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Suggested Further Reading

1. Quantum Processes, Systems, and Information, by Schumacher and Westmoreland,
Cambridge University Press (2010). This is an excellent book, and should be your first
choice for additional material. It has everything up to many-body quantum mechanics.

2. Quantum Information and Quantum Computation, by Nielsen and Chuang, Cam-
bridge University Press (2000). This is the current standard work on quantum information
theory. It has a comprehensive introduction to quantum mechanics along the lines treated
here, but in more depth. The book is from 2000, which means that several important recent
topics are not covered.

3. Introductory Quantum Optics, by Gerry and Knight, Cambridge University Press (2005).
This is a very accessible introduction to the quantum theory of light.

4. Quantum Field Theory, by Lewis Ryder, Cambridge University Press (1996). This is a
quite advanced introduction to relativistic quantum field theory.

I would like to thank the students who have used these lecture notes in previous years and spotted
typos or errors (notably Tom Bullock). Their efforts have greatly improved the readability of these
notes.

c b a n
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1 Linear Vector Spaces and Hilbert Space
The modern version of quantum mechanics was formulated in 1932 by John von Neumann in
his famous book Mathematical Foundations of Quantum Mechanics, and it unifies Schrödingers
wave theory with the matrix mechanics of Heisenberg, Born, and Jordan. The theory is framed
in terms of linear vector spaces, so the first couple of lectures we have to remind ourselves of the
relevant mathematics.

1.1 Linear vector spaces

Consider a set of vectors, denoted by
∣∣ψ〉

,
∣∣φ〉

, etc., and the complex numbers a, b, c, etc. A linear
vector space V is a mathematical structure of vectors and numbers that obeys the following rules:

1.
∣∣ψ〉+ ∣∣φ〉= ∣∣φ〉+ ∣∣ψ〉

(commutativity),

2.
∣∣ψ〉+ (

∣∣φ〉+ ∣∣χ〉
)= (

∣∣ψ〉+ ∣∣φ〉
)+

∣∣χ〉
(associativity),

3. a(
∣∣ψ〉+ ∣∣φ〉

)= a
∣∣ψ〉+a

∣∣φ〉
(linearity),

4. (a+b)
∣∣ψ〉= a

∣∣ψ〉+b
∣∣ψ〉

(linearity),

5. a(b
∣∣φ〉

)= (ab)
∣∣φ〉

.

There is also a null vector 0 such that
∣∣ψ〉+0 =

∣∣ψ〉
, and for every

∣∣ψ〉
there is a vector

∣∣φ〉
such

that
∣∣ψ〉+ ∣∣φ〉= 0.

For each vector
∣∣φ〉

there is a dual vector
〈
φ

∣∣, and the set of dual vectors also form a linear
vector space V ∗. There is an inner product between vectors from V and V ∗ denoted by 〈ψ|φ〉. The
inner product has the following properties:

1. 〈ψ|φ〉 = 〈φ|ψ〉∗,

2. 〈ψ|ψ〉 ≥ 0,

3. 〈ψ|ψ〉 = 0 ⇔
∣∣ψ〉= 0,

4.
∣∣ψ〉= c1

∣∣ψ1
〉+ c2

∣∣ψ2
〉 ⇒ 〈φ|ψ〉 = c1〈φ|ψ1〉+ c2〈φ|ψ2〉,

5. ∥φ∥≡√〈φ|φ〉 is the norm of
∣∣φ〉

.

If ∥φ∥= 1, the vector
∣∣φ〉

is a unit vector. The set of unit vectors {eiϕ ∣∣ψ〉
} with ϕ ∈ [0,2π) form a

so-called ray in the linear vector space. A linear vector space that has a norm ∥.∥ (there are many
different ways we can define a norm) is called a Hilbert space. We will always assume that the
linear vector spaces are Hilbert spaces.

For linear vector spaces with an inner product we can derive the Cauchy-Schwarz inequality,
also known as the Schwarz inequality:

|〈φ|ψ〉|2 ≤ 〈ψ|ψ〉〈φ|φ〉 . (1.1)

This is a very important relation, since it requires only the inner product structure. Relations that
are based on this inequality, such as the Heisenberg uncertainty relation between observables,
therefore have a very general validity.
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If two vectors have an inner product equal to zero, then these vectors are called orthogonal.
This is the definition of orthogonality. When these vectors are also unit vectors, they are called
orthonormal. A set of vectors

∣∣φ1
〉
,
∣∣φ2

〉
,. . .

∣∣φN
〉

are linearly independent if∑
j

a j
∣∣φ j

〉= 0 (1.2)

implies that all a j = 0. The maximum number of linearly independent vectors in V is the di-
mension of V . Orthonormal vectors form a complete orthonormal basis for V if any vector can be
written as

∣∣ψ〉= N∑
k=1

ck
∣∣φk

〉
, (1.3)

and 〈φ j|φk〉 = δ jk. We can take the inner product of
∣∣ψ〉

with any of the basis vectors
∣∣φ j

〉
to obtain

〈φ j|ψ〉 =
N∑

k=1
ck〈φ j|φk〉 =

N∑
k=1

ckδ jk = c j . (1.4)

Substitute this back into the expansion of
∣∣ψ〉

, and we find

∣∣ψ〉= N∑
k=1

∣∣φk
〉〈φk|ψ〉 . (1.5)

Therefore
∑

k
∣∣φk

〉〈
φk

∣∣ must act like the identity. In fact, this gives us an important clue that
operators of states must take the general form of sums over objects like

∣∣φ〉〈
χ
∣∣.

1.2 Operators in Hilbert space

The objects
∣∣ψ〉

are vectors in a Hilbert space. We can imagine applying rotations of the vectors,
rescaling, permutations of vectors in a basis, and so on. These are described mathematically as
operators, and we denote them by capital letters A, B, C, etc. In general we write

A
∣∣φ〉= ∣∣ψ〉

, (1.6)

for some
∣∣φ〉

,
∣∣ψ〉 ∈ V . It is important to remember that operators act on all the vectors in Hilbert

space. Let {
∣∣φ j

〉
} j be an orthonormal basis. We can calculate the inner product between the

vectors
∣∣φ j

〉
and A

∣∣φk
〉
:

〈φ j|
(
A

∣∣φk
〉)= 〈φ j|A|φk〉 ≡ A jk . (1.7)

The two indices indicate that operators are matrices.
As an example, consider two vectors, written as two-dimensional column vectors

∣∣φ1
〉= (

1
0

)
,

∣∣φ2
〉= (

0
1

)
, (1.8)

and suppose that

A =
(
2 0
0 3

)
. (1.9)
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We calculate

A11 =
〈
φ1

∣∣ A
∣∣φ1

〉= (
1,0

) ·(2 0
0 3

)(
1
0

)
= (

1,0
) ·(2

0

)
= 2 . (1.10)

Similarly, we can calculate that A22 = 3, and A12 = A21 = 0 (check this). We therefore have that
A

∣∣φ1
〉= 2

∣∣φ1
〉

and A
∣∣φ2

〉= 3
∣∣φ2

〉
.

Complex numbers a have complex conjugates a∗ and vectors
∣∣ψ〉

have dual vectors
〈
φ

∣∣. Is
there an equivalent for operators? The answer is yes, and it is called the adjoint, or Hermitian
conjugate, and is denoted by a dagger †. The natural way to define it is according to the rule〈

ψ
∣∣ A

∣∣φ〉∗ = 〈
φ

∣∣ A† ∣∣ψ〉
, (1.11)

for any
∣∣φ〉

and
∣∣ψ〉

. In matrix notation, and given an orthonormal basis {
∣∣φ j

〉
} j, this becomes〈

φ j
∣∣ A

∣∣φk
〉∗ = A∗

jk =
〈
φk

∣∣ A† ∣∣φ j
〉= A†

k j . (1.12)

So the matrix representation of the adjoint A† is the transpose and the complex conjugate of the
matrix A, as given by (A†) jk = A∗

k j. The adjoint has the following properties:

1. (cA)† = c∗A†,

2. (AB)† = B†A†,

3. (
∣∣φ〉

)† = 〈
φ

∣∣.
Note the order of the operators in 2: AB is generally not the same as BA. The difference between
the two is called the commutator, denoted by

[A,B]= AB−BA . (1.13)

For example, we can choose

A =
(
0 1
1 0

)
and B =

(
1 0
0 −1

)
, (1.14)

which leads to

[A,B]=
(
0 1
1 0

)(
1 0
0 −1

)
−

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 −1
1 0

)
−

(
0 1
−1 0

)
=

(
0 −2
2 0

)
6= 0 . (1.15)

Many, but not all, operators have an inverse. Let A
∣∣φ〉= ∣∣ψ〉

and B
∣∣ψ〉= ∣∣φ〉

. Then we have

BA
∣∣φ〉= ∣∣φ〉

and AB
∣∣ψ〉= ∣∣ψ〉

. (1.16)

If Eq. (1.16) holds true for all
∣∣φ〉

and
∣∣ψ〉

, then B is the inverse of A, and we write B = A−1. An
operator that has an inverse is called invertible. Another important property that an operator
may possess is positivity. An operator is positive if〈

φ
∣∣ A

∣∣φ〉≥ 0 for all
∣∣φ〉

. (1.17)

We also write this as A ≥ 0.
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From the matrix representation of operators you can easily see that the operators themselves
form a linear vector space:

1. A+B = B+ A,

2. A+ (B+C)= (A+B)+C,

3. a(A+B)= aA+aB,

4. (a+b)A = aA+bA,

5. a(bA)= (ab)A.

We can also define the operator norm ∥A∥ according to

∥A∥=
√

Tr(A†A)≡
√∑

i j
A∗

i j A ji , (1.18)

which means that the linear vector space of operators is again a Hilbert space. The symbol Tr(.)
denotes the trace of an operator, and we will return to this special operator property later in this
section.

Every operator has a set of vectors for which

A
∣∣a j

〉= a j
∣∣a j

〉
, with a j ∈C . (1.19)

This is called the eigenvalue equation (or eigenequation) for A, and the vectors
∣∣a j

〉
are the eigen-

vectors. The complex numbers a j are eigenvalues. In the basis of eigenvectors, the matrix repre-
sentation of A becomes

A =


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · aN

 (1.20)

When some of the a js are the same, we speak of degenerate eigenvalues. When there are n iden-
tical eigenvalues, we have n-fold degeneracy. The eigenvectors corresponding to this eigenvalue
then span an n-dimensional subspace of the vector space. We will return to subspaces shortly,
when we introduce projection operators.

For any orthonormal basis {
∣∣φ j

〉
} j we have〈

φ j
∣∣ A

∣∣φk
〉= A jk , (1.21)

which can be written in the form

A =
∑
jk

A jk
∣∣φ j

〉〈
φk

∣∣ . (1.22)

For the special case where
∣∣φ j

〉= ∣∣a j
〉

this reduces to

A =
∑

j
a j

∣∣a j
〉〈

a j
∣∣ . (1.23)

This is the spectral decomposition of A. When all a j are equal, we have complete degeneracy over
the full vector space, and the operator becomes proportional (up to a factor a j) to the identity I.
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Note that this is independent of the basis {
∣∣a j

〉
}. As a consequence, for any orthonormal basis

{
∣∣φ j

〉
} we have

I=
∑

j

∣∣φ j
〉〈
φ j

∣∣ . (1.24)

This is the completeness relation, and we will use this many times in our calculations.

Lemma: If two non-degenerate operators commute ([A,B] = 0), then they have a common set of
eigenvectors.

Proof: Let A =∑
k ak |ak〉〈ak| and B =∑

jk B jk
∣∣a j

〉〈ak|. We can choose this without loss of gener-
ality: we write both operators in the eigenbasis of A. Furthermore, [A,B] = 0 implies that
AB = BA.

AB =
∑
klm

akBlm |ak〉〈ak|al〉〈am| =
∑
lm

alBlm |al〉〈am|

BA =
∑
klm

akBlm |al〉〈am|ak〉〈ak| =
∑
lm

amBlm |al〉〈am| (1.25)

Therefore

[A,B]=
∑
lm

(al −am)Blm |al〉〈am| = 0 . (1.26)

If al 6= am for l 6= m, then Blm = 0, and Blm ∝ δlm. Therefore {
∣∣a j

〉
} is an eigenbasis for B. ä

The proof of the converse is left as an exercise. It turns out that this is also true when A and/or
B are degenerate.

1.3 Hermitian and unitary operators

Next, we will consider two special types of operators, namely Hermitian and unitary operators.
An operator A is Hermitian if and only if A† = A.

Lemma: An operator is Hermitian if and only if it has real eigenvalues: A† = A ⇔ a j ∈R.

Proof: The eigenvalue equation of A implies that

A
∣∣a j

〉= a j
∣∣a j

〉 ⇒ 〈
a j

∣∣ A† = a∗
j
〈
a j

∣∣ , (1.27)

which means that
〈
a j

∣∣ A
∣∣a j

〉 = a j and
〈
a j

∣∣ A†
∣∣a j

〉 = a∗
j . It is now straightforward to show

that A = A† implies a j = a∗
j , or a j ∈R. Conversely, a j ∈R implies a j = a∗

j , and〈
a j

∣∣ A
∣∣a j

〉= 〈
a j

∣∣ A† ∣∣a j
〉

. (1.28)

Let
∣∣ψ〉=∑

k ck |ak〉. Then〈
ψ

∣∣ A
∣∣ψ〉=∑

j
|c j|2

〈
a j

∣∣ A
∣∣a j

〉=∑
j
|c j|2

〈
a j

∣∣ A† ∣∣a j
〉=∑

j
|c j|2

〈
a j

∣∣ A† ∣∣a j
〉

= 〈
ψ

∣∣ A† ∣∣ψ〉
(1.29)

for all
∣∣ψ〉

, and therefore A = A†. ä
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Next, we construct the exponent of an operator A according to U = exp(icA). We have included
the complex number c for completeness. At first sight, you may wonder what it means to take the
exponent of an operator. Recall, however, that the exponent has a power expansion:

U = exp(icA)=
∞∑

n=0

(ic)n

n!
An . (1.30)

The nth power of an operator is straightforward: just multiply A n times with itself. The expres-
sion in Eq. (1.30) is then well defined, and the exponent is taken as an abbreviation of the power
expansion. In general, we can construct any function of operators, as long as we can define the
function in terms of a power expansion:

f (A)=
∞∑

n=0
fn An . (1.31)

This can also be extended to functions of multiple operators, but now we have to be very careful
in the case where these operators do not commute. Familiar rules for combining normal functions
no longer apply (see exercise 4b).

We can construct the adjoint of the operator U according to

U† =
(

∞∑
n=0

(ic)n

n!
An

)†

=
∞∑

n=0

(−ic∗)n

n!
A†n = exp(−ic∗A†) . (1.32)

In the special case where A = A† and c is real, we calculate

UU† = exp(icA)exp(−ic∗A†)= exp(icA)exp(−icA)= exp[ic(A− A)]= I , (1.33)

since A commutes with itself. Similarly, U†U = I. Therefore, U† =U−1, and an operator with this
property is called unitary. Each unitary operator can be generated by a Hermitian (self-adjoint)
operator A and a real number c. A is called the generator of U . We often write U =UA(c). Unitary
operators are basis transformations.

1.4 Projection operators and tensor products

We can combine two linear vector spaces U and V into a new linear vector space W =U ⊕V . The
symbol ⊕ is called the direct sum. The dimension of W is the sum of the dimensions of U and V :

dimW = dimU +dimV . (1.34)

A vector in W can be written as

|Ψ〉W =
∣∣ψ〉

U +
∣∣φ〉

V , (1.35)

where
∣∣ψ〉

U and
∣∣φ〉

V are typically not normalized (i.e., they are not unit vectors). The spaces U

and V are so-called subspaces of W .
As an example, consider the three-dimensional Euclidean space spanned by the Cartesian

axes x, y, and z. The xy-plane is a two-dimensional subspace of the full space, and the z-axis is
a one-dimensional subspace. Any three-dimensional form can be projected onto the xy-plane by
setting the z component to zero. Similarly, we can project onto the z-axis by setting the x and y
coordinates to zero. A projector is therefore associated with a subspace. It acts on a vector in the
full space, and forces all components to zero, except those of the subspace it projects onto.
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The formal definition of a projector PU on U is given by

PU |Ψ〉W =
∣∣ψ〉

U . (1.36)

This is equivalent to requiring that P2
U

= PU , or PU is idempotent. One-dimensional projectors
can be written as

P j =
∣∣φ j

〉〈
φ j

∣∣ . (1.37)

Two projectors P1 and P2 are orthogonal is P1P2 = 0. If P1P2 = 0, then P1+P2 is another projector:

(P1 +P2)2 = P2
1 +P1P2 +P2P1 +P2

2 = P2
1 +P2

2 = P1 +P2 . (1.38)

When P1 and P2 commute but are non-orthogonal (i.e., they overlap), the general projector onto
their combined subspace is

P1+2 = P1 +P2 −P1P2 . (1.39)

(Prove this.) The orthocomplement of P is I−P, which is also a projector:

P(I−P)= P −P2 = P −P = 0 and (I−P)2 = I−2P +P2 = I−P . (1.40)

Another way to combine two vector spaces U and V is via the tensor product: W = U ⊗ V ,
where the symbol ⊗ is called the direct product or tensor product. The dimension of the space W

is then

dimW = dimU ·dimV . (1.41)

Let
∣∣ψ〉 ∈U and

∣∣φ〉 ∈ V . Then ∣∣ψ〉⊗ ∣∣φ〉 ∈W =U ⊗V . (1.42)

If
∣∣ψ〉=∑

j a j
∣∣ψ j

〉
and

∣∣φ〉=∑
j b j

∣∣φ j
〉
, then the tensor product of these vectors can be written as∣∣ψ〉⊗ ∣∣φ〉=∑

jk
a jbk

∣∣ψ j
〉⊗ ∣∣φk

〉=∑
jk

a jbk
∣∣ψ j

〉∣∣φk
〉=∑

jk
a jbk

∣∣ψ j,φk
〉

, (1.43)

where we introduced convenient abbreviations for the tensor product notation. The inner product
of two vectors that are tensor products is

(
〈
ψ1

∣∣⊗〈
φ1

∣∣)(∣∣ψ2
〉⊗ ∣∣φ2

〉
)= 〈ψ1|ψ2〉〈φ1|φ2〉 . (1.44)

Operators also obey the tensor product structure, with

(A⊗B)
∣∣ψ〉⊗ ∣∣φ〉= (A

∣∣ψ〉
)⊗ (B

∣∣φ〉
) , (1.45)

and

(A⊗B)(C⊗D)
∣∣ψ〉⊗ ∣∣φ〉= (AC

∣∣ψ〉
)⊗ (BD

∣∣φ〉
) . (1.46)

General rules for tensor products of operators are

1. A⊗0= 0 and 0⊗B = 0,
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2. I⊗ I= I,

3. (A1 + A2)⊗B = A1 ⊗B+ A2 ⊗B,

4. aA⊗bB = (ab)A⊗B,

5. (A⊗B)−1 = A−1 ⊗B−1,

6. (A⊗B)† = A† ⊗B†.

Note that the last rule preserves the order of the operators. In other words, operators always act
on their own space. Often, it is understood implicitly which operator acts on which subspace, and
we will write A⊗ I= A and I⊗B = B. Alternatively, we can add subscripts to the operator, e.g., AU

and BV .
As a practical example, consider two two-dimensional operators

A =
(
A11 A12
A21 A22

)
and B =

(
B11 B12
B21 B22

)
(1.47)

with respect to some orthonormal bases {|a1〉 , |a2〉} and {|b1〉 , |b2〉} for A and B, respectively (not
necessarily eigenbases). The question is now: what is the matrix representation of A⊗B? Since
the dimension of the new vector space is the product of the dimensions of the two vector spaces,
we have dimW = 2 ·2= 4. A natural basis for A⊗B is then given by {

∣∣a j,bk
〉
} jk, with j,k = 1,2, or

|a1〉 |b1〉 , |a1〉 |b2〉 , |a2〉 |b1〉 , |a2〉 |b2〉 . (1.48)

We can construct the matrix representation of A⊗B by applying this operator to the basis vectors
in Eq. (1.48), using

A
∣∣a j

〉= A1 j |a1〉+ A2 j |a2〉 and B |ak〉 = B1k |b1〉+B2k |b2〉 , (1.49)

which leads to

A⊗B |a1,b1〉 = (A11 |a1〉+ A21 |a2〉)(B11 |b1〉+B21 |b2〉)
A⊗B |a1,b2〉 = (A11 |a1〉+ A21 |a2〉)(B12 |b1〉+B22 |b2〉)
A⊗B |a2,b1〉 = (A12 |a1〉+ A22 |a2〉)(B11 |b1〉+B21 |b2〉)
A⊗B |a2,b2〉 = (A12 |a1〉+ A22 |a2〉)(B12 |b1〉+B22 |b2〉) (1.50)

Looking at the first line of Eq. (1.50), the basis vector |a1,b1〉 gets mapped to all basis vectors:

A⊗B |a1,b1〉 = A11B11 |a1,b1〉+ A11B21 |a1,b2〉+ A21B11 |a2,b1〉+ A21B21 |a2,b2〉 . (1.51)

Combining this into matrix form leads to

A⊗B =


A11B11 A11B12 A12B11 A12B12
A11B21 A11B22 A12B21 A12B22
A21B11 A21B12 A22B11 A22B12
A21B21 A21B22 A22B21 A22B22

=
(
A11B A12B
A21B A22B

)
. (1.52)

Recall that this is dependent on the basis that we have chosen. In particular, A ⊗B may be
diagonalized in some other basis.
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1.5 The trace and determinant of an operator

There are two special functions of operators that play a key role in the theory of linear vector
spaces. They are the trace and the determinant of an operator, denoted by Tr(A) and det(A),
respectively. While the trace and determinant are most conveniently evaluated in matrix repre-
sentation, they are independent of the chosen basis.

When we defined the norm of an operator, we introduced the trace. It is evaluated by adding
the diagonal elements of the matrix representation of the operator:

Tr(A)=
∑

j

〈
φ j

∣∣ A
∣∣φ j

〉
, (1.53)

where {
∣∣φ j

〉
} j is any orthonormal basis. This independence means that the trace is an invariant

property of the operator. Moreover, the trace has the following important properties:

1. If A = A†, then Tr(A) is real,

2. Tr(aA)= aTr(A),

3. Tr(A+B)=Tr(A)+Tr(B),

4. Tr(AB)=Tr(BA) (the "cyclic property").

The first property follows immediately when we evaluate the trace in the diagonal basis, where it
becomes a sum over real eigenvalues. The second and third properties convey the linearity of the
trace. The fourth property is extremely useful, and can be shown as follows:

Tr(AB)=
∑

j

〈
φ j

∣∣ AB
∣∣φ j

〉=∑
jk

〈
φ j

∣∣ A
∣∣ψk

〉〈
ψk

∣∣B
∣∣φ j

〉
=

∑
jk

〈
ψk

∣∣B
∣∣φ j

〉〈
φ j

∣∣ A
∣∣ψk

〉=∑
k

〈
ψk

∣∣BA
∣∣ψk

〉
=Tr(BA) . (1.54)

This derivation also demonstrates the usefulness of inserting a resolution of the identity in strate-
gic places. In the cyclic property, the operators A and B may be products of two operators, which
then leads to

Tr(ABC)=Tr(BCA)=Tr(CAB) . (1.55)

Any cyclic (even) permutation of operators under a trace gives rise to the same value of the trace
as the original operator ordering.

Finally, we construct the partial trace of an operator that lives on a tensor product space.
Suppose that A⊗B is an operator in the Hilbert space H1 ⊗H2. We can trace out Hilbert space
H1, denoted by Tr1(.):

Tr1(A⊗B)=Tr(A)B , or equivalently Tr1(A1B2)=Tr(A1)B2 . (1.56)

Taking the partial trace has the effect of removing the entire Hilbert space H1 from the de-
scription. It reduces the total vector space. The partial trace always carries an index, which
determines which space is traced over.

The determinant of a 2×2 matrix is given by

det(A)= det
(
A11 A12
A21 A22

)
= A11A22 − A12A21 . (1.57)
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The determinant of higher-dimensional matrices can be defined recursively as follows: The top-
left element of an n×n matrix defines an (n−1)× (n−1) matrix by removing the top row and the
left column. Similarly, any other element in the left column defines an (n−1)× (n−1) matrix by
removing the left column and the row of the element we chose. The determinant of the n×n matrix
is then given by the top-left element times the determinant of the remaining (n−1)×(n−1) matrix,
minus the product of the second element down in the left column and the remaining (n−1)×(n−1)
matrix, plus the third element times the remaining matrix, etc.

The determinant of the product of matrices is equal to the product of the determinants of the
matrices:

det(AB)= det(A)det(B) . (1.58)

Moreover, if A is an invertible matrix, then we have

det
(
A−1)= det(A)−1 . (1.59)

This leads to an important relation between similar matrices A = X−1BX :

det(A)= det
(
X−1BX

)= det
(
X−1)det(B)det(X )

= det(X )−1 det(B)det(X )= det(B) . (1.60)

In particular, this means that the determinant is independent of the basis in which the matrix is
written, which means that it is an intrinsic property of the operator associated with that matrix.

Finally, here’s a fun relation between the trace and the determinant of an operator:

det[exp(A)]= exp[Tr(A)] . (1.61)

Exercises

1. Vectors and matrices:

(a) Are the following three vectors linearly dependent or independent: a = (2,3,−1), b =
(0,1,2), and c = (0,0,−5)?

(b) Consider the vectors
∣∣ψ〉 = 3i

∣∣φ1
〉− 7i

∣∣φ2
〉

and
∣∣χ〉 =

∣∣φ1
〉+ 2

∣∣φ2
〉
, with {

∣∣φi
〉
} an or-

thonormal basis. Calculate the inner product between
∣∣ψ〉

and
∣∣χ〉

, and show that they
satisfy the Cauchy-Schwarz inequality.

(c) Consider the two matrices

A =
0 i 2

0 1 0
1 0 0

 and B =
2 i 0

3 1 5
0 −i −2

 . (1.62)

Calculate A−1B and BA−1. Are they equal?

(d) Calculate A⊗B and B⊗ A, where A =
(
0 1
1 0

)
and B =

(
1 0
0 −1

)
.

2. Operators:

(a) Which of these operators are Hermitian: A+ A†, i(A+ A†), i(A− A†), and A†A?

(b) Prove that a shared eigenbasis for two operators A and B implies that [A,B]= 0.
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(c) Let U be a transformation matrix that maps one complete orthonormal basis to an-
other. Show that U is unitary.

(d) How many real parameters completely determine a d×d unitary matrix?

3. Properties of the trace and the determinant:

(a) Calculate the trace and the determinant of the matrices A and B in exercise 1c.

(b) Show that the expectation value of A can be written as Tr(
∣∣ψ〉〈

ψ
∣∣ A).

(c) Prove that the trace is independent of the basis.

4. Commutator identities.

(a) Let F(t)= eAteBt. Calculate dF/dt and use [eAt,B]= (eAtBe−At−B)eAt to simplify your
result.

(b) Let G(t)= eAt+Bt+ f (t)H . Show by calculating dG/dt, and setting dF/dt = dG/dt at t = 1,
that the following operator identity

eA eB = eA+B+ 1
2 [A,B] , (1.63)

holds if A and B both commute with [A,B]. Hint: use the Hadamard lemma

eAtBe−At = B+ t
1!

[A,B]+ t2

2!
[A, [A,B]]+ . . . (1.64)

(c) Show that the commutator of two Hermitian operators is anti-Hermitian (A† =−A).

(d) Prove the commutator analog of the Jacobi identity

[A, [B,C]]+ [B, [C, A]]+ [C, [A,B]]= 0 . (1.65)
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2 The Postulates of Quantum Mechanics
The entire structure of quantum mechanics (including its relativistic extension) can be formulated
in terms of states and operations in Hilbert space. We need rules that map the physical quantities
such as states, observables, and measurements to the mathematical structure of vector spaces,
vectors and operators. There are several ways in which this can be done, and here we summarize
these rules in terms of five postulates.

Postulate 1: A physical system is described by a Hilbert space H , and the state of the system is
represented by a ray with norm 1 in H .

There are a number of important aspects to this postulate. First, the fact that states are rays,
rather than vectors means that an overall phase eiϕ of the state does not have any physically
observable consequences, and eiϕ ∣∣ψ〉

represents the same state as
∣∣ψ〉

. Second, the state contains
all information about the system. In particular, there are no hidden variables in this standard
formulation of quantum mechanics. Finally, the dimension of H may be infinite, which is the
case, for example, when H is the space of square-integrable functions.

As an example of this postulate, consider a two-level quantum system (a qubit). This system
can be described by two orthonormal states |0〉 and |1〉. Due to linearity of Hilbert space, the
superposition α |0〉+β |1〉 is again a state of the system if it has norm 1, or

(α∗ 〈0|+β∗ 〈1|)(α |0〉+β |1〉)= 1 or |α|2 +|β|2 = 1 . (2.1)

This is called the superposition principle: any normalised superposition of valid quantum states
is again a valid quantum state. It is a direct consequence of the linearity of the vector space, and
as we shall see later, this principle has some bizarre consequences that have been corroborated
in many experiments.

Postulate 2: Every physical observable A corresponds to a self-adjoint (Hermitian1) operator Â
whose eigenvectors form a complete basis.

We use a hat to distinguish between the observable and the operator, but usually this distinction
is not necessary. In these notes, we will use hats only when there is a danger of confusion.

As an example, take the operator X :

X |0〉 = |1〉 and X |1〉 = |0〉 . (2.2)

This operator can be interpreted as a bit flip of a qubit. In matrix notation the state vectors can
be written as

|0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
, (2.3)

which means that X is written as

X =
(
0 1
1 0

)
(2.4)

with eigenvalues ±1. The eigenstates of X are

|±〉 = |0〉± |1〉p
2

. (2.5)

These states form an orthonormal basis.
1In Hilbert spaces of infinite dimensionality, there are subtle differences between self-adjoint and Hermitian

operators. We ignore these subtleties here, because we will be mostly dealing with finite-dimensional spaces.
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Postulate 3: The eigenvalues of A are the possible measurement outcomes, and the probability
of finding the outcome a j in a measurement is given by the Born rule:

p(a j)= |〈a j|ψ〉|2 , (2.6)

where
∣∣ψ〉

is the state of the system, and
∣∣a j

〉
is the eigenvector associated with the eigen-

value a j via A
∣∣a j

〉= a j
∣∣a j

〉
. If a j is m-fold degenerate, then

p(a j)=
m∑

l=1
|〈a(l)

j |ψ〉|2 , (2.7)

where the
∣∣∣a(l)

j

〉
span the m-fold degenerate subspace.

The expectation value of A with respect to the state of the system
∣∣ψ〉

is denoted by 〈A〉, and
evaluated as

〈A〉 = 〈
ψ

∣∣ A
∣∣ψ〉= 〈

ψ
∣∣(∑

j
a j

∣∣a j
〉〈

a j
∣∣)∣∣ψ〉=∑

j
p(a j)a j . (2.8)

This is the weighted average of the measurement outcomes. The spread of the measurement
outcomes (or the uncertainty) is given by the variance

(∆A)2 = 〈(A−〈A〉)2〉 = 〈A2〉−〈A〉2 . (2.9)

So far we mainly dealt with discrete systems on finite-dimensional Hilbert spaces. But what
about continuous systems, such as a particle in a box, or a harmonic oscillator? We can still write
the spectral decomposition of an operator A but the sum must be replace by an integral:

A =
∫

da fA(a) |a〉〈a| , (2.10)

where |a〉 is an eigenstate of A. Typically, there are problems with the normalization of |a〉, which
is related to the impossibility of preparing a system in exactly the state |a〉. We will not explore
these subtleties further in this course, but you should be aware that they exist. The expectation
value of A is

〈A〉 = 〈
ψ

∣∣ A
∣∣ψ〉= ∫

da fA(a)〈ψ|a〉〈a|ψ〉 ≡
∫

da fA(a)|ψ(a)|2 , (2.11)

where we defined the wave function ψ(a) = 〈a|ψ〉, and |ψ(a)|2 is properly interpreted as the prob-
ability density that you remember from second-year quantum mechanics.

The probability of finding the eigenvalue of an operator A in the interval a and a+da given
the state

∣∣ψ〉
is 〈

ψ
∣∣ (|a〉〈a|da)

∣∣ψ〉≡ dp(a) , (2.12)

since both sides must be infinitesimal. We therefore find that

dp(a)
da

= |ψ(a)|2 . (2.13)

Postulate 4: The dynamics of quantum systems is governed by unitary transformations.
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We can write the state of a system at time t as
∣∣ψ(t)

〉
, and at some time t0 < t as

∣∣ψ(t0)
〉
. The

fourth postulate tells us that there is a unitary operator U(t, t0) that transforms the state at time
t0 to the state at time t: ∣∣ψ(t)

〉=U(t, t0)
∣∣ψ(t0)

〉
. (2.14)

Since the evolution from time t to t is denoted by U(t, t) and must be equal to the identity, we
deduce that U depends only on time differences: U(t, t0)=U(t− t0), and U(0)= I.

As an example, let U(t) be generated by a Hermitian operator A according to

U(t)= exp
(
− i
ħAt

)
. (2.15)

The argument of the exponential must be dimensionless, so A must be proportional to ħ times
an angular frequency (in other words, an energy). Suppose that

∣∣ψ(t)
〉

is the state of a qubit, and
that A =ħωX . If

∣∣ψ(0)
〉= |0〉 we want to calculate the state of the system at time t. We can write

∣∣ψ(t)
〉=U(t)

∣∣ψ(0)
〉= exp(−iωtX ) |0〉 =

∞∑
n=0

(−iωt)n

n!
X n . (2.16)

Observe that X2 = I, so we can separate the power series into even and odd values of n:

∣∣ψ(t)
〉= ∞∑

n=0

(−iωt)2n

(2n)!
|0〉+

∞∑
n=0

(−iωt)2n+1

(2n+1)!
X |0〉 = cos(ωt) |0〉− isin(ωt) |1〉 . (2.17)

In other words, the state oscillates between |0〉 and |1〉.
The fourth postulate also leads to the Schrödinger equation. Let’s take the infinitesimal form

of Eq. (2.14): ∣∣ψ(t+dt)
〉=U(dt)

∣∣ψ(t)
〉

. (2.18)

We require that U(dt) is generated by some Hermitian operator H:

U(dt)= exp
(
− i
ħH dt

)
. (2.19)

H must have the dimensions of energy, so we identify it with the energy operator, or the Hamil-
tonian. We can now take a Taylor expansion of

∣∣ψ(t+dt)
〉

to first order in dt:∣∣ψ(t+dt)
〉= ∣∣ψ(t)

〉+dt
d
dt

∣∣ψ(t)
〉+ . . . , (2.20)

and we expand the unitary operator to first order in dt as well:

U(dt)= 1− i
ħHdt+ . . . (2.21)

We combine this into ∣∣ψ(t)
〉+dt

d
dt

∣∣ψ(t)
〉= (

1− i
ħHdt

)∣∣ψ(t)
〉

, (2.22)

which can be recast into the Schrödinger equation:

iħ d
dt

∣∣ψ(t)
〉= H

∣∣ψ(t)
〉

. (2.23)

Therefore, the Schrödinger equation follows directly from the postulates!
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Figure 1: Schrödingers Cat.

Postulate 5: If a measurement of an observable A yields an eigenvalue a j, then immediately
after the measurement, the system is in the eigenstate

∣∣a j
〉

corresponding to the eigenvalue.

This is the infamous projection postulate, so named because a measurement “projects” the system
to the eigenstate corresponding to the measured value. This postulate has as observable conse-
quence that a second measurement immediately after the first will also find the outcome a j. Each
measurement outcome a j corresponds to a projection operator P j on the subspace spanned by the
eigenvector(s) belonging to a j. A (perfect) measurement can be described by applying a projector
to the state, and renormalize:

∣∣ψ〉→ P j
∣∣ψ〉

∥P j
∣∣ψ〉∥ . (2.24)

This also works for degenerate eigenvalues.
We have established earlier that the expectation value of A can be written as a trace:

〈A〉 =Tr(
∣∣ψ〉〈

ψ
∣∣ A) . (2.25)

Now instead of the full operator A, we calculate the trace of P j =
∣∣a j

〉〈
a j

∣∣:
〈P j〉 =Tr(

∣∣ψ〉〈
ψ

∣∣P j)=Tr(
∣∣ψ〉〈ψ|a j〉

〈
a j

∣∣)= |〈a j|ψ〉|2 = p(a j) . (2.26)

So we can calculate the probability of a measurement outcome by taking the expectation value of
the projection operator that corresponds to the eigenstate of the measurement outcome. This is
one of the basic calculations in quantum mechanics that you should be able to do.

The projection postulate is somewhat problematic for the interpretation of quantum mechan-
ics, because it leads to the so-called measurement problem: Why does a measurement induce a
non-unitary evolution of the system? After all, the measurement apparatus can also be described
quantum mechanically2 and then the system plus the measurement apparatus evolves unitarily.
But then we must invoke a new device that measures the combined system and measurement
apparatus. However, this in turn can be described quantum mechanically, and so on.

On the other hand, we do see definite measurement outcomes when we do experiments, so at
some level the projection postulate is necessary, and somewhere there must be a “collapse of the
wave function”. Schrödinger already struggled with this question, and came up with his famous

2This is something most people require from a fundamental theory: quantum mechanics should not just break
down for macroscopic objects. Indeed, experimental evidence of macroscopic superpositions has been found in the
form of “cat states”.
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thought experiment about a cat in a box with a poison-filled vial attached to a Geiger counter
monitoring a radioactive atom (see Fig. 1). When the atom decays, it will trigger the Geiger
counter, which in turn causes the release of the poison killing the cat. When we do not look inside
the box (more precisely: when no information about the atom-counter-vial-cat system escapes
from the box), the entire system is in a quantum superposition. However, when we open the box,
we do find the cat either dead or alive. One solution of the problem seems to be that the quantum
state represents our knowledge of the system, and that looking inside the box merely updates our
information about the atom, counter, vial and the cat. So nothing “collapses” except our own state
of mind.

However, this cannot be the entire story, because quantum mechanics clearly is not just about
our opinions of cats and decaying atoms. In particular, if we prepare an electron in a spin “up”
state |↑〉, then whenever we measure the spin along the z-direction we will find the measurement
outcome “up”, no matter what we think about electrons and quantum mechanics. So there seems
to be some physical property associated with the electron that determines the measurement out-
come and is described by the quantum state.

Various interpretations of quantum mechanics attempt to address these (and other) issues.
The original interpretation of quantum mechanics was mainly put forward by Niels Bohr, and
is called the Copenhagen interpretation. Broadly speaking, it says that the quantum state is
a convenient fiction, used to calculate the results of measurement outcomes, and that the sys-
tem cannot be considered separate from the measurement apparatus. Alternatively, there are
interpretations of quantum mechanics, such as the Ghirardi-Rimini-Weber interpretation, that
do ascribe some kind of reality to the state of the system, in which case a physical mechanism for
the collapse of the wave function must be given. Many of these interpretations can be classified
as hidden variable theories, which postulate that there is a deeper physical reality described by
some “hidden variables” that we must average over. This in turn explains the probabilistic na-
ture of quantum mechanics. The problem with such theories is that these hidden variables must
be quite weird: they can change instantly depending on events lightyears away3, thus violating
Einstein’s theory of special relativity. Many physicists do not like this aspect of hidden variable
theories.

Alternatively, quantum mechanics can be interpreted in terms of “many worlds”: the Many
Worlds interpretation states that there is one state vector for the entire universe, and that each
measurement splits the universe into different branches corresponding to the different measure-
ment outcomes. It is attractive since it seems to be a philosophically consistent interpretation, and
while it has been acquiring a growing number of supporters over recent years4, a lot of physicists
have a deep aversion to the idea of parallel universes.

Finally, there is the epistemic interpretation, which is very similar to the Copenhagen inter-
pretation in that it treats the quantum state to a large extent as a measure of our knowledge
of the quantum system (and the measurement apparatus). At the same time, it denies a deeper
underlying reality (i.e., no hidden variables). The attractive feature of this interpretation is that
it requires a minimal amount of fuss, and fits naturally with current research in quantum infor-
mation theory. The downside is that you have to abandon simple scientific realism that allows
you to talk about the properties of electrons and photons, and many physicists are not prepared
to do that.

As you can see, quantum mechanics forces us to abandon some deeply held (classical) convic-
tions about Nature. Depending on your preference, you may be drawn to one or other interpreta-

3. . . even though the averaging over the hidden variables means you can never signal faster than light.
4There seems to be some evidence that the Many Worlds interpretation fits well with the latest cosmological

models based on string theory.



Section 2: The Postulates of Quantum Mechanics 23

tion. It is currently not know which interpretation is the correct one.

Exercises

1. Calculate the eigenvalues and the eigenstates of the bit flip operator X , and show that
the eigenstates form an orthonormal basis. Calculate the expectation value of X for

∣∣ψ〉 =
1/
p

3 |0〉+ i
p

2/3 |1〉.

2. Show that the variance of A vanishes when
∣∣ψ〉

is an eigenstate of A.

3. Prove that an operator is Hermitian if and only if it has real eigenvalues.

4. Show that a qubit in an unknown state
∣∣ψ〉

cannot be copied. This is the no-cloning theorem.
Hint: start with a state

∣∣ψ〉 |i〉 for some initial state |i〉, and require that for
∣∣ψ〉 = |0〉 and∣∣ψ〉= |1〉 the cloning procedure is a unitary transformation |0〉 |i〉→ |0〉 |0〉 and |1〉 |i〉→ |1〉 |1〉.

5. The uncertainty principle.

(a) Use the Cauchy-Schwarz inequality to derive the following relation between non-com-
muting observables A and B:

(∆A)2(∆B)2 ≥ 1
4
|〈[A,B]〉|2 . (2.27)

Hint: define | f 〉 = (A−〈A〉)
∣∣ψ〉

and |g〉 = i(B−〈B〉)
∣∣ψ〉

, and use that |〈 f |g〉| ≥ 1
2 |〈 f |g〉+

〈g| f 〉|.
(b) Show that this reduces to Heisenberg’s uncertainty relation when A and B are canon-

ically conjugate observables, for example position and momentum.

(c) Does this method work for deriving the uncertainty principle between energy and
time?

6. Consider the Hamiltonian H and the state
∣∣ψ〉

given by

H = E

 0 i 0
−i 0 0
0 0 −1

 and
∣∣ψ〉= 1p

5

1− i
1− i

1

 . (2.28)

where E is a constant with dimensions of energy. Calculate the energy eigenvalues and the
expectation value of the Hamiltonian.

7. Show that the momentum and the total energy can be measured simultaneously only when
the potential is constant everywhere. What does a constant potential mean in terms of the
dynamics of a particle?
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3 Schrödinger and Heisenberg Pictures
So far we have assumed that the quantum states

∣∣ψ(t)
〉

describing the system carry the time
dependence. However, this is not the only way to keep track of the time evolution. Since all
physically observed quantities are expectation values, we can write

〈A〉 =Tr
[∣∣ψ(t)

〉〈
ψ(t)

∣∣ A
]=Tr

[
U(t)

∣∣ψ(0)
〉〈
ψ(0)

∣∣U†(t)A
]

=Tr
[∣∣ψ(0)

〉〈
ψ(0)

∣∣U†(t)AU(t)
]

(cyclic property)

≡Tr
[∣∣ψ(0)

〉〈
ψ(0)

∣∣ A(t)
]
, (3.1)

where we defined the time-varying operator A(t) =U†(t)AU(t). Clearly, we can keep track of the
time evolution in the operators!

• Schrödinger picture: Keep track of the time evolution in the states,

• Heisenberg picture: Keep track of the time evolution in the operators.

We can label the states and operators “S” and “H” depending on the picture. For example,∣∣ψH
〉= ∣∣ψS(0)

〉
and AH(t)=U†(t)ASU(t) . (3.2)

The time evolution for states is given by the Schrödinger equation, so we want a corresponding
“Heisenberg equation” for the operators. First, we observe that

U(t)= exp
(
− i
ħHt

)
, (3.3)

such that

d
dt

U(t)=− i
ħHU(t) . (3.4)

Next, we calculate the time derivative of 〈A〉:
d
dt

Tr
[∣∣ψS(t)

〉〈
ψS(t)

∣∣ AS
]= d

dt
〈
ψS(t)

∣∣ AS
∣∣ψS(t)

〉= d
dt

〈
ψH

∣∣ AH(t)
∣∣ψH

〉
. (3.5)

The last equation follows from Eq. (3.1). We can now calculate

d
dt

〈
ψS(t)

∣∣ AS
∣∣ψS(t)

〉= d
dt

〈
ψS(0)

∣∣U†(t)ASU(t)
∣∣ψS(0)

〉
= 〈

ψS(0)
∣∣[U̇†(t)ASU(t)+U†(t)ȦSU(t)+U†(t)ASU̇(t)

]∣∣ψS(0)
〉

= 〈
ψH

∣∣[ i
ħHAH(t)− i

ħAH(t)H+ ∂AH(t)
∂t

]∣∣ψH
〉

=− i
ħ

〈
ψH

∣∣ [AH(t),H]
∣∣ψH

〉+〈
ψH

∣∣ ∂AH(t)
∂t

∣∣ψH
〉

= 〈
ψH

∣∣ dAH(t)
dt

∣∣ψH
〉

. (3.6)

Since this must be true for all
∣∣ψH

〉
, this is an operator identity:

dAH(t)
dt

=− i
ħ [AH(t),H]+ ∂AH(t)

∂t
. (3.7)
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This is the Heisenberg equation. Note the difference between the “straight d” and the “curly
∂” in the time derivative and the partial time derivative, respectively. The partial derivative
deals only with the explicit time dependence of the operator. In many cases (such as position and
momentum) this is zero.

We have seen that both the Schrödinger and the Heisenberg equation follows from Von Neu-
mann’s Hilbert space formalism of quantum mechanics. Consequently, we have proved that this
formalism properly unifies both Schrödingers wave mechanics, and Heisenberg, Born, and Jor-
dans matrix mechanics.

As an example, consider a qubit with time evolution determined by the Hamiltonian H =
1
2ħωZ, with Z =

(
1 0
0 −1

)
. This may be a spin in a magnetic field, for example, such that ω =

−eB/mc. We want to calculate the time evolution of the operator XH(t). Since we work in the
Heisenberg picture alone, we will omit the subscript H. First, we evaluate the commutator in the
Heisenberg equation

iħ1
2

dX
dt

= 1
2

[X ,H]=−iħω
2

Y , (3.8)

where we defined Y =
(
0 −i
i 0

)
. So now we must know the time evolution of Y as well:

iħ1
2

dY
dt

= 1
2

[Y ,H]= iħω
2

X . (3.9)

These are two coupled linear equations, which are relatively easy to solve:

Ẋ =−ωY and Ẏ =ωX and Ż = 0 . (3.10)

We can define two new operators S± = X ± iY , and obtain

Ṡ± =−ωY ± iωX =±iωS± . (3.11)

Solving these two equations yields S±(t)= S±(0) e±iωt, and this leads to

X (t)= S+(t)+S−(t)
2

= S+(0) eiωt +S−(0) e−iωt

2

= 1
2

[
X (0) eiωt + iY (0) eiωt + X (0) e−iωt − iY (0) e−iωt

]
= X (0)cos(ωt)−Y (0)sin(ωt) . (3.12)

You are asked to show that Y (t)=Y (0)cos(ωt)+ X (0)sin(ωt) in exercise 3.

We now take
∣∣ψH

〉 = |0〉 and X (0) =
(
0 1
1 0

)
, Y (0) =

(
0 −i
i 0

)
. The expectation value of X (t) is

then readily calculated to be

〈0|X (t) |0〉 = cos(ωt)〈0|X (0) |0〉−sin(ωt)〈0|Y (0) |0〉 = 0 . (3.13)

Alternatively, when
∣∣ψH

〉= |±〉, we find

〈+|X (t) |+〉 = cos(ωt) and 〈+|Y (t) |+〉 = sin(ωt) . (3.14)

This is a circular motion in time:
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a

b

|+〉|−〉
X (t)

ωt

Figure 1: Fidelity between the logical zero and one states received by Rob as

a function of the squeezing parameter r for single and dual rail qubits.

1

The eigenstate of X (π/2) is point a, and the eigenstate of X (−π/2) is point b. Furthermore,
X (±π/2)=∓Y (0), and the states at point a and b are therefore the eigenstates of Y :

∣∣ψa
〉= |0〉− i |1〉p

2
and

∣∣ψb
〉= |0〉+ i |1〉p

2
. (3.15)

A natural question to ask is where the states |0〉 and |1〉 fit in this picture. These are the eigen-
states of the operator Z, which we used to generate the unitary time evolution. Clearly the states
on the circle never become either |0〉 or |1〉, so we need to add another dimension:

a

b

|+〉|−〉

|0〉

|1〉

Figure 1: Fidelity between the logical zero and one states received by Rob as

a function of the squeezing parameter r for single and dual rail qubits.

1

This is called the Bloch sphere, and operators are represented by straight lines through the origin.
The axis of rotation for the straight lines that rotate with time is determined by the Hamiltonian.
In the above case the Hamiltonian was proportional to Z, which means that the straight lines
rotate around the axis through the eigensates of Z, which are |0〉 and |1〉.

Exercises

1. Show that for the Hamiltonian HS = HH .

2. The harmonic oscillator has the energy eigenvalue equation H |n〉 = ħω(n+ 1
2 ) |n〉.

(a) The classical solution of the harmonic oscillator is given by

|α〉 = e−
1
2 |α|2

∞∑
n=0

αn
p

n!
|n〉 , (3.16)

in the limit of |α|À 1. Show that |α〉 is a properly normalized state for any α ∈C.

(b) Calculate the time-evolved state |α(t)〉.
(c) We introduce the ladder operators â |n〉 = p

n |n−1〉 and â† |n〉 =
p

n+1 |n+1〉. Show
that the number operator defined by n̂ |n〉 = n |n〉 can be written as n̂ = â†â.
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(d) Write the coherent state |α〉 as a superposition of ladder operators acting on the ground
state |0〉.

(e) Note that the ground state is time-independent (U(t) |0〉 = |0〉). Calculate the time
evolution of the ladder operators.

(f) Calculate the position q̂ = (â+ â†)/2 and momentum p̂ = −i(â− â†)/2 of the harmonic
oscillator in the Heisenberg picture. Can you identify the classical harmonic motion?

3. Let A be an operator given by A = a0I+axX +ayY +azZ. Calculate the matrix A(t) given
the Hamiltonian H = 1

2ħωZ, and show that A is Hermitian when the aµ are real.

4. The interaction picture.

(a) Let the Hamiltonian of a system be given by H = H0 +V , with H0 = p2/2m. Using∣∣ψ(t)
〉

I = U†
0(t)

∣∣ψ(t)
〉

S with U0(t) = exp(−iH0t/ħ), calculate the time dependence of an
operator in the interaction picture AI(t).

(b) Defining HI(t)=U†
0(t)VU0(t), show that

iħ d
dt

∣∣ψ(t)
〉

I = HI(t)
∣∣ψ(t)

〉
I . (3.17)

Is HI identical to HH and HS?

5. The time operator in quantum mechanics.

(a) Let H
∣∣ψ〉 = E

∣∣ψ〉
, and assume the existence of a time operator conjugate to H, i.e.,

[H,T]= iħ. Show that

H ei$T ∣∣ψ〉= (E−ħ$)ei$T ∣∣ψ〉
. (3.18)

(b) Given that $ ∈R, calculate the spectrum of H.

(c) The energy of a system must be bounded from below in order to avoid infinite decay to
ever lower energy states. What does this mean for T?

6. Consider a three-level atom with two (degenerate) low-lying states |0〉 and |1〉 with zero
energy, and a high level |e〉 (the “excited” state) with energy ħω. The low levels are coupled
to the excited level by optical fields Ω0 cosω0t and Ω1 cosω1t, respectively.

(a) Give the (time-dependent) Hamiltonian H for the system.

(b) The time dependence in H is difficult to deal with, so we must transform to the rotating
frame via some unitary transformation U(t). Show that

H′ =U(t)HU†(t)− iħU
dU†

dt
.

You can use the Schrödinger equation with
∣∣ψ〉=U†

∣∣ψ′〉.

(c) Calculate H′ if U(t) is given by

U(t)=
1 0 0

0 e−i(ω0−ω1)t 0
0 0 e−iω0t

 .

Why can we ignore the remaining time dependence in H′? This is called the Rotating
Wave Approximation.
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(d) Calculate the λ= 0 eigenstate of H′ in the case where ω0 =ω1.

(e) Design a way to bring the atom from the state |0〉 to |1〉 without ever populating the
state |e〉.
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4 Mixed States and the Density Operator
So far we have considered states as vectors in Hilbert space that, according to the first postulate,
contain all the information about the system. In reality, however, we very rarely have complete
information about a system. For example, the system may have interacted with its environment,
which introduces some uncertainty in our knowledge of the state of the system. The question
is therefore how we describe systems given incomplete information. Much of contemporary re-
search in quantum mechanics is about gaining full control over the quantum system (meaning to
minimize the interaction with the environment). This includes the field of quantum information
and computation. The concept of incomplete information is therefore central to modern quantum
mechanics.

4.1 Mixed states

First, we recall some properties of the trace:

• Tr(aA)= aTr(A),

• Tr(A+B)=Tr(A)+Tr(B).

Also remember that we can write the expectation value of A as

〈A〉 =Tr(
∣∣ψ〉〈

ψ
∣∣ A) , (4.1)

where
∣∣ψ〉

is the state of the system. It tells us everything there is to know about the system. But
what if we don’t know everything?

As an example, consider that Alice prepares a qubit in the state |0〉 or in the state |+〉 =
(|0〉+|1〉)/

p
2 depending on the outcome of a balanced (50:50) coin toss. How does Bob describe the

state before any measurement? First, we cannot say that the state is 1
2 |0〉+ 1

2 |+〉, because this is
not normalized!

The key to the solution is to observe that the expectation values must behave correctly. The
expectation value 〈A〉 is the average of the eigenvalues of A for a given state. If the state is itself a
statistical mixture (as in the example above), then the expectation values must also be averaged.
So for the example, we require that for any A

〈A〉 = 1
2
〈A〉0 +

1
2
〈A〉+ = 1

2
Tr(|0〉〈0|A)+ 1

2
Tr(|+〉〈+|A)

=Tr
[(

1
2
|0〉〈0|+ 1

2
|+〉〈+|

)
A

]
≡Tr(ρA) , (4.2)

where we defined

ρ = 1
2
|0〉〈0|+ 1

2
|+〉〈+| . (4.3)

The statistical mixture is therefore properly described by an operator, rather than a simple vector.
We can generalize this as

ρ =
∑
k

pk
∣∣ψk

〉〈
ψk

∣∣ , (4.4)
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where the pk are probabilities that sum up to one (
∑

k pk = 1) and the
∣∣ψk

〉
are normalized states

(not necessarily complete or orthogonal). Since ρ acts as a weight, or a density, in the expectation
value, we call it the density operator. We can diagonalize ρ to find the spectral decomposition

ρ =
∑

j
λ j

∣∣λ j
〉〈
λ j

∣∣ , (4.5)

where {
∣∣λ j

〉
} j forms a complete orthonormal basis, 0 ≤ λ j ≤ 1, and

∑
jλ j = 1. We can also show

that ρ is a positive operator:

〈
ψ

∣∣ρ ∣∣ψ〉=∑
jk

c∗j ck
〈
λ j

∣∣ρ |λk〉 =
∑
jk

c∗j ck
〈
λ j

∣∣∑
l
λl |λl〉〈λl |λk〉

=
∑
jkl

c∗j ckλl〈λ j|λl〉〈λl |λk〉 =
∑
jkl

c∗j ckλlδ jlδlk

=
∑
l
λl |cl |2

≥ 0 . (4.6)

In general, an operator ρ is a valid density operator if and only if it has the following three
properties:

1. ρ† = ρ,

2. Tr(ρ)= 1,

3. ρ ≥ 0.

The density operator is a generalization of the state of a quantum system when we have incom-
plete information. In the special case where one of the p j = 1 and the others are zero, the density
operator becomes the projector

∣∣ψ j
〉〈
ψ j

∣∣. In other words, it is completely determined by the state
vector

∣∣ψ j
〉
. We call these pure states. The statistical mixture of pure states giving rise to the

density operator is called a mixed state.
The unitary evolution of the density operator can be derived directly from the Schrödinger

equation iħ∂t
∣∣ψ〉= H

∣∣ψ〉
:

iħdρ
dt

= iħ d
dt

∑
j

p j
∣∣ψ j

〉〈
ψ j

∣∣
= iħ

∑
j

{dp j

dt
∣∣ψ j

〉〈
ψ j

∣∣+ p j

[(
d
dt

∣∣ψ j
〉)〈

ψ j
∣∣+ ∣∣ψ j

〉(
d
dt

〈
ψ j

∣∣)]}
= iħ∂ρ

∂t
+Hρ−ρH

= [H,ρ]+ iħ∂ρ
∂t

. (4.7)

This agrees with the Heisenberg equation for operators, and it is sometimes known as the Von
Neumann equation. In most problems the probabilities p j have no explicit time-dependence, and
∂tρ = 0.
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4.2 Decoherence

The density operator allows us to consider the phenomenon of decoherence. Consider the pure
state |+〉. In matrix notation with respect to the basis {|+〉 , |−〉}, this can be written as

ρ =
(
1 0
0 0

)
. (4.8)

The trace is 1, and one of the eigenvalues is 1, as required for a pure state. We can also write the
density operator in the basis {|0〉 , |1〉}:

ρ = |+〉〈+| = 1p
2

(
1
1

)
× 1p

2

(
1,1

)= 1
2

(
1 1
1 1

)
. (4.9)

Notice how the outer product (as opposed to the inner product) of two vectors creates a matrix
representation of the corresponding projection operator.

Let the time evolution of |+〉 be given by

|+〉 = |0〉+ |1〉p
2

→ |0〉+ eiωt |1〉p
2

. (4.10)

The corresponding density operator becomes

ρ(t)= 1
2

(
1 eiωt

e−iωt 1

)
. (4.11)

The “population” in the state |+〉 is given by the expectation value

〈+|ρ(t) |+〉 = 1
2
+ 1

2
cos(ωt) . (4.12)

This oscillation is due to the off-diagonal elements of ρ(t), and it is called the coherence of the
system (see Fig. 2). The state is pure at any time t. In real physical systems the coherence often
decays exponentially at a rate γ, and the density matrix can be written as

ρ(t)= 1
2

(
1 eiωt−γt

e−iωt−γt 1

)
. (4.13)

The population in the state |+〉 decays accordingly as

〈+|ρ(t) |+〉 = 1
2
+ e−γt cos(ωt)

2
. (4.14)

This is called decoherence of the system, and the value of γ depends on the physical mechanism
that leads to the decoherence.

The decoherence described above is just one particular type, and is called dephasing. Another
important decoherence mechanism is relaxation to the ground state. If the state |1〉 has a larger
energy than |0〉 there may be processes such as spontaneous emission that drive the system to
the ground state. Combining these two decay processes, we can write the density operator as

ρ(t)= 1
2

(
2− e−γ1t eiωt−γ2t

e−iωt−γ2t e−γ1t

)
. (4.15)

The study of decoherence is currently one of the most important research areas in quantum
physics.



32 PHY472: Advanced Quantum Mechanics

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

time

P
o
p

u
la

ti
o
n

Figure 1:

1

Figure 2: Population in the state |+〉 with decoherence (solid curve) and without (dashed
curve).

4.3 Imperfect measurements

Postulates 3 and 5 determine what happens when a quantum system is subjected to a measure-
ment. In particular, these postulates concern ideal measurements. In practice, however, we often
have to deal with imperfect measurements that include noise. As a simple example, consider a
photodetector: not every photon that hits the detector will result in a detector “click”, which tells
us that there indeed was a photon. How can we describe situations like these?

First, let’s recap ideal measurements. We can ask the question what will be the outcome of a
single measurement of the observable A. We know from Postulate 3 that the outcome m must be
an eigenvalue am of A. If the spectral decomposition of A is given by

A =
∑
m

am |m〉〈m| , (4.16)

then the probability of finding measurement outcome m is given by the Born rule

p(m)= |〈m|ψ〉|2 =Tr(Pm
∣∣ψ〉〈

ψ
∣∣)≡ 〈Pm〉 , (4.17)

where we introduced the operator Pm = |m〉〈m|. One key interpretation of p(m) is as the expec-
tation value of the operator Pm associated with measurement outcome m.

When a measurement does not destroy the system, the state of the system must be updated
after the measurement to reflect the fact that another measurement of A immediately following
the first will yield outcome m with certainty. The update rule is given by Eq. (2.24)

∣∣ψ〉→ Pm
∣∣ψ〉√〈

ψ
∣∣P†

mPm
∣∣ψ〉 , (4.18)

where the square root in the denominator is included to ensure proper normalization of the state
after the measurement. However, this form is not so easily generalized to measurements yielding
incomplete information, so instead we will write (using P2

m = Pm = P†
m)

∣∣ψ〉〈
ψ

∣∣→ Pm
∣∣ψ〉〈

ψ
∣∣P†

m

Tr(Pm
∣∣ψ〉〈

ψ
∣∣P†

m)
. (4.19)
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From a physical perspective this notation is preferable, since the unobservable global phase of
〈m|ψ〉 no longer enters the description. Up to this point, both state preparation and measurement
were assumed to be ideal. How must this formalism of ideal measurements be modified in order
to take into account measurements that yield only partial information about the system? First,
we must find the probability for measurement outcome m, and second, we have to formulate the
update rule for the state after the measurement.

When we talk about imperfect measurements, we must have some way of knowing (or suspect-
ing) how the measurement apparatus fails. For example, we may suspect that a photon hitting a
photodetector has only a finite probability of triggering a detector “click”. We therefore describe
our measurement device with a general probability distribution {q j(m)}, where q j(m) is the prob-
ability that the measurement outcome m in the detector is triggered by a system in the state∣∣ψ j

〉
. The probabilities q j(m) can be found by modelling the physical aspects of the measurement

apparatus. The accuracy of this model can then be determined by experiment. The probability of
measurement outcome m for the ideal case is given in Eq. (4.17) by 〈Pm〉. When the detector is
not ideal, the probability of finding outcome m is given by the weighted average over all possible
expectation values 〈P j〉 that can lead to m:

p(m)=
∑

j
q j(m)〈P j〉 =

∑
j

q j(m)Tr(P j
∣∣ψ〉〈

ψ
∣∣)

=Tr

[∑
j

q j(m)P j
∣∣ψ〉〈

ψ
∣∣]≡Tr(Em

∣∣ψ〉〈
ψ

∣∣)
= 〈Em〉 , (4.20)

where we defined the operator Em associated with outcome m as

Em =
∑

j
q j(m)P j . (4.21)

Each possible measurement outcome m has an associated operator Em, the expectation value
of which is the probability of obtaining m in the measurement. The set of Em is called a Posi-
tive Operator-Valued Measure (POVM). While the total number of ideal measurement outcomes,
modelled by Pm, must be identical to the dimension of the Hilbert space (ignoring the technical
complication of degeneracy), this is no longer the case for the POVM described by Em; there can
be more or fewer measurement outcomes, depending on the physical details of the measurement
apparatus. For example, the measurement of an electron spin in a Stern-Gerlach apparatus can
have outcomes “up”, “down”, or “failed measurement”. The first two are determined by the posi-
tion of the fluorescence spot on the screen, and the last may be the situation where the electron
fails to produce a spot on the screen. Here, the number of possible measurement outcomes is
greater than the number of eigenstates of the spin operator. Similarly, photodetectors in Geiger
mode have only two possible outcomes, namely a “click” or “no click” depending on whether the
detector registered photons or not. However, the number of eigenstates of the intensity operator
(the photon number states) is infinite.

Similar to the density operator, the POVM elements Em have three key properties. First, the
p(m) are probabilities and therefore real, so for all states

∣∣ψ〉
we have

〈Em〉∗ = 〈Em〉 ⇐⇒ 〈
ψ

∣∣Em
∣∣ψ〉= 〈

ψ
∣∣E†

m
∣∣ψ〉

, (4.22)

and Em is therefore Hermitian. Second, since
∑

m p(m)= 1 we have∑
m

p(m)=
∑
m

〈
ψ

∣∣Em
∣∣ψ〉= 〈

ψ
∣∣∑

m
Em

∣∣ψ〉= 1 , (4.23)
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for all
∣∣ψ〉

, and therefore ∑
m

Em = I , (4.24)

where I is the identity operator. Finally, since p(m)= 〈
ψ

∣∣Em
∣∣ψ〉≥ 0 for all

∣∣ψ〉
, the POVM element

Em is a positive operator. Note the close analogy of the properties of the POVM and the density
operator. In particular, just as in the case of density operators, POVMs are defined by these three
properties.

The second question about generalized measurements is how the measurement outcomes
should be used to update the quantum state of the system. The rule for ideal von Neumann
measurements is given in Eq. (4.19), which can be generalized immediately to density operators
using the techniques presented above. This yields

ρ→ PmρP†
m

Tr(PmρP†
m)

. (4.25)

What if we have instead a measurement apparatus described by a POVM? Consistency with the
Born rule in Eq. (4.20) requires that we again replace Pm, associated with measurement outcome
m, with a probability distribution over all P j:

ρ→
∑

j
q j(m)

P jρP†
j

Tr
[∑

k qk(m)PkρP†
k

] =
∑

j
q j(m)

P jρP†
j

Tr(Emρ)
, (4.26)

where we adjusted the normalization factor to maintain Tr(ρ) = 1. We also used that the POVM

element Em in Eq. (4.21) can be written as

Em =
∑

j
q j(m)P†

j P j . (4.27)

If we rescale the P j by a factor
√

q j(m), we obtain the standard form of the POVM

Em =
∑

j
A†

jm A jm , (4.28)

where A jm =√
q j(m)P j are the so-called the Kraus operators. Consequently, the update rule can

be written as

ρ→
∑

j A jmρA†
jm

Tr(Emρ)
, (4.29)

which generally yields a mixed state (described by a density operator) after an incomplete mea-
surement.

Finally, we can consider the case of some nonunitary evolution without a measurement (e.g.,
when the system interacts with its environment). We can model this purely formally by removing
the index of the measurement outcome m from the description (since there are no measurement
outcomes). The most general evolution then takes the form

ρ→ ρ′ =
∑
k

AkρA†
k , (4.30)

and the question is what form the Kraus operators Ak take. We will return to this in section 6.
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Exercises

1. The density matrix.

(a) Show that 1
2 |0〉+ 1

2 |+〉 is not a properly normalized state.

(b) Show that Tr(ρ)= 1 with ρ given by Eq. (4.3), and then prove that any density operator
has unit trace and is Hermitian.

(c) Show that density operators are convex, i.e., that ρ = w1ρ1 +w2ρ2 with w1 +w2 = 1
(w1,w2 ≥ 0), and ρ1, ρ2 again density operators.

(d) Calculate the expectation value of A using the two representations of ρ in terms of pi
and the spectral decomposition. What is the difference in the physical interpretation
of p j and λ j?

2. Using the identity 〈x|A|ψ〉 = Aψ(x), and the resolution of the identity
∫

dx |x〉〈x| = I, calcu-
late the expectation value for an operator A, given a mixed state of wave functions.

3. Calculate P2 with P given by

P =
(
a
b

)(
a∗,b∗)= (|a|2 ab∗

a∗b |b|2
)

and |a|2 +|b|2 = 1. (4.31)

4. Calculate the eigenvalues of the density matrix in Eq. (4.15), and show that γ1 ≤ 2γ2. Hint:
it is difficult to derive the inequality directly, so you should try to demonstrate that γ1 ≥ 2γ2
leads to a contradiction.

5. A system with energy eigenstates |En〉 is in thermal equilibrium with a heat bath at tem-
perature T. The probability for the system to be in state En is proportional to e−En/kT .

(a) Write the Hamiltonian of the system in terms of En and |En〉.
(b) Give the normalized density operator ρ for the system as a function of the Hamiltonian.

(c) We identify the normalization of ρ with the partition function Z . Calculate the average
energy directly and via

〈E〉 =−∂ lnZ

∂β
(4.32)

of the system, where β= 1/(kT).

(d) What is the entropy S = k lnZ if the system is a harmonic oscillator? Comment on the
limit T → 0.

6. Lossy photodetectors.

(a) The state of a beam of light can be written in the photon number basis |n〉 as
∣∣ψ〉 =∑

n cn |n〉. What are the possible measurement outcomes for a perfect photon detector?
Calculate the probabilities of the measurement outcome using projection operators.

(b) Suppose that the detector can only tell the difference between the presence and ab-
sence of photons (a so-called “bucket detector”). How do we calculate the probability of
finding the measurement outcomes?



36 PHY472: Advanced Quantum Mechanics

(c) Real bucket detectors have a finite efficiency η, which means that each photon has a
probability η of triggering the detector. Calculate the probabilities of the measurement
outcomes.

(d) What other possible imperfections do realistic bucket detectors have?

7. An electron with spin state
∣∣ψ〉 = α |↑〉 +β |↓〉 and |α|2 + |β|2 = 1 is sent through a Stern-

Gerlach apparatus to measure the spin in the z direction (i.e., the |↑〉, |↓〉 basis).

(a) What are the possible measurement outcomes? If the position of the electron is mea-
sured by an induction loop rather than a screen, what is the state of the electron im-
mediately after the measurement?

(b) Suppose that with probability p the induction loops fail to give a current signifying the
presence of an electron. What are the three possible measurement outcomes? Give the
POVM.

(c) Calculate the probabilities of the measurement outcomes, and the state of the electron
imediately after the measurement (for all possible outcomes).
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5 Composite Systems and Entanglement
5.1 Composite systems

Suppose we have two systems, described by Hilbert spaces H1 and H2, respectively. We can
choose orthonormal bases for each system:

H1 :
{∣∣φ1

〉
,
∣∣φ2

〉
, . . . ,

∣∣φN
〉}

and H2 :
{∣∣ψ1

〉
,
∣∣ψ2

〉
, . . . ,

∣∣ψM
〉}

. (5.1)

The respective dimensions of H1 and H2 are N and M. We can construct N ×M basis states for
the composite system via

∣∣φ j
〉

and
∣∣ψk

〉
. This implies that the total Hilbert space of the composite

system can be spanned by the tensor product{∣∣φ j
〉⊗ ∣∣ψk

〉}
jk on H1+2 =H1 ⊗H2 . (5.2)

An arbitrary pure state on H1+2 can be written as

|Ψ〉 =
∑
jk

c jk
∣∣φ j

〉⊗ ∣∣ψk
〉≡∑

jk
c jk

∣∣φ j,ψk
〉

. (5.3)

For example, the system of two qubits can be written on the basis {|0,0〉 , |0,1〉, |1,0〉 , |1,1〉}. If
system 1 is in state

∣∣φ〉
and system 2 is in state

∣∣ψ〉
, the partial trace over system 2 yields

Tr2(
∣∣φ,ψ

〉〈
φ,ψ

∣∣)=Tr2(
∣∣φ〉〈

φ
∣∣⊗ ∣∣ψ〉〈

ψ
∣∣)= ∣∣φ〉〈

φ
∣∣Tr(

∣∣ψ〉〈
ψ

∣∣)= ∣∣φ〉〈
φ

∣∣ , (5.4)

since the trace over any density operator is 1. We have now lost system 2 from our description!
Therefore, taking the partial trace without inserting any other operators is the mathematical
version of forgetting about it. This is a very useful feature: you often do not want to deal with
every possible system you are interested in. For example, if system 1 is a qubit, and system two
is a very large environment the partial trace allows you to “trace out the environment”.

However, tracing out the environment will not always leave you with a pure state as in
Eq. (5.4). If the system has interacted with the environment, taking the partial trace gener-
ally leaves you with a mixed state. This is due to entanglement between the system and its
environment.

5.2 Entanglement

Consider the following experiment: Alice and Bob each blindly draw a marble from a vase that
contains one black and one white marble. Let’s call the state of the write marble |0〉 and the state
of the black marble |1〉. If we describe this classical experiment quantum mechanically (we can
always do this, because classical physics is contained in quantum physics), then there are two
possible states, |1,0〉 and |0,1〉. Since blind drawing is a statistical procedure, the state of the
marbles held by Alice and Bob is the mixed state

ρ = 1
2
|0,1〉〈0,1|+ 1

2
|1,0〉〈1,0| . (5.5)

From Alice’s perspective, the state of her marble is obtained by tracing over Bob’s marble:

ρA =TrB(ρ)= 1
2
|0〉〈0|+ 1

2
|1〉〈1| . (5.6)

This is what we expect: Alice has a 50:50 probability of finding “white” or “black” when she looks
at her marble (i.e., when she measures the colour of the marble).
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Next, consider what the state of Bob’s marble is when Alice finds a white marble. Just from
the setup we know that Bob’s marble must be black, because there was only one white and one
black marble in the vase. Let’s see if we can reproduce this in our quantum mechanical descrip-
tion. Finding a white marble can be described mathematically by a projection operator |0〉〈0| (see
Eq. (2.24)). We need to include this operator in the trace over Alice’s marble’s Hilbert space:

ρB = TrA(|0〉A 〈0|ρ)
Tr(|0〉A 〈0|ρ)

= |1〉〈1| , (5.7)

which we set out to prove: if Alice finds that when she sees that her marble is white, she de-
scribes the state of Bob’s marble as black. Based on the setup of this experiment, Alice knows
instantaneously what the state of Bob’s marble is as soon as she looks at her own marble. There
is nothing spooky about this; it just shows that the marbles held by Alice and Bob are correlated.

Next, consider a second experiment: By some procedure, the details of which are not important
right now, Alice and Bob each hold a two-level system (a qubit) in the pure state

|Ψ〉AB = |0,1〉+ |1,0〉p
2

. (5.8)

Since |1,0〉 and |0,1〉 are valid quantum states, by virtue of the first postulate of quantum mechan-
ics |Ψ〉AB is also a valid quantum mechanical state. It is not difficult to see that these systems are
also correlated in the states |0〉 and |1〉: When Alice finds the value “0”, Bob must find the value
“1”, and vice versa. We can write this state as a density operator

ρ = 1
2

(|0,1〉+ |1,0〉)(〈0,1|+〈1,0|)

= 1
2

(|0,1〉〈0,1|+ |0,1〉〈1,0|+ |1,0〉〈0,1|+ |1,0〉〈1,0|) . (5.9)

Notice the two extra terms with respect to Eq. (5.5). If Alice now traces out Bob’s system, she
finds that the state of her marble is

ρA =TrB(ρ)= 1
2
|0〉〈0|+ 1

2
|1〉〈1| . (5.10)

In other words, even though the total system was in a pure state, the subsystem held by Alice
(and Bob, check this) is mixed! We can try to put the two states back together:

ρA ⊗ρB =
(
1
2
|0〉〈0|+ 1

2
|1〉〈1|

)
⊗

(
1
2
|0〉〈0|+ 1

2
|1〉〈1|

)
= 1

4
(|0,0〉〈0,0|+ |0,1〉〈0,1|+ |1,0〉〈1,0|+ |1,1〉〈1,1|) , (5.11)

but this is not the state we started out with! It is also a mixed state, instead of the pure state we
started with. Since mixed states mean incomplete knowledge, there must be some information in
the combined system that does not reside in the subsystems alone! This is called entanglement.

Entanglement arises because states like (|0,1〉+|1,0〉)/
p

2 cannot be written as a tensor product
of two pure states

∣∣ψ〉⊗∣∣φ〉
. These latter states are called separable. In general a state is separable

if and only if it can be written as

ρ =
∑

j
p j ρ

(A)
j ⊗ρ(B)

j . (5.12)
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Classical correlations such as the black and white marbles above fall into the category of separa-
ble states.

So far, we have considered the quantum states in the basis {|0〉 , |1〉}. However, we can also
describe the same system in the rotated basis {|±〉} according to

|0〉 = |+〉+ |−〉p
2

and |1〉 = |+〉− |−〉p
2

. (5.13)

The entangled state |Ψ〉AB can then be written as

|0,1〉+ |1,0〉p
2

= |+,+〉−|−,−〉p
2

, (5.14)

which means that we have again perfect correlations between the two systems with respect to the
states |+〉 and |−〉. Let’s do the same for the state ρ in Eq. (5.5) for classically correlated marbles.
After a bit of algebra, we find that

ρ =1
4

(|++〉〈++|+ |+−〉〈+−|+ |−+〉〈−+|+ |−−〉〈−−|
−|++〉〈−−|− |−−〉〈++|− |+−〉〈−+|− |−+〉〈+−|) . (5.15)

Now there are no correlations in the conjugate basis {|±〉}, which you can check by calculating
the conditional probabilities of Bob’s state given Alice’s measurement outcomes. This is another
key difference between classically correlated states and entangled states. A good interpretation
of entanglement is that entangled systems exhibit correlations that are stronger than classical
correlations. We will shortly see how these stronger correlations can be used in information
processing.

We have seen that operators, just like states, can be combined into tensor products:

A⊗B
∣∣φ〉⊗ ∣∣ψ〉= A

∣∣φ〉⊗B
∣∣ψ〉

. (5.16)

And just like states, some operators cannot be written as A⊗B:

C =
∑
k

Ak ⊗Bk . (5.17)

This is the most general expression of an operator in the Hilbert space H1⊗H2. In Dirac notation
this becomes

C =
∑

jklm
φ jklm

∣∣φ j
〉〈
φk

∣∣⊗ ∣∣φl
〉〈
φm

∣∣= ∑
jklm

φ jklm
∣∣φ j,φl

〉〈
φk,φm

∣∣ . (5.18)

As an example, the Bell operator is diagonal on the Bell basis:∣∣Φ±〉= |0,0〉± |1,1〉p
2

and
∣∣Ψ±〉= |0,1〉± |1,0〉p

2
. (5.19)

The eigenvalues of the Bell operator are not important, as long as they are not degenerate (why?).
A measurement of the Bell operator projects onto an eigenstate of the operator, which is an entan-
gled state. Consequently, we cannot implement such composite measurements by measuring each
subsystem individually, because those individual measurements would project onto pure states
of the subsystems. And we have seen that the subsystems of pure entangled states are mixed
states.
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A particularly useful technique when dealing with two systems is the so-called Schmidt decom-
position. In general, we can write any pure state over two systems as a superposition of basis
states:

|Ψ〉 =
dA∑
j=1

dB∑
k=1

c jk
∣∣φ j

〉
A

∣∣ψk
〉

B , (5.20)

where dA and dB are the dimensions of the Hilbert spaces of system A and B, respectively, and
we order the systems such that dB ≥ dA. It turns out that we can always simplify this description
and write |Ψ〉 as a single sum over basis states. We state it as a theorem:

Theorem: Let |Ψ〉 be a pure state of two systems, A and B with Hilbert spaces HA and HB of
dimension dA and dB ≥ dA, respectively. There exist orthonormal basis vectors

∣∣a j
〉

A for
system A and

∣∣b j
〉

B for system B such that

|Ψ〉 =
∑

j
λ j

∣∣a j
〉

A

∣∣b j
〉

B , (5.21)

with real, positive Schmidt coefficients λ j, and
∑

jλ
2
j = 1. This decomposition is unique, and

the sum runs at most to dA, the dimension of the smallest Hilbert space. Traditionally,
we order the Schmidt coefficients in descending order: λ1 ≥ λ2 ≥ . . .. The total number of
non-zero λi is the Schmidt number.

The proof can be found in many graduate texts on quantum mechanics and quantum information
theory.

Given the Schmidt decomposition for a bi-partite system, we can immediately write down the
reduced density matrices for the sub-systems:

ρA =TrB(|Ψ〉〈Ψ|)=
∑

j
λ2

j
∣∣a j

〉
A

〈
a j

∣∣ , (5.22)

and

ρB =TrA(|Ψ〉〈Ψ|)=
∑

j
λ2

j
∣∣b j

〉
B

〈
b j

∣∣ . (5.23)

The basis states
∣∣a j

〉
A and

∣∣b j
〉

B may have completely different physical meanings; here we care
only that the states of the decomposition can be labelled with a single index, as opposed to two
indices.

Conversely, when we have a single system in a mixed state

ρ =
∑

j
p j

∣∣a j
〉〈

a j
∣∣ , (5.24)

we can always construct a pure state |Ψ〉 that obeys (λ j =pp j)

|Ψ〉 =
∑

j
λ j

∣∣a j,b j
〉

, (5.25)

By virtue of the Schmidt decomposition. The state |Ψ〉 is called the purification of ρ. Since many
theorems are easier to prove for pure states than for mixed states, purifications can make our
work load significantly lighter.
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When there is more than one non-zero λ j in Eq. (5.25), the state |Ψ〉 is clearly entangled: there
is no alternative choice of λ j due to the uniqueness of the Schmidt decomposition that would result
in λ′

1 = 1 and all others zero. Moreover, the more uniform the values of λ j, the more the state is
entangled. One possible measure for the amount of entanglement in |Ψ〉 is the Shannon entropy
H

H =−
∑

j
λ2

j log2λ
2
j . (5.26)

This is identical to the von Neumann entropy S of the reduced density matrix ρ of |Ψ〉 given in
Eq. (5.24):

S(ρ)=−Tr(ρ log2ρ) . (5.27)

Both entropies are measured in classical bits.
How do we find the Schmidt decomposition? Consider the state |Ψ〉 from Eq. (5.20). The (not

necessarily square) matrix C with elements c jk needs to be transformed into a single array of
numbers λ j. This is achieved by applying the singular-value decomposition:

c jk =
∑

i
u jidiivik , (5.28)

where u ji and vik are elements of unitary matrices U and V , respectively, and dii is a diagonal
matrix with singular values λi. The vectors in the Schmidt decomposition become

|ai〉 =
∑

j
u ji

∣∣φ j
〉

and |bi〉 =
∑
k

vik
∣∣ψk

〉
. (5.29)

This is probably a good time to remind ourselves about the singular-value decomposition. All
we need to do is find U and V , the rest is just matrix multiplication. To find U , we diagonalize
CC† and find its eigenvectors. These form the columns of U . Similarly, we diagonalize C†C and
arrange the eigenvectors in columns to find V . If C is an n×m matrix, U should be n×n and V
should be m×m.

5.3 Quantum teleportation

Probably the most extraordinary use of the quantum correlations present in entanglement is
quantum teleportation. Alice and Bob share two entangled qubits, labelled 2 (held by Alice) and
3 (held by Bob), in the state (|0,0〉23 +|1,1〉23)/

p
2. In addition, Alice holds a qubit in the state∣∣ψ〉

1 =α |0〉1 +β |1〉1 . (5.30)

The object of quantum teleportation is to transfer the state of qubit 1 to qubit 3, without either
Alice or Bob gaining any information about α or β. To make things extra hard, the three qubits
must not change places (so Alice cannot take qubit 1 and bring it to Bob).

Classically, this is an impossible task: we cannot extract enough information about α and β

with a single measurement to reproduce
∣∣ψ〉

faithfully, otherwise we could violate the no-cloning
theorem. However, in quantum mechanics it can be done (without violating no-cloning). Write
the total state as ∣∣χ〉= ∣∣ψ〉

1

∣∣Φ+〉
23 =

1p
2

(
α |000〉+α |011〉+β |100〉+β |111〉) . (5.31)
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Alice now performs a Bell measurement on her two qubits (1 and 2), which project them onto one
of the Bell states

∣∣Φ±〉
12 or

∣∣Ψ±〉
12. We write |00〉, |01〉, |10〉, and |11〉 in the Bell basis:

|00〉 =
∣∣Φ+〉+|Φ−〉

p
2

|01〉 =
∣∣Ψ+〉+|Ψ−〉

p
2

|10〉 =
∣∣Ψ+〉−|Ψ−〉

p
2

|11〉 =
∣∣Φ+〉−|Φ−〉

p
2

. (5.32)

We can use these substitutions to write the state
∣∣χ〉

before the measurement as

∣∣χ〉=1
2

[
α

∣∣Φ+〉
12 |0〉3 +α |Φ−〉12 |0〉3 +α

∣∣Ψ+〉
12 |1〉3 +α |Ψ−〉12 |1〉3

+β
∣∣Ψ+〉

12 |0〉3 −β |Ψ−〉12 |0〉3 +β
∣∣Φ+〉

12 |1〉3 −β |Φ−〉12 |1〉3
]

=1
2

[∣∣Φ+〉
(α |0〉+β |1〉)+|Φ−〉 (α |0〉−β |1〉)

+
∣∣Ψ+〉

(β |0〉+α |1〉)+|Ψ−〉 (β |0〉−α |1〉)] . (5.33)

Alice finds one of four possible outcomes:

Φ+ : Tr12(
∣∣Φ+〉〈

Φ+∣∣ ∣∣χ〉〈
χ
∣∣) →

∣∣ψ〉
3 =α |0〉+β |1〉 ,

Φ− : Tr12(|Φ−〉〈Φ−|
∣∣χ〉〈

χ
∣∣) →

∣∣ψ〉
3 =α |0〉−β |1〉 ,

Ψ+ : Tr12(
∣∣Ψ+〉〈

Ψ+∣∣ ∣∣χ〉〈
χ
∣∣) →

∣∣ψ〉
3 =α |1〉+β |0〉 ,

Ψ− : Tr12(|Ψ−〉〈Ψ−|
∣∣χ〉〈

χ
∣∣) →

∣∣ψ〉
3 =α |1〉−β |0〉 . (5.34)

From these outcomes, it is clear that the state held by Bob is different for the different measure-
ment outcomes of Alice’s Bell measurement. Let this sink in for a moment: After setting up the
entangled state between Alice and Bob, who may be literally light years apart, Bob has done ab-
solutely nothing to his qubit, yet its state is different depending on Alice’s measurement outcome.
This suggests that there is some instantaneous communication taking place, possibly violating
causality!

In order to turn the state of Bob’s qubit into the original state, Alice needs to send the mea-
surement outcome to Bob. This will take two classical bits, because there are four outcomes. The
correction operators that Bob need to apply are as follows:

Φ+ : I , Φ− : Z , Ψ+ : X , Ψ− : ZX . (5.35)

So in each case Bob needs to do something different to his qubit. To appreciate how remarkable
this protocol is, here are some of its relevant properties:

1. No matter is transported, only the state of the system;

2. neither Alice nor Bob learns anything about α or β;

3. any attempt to use quantum teleportation for signaling faster than light is futile!
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Exercises

1. Derive Eq. (5.15), and show that ρB = I/2 when Alice’s qubit is projected onto |+〉.

2. Quantum teleportation. Write the Bell states as∣∣ψnm
〉= (|0,0⊕n〉+ (−1)m |1,1⊕n〉) /

p
2 ,

where ⊕ denotes addition modulo 2 and n,m = 0,1.

(a) Write
∣∣ψnm

〉
in terms of

∣∣ψ00
〉

and the Pauli operators X and Z acting on the second
qubit.

(b) Using the shared Bell state
∣∣ψnm

〉
between Alice and Bob, and the two-bit measure-

ment outcome ( j,k) for Alice’s Bell measurement, determine the correction operator for
Bob.

(c) We now generalize to N-dimensional systems. We define the N2 entangled states

∣∣ψnm
〉= 1p

N

N−1∑
j=0

e2πi jn/N | j, j⊕m〉 ,

where n⊕m = n+m mod N. Prove that this is an orthonormal basis.

(d) Give the teleportation protocol for the N-dimensional Hilbert space.

(e) What is Bob’s state before he learns Alice’s measurement outcome?

3. Imperfect measurements.

(a) A two-qubit system (held by Alice and Bob) is in the anti-symmetric Bell state |Ψ−〉.
Calculate the state of Bob’s qubit if Alice measures her qubit in the state |0〉. Hint:
write the measurement procedure as a partial trace over Alice’s qubit.

(b) Now Alice’s measurement is imperfect, and when her apparatus indicates “0”, there
was actually a small probability p that the qubit was projected onto the state |1〉.
What is Bob’s state?

(c) If Alice’s (imperfect) apparatus has only two measurement outcomes, what will Bob’s
state be if she finds outcome “1”?
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6 Evolution of Open Quantum Systems
We have considered mixed states, where the experimenter has incomplete information about the
state preparation procedure, and we have also seen that mixing arises in a system when it is
entangled with another system. The combined system can still be pure, but the subsystem has
become mixed. This phenomenon arises often when we want to describe systems that have some
interaction with their environment. The interaction creates entanglement, and the system taken
by itself evolves from a pure state to a mixed state. Such a system is called “open”, since it can
leak quantum information to the environment. The theory of open quantum systems revolves
around the so-called Lindblad equation.

6.1 The Lindblad equation

Next, we will derive the Lindblad equation, which is the direct extension of the Heisenberg equa-
tion for the density operator, i.e., the mixed state of a system. We have seen in Eq. (4.30) that
formally, we can write the evolution of a density operator as a mathematical map E , such that
the density operator ρ transforms into

ρ→ ρ′ = E (ρ)≡
∑
k

AkρA†
k , (6.1)

where the Ak are the Kraus operators. Requiring that ρ′ is again a density operator (Tr(ρ′) = 1)
leads to the restriction

∑
k A†

k Ak = I.
We want to describe an infinitesimal evolution of ρ, in order to give the continuum evolution

later on. We therefore have that

ρ′ = ρ+δρ =
∑
k

AkρA†
k . (6.2)

Since δρ is very small, one of the Kraus operators must be close to the identity. Without loss of
generality we choose this to be A0, and then we can write

A0 = I+ (L0 − iK)δt and Ak = Lk
p
δt , (6.3)

where we introduced the Hermitian operators L0 and K , and the remaining Lk are not necessarily
Hermitian. We could have written A0 = I+L0δt and keep L0 general (non-Hermitian as well), but
it will be useful later on to explicitly decompose it into Hermitian parts. We can now write

A0ρA†
0 = ρ+

[
(L0 − iK)ρ+ρ(L0 + iK)

]
δt+O(δt2)

AkρA†
k = LkρL†

kδt . (6.4)

We can substitute this into Eq. (6.2), to obtain up to first order in δt

δρ =
[(

L0ρ+ρL0
)− i(Kρ−ρK)+

∑
k 6=0

LkρL†
k

]
δt . (6.5)

We now give the continuum evolution by dividing by δt and taking the limit δt → dt:

dρ
dt

=−i[K ,ρ]+ {L0,ρ}+
∑
k 6=0

LkρL†
k , (6.6)

where {A,B} = AB+BA is the anti-commutator of A and B. We are almost there, but we must
determine what the different terms mean. Suppose we consider the free evolution of the system.
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Eq. (6.6) must then reduce to the Heisenberg equation for the density operator ρ in Eq. (4.7), and
we see that all Lk including L0 are zero, and K is proportional to the Hamiltonian K = H/ħ. Again
from the general property that Tr(ρ)= 1 we have

Tr
(

dρ
dt

)
= 0→ L0 =−1

2

∑
k 6=0

L†
kLk . (6.7)

This finally leads to the Lindblad equation

dρ
dt

= 1
iħ [H,ρ]+ 1

2

∑
k

(
2LkρL†

k − {L†
kLk,ρ}

)
. (6.8)

The operators Lk are chosen such that they model the relevant physical processes. This may
sound vague, but in practice it will be quite clear. For example, modelling a transition |1〉 → |0〉
without keeping track of where the energy is going or coming from will require a single Lindblad
operator

L = γ |0〉〈1| , (6.9)

where γ is a real parameter indicating the strength of the transition. This can model both decay
and excitations.

6.2 Positive and completely positive maps

We considered the evolution of the density operator under a family of Kraus operators in Eq. (4.30):

ρ→ ρ′ = E (ρ)=
∑
k

AkρA†
k , (6.10)

where
∑

k A†
k Ak = I (that is, E is trace-preserving). When E transforms any positive operator

into another positive operator, we call it a positive map. We may be tempted to conclude that
all positive maps correspond to physically allowed transformations. After all, it maps density
operators to density operators. Unfortunately, Nature (or Mathematics?) is not that tidy.

Consider the transpose of the density operator ρ→ ρT , which acts according to

ρ =
∑
i j
ρ i j |i〉〈 j| → ρT =

∑
i j
ρ ji |i〉〈 j| . (6.11)

You can verify immediately that the trace is preserved in this operation (check this!), and ρT is
again a positive operator since the eigenvalues are identical to those of ρ. For example, consider
the qubit state (|0〉+ i |1〉)/

p
2. The density operator and its transpose are

ρ = 1
2

(
1 −i
i 1

)
and ρT = 1

2

(
1 i
−i 1

)
. (6.12)

The transpose therefore corresponds to the state (|0〉− i |1〉)/
p

2. Now consider that the qubit is
part of an entangled state (|00〉+ |11〉)/

p
2. The density operator is given by

ρ = 1
2

(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) , (6.13)

and the partial transpose on the first qubit is

ρT = 1
2

(|00〉〈00|+ |10〉〈01|+ |01〉〈10|+ |11〉〈11|) . (6.14)
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The eigenvalues of ρ are all positive, but ρT has a negative eigenvalue! So ρT cannot be a density
operator. Consequently, it is not correct to say that positive maps correspond to physical processes.
We need to put another restriction on maps.

From the example of the partial transpose, we can deduce that maps must not only be pos-
itive for the system S that they act on, but also positive on larger systems that include S as a
subsystem. When this is the case, we call the map completely positive. There is a very impor-
tant theorem in mathematics, called Kraus’ Representation Theorem, which states that maps of
the form in Eq. (6.10) with the restriction that

∑
k A†

k Ak = I is a completely positive map, and
moreover, that any completely positive map can be expressed in this form.

Exercises

1. (a) Show that
∑

k A†
k Ak = I,

(b) prove that any non-Hermitian square matrix can be written as A+ iB, with A and B
Hermitian,

(c) prove that L0 =−1
2
∑

k 6=0 L†
kLk.

2. Consider a two-level system (|0〉, |1〉) that has a dephasing process, modelled by the Lindblad
operators L1 = γ |0〉〈1| and L2 = γ |1〉〈0|.

(a) write down the Lindblad equation (choose H = 0 for simplicity).

(b) Calculate the evolution of the pure states |0〉 and |+〉 at t = 0. Hint: write the density
matrix in the Pauli matrix basis {I, X ,Y , Z}. What can you say about the equilibrium
state of the system?

(c) Calculate and plot the entropy S(ρ) of the state ρ(t) as a function of γ and t.

3. Calculate the eigenvalues of ρT in Eq. (6.14).
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7 Orbital Angular Momentum and Spin
Angular momentum plays an important role in quantum mechanics, not only as the orbital an-
gular momentum of electrons orbiting the central potentials of nuclei, but also as the intrinsic
magnetic moment of particles, known as spin, and even as isospin in high-energy particle physics.

7.1 Orbital angular momentum

From classical physics we know that the orbital angular momentum of a particle is given by the
cross product of its position and momentum

L= r×p or L i = εi jkr j pk , (7.1)

where we used Einstein’s summation convention for the indices. In quantum mechanics, we
can find the operator for orbital angular momentum by promoting the position and momentum
observables to operators. The resulting orbital angular momentum operator turns out to be rather
complicated, due to a combination of the cross product and the fact that position and momentum
do not commute. As a result, the components of orbital momentum do not commute with each
other. When we use [r j, pk]= iħδ jk, the commutation relation for the components of L becomes

[L i,L j]= iħεi jkLk . (7.2)

A set of relations like this is called an algebra, and the algebra here is called closed since we can
take the commutator of any two elements L i and L j, and express it in terms of another element
Lk. Another (simpler) closed algebra is [x, px]= iħI and [x, I]= [px, I]= 0.

Since the components of angular momentum do not commute, we cannot find simultaneous
eigenstates for Lx, L y, and Lz. We will choose one of them, traditionally denoted by Lz, and
construct its eigenstates. It turns out that there is another operator, a function of all L is, that
commutes with any component L j, namely L2 = L2

x +L2
y +L2

z. This operator is unique, in that
there is no other operator that differs from L2 in a nontrivial way and still commutes with all L is.
We can now construct simultaneous eigenvectors for Lz and L2.

Since we are looking for simultaneous eigenvectors for the square of the angular momen-
tum and the z-component, we expect that the eigenvectors will be determined by two quantum
numbers, l, and m. First, and without any prior knowledge, we can formally write down the
eigenvalue equation for Lz as

Lz |l,m〉 = mħ|l,m〉 , (7.3)

where m is some real number, and we included ħ to fit the dimensions of angular momentum.
We will now proceed with the derivation of the eigenvalue equation for L2, and determine the
possible values for l and m.

From the definition of L2, we have L2 −L2
z = L2

x +L2
y, and

〈l,m|L2 −L2
z |l,m〉 = 〈l,m|L2

x +L2
y |l,m〉 ≥ 0 . (7.4)

The spectrum of Lz is therefore bounded by

l ≤ m ≤ l (7.5)

for some value of l. We derive the eigenvalues of L2 given these restrictions. First, we define the
ladder operators

L± = Lx ± iL y with L− = L†
+ . (7.6)
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The commutation relations with Lz and L2 are

[Lz,L±]=±ħL± , [L+,L−]= 2ħLz , [L±,L2]= 0 . (7.7)

Next, we calculate Lz(L+ |l,m〉):

Lz(L+ |l,m〉)= (L+Lz + [Lz,L+]) |l,m〉 = mħL+ |l,m〉+ħL+ |l,m〉
= (m+1)ħL+ |l,m〉 . (7.8)

Therefore L+ |l,m〉 ∝ |l,m+1〉. By similar reasoning we find that L− |l,m〉 ∝ |l,m−1〉. Since we
already determined that −l ≤ m ≤ l, we must also require that

L+ |l, l〉 = 0 and L− |l,−l〉 = 0 . (7.9)

Counting the states between −l and +l in steps of one, we find that there are 2l +1 different
eigenstates for Lz. Since 2l +1 is a positive integer, l must be a half-integer (l = 0, 1

2 ,1, 3
2 ,2, . . .).

Later we will restrict this further to l = 0,1,2, . . .
The next step towards finding the eigenvalues of L2 is to calculate the following identity:

L−L+ = (Lx − iL y)(Lx + iL y)= L2
x +L2

y + i[Lx,L y]=L2 −L2
z −ħLz . (7.10)

We can then evaluate

L−L+ |l, l〉 = 0 ⇒ (L2 −L2
z −ħLz) |l, l〉 =L2 |l, l〉− (l2 + l)ħ2 |l, l〉 = 0 . (7.11)

It is left as an exercise (see exercise 1b) to show that

L2 |l,m〉 = l(l+1)ħ2 |l,m〉 . (7.12)

We now have derived the eigenvalues for Lz and L2.
One aspect of our algebraic treatment of angular momentum we still have to determine is the

matrix elements of the ladder operators. We again use the relation between L±, and Lz and L2:

〈l,m|L−L+ |l,m〉 =
l∑

j=−l
〈l,m|L− |l, j〉〈l, j|L+ |l,m〉 . (7.13)

Both sides can be rewritten as

〈l,m|L2 −L2
z −ħLz |l,m〉 = 〈l,m|L− |l,m+1〉〈l,m+1|L+ |l,m〉 , (7.14)

where on the right-hand-side we used that only the m+1-term survives. This leads to

[l(l+1)−m(m+1)]ħ2 = |〈l,m+1|L+ |l,m〉 |2 . (7.15)

The ladder operators then act as

L+ |l,m〉 = ħ
√

l(l+1)−m(m+1) |l,m+1〉 , (7.16)

and

L− |l,m〉 = ħ
√

l(l+1)−m(m−1) |l,m−1〉 . (7.17)
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We have seen that the angular momentum L is quantized, and that this gives rise to a discrete
state space parameterized by the quantum numbers l and m. However, we still have to restrict
the values of l further, as mentioned above. We cannot do this using only the algebraic approach
(i.e., using the commutation relations for L i), and we have to consider the spatial properties of
angular momentum. To this end, we write L i as

L i =−iħεi jk

(
x j

∂

∂xk

)
, (7.18)

which follows directly from the promotion of r and p in Eq. (7.1) to quantum mechanical operators.
In spherical coordinates,

r =
√

x2 + y2 + z2 , φ= arctan
( y

x

)
, θ = arctan

(√
x2 + y2

z

)
, (7.19)

the angular momentum operators can be written as

Lx =−iħ
(
−sinφ

∂

∂θ
−cotθ cosφ

∂

∂φ

)
,

L y =−iħ
(
cosφ

∂

∂θ
−cotθsinφ

∂

∂φ

)
,

Lz =−iħ ∂

∂φ
,

L2 =−ħ2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sin2θ

∂2

∂φ2

]
. (7.20)

The eigenvalue equation for Lz then becomes

Lzψ(r,θ,φ)=−iħ ∂

∂φ
ψ(r,θ,φ)= mħψ(r,θ,φ) (7.21)

We can solve this differential equation to find that

ψ(r,θ,φ)= ζ(r,θ) eimφ . (7.22)

A spatial rotation over 2π must return the wave function to its original value, because ψ(r,θ,φ)
must have a unique value at each point in space. This leads to ψ(r,θ,φ+2π)=ψ(r,θ,φ) and

eim(φ+2π) = eimφ , or e2πim = 1 . (7.23)

This means that m is an integer, which in turn means that l must be an integer also.

7.2 Spin

For orbital angular momentum we found that 2l+1 must be an integer, and moreover the spatial
properties of the wave function force l to be an integer as well. However, we can also construct
states with half-integer l, but this must then be an internal degree of freedom. This is called spin
angular momentum, or spin for short. We will show later in the course that the spin observable
is interpreted as an intrinsic magnetic moment of a system.

To describe spin, we switch from L to S, which is no longer related to r and p. The commuta-
tion relations between the components Si are the same as for L i,

[Si,S j]= iħεi jkSk , (7.24)
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so S and L obey the same algebra. The commutation relations between S and L, r, and p vanish:

[Si,L j]= [Si, r j]= [Si, p j]= 0 . (7.25)

Therefore, spin generates a whole new vector space, since it commutes with observables that
themselves do not commute (like r j and p j), and it is independent of the spatial degrees of free-
dom.

Since the commutation relations for S (its algebra) are the same as for L, we can immediately
copy the algebraic structure of the eigenstates and eigenvalues:

Sz |s,ms〉 = msħ|s,ms〉 , with s = 0,
1
2

,1,
3
2

,2, . . .

S2 |s,ms〉 = s(s+1)ħ2 |s,ms〉 . (7.26)

When s = 1
2 , the system has two levels (a qubit) with spin eigenstates

∣∣1
2 , 1

2

〉
and

∣∣1
2 ,−1

2

〉
. We often

write ms = +1
2 =↑ (“up”) and ms = −1

2 =↓ (“down”), which finds its origin in the measurement
outcomes of electron spin in a Stern-Gerlach apparatus.

Now that we have introduced a whole new vector space related to spin, how do we write the
wave function of a particle with spin? Without spin, the wave function is a normal single-valued
function ψ(r, t) = 〈r|ψ(t)〉 of space and time coordinates. Now we have to add the spin degree of
freedom. For each spin (↑ or ↓ when s = 1

2 ), we have a wave function ψ↑(r, t) for the particle with
spin up, and ψ↓(r, t) for the particle with spin down. We can write this as a vector:

ψ(r, t)=
(
ψ↑(r, t)
ψ↓(r, t)

)
. (7.27)

The spin degree of freedom generates a vector space, after all. The vector ψ is called a spinor.
Expectation values are evaluated in the usual way, but now we have to sum over the spin

degree of freedom, as well as integrate over space. For example, the probability of finding a
particle with spin up in a region Ω of space is given by

p(↑,Ω)=
∑

ms=↑,↓

∫
Ω

drδms,↑|ψms(r, t)|2 =
∫
Ω

dr |ψ↑(r, t)|2 , (7.28)

and the expectation value of finding a particle with any spin in a region Ω of space is given by

p(Ω)=
∑

ms=↑,↓

∫
Ω

dr |ψms(r, t)|2 . (7.29)

The normalization of the spinor is such that∑
ms=↑,↓

∫
V

dr |ψms(r, t)|2 = 1 , (7.30)

where V is the entire space available to the particle (this may be the entire universe, or the
volume of a box with impenetrable walls, etc.).

If spin is represented by (2s+1)-dimensional spinors (vectors), then spin transformations (op-
erators) are represented by (2s+1)× (2s+1) matrices. In the two-dimensional case, we have by
construction:

Sz |↑〉 =
ħ
2

(
1
0

)
and Sz |↓〉 =−ħ

2

(
0
1

)
, (7.31)
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which means that the matrix representation of Sz is given by

Sz =
ħ
2

(
1 0
0 −1

)
. (7.32)

Next, the ladder operators act according to

S+ |↑〉 = 0 , S+ |↓〉 = ħ|↑〉 , S− |↑〉 = ħ|↓〉 , S− |↓〉 = 0 , (7.33)

which leads to the matrix representation

S+ =ħ
(
0 1
0 0

)
and S− =ħ

(
0 0
1 0

)
. (7.34)

From S± = Sx ± iSy we can then deduce that

Sx =
ħ
2

(
0 1
1 0

)
and Sy =

ħ
2

(
0 −i
i 0

)
. (7.35)

We often define Si ≡ 1
2ħσi, where σi are the so-called Pauli matrices. Previously, we have called

these matrices X , Y , and Z. The commutation relations of the Pauli matrices are

[σi,σ j]= 2iεi jkσk or
[σi

2
,
σ j

2

]
= iεi jk

σk

2
. (7.36)

Other important properties of the Pauli matrices are

{σi,σ j}≡σiσ j +σ jσi = 2δi jI (anti-commutator). (7.37)

They are both Hermitian and unitary, and the square of the Pauli matrices is the identity: σ2
i = I.

Moreover, they obey an “orthogonality” relation

1
2

Tr(σiσ j)= δi j . (7.38)

The proof of this statement is as follows:

σiσ j =σiσ j +σ jσi −σ jσi = {σi,σ j}−σ jσi = 2δi jI−σ jσi . (7.39)

Taking the trace then yields

Tr(2δi jI−σ jσi)=Tr(σiσ j)=Tr(σ jσi) , (7.40)

or (using Tr(I)= 2)

2Tr(σ jσi)= 4δi j , (7.41)

which proves Eq. (7.38). If we define σ0 ≡ I, we can extend this proof to the four-dimensional case

1
2

Tr(σµσν)= δµν , (7.42)

with µ,ν= 0,1,2,3.
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Figure 1: Addition of angular momentum.

1

Figure 3: Addition of angular momentum.

We can then write any 2×2 matrix as a sum over the two-dimensional Pauli operators:

A =
∑
µ

aµσµ , (7.43)

since

1
2

Tr(Aσν)= 1
2

Tr

(∑
µ

aµσµσν

)
= 1

2

∑
µ

aµTr
(
σµσν

)=∑
µ

aµδµν = aν . (7.44)

The Pauli matrices and the identity matrix form a basis for the 2×2 matrices, and we can write

A = a0I+a ·σ =
(

a0 +az ax − iay
ax + iay a0 −az

)
, (7.45)

where we used the notation σ = (σx,σy,σz).

7.3 Total angular momentum

In general, a particle may have both spin and orbital angular momentum. Since L and S have
the same dimensions, we can ask what is the total angular momentum J of the particle. We write
this as

J=L+S≡L⊗ I+ I⊗S , (7.46)

which emphasizes that orbital and spin angular momentum are described in distinct Hilbert
spaces.

Since [L i,S j]= 0, we have

[Ji, J j]= [L i +Si,L j +S j]= [L i,L j]+ [Si,S j]
= iħεi jkLk + iħεi jkSk = iħεi jk(Lk +Sk)
= iħεi jk Jk . (7.47)

In other words, J obeys the same algebra as L and S, and we can immediately carry over the
structure of the eigenvalues and eigenvectors from L and S.

In addition, L and S must be added as vectors. However, only one of the components of
the total angular momentum can be sharp (i.e., having a definite value). Recall that l and s
are magnitudes of the orbital and spin angular momentum, respectively. We can determine the
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extremal values of J, denoted by ± j, by adding and subtracting the spin from the orbital angular
momentum, as shown in Figure 3:

|l− s| ≤ j ≤ l+ s . (7.48)

For example, when l = 1 and s = 1
2 , the possible values of j are j = 1

2 and j = 3
2 .

The commuting operators for J are, first of all, J2 and Jz as we expect from the algebra, but
also the operators L2 and S2. You may think that Sz and Lz also commute with these operators,
but that it not the case:

[J2,Lz]= [(L+S)2,Lz]= [L2 +2L ·S+S2,Lz]= 2[L,Lz] ·S 6= 0 . (7.49)

We can construct a full basis for total angular momentum in terms of J2 and Jz, as before:

J2 ∣∣ j,m j
〉=ħ2 j( j+1)

∣∣ j,m j
〉

and Jz
∣∣ j,m j

〉= m jħ
∣∣ j,m j

〉
. (7.50)

Alternatively, we can construct spin and orbital angular momentum eigenstates directly as a
tensor product of the eigenstates

L2 |l,m〉 |s,ms〉 = ħ2l(l+1) |l,m〉 |s,ms〉 and Lz |l,m〉 |s,ms〉 = mħ|l,m〉 |s,ms〉 , (7.51)

and

S2 |l,m〉 |s,ms〉 = ħ2s(s+1) |l,m〉 |s,ms〉 and Sz |l,m〉 |s,ms〉 = msħ|l,m〉 |s,ms〉 . (7.52)

Since the Lz and Sz do not commute with J2, the states
∣∣ j,m j

〉
are not the same as the states

|l,m〉 |s,ms〉.

7.4 Composite systems with angular momentum

Now consider two systems, 1 and 2, with total angular momentum J1 and J2, respectively. The
total angular momentum is again additive, and given by

J=J1 +J2 ≡J1 ⊗ I+ I⊗J2 . (7.53)

Completely analogous to the addition of spin and orbital angular momentum, we can construct
the commuting operators J2, Jz, J2

1, and J2
2, but not J1z and J2z. Again, we construct two natural

bases for the total angular momentum of the composite system, namely

{| j,m〉} or {| j1,m1〉⊗ | j2,m2〉}≡ {| j1, j2,m1,m2〉} . (7.54)

We want to know how the two bases relate to each other, because sometimes we wish to talk
about the angular momentum of the composite system, and at other times we are interested
in the angular momentum of the subsystems. Since the second basis (as well as the first) in
Eq. (7.54) forms a complete orthonormal basis, we can write

| j,m〉 =
∑

m1,m2

| j1, j2,m1,m2〉〈 j1, j2,m1,m2| j,m〉 . (7.55)

The amplitudes 〈 j1, j2,m1,m2| j,m〉 are called Clebsch-Gordan coefficients, and we will now present
a general procedure for calculating them.
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Let’s first consider a simple example of two spin-1
2 systems, such as two electrons. The spin

basis for each electron is given by
∣∣1

2 , 1
2

〉= |↑〉 and
∣∣1

2 ,−1
2

〉= |↓〉. The spin basis for the two electrons
is therefore

| j1, j2,m1,m2〉 ∈ {|↑,↑〉 , |↑,↓〉 , |↓,↑〉 , |↓,↓〉} . (7.56)

The total spin is given by j = 1
2 + 1

2 = 1 and j = 1
2 − 1

2 = 0, so the four basis states for total angular
momentum are

| j,m〉 ∈ {|1,1〉 , |1,0〉 , |1,−1〉 , |0,0〉} . (7.57)

The latter state is the eigenstate for j = 0. The maximum total angular momentum state |1,1〉
can occur only when the two electron spins a parallel, and we therefore have

|1,1〉 = |↑,↑〉 =
∣∣1

2 , 1
2

〉⊗ ∣∣1
2 , 1

2

〉
. (7.58)

To find the expansion of the other total angular momentum eigenstates in terms of spin eigen-
states we employ the following trick: use that J± = J1±+ J2±. We can then apply J± to the state
|1,1〉, and J1±+ J2± to the state

∣∣1
2 , 1

2

〉⊗ ∣∣1
2 , 1

2

〉
. This yields

J− |1,1〉 = ħ
√

j( j+1)−m(m−1) |1,0〉 = ħ
p

2 |1,0〉 . (7.59)

Similarly, we calculate

J1−
∣∣1

2 , 1
2

〉=ħ
√

1
2 (3

2 )− 1
2 (−1

2 )
∣∣1

2 ,−1
2

〉=ħ
∣∣1

2 ,−1
2

〉
, (7.60)

and a similar result for J2−. Therefore, we find that

ħ
p

2 |1,0〉 = ħ|↑,↓〉+ħ|↓,↑〉 =⇒ |1,0〉 = |↑,↓〉+ |↓,↑〉p
2

. (7.61)

Applying J− again yields

|1,−1〉 = |↓,↓〉 . (7.62)

This agrees with the construction of adding parallel spins. The three total angular momentum
states

|1,1〉 = |↑,↑〉 ,

|1,0〉 = 1p
2

(|↑,↓〉+ |↓,↑〉) ,

|1,−1〉 = |↓,↓〉 (7.63)

form a so-called triplet of states with j = 1. We now have to find the final state corresponding to
j = 0, m = 0. The easiest way to find it at this point is to require orthonormality of the four basis
states, and this gives us the singlet state

|0,0〉 = 1p
2

(|↑,↓〉− |↓,↑〉) . (7.64)

The singlet state has zero total angular momentum, and it is therefore invariant under rotations.
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In general, this procedure of finding the Clebsch-Gordan coefficients results in multiplets of
constant j. In the case of two spins, we have a tensor product of two two-dimensional spaces,
which are decomposed in two subspaces of dimension 3 (the triplet) and 1 (the singlet), respec-
tively. We write this symbolically as

2⊗2= 3⊕1 . (7.65)

If we had combined a spin 1 particle with a spin 1
2 particle, the largest multiplet would have

been due to j = 1+ 1
2 = 3

2 , which is a 4-dimensional subspace, and the smallest subspace is due to
j = 1− 1

2 = 1
2 , which is a two-dimensional subspace:

3⊗2= 4⊕2 . (7.66)

In general, the total angular momentum of two systems with angular momentum k and l is
decomposed into multiplets according to the following rule (k ≥ l):

(2k+1)⊗(2l+1)= [2(k+ l)+1]⊕ [2(k+ l)−1]⊕ . . .⊕ [2(k− l)+1] , (7.67)

or in terms of the dimensions of the subspaces (n ≥ m):

n⊗m= (n+m−1)⊕ (n+m−3)⊕ . . .⊕ (n−m+1) . (7.68)

Exercises

1. Angular momentum algebra.

(a) Prove the algebra given in Eq. (7.2). Also show that [L2,L i]= 0, and verify the commu-
tation relations in Eq. (7.7).

(b) Show that L2 |l,m〉 = l(l+1)ħ2 |l,m〉. Use the fact that [L−,L2]= 0.

2. Pauli matrices.

(a) Check that the matrix representation of the spin-1
2 operators obey the commutation

relations.

(b) Calculate the matrix representation of the Pauli matrices for s = 1.

(c) Prove that exp[−iθ ·σ] is a 2×2 unitary matrix.

3. Isospin I describes certain particle families called multiplets, and the components of the
isospin obey the commutation relations [I i, I j]= iεi jkIk.

(a) What is the relation between spin and isospin?

(b) Organize the nucleons (proton and neutron), the pions (π+, π0, and π−), and the delta
baryons (∆++, ∆+, ∆0, and ∆−) into multiplets. You will have to determine their isospin
quantum number.

(c) Give all possible decay channels of the delta baryons into pions and nucleons (use
charge and baryon number conservation).

(d) Calculate the relative decay ratios of ∆+ and ∆0 into the different channels.

4. A simple atom has orbital and spin angular momentum, and the Hamiltonian for the atom
contains a spin-orbit coupling term Hso = għL ·S, where għ is the coupling strength.
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(a) Are orbital and spin angular momentum good quantum numbers for this system?
What about total angular momentum?

(b) Use first-order perturbation theory to calculate the energy shift due to the spin-orbit
coupling term.

(c) Calculate the transition matrix elements of Hso in the basis
{|l,m; s,ms〉}.

5. Multiplets.

(a) A spin 3
2 particle and a spin 2 particle form a composite system. How many multiplets

are there, and what is the dimension of the largest multiplet?

(b) How many multiplets do two systems with equal angular momentum have?
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8 Identical Particles
We have so far looked at the quantum mechanical description of a few particles with spin in
the previous section, and particles that exhibit entanglement in section 5. In all these cases,
we assumed that the individual particles could be distinguished from each other. For example,
the two-electron state (|↑↓〉− |↓↑〉)/

p
2 assumes that we have two electrons, one held “over here”,

and the other “over there”, and we can talk meaningfully about their respective spins. The ten-
sor product structure of our Hilbert space is a manifestation of our ability to label our particles
unambiguously.

However, what happens when we place the two electrons inside a sealed box? The wave
functions of the electrons will quickly start to overlap. Since the electrons are identical particles,
which according to basic quantum mechanics do not have well-defined paths, we cannot keep
track of which electron is which inside the box. Not even in principle.

8.1 Symmetric and anti-symmetric states

The indistinguishability of identical particles means that we have to adjust our quantum me-
chanical description of these objects. There are two ways of doing this, namely via a modification
of the allowed states and via a restructuring of the observables5. In this section we consider the
restricted state space, and in the next we will be considering the new observables.

First of all, since the total number of particles is an observable quantity (for example by
measuring the total charge in the box), we can give the particles an artificial labelling. The wave
functions of the two particles are then given by

∣∣ψ(r1)
〉

1 for particle 1 at position r1, and
∣∣φ(r2)

〉
2

for particle 2 at position r2. Since we can swap the positions of the particle without observable
consequences, we find that there are two states that denote the same physical situation:∣∣ψ(r1),φ(r2)

〉
12 and

∣∣ψ(r2),φ(r1)
〉

12 . (8.1)

However, we wish that each physically distinct situation has exactly one quantum state. Since
there is no preference for either state, we can denote the physical situation of identical particles
at position r1 and r2 by the quantum state that is an equal weight over these two possibilities:

|Ψ(r1,r2)〉12 =
∣∣ψ(r1),φ(r2)

〉
12 + eiϕ ∣∣ψ(r2),φ(r1)

〉
12p

2
. (8.2)

You can verify that swapping the positions r1 and r2 of the indistinguishable particles incurs only
a global (unobservable) phase. The question is now how we should choose φ.

Suppose that the two identical particles in the box are electrons. We know From Pauli’s ex-
clusion principle that the two electrons cannot be in the same state. Therefore, when φ=ψ, the
state in Eq. (8.2) should naturally disappear:

|Ψ(r1,r2)〉12 =
∣∣ψ(r1),ψ(r2)

〉
12 + eiϕ ∣∣ψ(r2),ψ(r1)

〉
12p

2
= 0 , (8.3)

which means that for particles obeying Pauli’s exclusion principle we must choose eiϕ =−1. The
quantum state of the two particles is anti-symmetric.

What about particles that do not obey Pauli’s exclusion principle? These must be restricted to
states that are orthogonal to the anti-symmetric states. In other words, they must be in states

5This is sometimes called second quantisation. This is a misnomer, since quantisation occurs only once, when
observables are promoted to operators.
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that are symmetric under the exchange of two particles. For the two identical particles in a box,
we therefore choose the value eiϕ =+1, which makes the state orthogonal to the anti-symmetric
state. The two possibilities for combining two identical particles are therefore

|ΨS(r1,r2)〉 =
∣∣ψ(r1),φ(r2)

〉+ ∣∣ψ(r2),φ(r1)
〉

p
2

,

|ΨA(r1,r2)〉 =
∣∣ψ(r1),φ(r2)

〉− ∣∣ψ(r2),φ(r1)
〉

p
2

. (8.4)

These states include both the internal degrees of freedom, such as spin, and the external degrees
of freedom. So two electrons can still be in the state |↑↑〉, as long as their spatial wave function
is anti-symmetric. The particles that are in a symmetric overall quantum state are bosons, while
the particles in an overall anti-symmetric state are fermions.

We can extend this to N particles in a fairly straightforward manner. For bosons, we sum over
all possible permutations of r1 to rN :

|ΨS(r1, . . . ,rN)〉 = 1p
N!

∑
perm(r1,...,rN )

∣∣ψ1(r1), . . . ,ψN(rN)
〉

. (8.5)

For fermions, the odd permutations pick up a relative minus sign:

|ΨA(r1, . . . ,rN)〉 = 1p
N!

∑
even

∣∣ψ1(r1), . . . ,ψN(rN)
〉− 1p

N!

∑
odd

∣∣ψ1(r1), . . . ,ψN(rN)
〉

. (8.6)

This can be written compactly as the so-called Slater determinant

ΨA(r1, . . . ,rN)= 1p
N!

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ1(r2) . . . ψ1(rN)
ψ2(r1) ψ2(r2) . . . ψ2(rN)

...
... . . . ...

ψN(r1) ψN(r2) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣ , (8.7)

where we removed the kets for notational convenience. The N particles in the state |ΨA(r1, . . . ,rN)〉
automatically obey the Pauli exclusion principle.

8.2 Creation and annihilation operators

The second, and particularly powerful way to implement the description of identical particles
is via creation and annihilation operators. To see how this description arises, consider some
single-particle Hermitian operator A with eigenvalues a j. On physical grounds, and regardless
of distinguishability, we require that n j particles in the eigenstate

∣∣a j
〉

of A must have a total
physical value n j ×a j for the observable A. We can repeat this for all eigenvalues a j, and obtain
a potentially infinite set of basis vectors

|n1,n2,n3, . . .〉 ,

for all integer values of n j, including zero. You should convince yourself that this exhausts all the
possible ways any number of particles can be distributed over the eigenvalues a j. The spectrum
of A can be bounded or unbounded, and discrete or continuous. It may even be degenerate. For
simplicity we consider here an unbounded, non-degenerate discrete spectrum.

A special state is given by

|∅〉 = |0,0,0, . . .〉 , (8.8)
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which indicates the state of no particles, or the vacuum. The numbers n j are called the occupation
number, and any physical state can be written as a superposition of these states:

|Ψ〉 =
∞∑

n1,n2,n3,...=0
cn1,n2,n3,... |n1,n2,n3, . . .〉 . (8.9)

The basis states |n1,n2,n3, . . .〉 span a linear vector space called a Fock space F . It is the direct
sum of the Hilbert spaces for zero particles H0, one particle H1, two particles, etc.:

F =H0 ⊕H1 ⊕H2 ⊕H3 ⊕·· · (8.10)

Since |Ψ〉 is now a superposition over different particle numbers, we require operators that
change the particle number. These are the creation and annihilation operators, â† and â respec-
tively. Up to a proportionality constant that we will determine later, the action of these operators
is defined by

â†
j

∣∣n1,n2, . . . ,n j, . . .
〉∝ ∣∣n1,n2, . . . ,n j +1, . . .

〉
,

â j
∣∣n1,n2, . . . ,n j, . . .

〉∝ ∣∣n1,n2, . . . ,n j −1, . . .
〉

. (8.11)

So the operator â†
j creates a particle in a state with eigenvalue a j, and the operator â j removes

a particle in a state with eigenvalue a j. These operators are each others’ Hermitian adjoint,
since removing a particle is the time reversal of adding a particle. Clearly, when an annihilation
operator attempts to remove particles that are not there, the result must be zero:

â j
∣∣n1,n2, . . . ,n j = 0, . . .

〉= 0 . (8.12)

The vacuum is then defined as the state that gives zero when acted on by any annihilation opera-
tor: â j |∅〉 = 0 for any j. Notice how we have so far sidestepped the problem of particle swapping;
we exclusively used aspects of the total particle number.

What are the basic properties of these creation and annihilation operators? In particular, we
are interested in their commutation relations. We will now derive these properties from what we
have determined so far. First, note that we can create two particles with eigenvalues ai and a j
in the system in any order, and the only difference this can make is in the normalisation of the
state:

â†
i â

†
j |Ψ〉 =λâ†

j â
†
i |Ψ〉 , (8.13)

where λ is some complex number. Since state |Ψ〉 is certainly not zero, we require that

â†
kâ†

l −λâ†
l â

†
k = 0 . (8.14)

Since k and l are just dummy variables, we equally have

â†
l â

†
k −λâ†

kâ†
l = 0 . (8.15)

We now substitute Eq. (8.15) into Eq. (8.14) to eliminate â†
l â

†
k. This leads to

(1−λ2) â†
kâ†

l = 0 , (8.16)

and therefore

λ=±1 . (8.17)
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The relation between different creation operators can thus take two forms. They can obey a
commutation relation when λ=+1:

â†
l â

†
k − â†

kâ†
l =

[
â†

l , â
†
k

]
= 0 , (8.18)

or they can obey an anti-commutation relation when λ=−1:

â†
l â

†
k + â†

kâ†
l =

{
â†

l , â
†
k

}
= 0 , (8.19)

While creating the particles in different temporal order is not the same as swapping two particles,
it should not come as a surprise that there are two possible situations (the commutation relation
and the anti-commutation relation). We encountered two possibilities in our previous approach as
well, where we found that many-particle states are either symmetric or anti-symmetric. In fact,
creation operators that obey the commutation relation produce symmetric states, while creation
operators that obey the anti-commutation relation produce anti-symmetric states. We also see
that the creation operators described by the anti-commutation relations naturally obey Pauli’s
exclusion principle. Suppose that we wish to create two identical particles in the same eigenstate∣∣a j

〉
. The anti-commutation relations say that {â†

j, â
†
j}= 0, so

â†2
j = 0 . (8.20)

Any higher powers of â†
j will also be zero, and we can create at most one particle in the state

∣∣a j
〉
.

Taking the adjoint of the commutation relations for the creation operators gives us the corre-
sponding relations for the annihilation operators

âl âk − âkâl = [âl , âk]= 0 , (8.21)

or

âl âk + âkâl = {âl , âk}= 0 . (8.22)

The remaining question is now what the (anti-) commutation relations are for products of creation
and annihilation operators.

We proceed along similar lines as before. Consider the operators â j and â†
k with j 6= k, and

apply them in different orders to a state |Ψ〉.

âi â
†
j |Ψ〉 =µ â†

j âi |Ψ〉 . (8.23)

The same argumentation as before leads to µ=±1. For different j and k we therefore find[
â j, â

†
k

]
= 0 or

{
â j, â

†
k

}
= 0 . (8.24)

Now let’s consider the case j = k. For the special case where |Ψ〉 = |∅〉, we find(
â j â

†
k −µ â†

j âk

)
|∅〉 = â j â

†
k |∅〉 = δ jk |∅〉 , (8.25)

based on the property that â j |∅〉 = 0. When l = k,(
âkâ†

k −µ â†
kâk

)
|∅〉 = |∅〉 , (8.26)
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we find for the two possible values of µ

âkâ†
k − â†

kâk = 1 or âkâ†
k + â†

kâk = 1 (8.27)

which is equivalent to [
âk, â†

k

]
= 1 or

{
âk, â†

k

}
= 1 . (8.28)

To summarise, we have two sets of algebras for the creation and annihilation operators. The
algebra in terms of the commutation relations is given by

[âk, âl]=
[
â†

k, â†
l

]
= 0 and

[
âk, â†

l

]
= δkl . (8.29)

This algebra describes particles that obey Bose-Einstein statistics, or bosons. The algebra in
terms of anti-commutation relations is given by

{âk, âl}=
{
â†

k, â†
l

}
= 0 and

{
âk, â†

l

}
= δkl . (8.30)

This algebra describes particles that obey Fermi-Dirac statistics, or fermions.
Finally, we have to determine the constant of proportionality for the creation and annihilation

operators. We have already required that â j â
†
k |∅〉 = δ jk |∅〉. To determine the rest, we consider

a new observable that gives us the total number of particles in the system. We denote this ob-
servable by n̂, and we see that it must be additive over all particle numbers for the different
eigenvalues of A:

n̂ =
∑

j
n̂ j , (8.31)

where n̂ j is the number of particles in the eigenstate
∣∣a j

〉
. The total number of particles does

not change if we consider a different observable (although the distribution typically will), so this
relation is also true when we count the particles in the states

∣∣b j
〉
. Pretty much the only way we

can achieve this is to choose

n̂ =
∑

j
n̂ j =

∑
j

â†
j â j =

∑
j

b̂†
j b̂ j . (8.32)

For the case of n j particles in state
∣∣a j

〉
this gives

â†
j â j

∣∣n j
〉= n j

∣∣n j
〉

, (8.33)

where we ignored the particles in other states |ak〉 with k 6= j for brevity. For the Bose-Einstein
case this leads to the relations

â j
∣∣n j

〉=√
n j

∣∣n j −1
〉

and â†
j

∣∣n j
〉=√

n j +1
∣∣n j +1

〉
. (8.34)

For Fermi-Dirac statistics, the action of the creation and annihilation operators on number states
becomes

â j |0〉 j = 0 and â†
j |0〉 j = e−iα |1〉 j ,

â j |1〉 j = eiα |0〉 j and â†
j |1〉 j = 0 . (8.35)

The phase factor eiα can be chosen ±1.
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8.3 Observables based on creation and annihilation operators

So far, we have considered only the basis states of many particles for a single observable A.
What about other observables, in particular those that do not commute with A? We can make a
similar construction. Suppose an observable B has eigenvalues b j. We can construct creation and
annihilation operators b̂†

j and b̂ j that act according to

b̂†
j

∣∣m1,m2, . . . ,m j, . . .
〉=√

m j +1
∣∣m1,m2, . . . ,m j +1, . . .

〉
,

b̂ j
∣∣m1,m2, . . . ,m j, . . .

〉=√
m j

∣∣m1,m2, . . . ,m j −1, . . .
〉

. (8.36)

where m j is the number of particles with value b j. Typically, the basis states of two observables
are related via a single unitary transformation

∣∣b j
〉 = U

∣∣a j
〉

for all j. How does this relate the
creation and annihilation operators?

To answer this, let’s look at the single particle states. We can write the single-particle eigen-
states

∣∣a j
〉

and
∣∣b j

〉
as ∣∣a j

〉= â†
j |∅〉 and

∣∣b j
〉= b̂†

j |∅〉 . (8.37)

We assume that U does not change the vacuum6, so U |∅〉 = |∅〉. This means that we can relate
the two eigenstates via∣∣b j

〉=U
∣∣a j

〉=Uâ†
j |∅〉 =Uâ†

j

(
U†U

)
|∅〉 =Uâ†

jU
† |∅〉 = b̂†

j |∅〉 , (8.38)

where we have strategically inserted the identity I=U†U . This leads to the operator transforma-
tion

b̂†
j =Uâ†

jU
† . (8.39)

The Hermitian adjoint is easily calculated as b̂ j =UâU†. It is left as an exercise for you to prove
that

b̂†
j =

∑
k

u jk â†
k and b̂ j =

∑
k

u∗
k j âk , (8.40)

where u jk = 〈ak|b j〉.
How do we construct operators using the creation and annihilation operators? Suppose that

a one-particle observable H has eigenvalues E j and eigenstates | j〉. This can be, for example the
Hamiltonian of the system, which ensures that the physical values of the particles (the eigenval-
ues) are additive. The operator for many identical particles then becomes

H =
∑

j
E j n̂ j =

∑
j

E j â†
j â j , (8.41)

which transforms according to Eq. (8.40). More generally, the operator may not be written in the
eigenbasis |n1,n2, . . .〉, in which case it has the form

H =
∑
i j

Hi j b̂†
i b̂ j , (8.42)

where Hi j are matrix elements. The creation and annihilation operators â†
j and â j diagonalise H,

and are sometimes called normal modes. The reason for this is that the creation and annihilation
operators for bosons obey the same mathematical rules as the raising and lowering operators for
the harmonic oscillator. The index j then denotes different oscillators. A system of coupled oscil-
lators can be decomposed into normal modes, which are themselves isolated harmonic oscillators.

6This is a natural assumption when we are confined to the single particle Hilbert space, but there are general
unitary transformations for which this does not hold, such as the transformation to an accelerated frame.
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Figure 4: Left: Bose-Einstein distribution for different temperatures (µ = 0). The lower
the temperature, the more particles occupy the low energy states. Right: Fermi-Dirac dis-
tribution for different temperatures and µ= 1. The fermions will not occupy energy states
with numbers higher than 1, and therefore higher energies are necessarily populated.
The energy values E j form a continuum on the horizontal axis.

8.4 Bose-Einstein and Fermi-Dirac statistics

Finally, in this section we will derive the Bose-Einstein and Fermi-Dirac statistics. In particular,
we are interested in the thermal equilibrium for a large number of (non-interacting) identical
particles with some energy spectrum E j, which my be continuous.

Since the number of particles is not fixed, we are dealing with the Grand Canonical Ensemble.
Its partition function Ξ is given by

Ξ=Tr
[
eµβn̂−βH

]
, (8.43)

where H is the many-body Hamiltonian, β= 1/kBT and µ is the chemical potential. The average
number of particles with single particle energy E j is then given by

〈n j〉 =−1
β

∂ lnΞ
∂E j

. (8.44)

For the simple case where H = ∑
j E j n̂ j and the creation and annihilation operators obey the

commutator algebra, the exponent can be written as

exp

[
β

∑
j

(µ−E j) â†
j â j

]
=

⊗
j

∞∑
n j=0

eβ(µ−E j)n j
∣∣n j

〉〈
n j

∣∣ , (8.45)

and the trace becomes

Ξ=
∏

j

1
1− eβ(µ−E j)

. (8.46)

The average photon number for energy E j is

〈n j〉 =−1
β

∂ lnΞ
∂E j

=− 1
βΞ

∂Ξ

∂E j
= 1

e−β(µ−E j) −1
. (8.47)

This is the Bose-Einstein distribution for particles with energy E j. It is shown for increasing E j
in Fig. 4 on the left.
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Alternatively, if the creation and annihilation operators obey the anti-commutation relations,
the sum over n j in Eq. (8.45) runs not from 0 to ∞, but over 0 and 1. The partition function of the
grand canonical ensemble then becomes

Ξ=
∏

j

[
1+ eβ(µ−E j)

]
, (8.48)

and the average number of particles with energy E j becomes

〈n j〉 =− 1
βΞ

∂Ξ

∂ħω j
= 1

e−β(µ−E j) +1
. (8.49)

This is the Fermi-Dirac statistics for these particles, and it is shown in Fig. 4 on the right. The
chemical potential is the highest occupied energy at zero temperature, and in solid state physics
this is called the Fermi level. Note the sign difference in the denominator with respect to the
Bose-Einstein statistics.
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Exercises

1. Calculate the Slater determinant for three electrons and show that no two electrons can be
in the same state.

2. Particle statistics.

(a) What is the probability of finding n bosons with energy E j in a thermal state?

(b) What is the probability of finding n fermions with energy E j in a thermal state?

3. Consider a system of (non-interacting) identical bosons with a discrete energy spectrum and
a ground state energy E0. Furthermore, the chemical potential starts out lower than the
ground state energy µ< E0.

(a) Calculate 〈n0〉 and increase the chemical potential to µ → E0 (e.g., by lowering the
temperature). What happens when µ passes E0?

(b) What is the behaviour of 〈nthermal〉 ≡
∑∞

j=1 〈n j〉 as µ → E0? Sketch both 〈n0〉 and
〈nthermal〉 as a function of µ. What is the fraction of particles in the ground state at
µ= E0?

(c) What physical process does this describe?

4. The process U = exp(r â†
1â†

2 − r∗â1â2) with r ∈ C creates particles in two systems, 1 and 2,
when applied to the vacuum state |Ψ〉 =U |∅〉.

(a) Show that the bosonic operators â†
1â†

2 and â1â2 obey the algebra

[K−,K+]= 2K0 and [K0,K±]=±K± ,

with K+ = K†
−.

(b) For operators obeying the algebra in (a) we can write

erK+−r∗K− = exp
[

r
|r| tanh |r|K+

]
exp

[
−2ln(cosh |r|)K0

]
×exp

[
− r∗

|r| tanh |r|K−

]
. (8.50)

Calculate the state |Ψ〉 of the two systems.

(c) The amount of entanglement between two systems can be measured by the entropy
S(r) of the reduced density matrix ρ1 =Tr1[ρ] for one of the systems. Calculate S(r)=
−Tr[ρ1 lnρ1].

(d) What is the probability of finding n particles in system 1?
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9 Many-Body Problems in Quantum Mechanics
In this final section we study a variety of problems in many-body quantum mechanics. First, we
introduce the Hartree-Fock method for taking into account the effect of electron-electron interac-
tions in atoms. Next, we describe spin waves in magnetic materials using the Heisenberg model.
Third, we describe the behaviour of an atom interacting with photons in a cavity, and introduce
the Jaynes-Cummings Hamiltonian. And finally, we take a brief look at the basic ideas behind
quantum field theory.

9.1 Interacting electrons in atomic shells

Previously, you have encountered the Schrödinger equation for a particle in a central potential,
which can be interpreted as an electron bound to a proton in a hydrogen atom. We found that the
energy levels are quantised with quantum number n. In addition, the spin and orbital angular
momentum is quantised with quantum numbers ms, l, and m, respectively (we assume that s = 1

2
since we are considering electrons). We can denote the set of quantum numbers n, ms, l, and m
by greek indices α, β,. . . , and the wave-functions uα(r) then form a complete orthonormal basis
for the bound electron.

It is tempting to keep this complete orthonormal basis for other atoms as well, and assume
that the ground state of an N-electron atom is the tensor product of the N lowest energy eigen-
states, appropriately anti-symmetrized via the Slater determinant. Indeed, the periodic table is
based on this assumption. However, this ignores the fact that the electrons interact with each
other, and the ground state of a many-electron atom is different. The Hartree-Fock method is
designed to take this into account. It is a constrained variational approach, in which the trial
state that is optimised over is forced to be a Slater determinant in order to keep the correct par-
ticle statistics. In this section we present the Hartree-Fock method, and arrive at the Hartree-
Fock equations, which can be solved iteratively. We follow the derivation given by Bransden and
Joachain (Physics of Atoms and Molecules, 1983 pp. 320-339).

First, we specify the Hamiltonian. Using the notation r i = |ri| for the distance of the ith

electron from the nucleus, and r i j = |ri −r j| for the distance between electrons i and j, we find
that

H = H1 +H2 =−
N∑

i=1

( ħ2

2m
∇2

i +
Z
r i

)
+

N∑
i< j=1

1
r i j

, (9.1)

where we used units in which e/4πε0 = 1 and the Hamiltonian is divided into the single elec-
tron Hamiltonian (H1) and the inter-electron Hamiltonian (H2). We choose as a normalised trial
quantum state Ψ(r1, . . . ,rN) the Slater determinant

Ψ(r1, . . . ,rN)= 1p
N!

∣∣∣∣∣∣∣∣∣
uα(r1) uβ(r1) . . . uν(r1)
uα(r2) uβ(r2) . . . uν(r2)

...
... . . . ...

uα(rN) uβ(rN) . . . uν(rN)

∣∣∣∣∣∣∣∣∣ , (9.2)

and calculate the expectation value of the Hamiltonian H. This must be larger or equal to the
ground state E0

〈Ψ|H|Ψ〉 ≥ E0 , (9.3)

and varying the trial state then allows us to minimise the expectation value. This will get us close
to the ground state energy.



Section 9: Many-Body Problems in Quantum Mechanics 67

Since the Slater determinant is a rather large expression, it will save us quite a bit of writing
if we introduce the anti-symmetrisation operator A , such that

Ψ(r1, . . . ,rN)=
p

N! A uα(r1)uβ(r2) . . .uν(rN)≡
p

N! AΦH , (9.4)

where ΦH(r1, . . . ,rN) is the Hartree wave function. The operator A can then be written as a sum
over permutations P of the labels α, β, . . .ν:

A = 1
N!

∑
P

(−1)P P , (9.5)

and A is a projection operator: A 2 =A =A †. Both H1 and H2 commute with A .
Next, we calculate the expectation values 〈Ψ|H1|Ψ〉 and 〈Ψ|H2|Ψ〉. Since [H1,A ] = 0, we can

write

〈Ψ|H1|Ψ〉 = N! 〈ΦH|A H1A |ΦH〉 = N! 〈ΦH|H1A
2|ΦH〉 = N! 〈ΦH|H1A |ΦH〉 . (9.6)

A permutation of the labels α, β, . . .ν leads to an orthonormal state and H1 is a sum over one-
electron Hamiltonians. We can therefore write this as

〈Ψ|H1|Ψ〉 = N! 〈ΦH|H1A |ΦH〉 =
∑
P

(−1)P〈ΦH|H1 P|ΦH〉 =
N∑

i=1
〈ΦH|ĥi|ΦH〉

=
∑
α

〈uα(ri)|ĥi|uα(ri)〉 ≡
∑
α

Iα (9.7)

where ĥi is the single electron Hamiltonian

ĥi =− ħ2

2m
∇2

i −
Z
r i

. (9.8)

Next, we calculate the expectation value 〈Ψ|H2|Ψ〉 of the two-electron interaction Hamiltoni-
ans. Using the same reasoning as in Eq. (9.6), we find that

〈Ψ|H2|Ψ〉 = N! 〈ΦH|H2A |ΦH〉 . (9.9)

Substituting the explicit form of A , we find

〈Ψ|H2|Ψ〉 =
∑
i< j

∑
P

(−1)P
〈
ΦH

∣∣∣∣ P
r i j

∣∣∣∣ΦH

〉
=

∑
i< j

〈
ΦH

∣∣∣∣1−Pi j

r i j

∣∣∣∣ΦH

〉
, (9.10)

where Pi j is the exchange operator of electrons i and j. This expression allows us to write

〈Ψ|H2|Ψ〉 =1
2

∑
α,β

[〈
uα(ri)uβ(r j)

∣∣∣∣ 1
r i j

∣∣∣∣uα(ri)uβ(r j)
〉

−
〈

uα(ri)uβ(r j)
∣∣∣∣ 1
r i j

∣∣∣∣uβ(ri)uα(r j)
〉]

. (9.11)

Note the swap of α and β in the last ket. This expectation value consists of two terms, namely the
direct term

Jαβ ≡
〈

uα(ri)uβ(r j)
∣∣∣∣ 1
r i j

∣∣∣∣uα(ri)uβ(r j)
〉

, (9.12)
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and the exchange term

Kαβ ≡
〈

uα(ri)uβ(r j)
∣∣∣∣ 1
r i j

∣∣∣∣uβ(ri)uα(r j)
〉

. (9.13)

The total expectation value therefore becomes

〈Ψ|H|Ψ〉 =
∑
α

Iα+
1
2

∑
α,β

(
Jαβ−Kαβ

)
. (9.14)

The matrix elements Jαβ and Kαβ are real and symmetric in α and β.
The second step towards the Hartree-Fock method is to find the minimum of E ≡ 〈Ψ|H|Ψ〉

by varying the uα(ri). This means finding δE = 0. However, we must keep the functions uα(ri)
orthonormal to each other, and this imposes N2 constraints. We can incorporate these constraints
in the variational procedure by including Lagrange multipliers εαβ, and the variational equation
becomes

δE−
∑
α,β

εαβ δ〈uα(r)|uβ(r)〉 = 0 . (9.15)

There is no explicit reference to electron positions ri in 〈uα(r)|uβ(r)〉 since we are only interested
in its orthonormality properties. The Lagrange multipliers εαβ form the elements of a Hermitian
matrix.

The variational approach ultimately leads to a set of N coupled equations:

Eα uα(ri)=ĥiuα(ri)+
∑
β

〈
uβ(r j)

∣∣ r−1
i j

∣∣uβ(r j)
〉

uα(ri)

−
∑
β

〈
uβ(r j)

∣∣ r−1
i j

∣∣uα(r j)
〉

uβ(ri) , (9.16)

which are known as the Hartree-Fock equations. These can be solved by iteration up to any
desired precision.

9.2 Spin waves in solids

Consider a system of spins with a nearest-neighbour interaction. For a uniform interaction in all
directions, this is described by the Hamiltonian

H =±J
∑
(i, j)

Si ·S j =±J
∑
(i, j)

Sz,iSz, j +
1
2

(
S+,iS−, j +S−,iS+, j

)
. (9.17)

where J > 0 is the coupling strength between the spins,
∑

(i, j) is the sum over all neighbouring
pairs, and S± = Sx ± iSy. The physics described by this Hamiltonian is known as the Heisenberg
model. The sign of the coupling (here made explicit) determines whether the spins want to lign
up in parallel (−J) or antiparallel (+J). The former situation describes ferromagnets, while the
later describes anti-ferromagnets. The spin operators for different sites (i 6= j) commute with each
other, while the spin operators at the same site (i = j) obey the spin algebra of Eq. (7.24).

Both systems have a well-defined ground state. For the ferromagnet this is the tensor product
of the ground state of each individual spin. We are interested in the behaviour of the excitations
with respect to this ground state. Due to the large degeneracy in the system (all the spins are
of the same species with the same coupling J) the excitations act as identical quasi-particles.
Consequently we can describe them using creation and annihilation operators. It turns out that
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they behave like bosons. You can think of an excitation as a higher spin value at some site that
propagates to its neighbours due to the interaction. This is called a spin wave.

Suppose that the spins are aligned in the positive z-direction (so we consider −J), and Sz
has the maximum eigenvalue s. When the spin is lowered by ħ, this creates an excitation in the
system, because the spin is no longer lined up. So the z-component of the spin at site j is given by

Sz, j = s− â†
j â j , (9.18)

where â†
j â j is the operator for the number of excitations at site j. Since S± raise and lower

the eigenvalue of Sz, we expect that S+ ∝ â and S− ∝ â†. When we insist on the commutation
relation [S+,S−]= 2Sz, they become

S+, j =
(
2s− â†

j â j

) 1
2 â j and S−, j =

(
2s− â†

j â j

) 1
2 â†

j . (9.19)

This is known as the Holstein-Primakoff transformation.
For small numbers, the operators S± can be approximated as

S+, j '
p

2s â j and S−, j '
p

2s â†
j . (9.20)

This allows us to write the Heisenberg Hamiltonian of Eq. (9.17) with −J to lowest order as

H =−J
∑
(i, j)

[
s2 + s

(
â†

i â j + âi â
†
j − â†

i âi − â†
j â j

)]
. (9.21)

For a simple cubic lattice of side L, lattice constant a and total number of spins N = (L/a)3 we
expect the spin waves to have wave vectors

k= 2π
L

(m,n, o) with m,n, o ∈N , (9.22)

and 1≤ m,n, o ≤ L. The spin sites must now be indicated by a vector r instead of a single number
j, and the Fourier transformation of â†

r and âr is given by

âr =
1p
N

∑
k

e−ik·r âk and â†
r =

1p
N

∑
k

eik·r â†
k , (9.23)

which transforms the Heisenberg Hamiltonian to

H =−3Js2N − Js
N

∑
r,d

∑
k,k′

eir(k−k′)
(
eid·q−1

)
â†

kâk′

=−3Js2N − Js
N

∑
k
ε(k) â†

kâk , (9.24)

where r is the position of a lattice site, d is the vector from a site to its nearest neighbours,
which takes care of the sum over nearest neighbours. This is a diagonal Hamiltonian with eigen-
energies

ε(k)= 2Js (3−coskxa−coskya−coskza) . (9.25)

This is the dispersion relation for the spin waves, and to lowest order (cos x ' 1 − 1
2 x2) it is

quadratic:

ε(k)= Jsa2k2 . (9.26)
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Spin waves are important when we want to manipulate magnetic properties with high frequency,
such as in microwave devices. They carry energy, and are therefore a mechanism for dissipation.

For the case of anti-ferromagnets (+J), the ground state is harder to find. Consider an anti-
ferromagnet that is again a simple cubic lattice with alternating spin ±s and lattice constant a.
We can think of this lattice as two sub-lattices with constant spin, and redefine the spins on the
−s sub-lattice according to

Sx →−Sx , Sy → Sy , and Sz →−Sz . (9.27)

These operators still obey the commutation relations of spin (which S →−S would not), and the
Heisenberg Hamiltonian becomes

H =−J
∑
(i, j)

Sz,iSz, j +
1
2

(
S+,iS+, j +S−,iS−, j

)
. (9.28)

When we apply the Holstein-Primakoff transformation to this Hamiltonian, to first order we
obtain

H =−J
∑
(i, j)

[
s2 + s

(
â†

i âi + b̂†
j b̂ j + âi b̂ j + â†

i b̂
†
j

)]
, (9.29)

where â†
i and âi are the creation and annihilation operators for the spin +s sub-lattice, and b̂†

j
and b̂ j are the creation and annihilation operators for the original spin −s sub-lattice. After the
Fourier transform of the creation and annihilation operators we get

H =−3Js2N +3Js
∑
k

[
â†

kâk+ b̂†
−kb̂−k+ f (k)

(
âkb̂−k+ â†

kb̂†
−k

)]
, (9.30)

where f (k)= 1
3 (coskxa+coskya+coskza).

To find the ground state we must diagonalise H so that it is a sum over number operators.
This will involve mixing creation and annihilation operators. This is a unitary transformation
that can be written as

âk = uk ĉk−vk d̂†
−k and b̂−k = uk d̂−k−vk ĉ†

k . (9.31)

This leads to the Hamiltonian

H =−3Js(s+1)N +
∑
k
ε(k)

(
ĉ†

k ĉk+ d̂†
−kd̂−k+1

)
, (9.32)

with the spin wave energy

ε(k)= 3Js
(
1− f (k)2) 1

2 . (9.33)

For small k the dispersion relation of the spin wave is linear in the wave vector, ε(k) '
p

3Jsa k,
which means that the spin waves behave markedly different in ferromagnets and anti-ferromag-
nets.
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9.3 An atom in a cavity

Consider a two-level atom with bare energy eigenstates |g〉 and |e〉 and energy splitting ħω0. The
free Hamiltonian H0 of the atom is given by

H0 =
1
2
ħω0

(
1 0
0 −1

)
. (9.34)

The atom interacts with an electromagnetic wave, and the interaction is approximately the cou-
pling between the dipole moment d̂ associated with the |g〉 ↔ |e〉 transition and the electric field
E, leading to the interaction Hamiltonian

Hint =−d̂ ·E , (9.35)

where d̂ = −er̂, and E is the classical, complex-valued electric field at the position of the atom.
For an atom at the position r= 0, the electric field can be written as

E= E0ε eiωt +E0ε
∗e−iωt , (9.36)

where E0 is the real amplitude of the electric field ε is the polarsation vector of the wave. The
off-diagonal matrix elements of Hint are given by

〈e|Hint|g〉 = eE0〈e|r̂|g〉 ·ε eiωt +c.c., (9.37)

and c.c. denotes the complex conjugate. Since r̂ has odd parity, the diagonal matrix elements
〈g|Hint|g〉 and 〈e|Hint|e〉 vanish. When we define reg ≡ 〈e|r̂|g〉, the total Hamiltonian becomes

H =
( 1

2ħω0 eE0r∗eg · (εeiωt +ε∗e−iωt)
eE0reg · (εeiωt +ε∗e−iωt) −1

2ħω0

)
. (9.38)

Using the Rotating Wave Approximation (see exercise 9.1), this Hamiltonian can be written as

H = ħ
2

(
ν Ω∗

Ω −ν
)
, (9.39)

where we made the substitution

ν=ω−ω0 and Ω= 2eE0

ħ reg ·ε . (9.40)

We can use the standard matrix techniques in quantum mechanics to solve for the eigenvalues,
the eigenstates, and the time evolution of the atom.

Next, we consider the situation where atom is placed inside a cavity of volume V , and the elec-
tric field in the cavity has angular frequency ω with wave vector k propagating in the z-direction.
Assume that the length of the cavity is a multiple of λ/2, such that ω is a resonant cavity mode.
The field is very weak, so that the classical description of E is no longer sufficient. In particular,
the field is made of photons, i.e., identical bosons. Consequently, we need to express E in terms of
bosonic creation and annihilation operators â† and â, which create photons of frequency ω. Since
the intensity of the field is proportional to both E 2

0 and â†â, we expect the electric field to be pro-
portional to the creation and annihilation operators themselves. Hermiticity requires that it is
proportional to the sum of the creation and annihilation operators. Furthermore, the electric field
is a transverse standing wave cavity mode and must vanish at the mirrors due to the boundary
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conditions imposed by Maxwell’s equations. The spatial amplitude variation therefore includes a
factor sinkz. For linear polarisation the operator form of E then becomes

Ê(z, t)= ε
√

ħω
ε0V

(
â e−iωt + â† eiωt

)
sinkz , (9.41)

where we assumed that ε is real7. The creation and annihilation operators are thus the amplitude
operators of the field. Note that by the analogy with the harmonic oscillator, the electric field
operator acts as a position operator of a particle in a harmonic potential well characterised by ω.

We again consider the dipole approximation of the atom in the field, and the Hamiltonian is
written as

Hint =−d̂ · Ê= e r̂ ·ε
√

ħω
ε0V

sinkz
(
â e−iωt + â† eiωt

)
. (9.42)

The operator r̂ can be written as

r̂= reg |e〉〈g|+r∗eg |g〉〈e| , (9.43)

and for notational simplicity, we define the coupling constant g as

g = ereg ·ε
√

ħω
ε0V

sinkz . (9.44)

We again calculate the matrix elements of Hint as before, but this time we write the operator in
terms of |g〉〈e| and |e〉〈g|:

Hint = g |e〉〈g|
(
â e−iωt + â† eiωt

)
+ g∗ |g〉〈e|

(
â e−iωt + â† eiωt

)
. (9.45)

It is convenient to express |g〉〈e| and |e〉〈g| in terms of the two-level raising and lowering opera-
tors σ+ and σ−:

σ+ = |e〉〈g| and σ− = |g〉〈e| , (9.46)

with the commutation relation

[σ+,σ−]= 2σ3 with σ3 = |g〉〈g|− |e〉〈e| . (9.47)

The interaction Hamiltonian becomes

Hint = g σ+
(
â e−iωt + â† eiωt

)
+ g∗ σ−

(
â e−iωt + â† eiωt

)
. (9.48)

Including the free Hamiltonian for the field and the two-level atom, this becomes in the Rotating
Wave Approximation

HJC = 1
2
ħω0 σ3 +ħω â†â+ g σ+ â + g∗σ− â† , (9.49)

This is the Jaynes-Cummings Hamiltonian for a two-level atom with energy splitting ħω0 inter-
acting with a cavity mode of frequency ω. To achieve the strongest coupling g, the volume of the
cavity should be small, and the atom should sit at an anti-node of the field.

7This is true for linear polarisation. For elliptical polarisation ε will be complex. The subsequent derivation will
be slightly modified (with more terms in Hint), but no extra technical or conceptual difficulties arise.
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Quantities are conserved when they commute with the Hamiltonian. We can identify two
observables that satisfy this requirement, namely the number of electrons

P̂e = |g〉〈g|+ |e〉〈e| = I , (9.50)

and the total number of excitations

N̂e = â†â+|e〉〈e| . (9.51)

This means that the Hamiltonian will not couple states with different total excitations.
In a real system, the cavity will not be perfect, and the excited state of the atom will suffer

from spontaneous emission into modes other than the cavity mode. This can be modelled by a
Lindblad equation for the joint state ρ of the atom and the cavity mode. The Lindblad operator
for a leaky cavity is proportional to the annihilation operator â, with a constant of proportionalityp
κ that denotes the leakage rate. The spontaneous emission of the atom is modelled by the

Lindblad operator p
γσ−. The Lindblad equation then becomes

dρ
dt

= 1
iħ

[
HJC,ρ

]+γσ−ρσ+−
γ

2
{σ+σ−,ρ}+κ âρâ† − κ

2
{â†â,ρ} . (9.52)

The research field of cavity quantum electrodynamics (or cavity QED) is devoted in a large part
to solving this equation.

9.4 Outlook: quantum field theory

We have surreptitiously introduced the basic elements of non-relativistic quantum field the-
ory. Consider again the Heisenberg model, where we described a lattice of spins with nearest-
neighbour interactions. If we take the limit of the lattice constant a → 0 we end up with a contin-
uum of creation and annihilation operators for each point in space. This is a field.

Traditionally we construct a quantum field theory from harmonic oscillators at each point in
space. To this end, we characterise a classical harmonic oscillator with mass M in terms of its
displacement q and velocity q̇. The equations of motion for the classical harmonic oscillator are
the Euler-Lagrange equations

d
dt

∂L
∂q̇

− ∂L
∂q

= 0 , (9.53)

where L is the Lagrangian

L = 1
2

Mq̇2 − 1
2

K q2 , (9.54)

and K can be thought of as a spring constant. Substituting this L into Eq. (9.53) yields the
familiar differential equations for the harmonic oscillator q̈+Ω2q = 0, with Ω2 = K /M.

Next, we arrange N particles in a one-dimensional lattice of length L and lattice constant
a, where L = Na. Each particle’s displacement is coupled to the displacement of it’s nearest
neighbours by a spring with constant K . The equations of motion of this set of coupled particles
is given by

q̈n =Ω2 [(qn+1 − qn)+ (qn−1 − qn)] . (9.55)
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We take the limit of a → 0 and N → ∞ while keeping L = Na fixed. Our variable qn(t) then
becomes a field u(x, t), and it takes only a few lines of algebra to show that

ü(x, t)= a2Ω2u′′(x, t)= v2u′′(x, t) with lim
a→0

aΩ= v . (9.56)

This is a wave equation, and v is the velocity of the wave. We can generalise this immediately to
three dimensions:

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 − 1

v2
∂2u
∂t2 = 0 . (9.57)

In quantum field theory, we consider only these waves as the field excitations, and ignore the
underlying particle structure we used to arrive at this result. We have already done something
similar when we considered the spin waves in the Heisenberg model. Note also that the finite
speed of propagation of waves means that we can make the theory Lorentz invariant when v = c,
the speed of light, and Eq. (9.57) becomes ∂µ∂µ u = 0.

The wave equation is typically derived from a Lagrangian L, or in the case of a field theory, the
Lagrangian density L . A massless scalar field is described by the Lorentz-invariant Lagrangian
density

L = 1
2

[(
∂φ

∂x

)2
+

(
∂φ

∂x

)2
+

(
∂φ

∂x

)2
− 1

c2

(
∂φ

∂x

)2]
= 1

2
(∂µφ)(∂µφ) , (9.58)

where for technical reasons we redefined φ = u/
p

a. The dispersion relation for such a field is
c2k2 =ω2, with k the wave number and ω the frequency of the wave. Similarly, a massive field is
described by

L = 1
2

(∂µφ)(∂µφ)− 1
2

m2φ2 . (9.59)

The Euler-Lagrange equation for this Lagrangian density is the so-called Klein-Gordon equation(
∂µ∂

µ+ m2c2

ħ2

)
φ= 0 . (9.60)

The mass term leads to a new dispersion relation

c2ħ2k2 −ħ2ω2 +m2c4 = 0 , (9.61)

and the group velocity for wave packets is

vg =
dω
dk

= c√
1+µ2

with µ= mc
ħk

. (9.62)

For relativistic particles the momentum ħk is much larger than the rest mass mc, and therefore
vg approaches c.

We can solve the Klein-Gordon equation formally by writing

φ(r, t)=
∫

dk√
2(2π)3ωk

(
a(k) eik·r−iωt +a∗(k) e−ik·r+iωt

)
, (9.63)

where ak is the complex amplitude of a wave with wave vector k. The field is essentially a
superposition of (non-interacting) eigenmodes labelled by k, and we call this a free field. We can
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introduce interactions between the waves in the field by adding higher-order terms to L with
coupling constants ν, λ,. . .

L = 1
2

(∂µφ)(∂µφ)− 1
2

m2φ2 − ν

3!
φ3 − λ

4!
φ4 −·· · (9.64)

The solution to the Klein-Gordon equation is now no longer the correct solution to the new equa-
tions of motion, but when the interaction is reasonably weak we can use the solutions φ(r, t) of
the free field as a starting point in a perturbation expansion.

So far, everything in this section has been a classical treatment. In order to extend the theory to
quantum mechanics we have to quantise the field. We achieve this by promoting the amplitudes
in φ (and therefore φ itself) to operators that obey commutation of anti-commutation relations

φ̂(r, t)=
∫

dk√
2(2π)3ωk

(
â(k) eik·r−iωkt + â†(k) e−ik·r+iωkt

)
. (9.65)

These are the creation and annihilation operators for excitations of the field. For the Klein-Gordon
equation they obey the bosonic commutation relations[

â(k), â(k′)
]= [

â†(k), â†(k′)
]
= 0 and

[
â(k), â†(k′)

]
= δ3(k−k′) . (9.66)

The state of the field can then be written as a superposition of Fock states. The field φ̂ has now
become an observable.

In quantum field theory, the excitations of the field are interpreted as particles. All funda-
mental particles like quarks, electrons, photons, and the Higgs boson are excitations of a corre-
sponding field. So the excitations of the Higgs field are Higgs bosons, and the excitations of the
electromagnetic field are photons. Spin-1

2 particles obey the Dirac equation(
iħγµ∂µ−mc

)
ψ̂= 0 , (9.67)

where the γµ are 4×4 matrices

γ0 =
(
I 0
0 −I

)
, γ1 =

(
0 σx

−σx 0

)
, γ2 =

(
0 σy

−σy 0

)
, γ3 =

(
0 σz

−σz 0

)
, (9.68)

and ψ is a four-dimensional vector field called a spinor field. The solution to the free Dirac field
can be written as

ψ̂(r, t)=
∑
s

∫
dk√

2(2π)3ωk

[
b̂s(k) us(k) eik·r−iωkt + d̂†

s(k) vs(k) e−ik·r+iωkt
]

, (9.69)

where s =±1
2ħ is the spin value, and us(k) and vs(k) are two spinors carrying the spin component

of the field

us(k)=N

(
χs

ħcσ·k
ħω+mc2 χs

)
and vs(k)=N

(− ħcσ·k
ħω+mc2 χs
χs

)
, (9.70)

where N is a normalisation constant, σ is a vector of Pauli matrices, and

χ+ =
(
1
0

)
and χ− =

(
0
1

)
. (9.71)
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The creation and annihilation operators b̂s(k) and d̂†
s(k) obey anti-commutation relations:{

b̂s(k), b̂r(k′)
}= {

b̂†
s(k), b̂†

r(k′)
}
= 0 and

{
b̂s(k), b̂†

r(k′)
}
= δrs δ

3(k−k′) ,{
d̂s(k), d̂r(k′)

}= {
d̂†

s(k), d̂†
r(k′)

}
= 0 and

{
d̂s(k), d̂†

r(k′)
}
= δrs δ

3(k−k′) , (9.72){
b̂s(k), d̂r(k′)

}= {
b̂†

s(k), d̂†
r(k′)

}
= 0 and

{
b̂s(k), d̂†

r(k′)
}
=

{
d̂s(k), b̂†

r(k′)
}
= 0 .

This means that the excitations of the Dirac field are fermions with spin 1
2 , such as the electron.

You see immediately that ψ̂ is not Hermitian due to the appearance of d̂†. This means that ψ̂
is not an observable and we cannot think of the Dirac field as a quantised version of a classical
observable field. There is no classical analog to the Dirac field. This is a consequence of the fact
that the anti-particle of the Dirac excitations are not the same as the particle itself. E.g., the
positron is different from the electron. Anti-particles are a quintessentially quantum mechanical
phenomenon.

There is of course a lot more to quantum field theory than this. For example, the techniques for
doing the perturbation expansion of interacting fields leads to Feynman diagrams, and renormali-
sation theory must be employed to deal with the infinities that crop up in the perturbation theory.
Furthermore, one has to choose the right Lagrangian density, and principles such as gauge invari-
ance and CPT invariance are imposed to constrain the possible choices. This leads ultimately to
the extraordinary successful Standard Model of particle physics. It the most fundamental theory
of Nature that we have, and it is tested to unprecedented accuracy.

Exercises

1. The Hamiltonian for a two-level atom in the presence of an electromagnetic wave, as given
in Eq. (9.38) depends on the time t. This makes it difficult to solve the Schrödinger equation,
so in this exercise we will get rid of the time dependence by applying the Rotating Wave
Approximation.

(a) If
∣∣ψ′(t)

〉 = U(t)
∣∣ψ(t)

〉
, find the Schrödinger equation for

∣∣ψ′(t)
〉
. What is the new

Hamiltonian?

(b) Choose U(t) such that

U(t)=
(
eiωt/2 0

0 e−iωt/2

)
,

and H is given by Eq. (9.38). Show that the new Hamiltonian is given by Eq. (9.39).

2. A two-level atom is placed in a perfect cavity with an electromagnetic field of frequency ω.

(a) Show that the Jaynes-Cummings Hamiltonian can be written as a direct sum of 2×2
matrices Hn, and specify Hn.

(b) Diagonalize Hn to find the energy values of the system, and calculate the eigenstates.

(c) At t = 0, the system is in the state
∣∣ψ(0)

〉 = |e,n〉. Calculate the state
∣∣ψ(t)

〉
when the

light is on resonance with the atomic transition (ω=ω0).

(d) Calculate the amount of entanglement between the atom and the cavity field. Use the
relative entropy as the entanglement measure.

(e) How long does the atom need to reside in the cavity in order to achieve maximum
entanglement?
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