PHYS 1020 Final Exam

Monday, December 17, 6-9 pm
The whole course
30 multiple choice questions Formula sheet provided

Seating (from exam listing on Aurora) Brown Gym
A - SIM Gold Gym
SIN - Z

GENERAL PHYSICS I: PHYS 1020

Schedule - Fall 2007
(lecture schedule is approximate)

11	M	12	Remembrance Day			Experiment 4: Centripetal Force
	W	14	28	$\begin{aligned} & \text { Chapter } 11 \\ & \text { exclude } 11.11 \end{aligned}$	Fluids	
	F	16	29			
12	M	19	30	$\frac{\text { Chapter } 12}{\text { sections 1-8 }}$	Temperature and heat(some small sections, notably thermal stress will be omitted)	$\frac{\text { Tutorial and Test } 4}{\text { (chapters } 8,9,10 \text {) }}$
	W	21	31			
	F	23	32			
13	M	26	33	Chapter 13	Transfer of Heat -- Self study only. Required for last lab. This chapter IS examinable on the final.	Experiment 5: Thermal Conductivity of an Insulator
	W	28	34	Chapter 14	The Ideal Gas Law \& Kinetic Theory	
	F	30	35			
14	M	Dec 3	36			No lab or tutorial
	W	5	37	Last Day of Classes		

Week of November 26
Experiment 5: Thermal conductivity

Mastering Physics Assignment \#5

On chapters 8, 9, 10, 11

Due Monday, December 3 at 11 pm

Motion of Fluids

Equation of continuity:

$$
\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A_{2}=\text { mass flowing per second }
$$

If the density does not change:
$v_{1} A_{1}=v_{2} A_{2}=$ volume flowing per second

Bernoulli's Equation:

$$
P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}=\mathrm{constant}
$$

- based on work-energy theorem, assumes streamline flow

Bernoulli: at 2 and 1
$R_{\text {cat } m}+\rho g h=R_{\text {cat } m}+\frac{1}{2} \rho v^{2} \rightarrow v^{2}=2 g h$, as if the water had fallen a distance h
What the water loses in potential energy, it gains in kinetic energy

11.96/68: (a) Find v

Bernoulli:

So, $v=\sqrt{2 g y}$
(b) At what value of y will the siphon stop working?
$v=0$ when $y=0$, i.e. when the lower end is level with the water surface.
(c) Find the absolute pressure at A.

Bernoulli, at surface of water and at A:
$P_{a t m}+\rho g y=P_{A}+\rho g(y+h)+\frac{1}{2} \rho v^{2}$
$P_{A}=P_{\text {atm }}-\rho g h-\frac{1}{2} \rho v^{2}$
Since, $v=\sqrt{2 g y}$,

$$
\begin{aligned}
P_{A} & =P_{a t m}-\rho g h-\frac{1}{2} \rho \times 2 g y \\
& =P_{a t m}-\rho g(h+y)
\end{aligned}
$$

Chapter 12: Temperature and Heat

- Temperature scales, thermometers
- Linear and volume expansion
- Internal energy
- Specific heat
- Change of phase, latent heat

Leave out sections 9, 10: equilibrium between phases of matter, humidity

Temperature Scales

Common temperature scales are based on the freezing and boiling points of water:
$0^{\circ} \mathrm{C}$, or $32^{\circ} \mathrm{F}=$ freezing point $100^{\circ} \mathrm{C}$, or $212^{\circ} \mathrm{F}=$ boiling point
and are measured conveniently by thermal expansion of mercury in a thermometer.

Fahrenheit's scale: $0^{\circ} \mathrm{F}=$ coldest temperature in Danzig in winter of $1708-09,100^{\circ} \mathrm{F}=$ body temperature?? Origin of scale very uncertain.

The Kelvin, or absolute, scale is of greater scientific significance.
Temperature differences have the same magnitude in Celsius and Kelvin.

Measuring Temperature

Constant volume gas thermometer

Bulb contains low density hydrogen or helium gas they liquefy at very low temperature. The right arm of the manometer is raised to keep the level of mercury in the left arm at constant height, so the gas has constant volume.

Measure the pressure of the gas as a function of temperature. Find that...

12.7: A constant-volume thermometer has a pressure of 5000 Pa when the gas temperature is $0^{\circ} \mathrm{C}$. What is the temperature when the pressure is 2000 Pa ?

Pressure is proportional to absolute (Kelvin) temperature. So -

$$
\begin{gathered}
\frac{T_{2}}{T_{1}}=\frac{P_{2}}{P_{1}} \\
\frac{T_{2}}{273.15}=\frac{2000}{5000}
\end{gathered}
$$

$$
T_{2}=109.26 \mathrm{~K}=-163.9^{\circ} \mathrm{C}
$$

Types of Thermometers

- Expansion as a function of temperature - eg mercury thermometers.
- Thermocouple - current induced by metals at different temperatures.

Types of Thermometers

- Resistance thermometers - use fact that electrical resistance varies with temperature.
- Spectrum of light from heated objects - the colour varies with temperature. Infrared at lower temperatures, shifting to blue at high temperature.

Deduce the temperature of the surface of the sun from the spectrum of sunlight. Or of distant stars, or the filament of a light bulb.

$\lambda_{\text {max }} T=$ constant, T in Kelvin

Thermograms of smoker's hands before and after smoking a cigarette. Vasoconstriction reduces blood flow and temperature.

These are "false colours" - the pictures are taken with infraredsensitive film. White: $34^{\circ} \mathrm{C}$, blue: $28^{\circ} \mathrm{C}$

Infrared picture taken from space showing the warm El Niño ocean current

Thermal Expansion

Linear expansion - the increase in length, width or thickness when an object is heated.
$\Delta L=\alpha L_{0} \Delta T$
$\alpha=$ coefficient of
linear expansion

Typical values for metals $\approx 15 \times 10^{-6}$ per C°.

Table 12.1 Coefficients of Thermal Expansion for Solids

	Coefficient of Thermal Expansion $\left(\mathrm{C}^{\circ}\right)^{-1}$ Linear (α)
Substance	
Solids	23×10^{-6}
Aluminum	19×10^{-6}
Brass	12×10^{-6}
Concrete	17×10^{-6}
Copper	8.5×10^{-6}
Glass (common)	3.3×10^{-6}
Glass (Pyrex)	14×10^{-6}
Gold	12×10^{-6}
Iron or steel	29×10^{-6}
Lead	13×10^{-6}
Nickel	0.50×10^{-6}
Quartz (fused)	19×10^{-6}

12.C3: A circular hole is cut through a flat aluminum plate. A spherical brass ball has a diameter that is slightly smaller than the diameter of the hole. If the ball and plate have equal temperature at all times, should the ball and plate be heated or cooled to prevent the ball from falling through the hole?

Linear expansion coefficients:
Aluminum: $23 \times 10^{-6}\left(C^{0}\right)^{-1}$
$\alpha_{A l}>\alpha_{b r a s s}$
Brass: $\quad 19 \times 10^{-6}\left(C^{0}\right)^{-1}$

The aluminum expands more than the brass as the temperature is increased, so the diameter of the hole increases more than the diameter of the ball.

As they are cooled, the diameter of the hole in the aluminum decreases more than does the diameter of the ball.
12.-/10: The Concorde aircraft is 62 m long when its temperature is $23^{\circ} \mathrm{C}$. In flight, the outer skin can reach $105^{\circ} \mathrm{C}$ due to air friction. Find the amount Concorde expands.

The coefficient of linear expansion of the skin is $\alpha=2 \times 10^{-5} \operatorname{per} C^{0}$.

The increase in length is: $\Delta L=\alpha L_{0} \Delta T$

$$
\begin{aligned}
& \Delta L=\left(2 \times 10^{-5} \text { per } \mathrm{C}^{\circ}\right) \times(62 \mathrm{~m}) \times\left(105-23^{\circ} \mathrm{C}\right) \\
& \Delta L=0.102 \mathrm{~m}
\end{aligned}
$$

The Bimetallic Strip

Two thin strips of metals of different temperature coefficient of expansion, welded or riveted together.

The strip bends when it is heated or cooled.

Used as switches for heating elements, thermostats.

Volume Expansion

When heated, objects expand in all three dimensions:

$$
\begin{aligned}
& L_{x}=L_{x 0}(1+\alpha \Delta T) \\
& L_{y}=L_{y 0}(1+\alpha \Delta T) \\
& L_{z}=L_{z 0}(1+\alpha \Delta T)
\end{aligned}
$$

The same coefficient of expansion in all dimensions

The volume increases to:

$$
\begin{aligned}
V & =L_{x} \times L_{y} \times L_{z} \\
& =L_{x 0} L_{y 0} L_{z 0}(1+\alpha \Delta T)(1+\alpha \Delta T)(1+\alpha \Delta T) \\
& \simeq V_{0}(1+3 \alpha \Delta T)
\end{aligned}
$$

The volume coefficient of temperature expansion is defined by:

$$
V=V_{0}(1+\beta \Delta T)
$$

So, $\beta \simeq 3 \alpha$

Table 12.1 Coefficients of Thermal Expansion for Solids and Liquids ${ }^{\text {a }}$

Substance	Coefficient of Thermal Expansion $\left(\mathrm{C}^{\circ}\right)^{-1}$	
	Linear (α)	Volume (β)
Solids	$\beta \simeq 3 \alpha$	
Aluminum	23×10^{-6}	69×10^{-6}
Brass	19×10^{-6}	57×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Copper	17×10^{-6}	51×10^{-6}
Glass (common)	8.5×10^{-6}	26×10^{-6}
Glass (Pyrex)	3.3×10^{-6}	9.9×10^{-6}
Gold	14×10^{-6}	42×10^{-6}
Iron or steel	12×10^{-6}	36×10^{-6}
Lead	29×10^{-6}	87×10^{-6}
Nickel	13×10^{-6}	39×10^{-6}
Quartz (fused)	0.50×10^{-6}	1.5×10^{-6}
Silver	19×10^{-6}	57×10^{-6}
Liquids ${ }^{\text {b }}$		
Benzene	-	1240×10^{-6}
Carbon tetrachloride	-	1240×10^{-6}
Ethyl alcohol	-	1120×10^{-6}
Gasoline	-	950×10^{-6}
Mercury	-	182×10^{-6}
Methyl alcohol	-	1200×10^{-6}
Water	-	207×10^{-6}

${ }^{\text {a }}$ The values for α and β pertain to a temperature near $20^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Since liquids do not have fixed shapes, the coefficient of linear expansion is not defined for them.

The coolant reservoir catches the radiator fluid that overflows when an engine becomes hot. The radiator is made of copper.

$$
\beta_{\text {coolant }}=4.10 \times 10^{-4} \operatorname{per} C^{\circ} .
$$

The radiator is filled to its 15 litre capacity at $6^{\circ} \mathrm{C}$. How much fluid overflows when the temperature reaches $92^{\circ} \mathrm{C}$?

Both the coolant and the copper radiator expand. $\beta_{c_{u}}=51 \times 10^{-6}$ per C°.

The coolant expands by: $\Delta \mathrm{V}_{\text {coolant }}=\beta$ coolant $\mathrm{V}_{0} \Delta \mathrm{~T}=\left(4.10 \times 10^{-4}\right)(15)(86)$
$\Delta \mathrm{V}_{\text {coolant }}=0.53$ litres .

The radiator expands by: $\Delta \mathrm{V}_{c_{u}}=\beta c_{u} \mathrm{~V}_{0} \Delta \mathrm{~T}=\left(51 \times 10^{-6}\right)(15)(86)=0.07 \mathrm{I}$.
So, amount of overflow is ($0.53-0.07$) $=0.46$ litres.

Water is different from most liquids - it expands as it freezes, from $4^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

Water at $4^{\circ} \mathrm{C}$ is more dense than freezing water, so freezing water rises to the surface, forming an insulating ice layer, while life can continue below in the liquid water.

Heat and Internal Energy

- Heat is a flow of energy from one object to another.
- It originates from an internal energy - the random motion and the potential energy of molecules making up a substance.
- Temperature is a measure of an object's internal energy. The greater the internal energy, the greater the temperature.
- The flow of energy (heat) is from higher temperature to lower temperature.
- The SI unit of heat is the Joule.
- Also used, the calorie (cal). $1 \mathrm{cal}=4.186 \mathrm{~J}$.
- NB the food calorie is 1000 cal.

Heat and Temperature Change

The amount of heat, Q, to raise the temperature of a mass m of a substance by $\Delta \mathrm{T}^{\circ} \mathrm{C}$ is:
$Q=m c \Delta T$
$c=$ specific heat capacity (or specific heat) in $\mathrm{J} /\left(\mathrm{kg} . \mathrm{C}^{\circ}\right)$.

Water: $\mathrm{c}=4186 \mathrm{~J} /\left(\mathrm{kg} . \mathrm{C}^{\circ}\right)$, that is, $1000 \mathrm{cal} /\left(\mathrm{kg} . \mathrm{C}^{\circ}\right)$

In 30 minutes, a 65 kg jogger generates 800 kJ of heat. If the heat were not dissipated, how much would the jogger warm up?

Average specific heat of the body $=3500 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$

$$
\Delta T=\frac{Q}{m c}=\frac{8 \times 10^{5} \mathrm{~J}}{65 \times 3500}=3.5^{\circ} \mathrm{C}
$$

Table 12.2 Specific Heat Capacities ${ }^{\text {a }}$ of Some Solids and Liquids

	Specific Heat
Capacity, c	
Substance	$\mathrm{J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$

Solids

Aluminum	9.00×10^{2}	Benzene	1740
Copper	387	Ethyl alcohol	2450
Glass	840	Glycerin	2410
Human body	3500	Mercury	139
$\quad\left(37^{\circ} \mathrm{C}\right.$, average $)$		Water $\left(15^{\circ} \mathrm{C}\right)$	4186
Ice $\left(-15^{\circ} \mathrm{C}\right)$	2.00×10^{3}	atcept as noted, the values are for $25^{\circ} \mathrm{C}$	
Iron or steel	452	and 1 atm of pressure.	
Lead	128		

Liquids

Benzene 1740
Ethyl alcohol 2450
Glycerin 2410
Mercury 139
Water $\left(15^{\circ} \mathrm{C}\right) \quad 4186$
${ }^{\text {a }}$ Except as noted, the values are for $25^{\circ} \mathrm{C}$ and 1 atm of pressure.

