonic Inverse Design Using the Adjoint Method

+ Lumopt ${ }^{1}$ Python module for adjoint sensitivity analysis
+ FDTD Solutions for 2D/3D simulation
+ SciPy gradient based optimization algorithms
= Highly efficient optimization of photonic components

Figure of Merit

Try yourself: Examples and software lumeri.ca/ofc

Motivation

- Component design challenging, even for basic components
- We would like a lot:
- No reflections
- No loss
- Insensitive to manufacturing imperfections
- Works for range of wavelengths
- Works at different temperatures
- Usually no analytic solution
- Good solutions using PSO
- Zhang, Y., Yang, S., Eu-Jin Lim, A., Lo, G-Q., Galland, C., Baehr-Jones, T., and Hochberg, M., "A compact and low loss Y-junction for submicron silicon waveguide," Optics Express 21, 1310-1316 (2013).
- Can we do better with adjoint methods?

Lumerical's Suite of Simulation Tools for Photonics

Optical Simulation	Multiphysics	
FDTD Solutions Nanophotonic Design Environment	DEVICE品 Multiphysics Photonics Design Platform	
	Charge Transport Solver	System El
	Discontinuous Galerkin Time-Domain Solver	Lasere Elen
MODE Solutions	Heat Transport Solver	EDA Inter
Waveguide Desion Envionment	Finite Element Eigenmode Solver	Foundry
Data Exchange: Lumerical Scripting \| MATLAB API		hon API

This demo uses FDTD simulation automated via Python API

Lumopt: Python Based Inverse Design for Lumerical FDTD

- Lumopt: open source adjoint sensitivity analysis
- Collaboration with Lumerical over past year
- Targets integrated photonics - Now included with FDTD Solutions

https://github.com/chriskeraly/lumopt

〈>Code (1) Issues 0 \& P Pull requests 2 III Projects 0 国 Wiki Llı Insights
Python based continuous adjoint optimization wrapper for Lumerical

Adjoint shape optimization applied to electromagnetic design

Christopher M. Lalau-Keraly, ${ }^{1, *}$ Samarth Bhargava, ${ }^{1}$ Owen D. Miller, ${ }^{2}$ and Eli Yablonovitch ${ }^{1}$
${ }^{l}$ Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
${ }^{2}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA chrisker@eecs.berkeley.edu

Optics Express, Vol 21, Issue 18, 2013
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-18-21693

Inverse Design vs Forward Design

3dB Power Splitter

Parametric Shape based adjoint optimization

Parametric shape

- Defines design space
- Optimization parameters

Adjoint sensitivity analysis

- Efficiently compute gradient
- 2 FDTD simulations
- Independent of \# parameters

Gradient based optimization

- Highly efficient optimization
- Uses more physics of device

Example: Full component design flow for Y-Branch

Full component design flow for Y-Branch

- Objective: build a splitter like prior art below
- Use inverse design to build splitter section (1)
- Add waveguide offset arms (2) post-optimization

https://github.com/lukasc-ubc/SiEPIC_EBeam_PDK

A compact and low loss Y-junction for submicron silicon waveguide
Yi Zhang, et al, Optics Express Vol. 21, Issue 1, pp. 1310-1316 (2013)
© Lumerical Inc.

An Inverse Design Flow

Step 1: Define base simulation

2D simulation

- Uses an effective index for waveguide
- Good approximation
- Fast simulation

Base simulation is defined by Lumerical Script (Isf)

Step 2: Define parametric shape

- Parametric shape defined as Python function
- Function argument is list of parameters
- Function returns list of polygon vertices


```
def taper_splitter(params = np.linspace(0.25e-6, 2e-6, 20))
    Defines a taper where the paramaters are the y coordinates of the nodes of a cubic
    points_x = np.concatenate(([-2.51e-6], np.linspace(-2.5e-6,2.5e-6,20), [2.51e-6]))
    points_y = np.concatenate(([0.25e-6], params, [2e-6]))
    n_interpolation_points = 100
    px = np.linspace(min(points_x), max(points_x), n_interpolation_points)
    interpolator = sp.interpolate.interp1d(points_x, points_y, kind = 'cubic')
    py = interpolator(px)
    py = np.minimum(2.5e-6, py)
    py = np.maximum(np.concatenate((np.ones(50)*0.2e-6, np.ones(50)*0.53e-6)), py)
    px = np.concatenate((px, px[40::][::-1]))
    py = np.concatenate((py, py[40::][::-1]-0.5e-6))
    polygon_points_up = [(x, y) for x, y in zip(px, py)]
    polygon_points_down = [(x, -y) for x, y in zip(px, py)]
    polygon_points = np.array(polygon_points_up[::-1] + polygon_points_down)
    return polygon_points
```


Step 3: Run fast 2D optimization

This optimization runs in 20-30 minutes

Step 4: Refine with 3D optimization

- This step is largely the same as 2D simulation
- Takes a bit longer to run
- Should complete with few iterations if seeded with 2D solution

Step 5: Save design to GDSII

- Optimized shape and output arms saved to GDSII
- Similar to prior art, but has a few ripples!

Example design
Prior art

Step 5: Y splitter example: Compact model extraction from layout

- Import the final GDSII mask into 3D simulation
- Define ports
- Extract the S-parameters
- Save to data file for INTERCONNECT circuit simulation

Example: Broadband \& Compact Y-Branch

Broadband \& Compact Splitter

- Can we make a smaller splitter?
- Can we ensure broadband?
https://github.com/lukasc-ubc/SiEPIC_EBeam_PDK
- Parametric shape with output waveguides, 20 parameters
- 5×5 footprint footprint
- FOM taken over C+L bands

Broadband Inverse Design

- Optimize FOM over a spectrum
- No additional FDTD simulations required!

Step 3: Run fast 2D optimization

This example takes ~ 60 minutes to run:

$\mathrm{FOM}=0.5$ = ideal

$$
\text { FOM }=0.5 \text { = ideal }
$$

Figure of Merit

Example: Grating coupler

Available soon!!

Double etch grating coupler
>80 optimization parameters

Example: Robust Y-Branch

Co-Optimization

Co-optimization:

- Run multiple optimizations concurrently
- Optimizations share same parameters
- Figure of merit or structure can be different

Example uses:

- Dual polarization devices (different FOM)
- Multiple wavelengths (different FOM)
- Optimize process corners (different geometry)

Dual polarization co-optimization

Co-optimization: Robust splitter

- Build a splitter tolerant to manufacturing error
- Co-optimize 2 different shapes (same parameters)
- "Over etch" slightly smaller than nominal
- "Under etch" slightly larger than nominal
- Same FOM function

Over etch

Under etch

Co-optimization: Robust splitter

- Setup 2 optimizations
- Sum the figures of merit
- 2 FDTD simulations/FOM/iteration

Co-optimization of $+/-20 \mathrm{~nm}$ on edge position

Nice smooth shape!

Upcoming features

Layout using Cadence's Virtuoso CurvyCore Technology

- Non-Manhattan shapes
- Symbolic equations provide accurate mathematical model
- Generates high-quality polygon representations for fabrication
- Ideal for inverse design shapes

Two Approaches to Inverse Design

Parametric Geometry Optimization

- Finds optimal parameters fo shapes)
- Parametric shape define P lImits design

Topology Optimization

- User provides footprint and 2 materials
- No intuition about shaperrequiryd!
- Solver finds best simon

Topology Optimization

Supports:

- Broadband
- Quasi-2D
- Constrained feature size
- Co-optimization \square

Topology Optimization: Broadband (1450-1650nm) TE Splitter

Next Steps

Try running examples

- Stick to 2D, get results in minutes
- Set max_iter=3 to get suboptimal device fast

Try some modifications

- Change device footprint
- Change bandwidth
- Change number of optimization parameters
- Try pCell suggestions in tutorial

More examples available in applications gallery

See more
Exhibit Hall Booth 5438

