
Chapter 20

Photons: Maxwell’s Equations in a

Nutshell

20.1 Introduction

Light has fascinated us for ages. And deservedly so. Everything we know about the

earth and the universe is because of light. Light from the sun sustains life on earth.

Learning to measure and understand the contents of light has enabled us to understand

the origins of the universe in the big bang, and talk about its future. And one cannot

forget the sheer visual pleasure of a beautiful sunset, a coral reef, or an iridescent flower

in full blossom. Indeed, the beauty of light and color is a rare thing that scientists and

artists agree to share and appreciate.

Our fascination with light has led to three of the greatest revolutions in 19th and 20th

century physics. Sunlight used to be considered a ‘gift of the Gods’ and the purest indi-

visible substance, till Newton observed that passing it through a prism split it into mul-

tiple colors. Passing each of the colors through another prism could not split it further.

Newton surmised that light was composed of particles, but in the early 19th century,

Young proved that light was a wave because it exhibited interference and di↵raction.

Michael Faraday had a strong hunch that light was composed of a mixture of electric and

magnetic fields, but could not back it up mathematically. The race for understanding the

fabric of light reached a milestone when Maxwell gave Faraday’s hunch a rigorous math-

ematical grounding. Maxwell’s theory combined in one stroke electricity, magnetism,

and light into an eternal braid1. The Maxwell equations predict the existence of light

1J. R. Pierce famously wrote “To anyone who is motivated by anything beyond the most narrowly
practical, it is worthwhile to understand Maxwell’s equations simply for the good of his soul.”
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as a propagating electromagnetic wave. With Maxwell’s electromagnetic theory, the

‘cat’ was out of the hat for light.

The second and third revolutions born out of light occurred in early 20th century in

parallel. Trying to understand blackbody radiation, photoelectric e↵ect, and the spectral

lines of hydrogen atoms lead to the uncovering of quantum mechanics. And Einstein’s

fascination with the interplay of light and matter, of space and time led to the theory

of relativity. Much of modern physics rests on these three pillars of light: that of

electromagnetism, quantum mechanics, and relativity. It would be foolhardy to think

that we know all there is to know about light. It will continue to amaze us and help

probe deeper into the fabric of nature through similar revolutions in the future. In

this chapter, we discuss Maxwell’s theory of electromagnetism in preparation for the

quantum picture, which is covered in the next chapter.

20.2 Maxwell’s equations

Maxwell’s equations connect the electric field E and the magnetic field intensity H to

source charges ⇢ and currents J via the four relations

r ·D = ⇢, Gauss’s law

r ·B = 0, Gauss’s law

r⇥E = �@B
@t , Faraday’s law

r⇥H = J+ @D
@t , Ampere’s law.

(20.1)

Here the source term ⇢ has units of charge per unit volume (C/m3), and current source

term J is in current per unit area A/m2. H is related to the magnetic flux density B

via B = µ0H, and the displacement vector is related to the electric field via D = ✏0E.

The constant ✏0 is the permittivity of vacuum, and µ0 is the permeability of vacuum.

They are related by ✏0µ0 = 1/c2, where c is the speed of light in vacuum.

+ -

Figure 20.1: Electrostatic Fields.
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Gauss’s law r · E = ⇢/✏0 says that electric field lines (vectors) due to static charges

originate at points in space where there are +ve charges, and terminate at negative

charges, as indicated in Figure 20.1. Vectors originating from a point in space have a

positive divergence. This relation is also called the Poisson equation in semiconductor

device physics, and if the charge is zero, it goes by the name of Laplace equation. Gauss’s

law for magnetic fields tells us that magnetic field lines B have no beginnings and no

ends: unlike static electric field lines, they close on themselves.

Note that for electrostatics and magnetostatics, we put @(...)/@t ! 0, to obtain the static

magnetic field relation r⇥H = J. The magnetic field lines curl around a wire carrying

a dc current, as shown in Figure 20.1. Electrostatic phenomena such as electric fields

in the presence of static charge such as p-n junctions, transistors, and optical devices in

equilibrium, and magnetostatic phenomena such as magnetic fields near wires carrying

dc currents are covered by the condition @(...)/@t ! 0, and electric and magnetic fields

are decoupled. This means a static charge produces just electric fields and no magnetic

fields. A static current (composed of charges moving at a constant velocity) produces a

magnetic field, but no electric field.

Since in electrostatics, r ⇥ E = 0, the static electric field vector can be expressed as

the gradient of a scalar potential E = �r� because r⇥ (r�) = 0 is an identity. � is

then the scalar electric potential. However, the same cannot be done for the magnetic

field vector even in static conditions, because r ⇥H = J 6= 0. However, the magnetic

field can be written as the curl of another vector field B = r⇥A, where A is called the

magnetic vector potential. Hence from the Maxwell equations, E = �dA/dt.

Faraday’s law says that a time-varying magnetic field creates an electric field. The

electric field lines thus produced ‘curl’ around the magnetic field lines. Ampere’s law

says that a magnetic field intensity H may be produced not just by a conductor carrying

current J, but also by a time-varying electric field in the form of the displacement current

@D/@t. The original Ampere’s law did not have the displacement current. Maxwell

realized that without it, the four constitutive equations would violate current continuity

relations. To illustrate, without the displacement current term, r⇥H = J, and taking

the divergence of both sides, we get r · r ⇥ H = r · J = 0 because the divergence of

curl of any vector field is zero. But the continuity equation requires

r · J = �@⇢/@t, Continuity Equation (20.2)

which is necessary for the conservation of charge. With the introduction of the displace-

ment current term, Maxwell resolved this conflict: r ·J = �r · @D@t = � @
@t(r ·D) = �@⇢

@t ,

which connects to Gauss’s law.
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20.3 Light emerges from Maxwell’s equations

++
+
+

-
-

+

---

Figure 20.2: Antenna producing an electromagnetic wave.

The displacement current term is the crucial link between electricity and magnetism,

and leads to the existence of light as an electromagnetic wave. Let’s first look at this

feature qualitatively. Figure 20.2 shows a metal wire connected to an ac voltage source.

The battery sloshes electrons back and forth from the ground into the wire, causing

a charge-density wave as shown schematically. Note that the charge density in the

wire is changing continuously in time and space. The frequency is !0. As a result

of charge pileups, electric field lines emerge from +ve charges and terminate on -ve

charges. This electric field is changing in space and time as well, leading to non-zero

r⇥E and @E/@t. The time-varying electric field creates a time-varying magnetic field H

because of displacement current. The time-varying magnetic field creates a time-varying

electric field by Faraday’s law. Far from the antenna, the fields detach from the source

antenna and become self-sustaining: the time-varying E creates H, and vice versa. An

electromagnetic wave is thus born; the oscillations of electric and magnetic fields move

at the speed of light c. For an antenna radiating at a frequency !0, the wavelength is

� = 2⇡c/!0. That the wave is self-sustaining is the most fascinating feature of light. If

at some time the battery was switched o↵, the far field wave continues to propagate -

forever, unless it encounters charges again. That of course is how light from the most

distant galaxies and supernovae reach our antennas and telescopes, propagating through

‘light years’ in the vacuum of space, sustaining the oscillations2.

Now let’s make this observation mathematically rigorous. Consider a region in space

with no charges (r · D = ⇢ = 0 = r · E) and no currents J = 0. Take the curl of

Faraday’s equation to obtain r⇥r⇥E = r(r ·E)�r2E = � @
@t(r⇥B) = � 1

c2
@2

@t2E,

where we make use of Ampere’s law. Since in a source-free region r ·E = 0, we get the

wave equations

2Boltzmann wrote “... was it a God who wrote these lines ...” in connection to “Let there be light”.
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(r2 � 1
c2

@2

@t2 )E = 0, Wave Equations

(r2 � 1
c2

@2

@t2 )B = 0.
(20.3)

Note that the wave equation states that the electric field and magnetic field oscillate both

in space and time. The ratio of oscillations in space (captured by r2) and oscillations in

time (captured by @2

@t2 ) is the speed at which the wave moves, and it is c = 1/
p
µ0✏0. The

number is exactly equal to the experimentally measured speed of light, which solidifies

the connection that light is an electromagnetic wave. We note that just like the solution

to Dirac’s equation in quantum mechanics is the electron, the solution of Maxwell’s

wave equation is light (or photons). Thus one can say that light has ‘emerged’ from the

solution of Maxwell equations.

However, we must be cautious in calling the wave equation above representing light

alone. Consider a generic wave equation (r2 � 1
v2

@2

@t2 )f(r, t) = 0. This wave moves at a

speed v. We can create a sound wave, and a water wave that moves at the same speed

v, and f(r, t) will represent distinct physical phenomena. If a cheetah runs as fast as a

car, they are not the same object!

Consider a generic vector field of the typeV(r, t) = V0ei(k·r�!t)⌘̂, where ⌘̂ is the direction

of the vector. This field will satisfy the wave equations 20.3 if ! = c|k|, as may be verified

by substitution. This requirement is the first constraint on the nature of electromagnetic

waves. The second stringent constraint is that the field must satisfy Gauss’s laws r·E =

0 and r ·B = 0 for free space. In other words, electric and magnetic vector fields are a

special class of vector fields. Their special nature is elevated by the physical observation

that no other wave can move at the speed of light. Einstein’s theory of relativity proves

that the speed of light is absolute, and unique for electromagnetic waves: every other

kind of wave falls short of the speed of light. Thus, Maxwell’s wave equation uniquely

represents light, self-sustaining oscillating electric and magnetic fields.

20.4 Maxwell’s equations in (k,!) space

Consider an electromagnetic wave of a fixed frequency !. Since E,B / ei(k·r�!t), we

make two observations. Time derivatives of Faraday and Ampere’s laws give @
@te

�i!t =

�i!e�i!t, which means we can replace @
@t ! �i!, @2

@t2 ! (�i!)2, and so on. Similarly,

the vector operators div and curl act on the eik·r part only, givingr·(eik·r⌘̂) = ik·(eik·r⌘̂)
and r ⇥ (eik·r⌘̂) = ik ⇥ (eik·r⌘̂). These relations may be verified by straightforward

substitution. Thus, we can replace r ! ik. With these observations, Maxwell equations

in free-space become
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k ·E = 0,

k ·B = 0,

k⇥E = !B,

k⇥B = � !
c2E.

(20.4)

Note that we have converted Maxwell’s equations in real space and time (r, t) to ‘Fourier’

space (k,!) in this process. Just as in Fourier analysis where we decompose a function

into its spectral components, light of a particular k and corresponding frequency ! = c|k|
is spectrally pure, and forms the ‘sine’ and ‘cosine’ bases. Any mixture of light is a linear

combination of these spectrally pure components: for example white light is composed

of multiple wavelengths. Since B = r ⇥ A, we can write B = ik⇥A, and hence the

magnitudes are related by B2 = k2A2 = (!c )
2A2. The energy content in a region in

space of volume ⌦ that houses electric and magnetic fields of frequency ! is given by

Hem(!) = ⌦ · [1
2
✏0E

2 +
1

2
µ0H

2] = ⌦ · [1
2
✏0E

2 +
1

2
✏0!

2A2] . (20.5)

If you have noticed a remarkable similarity between the expression for energy of an

electromagnetic field with that of a harmonic oscillator (from Chapter 3) Hosc =
p̂2

2m +
1
2m!2x2, you are in luck. In Chapter 21, this analogy will enable us to fully quantize

the electromagnetic field, resulting in a rich new insights.

Let us now investigate the properties of a spectrally pure, or ‘monochromatic’ component

of the electromagnetic wave. From equations 20.4, we note that k ? E ? B, and the

direction of k is along E⇥B. The simplest possibility is shown in Figure 20.3. If we align

the x�axis along the electric field vector and the y�axis along the magnetic field vector,

then the wave propagates along the +ve z�axis, i.e., k = kẑ. The electric field vectors

lie in the x � z plane, and may be written as E(r, t) = E0ei(kz�!t)x̂, which is a plane

wave. For a plane wave, nothing changes along the planes perpendicular to the direction

of propagation, so the E field is the same at all x� y planes: E(x, y, z) = E(0, 0, z).

From Faraday’s law, B = k⇥E/!, and the magnetic field vectors B(r, t) = E0
c ei(kz�!t)ŷ

lie in the y � z plane. Note that here we use ! = ck and k = kz. The amplitudes of the

electric and magnetic fields are thus related by E0 = cB0, and the relation to magnetic

field intensity H = B/µ0 is E0 = cµ0H0 =
q

µ0
✏0
H0 = ⌘0H0. Since E0 has units V/m

and H0 has units A/m, ⌘ has units of V/A or Ohms. ⌘0 is called the impedance of free

space; it has a value ⌘0 ⇡ 377⌦.

The direction of propagation of this wave is always perpendicular to the electric and

magnetic field vectors and given by the right hand rule. Since the field vectors lie on
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Figure 20.3: Electromagnetic wave.

well-defined planes, this type of electromagnetic wave is called plane-polarized. In case

there was a phase di↵erence between the electric and magnetic fields, the electric and

magnetic field vectors will rotate in the x � y planes as the wave propagates, and the

wave would then be called circularly or elliptically polarized, depending upon the phase

di↵erence.

For the monochromatic wave, Maxwell’s wave equation becomes (|k|2 � (!c )
2)E = 0.

For non-zero E, ! = c|k| = ck. The electromagnetic field carries energy in the +ve

z�direction. The instantaneous power carried by the wave is given by the Poynting

vector S(r, t) = E⇥H =
E2

0
⌘0
ei(kz�!t)ẑ. The units are in Watts/m2. Typically we are

interested in the time-averaged power density, which is given by

S = hS(r, t)i = 1

2
Re[E⇥H?] =

E2
0

2⌘
ẑ =

⌘

2
H2

0 ẑ, (20.6)

where ẑ is the direction of propagation of the wave. In later chapters, the energy carried

by a monochromatic wave will for the starting point to understand the interaction of

light with matter. In the next chapter, we will discuss how the energy carried by an

electromagnetic wave as described by Equation 20.6 actually appears not in continuous

quantities, but in quantum packets. Before we do that, we briefly discuss the classical

picture of light interacting with material media.

20.5 Maxwell’s equations in material media

How does light interact with a material medium? Running the video of the process of

the creation of light in Figure 20.2 backwards, we can say that when an electromagnetic
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wave hits a metal wire, the electric field will slosh electrons in the wire back and forth

generating an ac current. That is the principle of operation of a receiving antenna. What

happens when the material does not have freely conducting electrons like a metal? For

example, in a dielectric some electrons are tightly bound to atomic nuclei (core electrons),

and others participate in forming chemical bonds with nearest neighbor atoms. The

electric field of the electromagnetic wave will deform the electron clouds that are most

‘flexible’ and ‘polarize’ them. Before the external field was applied, the centroid of the

negative charge from the electron clouds and the positive nuclei exactly coincided in

space. When the electron cloud is deformed, the centroids do not coincide any more,

and a net dipole is formed, as shown in Figure 20.4. The electric field of light primarily

interacts with electrons that are most loosely bound and deformable; protons in the

nucleus are far heavier, and held strongly in place in a solid medium. Let us give these

qualitative observations a quantitative basis.

Figure 20.4: Dielectric and Magnetic materials. Orientation of electric and magnetic
dipoles by external fields, leading to electric and magnetic susceptibilities.

The displacement vector in free space is D = ✏0E. In the presence of a dielectric,

it has an additional contribution D = ✏0E + P, where P is the polarization of the

dielectric. The classical picture of polarization is an electric dipole pi = qdin̂ in every

unit cell of the solid. This dipole has zero magnitude in the absence of the external

field3. The electric field of light stretches the electron cloud along it, forming dipoles

along itself. Thus, pi points along E. The net polarization4 is the volume-averaged

3Except in materials that have spontaneous, piezoelectric, or ferroelectric polarization.
4This classical picture of polarization is not consistent with quantum mechanics. The quantum theory

of polarization requires the concept of Berry phases, which is the subject of Chapter 54.
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dipole density P = 1
V

P
V pi. Based on the material properties of the dielectric, we

absorb all microscopic details into one parameter by writing

P = ✏0�eE, (20.7)

where the parameter �e is referred to as the electric susceptibility of the solid. With

this definition, the displacement vector becomes

D = ✏0E+ ✏0�eE = ✏0(1 + �e| {z }
✏r

)E = ✏E, (20.8)

where the dielectric property of the material is captured by the modified dielectric con-

stant ✏ = ✏0✏r = ✏0(1 + �e). The relative dielectric constant is 1 plus the electric

susceptibility of the material. Clearly the relative dielectric constant of vacuum is 1

since there are no atoms to polarize and nothing is ‘susceptible’.

In exactly the same way, if the material is magnetically polarizable, thenB = µ0(H+M),

where M is the magnetization vector. If there are tiny magnetic dipoles mi = IAn̂

formed by circular loops carrying current I in area A in the material medium (see

Figure 20.4), the macroscopic magnetization is given by M = 1
V

P
V mi = �mH, which

leads to the relation

B = µ0(H+ �mH) = µ0(1 + �m| {z }
µr

)H = µH, (20.9)

With these changes, the original Maxwell equations remain the same, but now D = ✏E

and B = µH, so we make the corresponding changes ✏0 ! ✏ = ✏0✏r and µ0 ! µ = µ0µr

everywhere. For example, the speed of light in a material medium then becomes v =
1p
µ✏ =

cp
✏rµr

. If the material is non-magnetic, then µr = 1, and v = cp
✏r

= c
n , where n =

p
✏r is called the refractive index of the material. Thus light travels slower in a material

medium than in free space. Similarly, the wave impedance becomes ⌘0 ! ⌘ =
q

µ
✏ = ⌘0

n

where the right equality holds for a non-magnetic medium.

If the material medium is conductive, or can absorb the light through electronic transi-

tions, then the phenomena of absorption and corresponding attenuation of the light is

captured by introducing an imaginary component to the dielectric constant, ✏ ! ✏R+i✏I .

This leads to an imaginary component of the propagation vector k, which leads to at-

tenuation. We will see in Chapters 26 and 27 how we can calculate the absorption

coe�cients from quantum mechanics.
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Electric and magnetic field lines may cross interfaces of di↵erent material media. Then,

the Maxwell equations provide rules for tracking the magnitudes of the tangential and

perpendicular components. These boundary conditions are given by

E1t �E2t = 0,

H1t �H2t = Js ⇥ n̂,

D1n �D2n = ⇢s,

B1n �B2n = 0.

(20.10)

In words, the boundary condition relations say that the tangential component of the

electric field Et is always continuous across an interface, but the normal component is

discontinuous if there are charges at the interface. If there are no free charges at the

interface (⇢s = 0), ✏1E1n = ✏2E2n, implying the normal component of the electric field

is larger in the material with a smaller dielectric constant. This feature is used in Si

MOSFETs, where much of the electric field drops across an oxide layer rather than in the

semiconductor which has a higher dielectric constant. Similarly, the normal component

of the magnetic field is always continuous across an interface, whereas the tangential

component can change if there is a surface current flowing at the interface of the two

media.

The force in Newtons on a particle of charge q in the presence of an electric and magnetic

field is given by the Lorentz equation

F = q(E+ v ⇥B). (20.11)

Since the energy of the charged particle changes as W =
R
F · dr, the rate of change

of energy is F · v = qE · v, which is the power delivered to the charged particle by the

fields. Note that a static magnetic field cannot deliver power since v ⇥B · v = 0. Thus

a time-independent magnetic field cannot change the energy of a charged particle. But

a time-dependent magnetic field creates an electric field, which can.

When a point charge is accelerated with acceleration a, it radiates electromagnetic waves.

Radiation travels at the speed of light. So the electric and magnetic fields at a point far

from the charge are determined by a retarded response. Using retarded potentials, or

more intuitive approaches5, one obtains that the radiated electric field goes as

5An intuitive picture for radiation by an accelerating charge was first given by J. J. Thomson, the
discoverer of the electron.
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Er = (
qa

4⇡✏0c2
)
sin ✓

r
✓̂, (20.12)

expressed in spherical coordinates with the charge at the origin, and accelerating along

the x�axis. The radiated magnetic field Hr curls in the �̂ direction and has a magnitude

|Er|/⌘0. The radiated power is obtained by the Poynting vector S = E⇥H as

S = (
µ0q2a2

16⇡2c2
)(
sin ✓

r
)2r̂, (20.13)

Note that unlike static charges or currents that fall as 1/r2 away from the source, the

radiated E and H fields fall as 1/r. If they didn’t, the net power radiated very far from

the source will go to zero since
H
S·dA ⇠ S(r)4⇡r2 ! 0. Integrating the power over the

angular coordinates results in the famous Larmor Formula for the net electromagnetic

power in Watts radiated by an accelerating charge:

P =
µ0q2a2

6⇡c
(20.14)

20.6 Need for a quantum theory of light

Classical electromagnetism contained in Maxwell’s equations can explain a remarkably

large number of experimentally observed phenomena, but not all. We discussed in the

beginning of this chapter that radiation of electromagnetic waves can be created in an

antenna, which in its most simple form is a conducting wire in which electrons are

sloshed back and forth. The collective acceleration, coupled with the Larmor formula

can explain radiation from a vast number of sources of electromagnetic radiation.

By the turn of the 20th century, improvements in spectroscopic equipment had helped

resolve what was originally thought as broadband (many frequencies !) radiation into the

purest spectral components. It was observed that di↵erent gases had di↵erent spectral

signatures. The most famous among them were the spectral features of the hydrogen

atom, then known as the hydrogen gas. There is nothing collective about hydrogen

gas, since it is not a conductor and there are not much electrons to slosh around as

a metal. The classical theory for radiation proved di�cult to apply to explain the

spectral features. Classical electromagnetism could not explain the photoelectric e↵ect,

and the spectrum of blackbody radiation either. The search for an explanation led to

the quantum theory of light, which is the subject of the next chapter.



Chapter 26

Optical Transitions in Bulk

Semiconductors

26.1 Introduction

In this chapter, we explore fundamental optical transitions in bulk 3-dimensional semi-

conductors. We approach the topic by first investigating the optical absorption spec-

trum. The spectrum will direct us to a rich range of electron state transitions a↵ected

by the electron-photon interaction. Then, we explore the most important of these tran-

sitions: interband (valence ! conduction) transitions in more detail. We derive expres-

sions for the equilibrium interband absorption coe�cient ↵0(~!) for bulk semiconduc-

tors. With the understanding of the physics of optical absorption, in the next chapter

we extend the concept to non-equilibrium situations to explain optical emission, optical

gain, inversion, and lasing conditions. The key to understanding these concepts is a

clear quantum-mechanical picture of optical transitions, and the role of non-equilibrium

conditions. We begin with the fundamental quantum-mechanical optical transitions by

recalling the electron-photon Hamiltonian.

26.2 Electron-photon matrix elements for semiconductors

In Chapter 21, we justified that the Hamiltonian

H =
1

2m0
(p̂+ eA)2 + V (r) (26.1)

198
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captures the interaction of electrons with light. We used this Hamiltonian in Chapter

25 to investigate the interaction of light with atoms, and explained the optical spectra

of atoms. We found that the spectra of atoms are typically very sharp because of

the discrete energy eigenvalues of electrons. Here, we apply the same idea to bulk

semiconductors, in which the energy eigenvalues form bands separated by energy gaps.

We recall that the electromagnetic wave enters the Hamiltonian via the magnetic vector

potential A, which is related to the electric field via

r⇥E(r, t) = � @

@t
B(r, t) !|{z}

B(r,t)=r⇥A(r,t)

E(r, t) = � @

@t
A(r, t), (26.2)

and we work in the Coulomb gauge

r ·A = 0. (26.3)

This enables the vector potential A to commute with the momentum operator p̂

[p̂,A] = 0 ! p̂ ·A = A · p̂, (26.4)

which leads to the electron-photon Hamiltonian

H = [
p̂2

2m0
+ V (r)]| {z }
Ĥ0

+
e

m0
A · p̂| {z }
W

+
e2A2

2m0| {z }
neglect

. (26.5)

We have written out the Hamiltonian in terms of the electron Hamiltonian Ĥ0, and the

‘perturbation’ term seen by the electron due to the electromagnetic wave. For an electron

in a semiconductor crystal, the potential energy term in the unperturbed Hamiltonian

is the periodic crystal potential V (r + a0) = V (r), where a0 is a lattice constant. We

neglect the perturbation term that goes as the square of the magnetic vector potential

for ‘weak’ intensities of light. This is justified when the condition |eA| << |p| ⇠ ~⇡/a0
is met; in other words, we neglect the term e2A2

2m0
w.r.t. p̂2

2m0
. The net Hamiltonian we

retain then has the electron experiencing a perturbation

Ŵ =
e

m0
A · p̂ (26.6)
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due to its interaction with light. The magnetic vector potential for an EMag wave is of

the form1

A(r, t) = êA0 cos(kop · r� !t) (26.7)

= ê
A0

2
e+ik

op

·re�i!t + ê
A0

2
e�ik

op

·re+i!t, (26.8)

where ! is the angular frequency of the EMag wave, ê is the unit vector along the electric

(and vector potential) field, and kop is the propagation wave vector of magnitude 2⇡/�.

The electron-photon interaction Hamiltonian is then given by

Ŵ (r, t) =
e

m0
A · p̂ (26.9)

= Ŵ (r)e�i!t + Ŵ+(r)e+i!t (26.10)

Ŵ (r) =
eA0eikop

·r

2m0
ê · p̂ (26.11)

Ŵ+(r) =
eA0e�ik

op

·r

2m0
ê · p̂ (26.12)

The electron-photon matrix elements for bulk semiconductors are thus of the form

hkc|Ŵ |kvi and hkc|Ŵ+|kvi, where the unperturbed electron states |kci and |kvi are solu-
tions of the unperturbed Hamiltonian Ĥ0 =

p̂2

2m0
+V (r). But this is precisely what we dis-

cussed in chapters 16 and 17 for semiconductors. The electron states in the valence and

conduction bands in the e↵ective mass approximation are  c(r) = hr|kci = ( e
ik

c

·r
p
V

)uc(r)

for bulk semiconductors. The term in the round bracket is a slowly varying envelope

function, and uc(r) is the periodic part of the Bloch function. The e↵ective mass ap-

proximation transforms the unperturbed electronic Hamiltonian into the much simpler

form p̂2

2m0
+ V (r) ! p̂2

2m?
c
, and the corresponding e↵ective-mass Schrodinger equation is

p̂2

2m? c(r) = (E�Ec) c(r). We will work in this e↵ective-mass theory. The advantage of

working in the e↵ective-mass theory is that the light-matter interaction matrix elements

for electrons confined in low-dimensional structures such as quantum wells, wires, or

dots follows in a simple way from the bulk results. We will need the matrix elements

shortly to explain the absorption spectra of bulk semiconductors, which we discuss next.

1This approach of treating the electron-photon interaction is semi-classical, justified for classical

electromagnetic fields when the number of photons is much larger than unity. It is semi-classical because
electrons receive the full quantum treatment, but we neglect the quantization of the electromagnetic
field, treating it as a classical infinite source or sink of energy, albeit in quantum packets of ~!. The
electromagnetic field will be quantized in Chapters 46 and beyond in this book.
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26.3 The absorption spectrum of bulk semiconductors

We learn early of the Beer-Lambert ‘law’, which states that if light of intensity I0

is incident on a material that absorbs, the intensity will decay inside the material as

I(z) = I0e�↵z. Here ↵ is the absorption coe�cient, in units of inverse length. Typically

the unit used for ↵ is cm�1. Let us consider the following experiment: take a piece of

bulk semiconductor, say GaAs or GaN, and using a tunable light source, measure ↵ as a

function of the photon energy ~!. Then we obtain the absorption spectrum ↵(~!). The
absorption spectrum of most semiconductors looks like what is shown in the schematic

Figure 26.1.
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Figure 26.1: Schematic absorption spectrum ↵(~!) of bulk semiconductors. The
insets depict various state transitions upon absorption of photons.

The inset of Figure 26.1 indicates the electron bandstructure of the bulk semiconductor,

including states corresponding to donor and acceptor dopants. The transitions between

electron states caused by photon absorption are indicated. The floor of the absorption

spectrum is due to intraband transitions caused by the absorption of low energy (⇠ few

meV) photons by free carriers. Transitions between dopant and band states are shown, in

addition to the below-bandgap excitonic transition. Such optical measurements provide

a sensitive experimental determination of dopant and excitonic energies with respect
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to the fundamental band edge energies. Photons can excite mechanical vibrations of

the bulk semiconductor crystal by creating optical phonons: the absorption peak for

this process is rather strong, and forms the basis or Raman spectroscopy. By far, the

strongest absorption occurs for interband transitions, which is the focus of this chapter.

The absorption spectrum is quantitatively defined as

↵(~!) = Number of photons absorbed per unit volume per second

Number of photons incident per unit area per second
=

R(~!)
Nph(~!)

.

(26.13)

In the next section we derive an expression for the denominator Nph(~!), and in the

following section we deal with the numerator R(~!).

26.4 The number of photons in light

Consider a monochromatic EMag wave of frequency ! and corresponding wavevector

kop = 2⇡
� n̂. For a plane wave, the magnetic vector potential is

A(r, t) = êA0 cos(kop · r� !t), (26.14)

from where the electric field is obtained by using

E(r, t) = � @

@t
A(r, t) (26.15)

= �ê!A0 sin(kop · r� !t), (26.16)

and the magnetic field intensity is

H(r, t) =
1

µ
r⇥A(r, t) (26.17)

= � 1

µ
kop ⇥ êA0 sin(kop · r� !t). (26.18)

Here we have used r⇥ (...) ⌘ �kop ⇥ (...) for plane waves, as described in Chapter 20.

Then, the energy carried by the plane wave per unit area per unit time is given by the

Poynting vector
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S(r, t) = E(r, t)⇥H(r, t) (26.19)

= kop
!A2

0

µ
sin2(kop · r� !t) (26.20)

Where we use the identity ê⇥kop⇥ê = kop. Since the frequency of typical UV-visible-IR

light is very high, we time-average the Poynting vector over a period to obtain

hS(r, t)i = !A2
0

2µ
kop, (26.21)

and its magnitude is

S = |hS(r, t)i| = !A2
0

2µ
kop =

nrc✏0!2A2
0

2
=

E2
0

2⌘
(26.22)

where µ = µ0 and nr =
p
µr✏r is the refractive index of the media, in which the speed

of light is c/nr. Also note that E0 = !A0, and ⌘ =
p
µ/✏ is the field impedance. This

relation gives us a way to find the magnitude of the vector potential A0 if we know the

power carried per unit area by the electromagnetic wave. Since energy in electromagnetic

waves is carried in quantum packets (photons) of individual energy ~!, the number of

photons that cross unit area per unit time is then given by

Nph(~!) =
S

~! =
nrc✏0!2A2

0

2~! =
E2

0

2⌘~! . (26.23)

The intensity of light is proportional to the square of the electric (or magnetic) field

amplitude, and thus the number of photons is a measure of the intensity of radiation.

Equation 26.23 provides the denominator of the expression for absorption coe�cient

Equation 26.13. The numerator term is discussed in the next section.

26.5 Photon absorption rate in bulk semiconductors

To find the rate of photon absorption in the bulk semiconductor, we apply Fermi’s golden

rule derived in Chapter 24. We first note that the numerator of Equation 26.13 has units

of number of photons absorbed per unit volume per second. Consider Figure 26.2. An

electron in the valence band state |ai absorbs a photon of energy ~! and transitions into

state |ai in the conduction band. Each such transition results in the annihilation of a
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Figure 26.2: The absorption process of a single photon by interband transition.

photon from the EMag field. The rate at which this happens is given by Fermi’s golden

rule as

1

⌧a!b
=

2⇡

~ |hb|W (r)|ai|2�[Eb � (Ea + ~!)], (26.24)

where hb|W (r)|ai is the perturbation matrix element, and the Dirac-delta function is a

statement of energy conservation in the process. The reverse process of photon emission

is also allowed, which results in the creation of a photon in the EMag field at the rate

1

⌧b!a
=

2⇡

~ |ha|W (r)|bi|2�[Ea � (Eb � ~!)], (26.25)

which must be subtracted because an emission process makes a negative contribution to

the number of photons absorbed. The above results are for the single states |ai and |bi.
A semiconductor crystal has a large number of states in the respective bands, so let’s

sum the rates for all possible transitions, and divide it by the net volume V to obtain

the absorption rate per unit volume (in s�1·cm�3). Add in the electron spin degeneracy

gs = 2 for each k state2. For the absorption process to occur, the lower state |ai has

to be occupied (probability = fa) and the higher state |bi has to be empty (probability

2Photons carry an angular momentum of ±~ depending upon their polarization. Therefore, the
conservation of angular momentum couples specific spin states. Here we are considering light with
photons of mixed polarization. Anglular momentum conservation dictates which bands can be involved
in the absorption or emission process, thus providing a way to selectively excite say the light hole, heavy
hole, or split-o↵ bands because they di↵er in their net angular momentum.
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= (1 � fb)), where f ’s are the occupation functions. The net absorption rate per unit

volume is then given by

Rabs =
2

V

X
k
a

X
k
b

2⇡

~ |Wba|2�[Eb � (Ea + ~!)]fa(1� fb), (26.26)

and the net emission rate per unit volume is

Rem =
2

V

X
k
a

X
k
b

2⇡

~ |Wab|2�[Ea � (Eb � ~!)]fb(1� fa). (26.27)

The summation runs over all valence band electron states ka and conduction band elec-

tron states kb, including those that do not meet the criteria Eb �Ea = ~!. The energy

conservation requirement is automatically taken care of by the Dirac-delta functions.

We note now that the Dirac-delta functions are the same for emission and absorption

process because �[+x] = �[+x], |Wab| = |Wba|, and fa(1 � fb) � fb(1 � fa) = fa � fb.

Therefore, the net photon absorption rate per unit volume is the di↵erence

R(~!) = Rabs �Rem =
2

V

X
k
a

X
k
b

2⇡

~ |Wab|2�[Eb � (Ea + ~!)]⇥ (fa � fb) (26.28)

To evaluate the sum over states, we must first obtain an expression for the matrix

element, which is given by the electron-photon perturbation term

Wab = hb| e

m0
A · p̂|ai. (26.29)

At this stage, we need to know the wavefunctions corresponding to the band states |ai
and bi. In the e↵ective mass approximation, the electron wavefunction = (envelope

function) ⇥ (Bloch function). The valence band state wavefunction is then

 a(r) = C(r)uv(r) =
eikv

·r
p
V| {z }

Envelope C(r)

uv(r)| {z }
Bloch

, (26.30)

and the conduction band state wavefunction is

 b(r) = C 0(r)uc(r) =
eikc

·r
p
V

uc(r). (26.31)
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Since the spatial part of the vector potential for the EMag wave is A = êA0
2 eikop

·r, we

obtain the matrix element Wab = hb| e
m0

A · p̂|ai to be

Wab =
eA0

2m0
ê · (

Z
 ?
be

ik
op

·rp̂ ad
3r) (26.32)

=
eA0

2m0
ê ·

Z
[
eikc

·r
p
V

uc(r)]
? (eikop

·rp̂)| {z }
operator

[
eikv

·r
p
V

uv(r)]d
3r (26.33)

=
eA0

2m0
ê ·

Z
[e�ik

c

·ru?c(r)] (e
ik

op

·rp)| {z }
operator

[e+ik
v

·ruv(r)]
d3r

V
(26.34)

=
eA0

2m0
ê ·

Z
[e�ik

c

·ru?c(r)](e
ik

op

·r)[e+ik
v

·r(~kvuv(r)� i~ruv(r))]
d3r

V
(26.35)

=
eA0

2m0
ê ·

Z
ei(�k

c

+k
op

+k
v

)·r[u?c(r)uv(r)](~kv)
d3r

V| {z }
forbidden

+ (26.36)

eA0

2m0
ê ·

Z
ei(�k

c

+k
op

+k
v

)·r[u?c(r)p̂uv(r)]
d3r

V| {z }
allowed

(26.37)

The first term is labeled forbidden because the integral is ⇡ ~kvhkc|kvi = 0 if we neglect

the photon momentum. This is because the states belong to di↵erent bands, and are

orthogonal. The ‘allowed’ transition matrix element is:

Wab =
eA0

2m0
ê ·

Z
V
ei(�k

c

+k
op

+k
v

)·r[u?c(r)p̂uv(r)]
d3r

V
(26.38)

=
eA0

2m0
ê ·

Z
V
ei(�k

c

+k
op

+k
v

)·r| {z }
slow

[u?c(r)p̂uv(r)]| {z }
periodic

d3r

N⌦|{z}
V

(26.39)

=
eA0

2m0
ê ·

Z
V

ei(�k
c

+k
op

+k
v

)·r

N| {z }
slow

[u?c(r)p̂uv(r)]| {z }
periodic

d3r

⌦
(26.40)

To visualize the slow and periodic parts inside the integral, refer to Figure 26.3. The

periodic term functions uc(r)p̂uc(r) repeats in every unit cell in real space of volume ⌦

of the crystal. But the slowly varying function of the form eik·r hardly changes inside a

unit cell, it changes appreciably only over many many cells. Then, we treat the slowly

varying function as constant inside a the unit cell located at Ri, but the value to change

from cell to cell. Then, the integral decomposes to
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origin

unit cells
in real space

vol:

Figure 26.3: Explanation of the decomposition of the optical matrix element. Because
the matrix element consists of a product of a plane wave part that varies slowly over
unit cells, and a part that is periodic in unit cells, the product decomposes into a sum

and a cell-periodic integral.

Wab =
eA0

2m0
ê · [

PN
n=1 e

i(�k
c

+k
op

+k
v

)·R
n

N| {z }
�
k

c

,k
v

+k

op

]

Z
⌦
[u?c(r)p̂uv(r)]

d3r

⌦| {z }
p
cv

. (26.41)

The sum runs over all unit cells in real space. Since
PN

n=1 e
i(�k

c

+k
op

+k
v

)·R
n is the sum

of the complex exponential at every unit cell site Rn, and there are a lot of them, let

us visualize this sum. Refer to Figure 26.4 to see why the sum
PN

n=1 e
i(�k

c

+k

op

+k

v

)·R
n

N is

zero for all cases except when �kc + kv + kop = 0, in which case it is evidently unity.

The complex numbers ei✓n are all on the unit circle on the complex plane, and if there

are a lot of them, they distribute uniformly around the origin. Thus, their sum tends to

have zero real and imaginary parts; further, they are divided by a large number N . But

when ✓n = 0, all the points fall at ei0 = 1 + 0i, and thus the sum is unity.

The optical matrix element is thus given by the very important result

Wab =
eA0

2m0
[�k

c

,k
v

+k
op

](ê · pcv) (26.42)
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Figure 26.4: The sum of complex exponentials of the form ei✓n . If the sum is over
a large number of phases, the sum

P
n

ei✓n is zero, unless ✓
n

= 0, in which caseP
n

ei✓n = N . This statement is captured in
P

n

ei✓n = N�
✓n,0.

Note that the Kronecker-delta function ensures momentum conservation because ~kv +

~kop = ~kc. With this form of the optical matrix element, the net absorption rate from

equation 26.28 becomes

R(~!) = (
eA0

2m0
)2

2

V

X
k
c

X
k
v

2⇡

~ |ê·pcv|2�2k
c

,k
v

+k
op

�[Ec(kc)�(Ev(kv)+~!)]⇥[fv(kv)�fc(kc)]

(26.43)

We note that the square of the Kronecker-delta function is the same as the Kronecker-

delta �2k
c

,k
v

+k
op

= �k
c

,k
v

+k
op

. We also note at this point that |kc|, |kv| >> kop. This

is because the band-edge states occur around reciprocal lattice vectors 2⇡/a0, and the

lattice constants a0 << �, the wavelength of light. This is the rationale behind the

commonly stated fact: direct optical transitions are vertical in E(k) diagrams. Using the

Kronecker delta function to reduce the summation over k states assuming kc = kv = k,

and kop ⇡ 0, and taking the term ê · pcv out of the sum because it does not depend on

k, we obtain the net absorption rate per unit volume to be given by the following form,

which actually holds also for lower-dimensional structures such as quantum wells, wires,

or dots:

R(~!) = 2⇡

~ (
eA0

2m0
)2|ê · pcv|2

2

V

X
k

�[Ec(k)� (Ev(k) + ~!)]⇥ [fv(k)� fc(k)] (26.44)
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26.6 The Equilibrium Absorption Coe�cient ↵0(~!)

We are now ready to evaluate the absorption coe�cient. Using the expression for R(~!)
with the photon flux Nph(~!) from Equation 26.23, the expression for the absorption

coe�cient from Equation 26.13 becomes

↵(~!) = (
⇡e2

nrc✏0m2
0!| {z }

C0

)|ê · pcv|2
2

V

X
k

�[Ec(k)� (Ev(k) + ~!)]⇥ [fv(k)� fc(k)]. (26.45)

Notice that the absorption coe�cient thus formulated becomes independent of the in-

tensity of the incident photon radiation I / A2
0 because both Nph(~!) / A2

0 and

R(~!) / A2
0, and the A2

0 factor thus cancels in the ratio. This is a signature of a

linear process - i.e., the linear absorption coe�cient of the semiconductor is a property

of the semiconductor alone, and does not dependent on the excitation intensity. With

the coe�cient C0 = ⇡e2

nrc✏0m2
0!

we re-write the absorption coe�cient again as the follow-

ing compact expression which will be used also for lower-dimensional structures such as

quantum wells, wires, or dots in chapter 27:

↵(~!) = C0|ê · pcv|2
2

V

X
k

�[Ec(k)� (Ev(k) + ~!)]⇥ [fv(k)� fc(k)] (26.46)

To evaluate the k�sum, we need to identify the occupation functions fv(k) and fc(k). If

the semiconductor is in equilibrium, there is one Fermi level EF , and the occupation is

given by the Fermi-Dirac function f(E) = (1 + exp [(E � EF )/kBT ])�1 at temperature

T . When the semiconductor is pushed to non-equilibrium by either optical excitation or

electrical injection of excess carriers, the occupation functions are conveniently modeled

by retaining the Fermi-Dirac form. But the single Fermi-energy EF splits to two quasi-

Fermi levels: one for electrons in the conduction band Fc, and the other for electrons in

the valence band Fv. The occupation functions are then given by

fv(k) =
1

1 + exp (Ev(k)�Fv

kT )
(26.47)

fc(k) =
1

1 + exp (Ec(k)�Fc

kT )
(26.48)
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We will consider non-equilibrium conditions in the next chapter. Under thermal equi-

librium, Fc = Fv = EF , and there is only one Fermi level3. For an undoped semicon-

ductor, EF locates close to the middle of the bandgap. Then, as T ! 0 K, fv(k) ! 1

and fc(k) ! 0. Actually, these conditions hold fine even at room temperature for wide-

bandgap semiconductors with little error. Converting the sum to an integral using the

usual prescription, we get the equilibrium absorption coe�cient to be

↵0(~!) = C0|ê · pcv|2
2

V
⇥
Z
k

d3k
(2⇡)3

V

�[Ec(k)� (Ev(k) + ~!)] (26.49)

Note that the volume term V cancels.

3D (bulk) semiconductor

Figure 26.5: Definition of various energies, and the equilibrium absorption spectrum
of bulk (3D) semiconductors ↵0(~!).

From Figure 26.5, the optical transition can occur only for k states that satisfy

Ec(k) = Eg +
~2k2
2m?

e
(26.50)

Ev(k) = �~2k2
2m?

h

(26.51)

Ec(k)� Ev(k) = Eg +
~2k2
2m?

r
(26.52)

1

m?
r
=

1

m?
e
+

1

m?
h

(26.53)

3When photons are incident on the semiconductor, it is by definition not in equilibrium and Fc 6= Fv.
But we assume that the intensity of the EMag wave is low enough to ensure that Fc ⇡ Fv ⇡ EF .
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Using spherical coordinates in the 3D k�space, d3k = k2 sin ✓dkd✓d�, we convert the

variables from wavevector to energy. Assuming E = ~2k2
2m?

r
, we break up k2 sin ✓dkd✓d�

into three parts: k2 ·dk = (2m
?
r

~2 )E · 12(
2m?

r
~2 )

1
2 dEp

E
= 1

2(
2m?

r
~2 )

3
2

p
EdE, the second part being

sin ✓d✓ and the third part d�. When we integrate over all k�space, the angular parts

evaluate to
R ⇡
0 sin ✓d✓ = 2 and

R 2⇡
0 d� = 2⇡.

The absorption coe�cient then becomes

↵0(~!) = C0|ê ·pcv|2
2

(2⇡)3
·(2⇡) ·(2) · 1

2
(
2m?

r

~2 )
3
2

Z 1

0
dE

p
E ⇥ �[E � (~! � Eg)]| {z }p

~!�Eg

(26.54)

which reduces to

↵0(~!) = C0|ê · pcv|2
2

(2⇡)2
(
2m?

r

~2 )
3
2
p
~! � Eg| {z }

⇢r(~!�Eg)

(26.55)

where we have defined the joint optical density of states function for bulk 3D semicon-

ductors as

⇢r(u) =
gs

(2⇡)2
· (2m

?
r

~2 )
3
2 ·

p
u (26.56)

Figure 26.5 shows the equilibrium absorption spectrum ↵0(~!) of a bulk 3D semiconduc-

tor. Using typical values of e↵ective masses and material constants, it may be verified

that the absorption coe�cient for GaN for example are of the order of ⇠ 105 cm�1, as

indicated in Fig 26.1 at the beginning of this chapter. The absorption coe�cient is zero

for photon energies below the bandgap of the semiconductor, as is intuitively expected.

Instead of leaving the expression for the absorption coe�cient in terms of the unphysical

parameter C0, we use the fundamental Rydberg energy R1 = e2

4⇡✏0(2aB) , the Bohr radius

aB = ~
m0c↵

, and the fine structure constant ↵ = e2

4⇡✏0~c to write the absorption coe�cient

as

↵0(~!) = (
4⇡2↵

nr
) · (R1a2B) · (

2|ê·p
cv

|2
m0

~! ) · ⇢r(~! � Eg) (26.57)
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where we have split o↵ the dimensionless term 2|ê ·pcv|2/m0~!. Note that as discussed

in chapter 14, the rough order of 2|ê · pcv|2/m0 ⇡ 20 eV for most bulk semiconductors.

The coe�cients decompose to reveal a proportionality to the fine-structure constant.

The term R1a2B has units eV.cm2, and the reduced density of states is in 1/eV.cm3,

which leads to the net units cm�1. This general form of the equilibrium absorption

coe�cient holds even for low-dimensional structures with the suitable DOS ⇢r(~!�E
0
g),

where E
0
g accounts for ground state quantization shifts in the bandgap. Many interesting

e↵ects happen when the semiconductor is pushed out of equilibrium: it is the subject of

the next chapter.

Debdeep Jena: www.nd.edu/⇠djena
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