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Solid State Physics 
Lecture 2 

(Ch. 2.1-2.3, 2.6-2.7)

Last week: 

• Crystals, 

• Crystal Lattice, 

• Reciprocal Lattice, and 

• Types of bonds in crystals

Today:  

• Diffraction from crystals 

• Importance of the reciprocal lattice concept
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Crystal Lattice 
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Reciprocal Lattice 
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Diffraction of waves by crystal lattice
•Most methods for determining the atomic structure of crystals are 

based on scattering of particles/radiation. 
•X-rays is one of the types of the radiation which can be used 
•Other types include electrons and neutrons 
•The wavelength of the radiation should be comparable to a typical 

interatomic distance of a few Å (1 Å =10-10 m)

E
hchchE =⇒== λ

λ
ν

λ(Å) = 12398/E(eV) ⇒
few keV is suitable energy
for λ = 1 Å

•X-rays are scattered mostly by electronic shells of atoms in a solid.
Nuclei are too heavy to respond. 

•Reflectivity of x-rays ~10-3-10-5 ⇒ deep penetration into the solid 
⇒ x-rays serve as a bulk probe
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The Bragg Law

Conditions for a sharp peak in the 
intensity of the scattered radiation:
1) the x-rays should be specularly
reflected  by the atoms in one plane 
2) the reflected rays from the 
successive planes interfere constructively

The path difference between the two x-rays: 2d·sinθ⇒

the Bragg formula:  2d·sinθ = mλ
The model used to get the Bragg law are greatly oversimplified 

(but it works!). 
– It says nothing about intensity and width of x-ray diffraction peaks 
– neglects differences in scattering from different atoms 
– assumes single atom in every lattice point 
– neglects distribution of charge around atoms
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The Bragg Law and Diffraction grating

Compare Bragg Law 
2d·sinθ = mλ

X-ray Diffraction 
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Meaning of d  for 2D

d

2d·sinθ = mλ
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Meaning of d  for 3D
http://www.desy.de/~luebbert/CrystalCalc_Cubic.html

Intercepts: a,a,a
Reciprocals: a/a, a/a, a/a

= 1, 1, 1
Miller index for this plane : (1 1 1)
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2d·sinθ = mλ
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X-rays are EM waves
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X-rays and X-ray tube

Bragg Law 2d·sinθ = mλ
for m=1   2d > λ

Electronic 
transitions

X-ray tube
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X-rays  and Synchrotrons

Bragg Law 2d·sinθ = mλ

Synchrotron radiation
Natural  Synchrotron Radiation

Accelerating electron 
emits  light

Stars and 
Galaxies
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•Synchrotron Radiation from a storage ring 
is the most bright manmade source of white light
•Useful for materials studies from Far Infrared and UV to X-ray  

Synchrotron 
Radiation 
produced by 
relativistic 
electrons in 
accelerators
(since 1947)
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Diffraction condition and reciprocal lattice
Von Laue approach: 
– crystal is composed of identical 

atoms placed at the lattice sites T 
– each atom can reradiate the incident 

radiation in all directions. 
– Sharp peaks are observed only in the 

directions for which the x-rays 
scattered from all lattice points 
interfere constructively.

Consider two scatterers separated by a lattice vector T. 
Incident x-rays: wavelength λ, wavevector k; |k| = k = 2π/λ;  
Assume elastic scattering: scattered x-rays have same energy (same λ) ⇒
wavevector k' has the same magnitude |k'| = k = 2π/λ

Condition of constructive interference:                         or 
Define    ∆k = k' - k - scattering wave vector   
Then   ∆k = G , where G is defined as such a vector for which   G·T = 2πm

k
kk =

k'
k''k =

( ) λm=⋅− Tk'k ( ) mπ2=⋅− Tkk'
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We obtained the diffraction (Laue) condition: ∆k = G where  G·T = 2πm
Vectors G which satisfy this relation form a reciprocal lattice

A reciprocal lattice is defined with reference to a particular Bravais lattice, 
which is determined by a set of lattice vectors T. 

Constricting the reciprocal lattice from the direct lattice:
Let a1, a2, a3 - primitive vectors of the direct lattice;  T = n1a1 + n2a2 + n3a3

Then reciprocal lattice can be generated using the primitive vectors

where V = a1·(a2×a3) is the volume of the unit cell

Then vector G = m1b1 + m2b2 + m3b3 We have bi·aj = δij
Therefore, G·T = (m1b1 + m2b2 + m3b3)·(n1a1 + n2a2 + n3a3) =

2π(m1n1+ m2n2+ m3n3) = 2πm
The set of reciprocal lattice vectors determines the possible scattering wave 

vectors for diffraction
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We got  ∆k = k' – k = G ⇒ |k'|2 = |k|2 + |G|2 +2k·G ⇒ G2 +2k·G = 0

2k·G = G2 – another expression for diffraction condition

Now, show that the reciprocal lattice vector G = hb1 + kb2 + lb3 is 
orthogonal to the plane represented by Miller indices (hkl)

plane (hkl) intercepts axes at points 
x, y, and z given in units a1, a2 and a3

By the definition of the Miller indices:

define plane by two non-collinear vectors u and v lying within this plane:

prove that G is orthogonal to u and v: analogously show
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Now, prove that the distance between two adjacent parallel planes of 
the direct lattice is d = 2π/G.

The interplanar distance is given by 
the projection of the one of the 
vectors xa1, ya2, za3, to the direction 
normal to the (hkl) plane, which is 
the direction of the unit vector G/G

⇒

θ
k k'

∆k

The reciprocal vector G(hkl) is associated with the crystal planes (hkl) and 
is normal to these planes. The separation between these planes is 2π/G
2k·G = G2 ⇒ 2|k|Gsinθ = G2

⇒ 2·2πsinθ /λ = 2π/d ⇒ 2dsinθ = λ

2dsinθ = mλ - get Bragg law
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Ewald Construction for Diffraction 

Condition and  reciprocal space 
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Reciprocal Space: Accessible Area for Diffraction 
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Summary 
Various statements of the Bragg condition: 
2d·sinθ = mλ ; ∆k = G ; 2k·G = G2

Reciprocal lattice is defined by primitive vectors: 

A reciprocal lattice vector has the form G = hb1 + kb2 + lb3
It is normal to (hkl) planes of direct lattice

Only waves whose wave vector drawn from the origin 
terminates on a surface of the Brillouin zone can be diffracted 
by the crystal First BZ of fcc latticeFirst BZ of bcc lattice
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Solid State Physics 
Lecture 2 (continued) 

(Ch. 2.4-2.5, 2.9-2.12)

Atomic and structure factors

Experimental techniques

Neutron and electron diffraction
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Consider single electron.  Plane wave

Scattered field: fe – scattering length of electron
R – radial distance

Two electrons:

or, more generally

many electrons:  

Scattering from atom

Diffraction process:
1) Scattering by individual atoms
2) Mutual interference between scattered rays
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this is for coherent scatterers.     If random then

Scattering length of electron: 

classical electron radius

In atom, 
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n(r) – electron density
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Atomic scattering factor (dimensionless) is determined by 
electronic distribution. 
If n(r) is spherically symmetric, then 

in forward scattering ∆k =  0 so

Z - total number of electrons

Atomic factor for forward scattering is equal to the atomic number

(all rays are in phase, hence interfere constructively)

Zdrrnrfa == ∫ )(4 2π
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crystal scattering factor: 

Rl - position of lth atom,   fal - corresponding atomic factor

rewrite 

Scattering from crystal

∑∑ ⋅∆⋅∆ ==
l

i
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where ∑ ⋅∆=
j

i
aj

jefF sk - structure factor of the basis, 
summation over the atoms in unit cell

∑ ⋅∆=
l

i c
leS Rkand - lattice factor, summation over all 

unit cells in the crystal

Where j
c
ll sRR +=

Lecture 2 Andrei Sirenko, NJIT 26
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2 ( )j j ji hu kv lw
aj
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Example: structure factor of bcc lattice (identical atoms)

Two atoms per unit cell: s1 = (0,0,0); s2 = a(1/2,1/2,1/2)

[ ])(1 lkhi
a efF +++= π

⇒ F=2fa if   h+k+l is even,  and F=0 if   h+k+l is odd
Diffraction is absent for planes with odd sum of Miller indices

For  allowed reflections in fcc lattice h,k,and l are all even or all odd
4 atoms in the basis.
What about simple cubic lattice ?
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Rotating crystal method –
for single crystals, epitaxial films 
θ-2θ,  rocking curve, ϕ - scan

Powder diffraction

Laue method – white x-ray beam used most often used for mounting 
single crystals in a precisely known orientation

Experimental XRD techniques
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Geometric interpretation of Laue condition:

2k·G = G2 ⇒

– Diffraction is the strongest (constructive interference) at the 
perpendicular bisecting plane (Bragg plane) between two reciprocal 
lattice points. 

– true for any type of waves inside a crystal, including electrons. 

– Note that in the original real lattice, these perpendicular bisecting 
planes are the planes we use to construct Wigner-Seitz cell
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Applications of X-ray Diffraction  for crystal and 

thin-film analysis
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Applications of X-ray Diffraction  for hetero-structures 
(one or more crystalline films grown on a substrate) 



Lecture 2 Andrei Sirenko, NJIT 37

X-ray Diffraction Setup 
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High Angular Resolution X-ray Diffraction Setup 

B11 Tiernan
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Example of High Angular Resolution X-ray Diffraction 
analysis of a SiGe film on Si substrate
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Low Energy Electron Diffraction (LEED)

λ= h/p = h/(2mE)1/2

E = 20 eV → λ ≈ 2.7Å;  
200 eV → 0.87 Å

Small penetration depth (few tens of Å) 
– surface analysis
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Reflection high Energy Electron Diffraction (RHEED)

•Glancing incidence: despite the high energy of the electrons 
(5 – 100 keV), the component of the electron momentum 
perpendicular to the surface is small 

•Also small penetration into the sample – surface sensitive technique

•No advantages over LEED in terms of the quality of the diffraction 
pattern 

•However, the geometry of the experiment allows much better 
access to the sample during observation of the diffraction pattern. 
(important if want to make observations of the surface structure
during growth or simultaneously with other measurements 

•Possible to monitor the atomic layer-by-atomic layer growth of 
epitaxial films by monitoring oscillations in the intensity of the 
diffracted beams in the RHEED pattern. 
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MBE and Reflection high Energy Electron Diffraction (RHEED)
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Reflection High Energy Electron Diffraction (RHEED)
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Neutron Diffraction

• λ= h/p = h/(2mE)1/2 mass much larger than electron ⇒

λ ≈ 1Å → 80 meV Thermal energy kT at room T:  25 meV

called "cold" or "thermal' neutrons

• Don't interact with electrons. Scattered by nuclei

• Better to resolve light atoms with small number of electrons, e.g. 
Hydrogen

• Distinguish between isotopes (x-rays don't)

• Good to study lattice vibrations

Disadvantages: 

• Need to use nuclear reactors as sources; much weaker intensity 
compared to x-rays – need to use large crystals

• Harder to detect
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Summary 

Diffraction amplitude is determined by a product of several 
factors: atomic form factor, structural factor

Atomic scattering factor (form factor): 
reflects distribution of electronic cloud.

In case of spherical distribution 

Atomic factor decreases with increasing scattering angle

Structure factor

where the summation is over all atoms in unit cell

Neutron diffraction – "cold neutrons" - interaction with atomic 
nuclei, not electrons

Electron diffraction – surface characterization technique
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