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Abstract

In these lecture notes, I will overview the subject of condensed matter physics, review key ideas

from Solids 1 and outline the present course of Solids 2.
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I. INTRODUCTION

A. Condensed matter physics

Condensed matter physics (CMP) is the largest broadly defined area of physics that

studies phenomena of strongly interacting, macroscopic (even as large as an Avagadro, 1023)

number of degrees of freedom.

1. Solid state physics

After quantum mechanics and its many-degrees of freedom successor, quantum field the-

ory were developed in the first quarter of the 20th century, attention turned to application

of this scientific breakthrough to the study of solid state materials. The problem is the

the quantum mechanical description of an Avagadro number of electrons, carrying spin and

charge, moving in the periodic potential ions, that in principle are also a macroscopic num-

ber of quantum mechanical degrees of freedom. Since solid state systems are materials with

well-packed array of atoms, the typical length scale is on the order of an Angstrom (size of an

atom and the associated atomic bonds) and typical energy is on the order of an electron-volt

(a Rydberg). Early breakthrough came in 1927 with Arnold Sommerfeld’s appreciation of

the key role of Fermi-Dirac statistics, with the subject of conventional solid state physics

well-established by late 60s with the pioneeting works of Bravais, Hall, Drude, Einstein,

Debye, Kamerlingh Onnes, Max von Laue, Bragg brothers, Meissner, Pauli, Bethe, Wigner,

Slater, Bloch, Feynman, Bardeen, Cooper, Schrieffer, Peierls, Seitz, Froelich, Kondo, Hub-

bard, Gutzwiller, Pines, Anderson, Kapitsa, Bogoluibov, Landau and his school including

Abrikosov, Gorkov, Dzyaloshinski in the Soviet Union.

Since then much of the effort has been directed at understanding the effects of deviation

from a perfect crystalline lattice, namely the effect impurities and lattice defects, referred

to as quenched disorder. These, together with the studies of strong quantum and thermal

fluctuations and strong interactions, that drive phase transitions between different states of

matter continue to form a central subject of modern solid state physics.
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2. Soft condensed matter physics

In early 70s, with an establishment of Exxon research laboratory a new field of the

so-called “soft” condensed matter physics was established in an effort to understand the phe-

nomenology and develop new entirely different class of non-solid state materials. These in-

clude polymers (plastics), colloids (micro-size polymeric particles), emulsions (paints, milk),

liquid crystals (modern displays), surfactants (soaps, detergents), biological materials (DNA,

membranes), and a wealth of many other materials that dominate today’s modern synthetic

material technology, medicine, etc. These materials are characterized by much larger (as

large as microns) length scales and much lower (room thermal) energy, with their phe-

nomenology controlled by classical (~ = 0), entropic (kBT ) effects responsible for their

softness.

To do justice to this vast rich subject (“hard” [solid state] + “soft”) of condensed matter

physics would take several semesters to cover properly. This is why in this course we will

focus on a small subset of the CM field, namely the subject of crystalline materials.

B. “Standard model” of solid state physics

The study of crystalline materials demands a quantum-mechanical description of a macro-

scopic number of interacting electrons moving in a crystal of ions, latter also treated as

quantum degrees of freedom. The problem is succinctly stated as a Schrodinger’s equation

HΨ = i~∂tΨ,

for a many-body electron and ion wavefunction, Ψ({ri}, {Rj}) in terms of the “standard

model” Hamiltonian

H = Helectron +Hion +Hion−electron (1)

where,

Helectron =
Ne∑
i

(p̂i + eAi)
2

2m
+

1

2

Ne∑
i,j

e2

4πε0|ri − rj|
− geµB

Ne∑
i

B · si +HSO (2)

is the electronic Hamiltonian that consists of the kinetic energy (with minimal coupling

representing interaction with the electromagnetic field, characterized by a vector potential
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A and B = ∇×A), electron-electron Coulomb interaction, interaction of electron spin with

external magnetic field B (µB = e~/(2m), g ≈ −2 are the electron’s Bohr magneton and

gyromagnetic ratio) and spin-orbit interaction

HSO =
1

2m2c2
1

r

dU(r)

dr
(r× p) · s ∝ ` · s, (3)

arising as a relativistic correction that couples spin and orbital degrees of freedom; there

are a number of other such corrections (quartic correction to parabolic dispersion and the

so-called Darwin term) that we may return to later in the course.

In addition to the latter electron spin crucially enters through Pauli principle requiring

the electron many-body wavefunction to be totally antisymmetric under the interchange of

both orbital and spin electron coordinates. As we will see soon enough, in the presence of

Coulomb interaction this quantum statistical constraint on the electronic wavefunction will

give rise to the so-called spin exchange interaction JSi · Sj between spins i and j and will

lead to the dominant mechanism of magnetism in nature.

The ionic Hamiltonian is given by

Hion =
N∑
i

P̂2
i

2Mi

+
1

2

N∑
i,j

ZiZje
2

4πε0|Ri −Rj|
(4)

consisting of the ions’ kinetic and Coulomb interaction energies for charge Zie, and we

neglected nuclear spin-orbit and electromagnetic interactions.

The final crucial part of the Hamiltonian is the Coulomb interaction between the electrons

and ions,

Helectron−ion = −
N,Ne∑

i,j

Zie
2

4πε0|Ri − rj|
. (5)

Despite a seeming simplicity of the Hamiltonian and the statement of the problem, even

with modern-day computers an exact solution of the above Schrodinger’s equation can only

be done for at most ten interacting electrons (that’s even when ions are treated as frozen).

A classical computer of the size of the universe could at best solve a problem of a pathetic

number of 200 electrons[2]. Thus, because of the exponential growth of the Hilbert space

with the number of degrees of freedom, a frontal attack on this problem is unimaginable.
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C. Approximations to the solid-state problem

Thus to make progress serious imaginative physical insight is needed to inspire appropriate

approximate treatments. These include:

• simplified models: building and analyzing simplified models that maintain key phys-

ical ingredients but neglect some qualitatively inessential microscopic details

• mean-field and variational approximations that treat this many-body problem

as an effective noninteracting single electron system

• perturbation theory in electron-ion and electron-electron interaction

• numerical methods, using quantum Monte-Carlo, molecular dynamics, and exact

diagonalization

1. Crystal lattice

In the case of heavy ions ordered into a perfect crystal lattice, one can approximately

ignore their quantum character, taking Ri as classical variables forming a lattice:

Rn,s = Rn + rs, (6)

where

Rn = n1a1 + n2a2 + n3a3 (7)

spans a Bravais lattice with lattice vectors ai and a p-atom basis rs, with s = 1, . . . p. The

corresponding reciprocal lattice is spanned by Gh = h1b1 + h2b2 + h3b3, with reciprocal

lattice vectors bi, defined by bi · aj = 2πδij or equivalently eiGh·Rn = 1, solved by b1 =

2πa2 × a3/v, where v = a1 · (a2 × a3) is the unit-cell volume.

All the possibilities in two dimensions (5-types) and three dimensions (14 Bravais lattices

types and 7 crystal structure classes, characterized by one of the 230 3D space groups) have

been completely classified.

Examples of current interest of 2D Bravais lattice with a basis are the honeycomb lattice

of graphene and the kagome lattice, illustrated in Figs.(3),(4) and in 3D the diamond lattice

which is a face-centered cubic Bravais lattice with a 2-atom basis.
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FIG. 1: 2D Bravais lattices.
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FIG. 2: 3D Bravais lattices.

FIG. 3: 2D non-Bravais “lattices” with a basis, (a) honeycomb, (b) kagome.
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FIG. 4: Details of the honeycomb lattice structure illustrating in (a) and (b) its real space triangular

unit cell with a 2-atom basis. In (c) its reciprocal lattice and the corresponding Wigner-Seitz cell,

i.e., the 1st Brillouin zone is indicated in gray.

FIG. 5: A 3d non-Bravais diamond lattice, which is an FCC Bravais lattice with a 2-atom basis.

2. Band structure: metals and insulators

Using such crystalline lattice positions inside V (r) ≡ Helectron−ion[Rn,s], defines a periodic

ion potential V (r) that the electrons move in. This still leaves electron-electron interaction

to contend with that is the main challenge of solid state physics. As we will see, it can

be treated in mean-field approximation, perturbation theory (Hartree and Hartree-Fock

approximation being the lowest order), or through other inspiring approximations (large-N,

order parameter decoupling, numerically). If as a crudest approximation, we ignore the
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electron-electron interaction, we are left with a single electron band structure problem(
−~2∇2

2m
+ V (r) + . . .

)
ψn(r) = Enψn(r) (8)

for a single-electron wavefunction ψn(r), with the many-body wavefunction give by the

antisymmetric Slater determinantal

Ψ(r1, . . . , rNe) =
1√
Ne!

A
Ne∏
n

ψn(rP{n}),

encoding the Pauli principle.

The solution of the single particle Schrodinger’s equation, (8) can be laborious, but,

because it is afterall a single electron problem, it can in principle be straightforwardly done

numerically. Its eigenfunctions satisfy the famous Bloch Theorem,

ψk(r) = eik·ruk(r), (9)

with the Bloch function periodic, uk(r + Rn) = uk(r) and its eigenvalues

E(k) = E(k + Gh)

over the Brillouin zone, leading to the band structure (illustrated in Figs.6,7)), filled accord-

FIG. 6: Band structure of Gallium Nitride, GaN.

ing to Pauli principle, controlling noninteracting properties of the corresponding material.
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FIG. 7: Band structure of graphene as a Dirac material.

FIG. 8: A schematic of a band structure and corresponding noninteracting states of matter ranging

from a metal (where the Fermi level is inside a partially-filled band) and a band insulator (where

the Fermi energy is in the interband gap).

In particular, as illustrated in Fig.8, the band structure and its electron filling determines

the nature of the noninteracting electron state, with a metal for a Fermi level inside a

partially-filled band and a band insulator for a Fermi energy in the interband gap.
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D. Experimental probes

To study this intricate and rich behavior “hidden” inside the material, a large array

of experimental probes is employed. Among the primary ones that we will study (some

discussed in the introductory course on solid state physics) include:

• thermodynamics, which primarily focusses on the heat capacity Cv = T∂S/∂T =

∂E/∂T |V .

• transport, which can be purely thermal, purely electrical or mixed, and in the pres-

ence of a magnetic field includes longitudinal (current along the electric field) and

transverse Hall (current perpendicular to the electric field). It can also be dc (at

vanishing frequency ω = 0) or ac (at finite tunable frequency)

• scattering can include a variety of particles, with neutrons and x-rays (and more

generally, photons of various wavelengths from microwaves to x-rays) being the primary

sources. These allow measurements of static and dynamic correlation functions of

charge and spin densities.

• nuclear magnetic resonance, NMR uses a combination of a strong dc and weak ac

magnetic fields to directly probe magnetic spin susceptibility and therefore magnetic

order.

E. Solids 2: Advanced solid state physics overview

In this course we will build on the introductory background material outlined above,

with a focus on advanced topics that require treatment of interactions and quantum and

thermal fluctuations. We will develope and utilize methods of statistical mechanics and

quantum-field theory to study a range of phenomena. The outline of the course is as follows.
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Course outline:

• Review and Introduction

– scope and states of condensed matter physics: ”More is Different”

– band structure: insulators and conductors

– “standard model” of thermodynamics

– experimental probes

• Elasticity, fluctuations and thermodynamics of crystals

– elasticity of Goldstone modes

– quantum field theory of lattice vibrations: phonons

– thermodynamics of phonons

– thermal expansion and melting

– correlation functions and x-ray scattering

– Hohenberg-Mermin-Wagner theorem

• Bosonic matter

– Bose gases thermodynamics and BEC

– Bogoluibov theory of a superfluid

– Lee-Huang-Yang thermodynamics

– Ginzburg-Landau theory and Landau’s quantum hydrodynamics

– XY model, 2d order, vortices and the Kosterlitz-Thouless transition

• Magnetism in charge insulators

– Paramagnetism

– Spin exchange vs dipolar interaction

– Heisenberg model and crystalline anisotropies

– Hostein-Primakoff and Schwinger bosons
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– Jordan-Wigner transformation and XXZ chain

– Coherent-spin states and Berry phases

– Mean-field and Landau theory of FM and AFM states

• Electron liquid

– Fermi gas thermodynamics

– Hartree-Fock theory of interactions

– Response functions

– Landau Fermi liquid theory

– Pauli magnetism

– Landau diamagnetism

• Superconductivity

– Cooper instability

– BCS and Bogoluibov theory

– BCS-BEC crossover

– Ginzburg-Landau theory

– Vortex physics

• Quantum Hall and related effects

– Hall effect

– Landau levels and Integer QHE

– de Haas-van Alphen oscillations

– Fractional QHE
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