Physical and Chemical Agents for Microbial Control Sterilization, Disinfection

Dr Shyamal Kr Paul Asstt Professor, Microbiology MMC

Dr. Shyamal Kr Paul, Streilization

12/30/13

Controlling Microorganisms

- Physical, chemical, and mechanical methods to destroy or reduce undesirable microbes in a given area
- Primary targets are microorganisms capable of causing infection or spoilage:
 - vegetative bacterial cells and endospores
 - fungal hyphae and spores, yeast
 - protozoan trophozoites and cysts
 - worms
 - viruses
 - prions

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Microbial Control Methods

Relative Resistance of Microbes

- Highest resistance
 - bacterial endospores, prions
- Moderate resistance
 - Pseudomonas sp.
 - Mycobacterium tuberculosis
 - Staphylococcus aureus
 - protozoan cysts
- Least resistance
 - most bacterial vegetative cells
 - fungal spores and hyphae, yeast
 - enveloped viruses

Microbial Characteristics

Most resistant

Prions

Endospores of bacteria

Mycobacteria

Cysts of protozoa

Vegetative protozoa

Gram-negative bacteria

Fungi, including most fungal spores

Viruses without envelopes

Gram-positive bacteria

Viruses wi<mark>th lipid</mark> envelopes

5 Figure 7.11

Terminology and Methods of Control

- Sterilization a process that destroys all viable microbes, including viruses and endospores; microbicidal
- **Disinfection** a process to destroy vegetative pathogens, not endospores; inanimate objects
- Antiseptic disinfectants applied directly to exposed body surfaces
- Sanitization any cleansing technique that mechanically removes microbes
- **Degermation** reduces the number of microbes

12/30/13

Microbial death

• Permanent loss of reproductive capability, even under optimum growth conditions

Factors That Affect Death Rate

The effectiveness of a particular agent is governed by several factors:

- Number of microbes
- Nature of microbes in the population
- Temperature and pH of environment
- Concentration or dosage of agent
- Mode of action of the agent
- Presence of solvents, organic matter, or inhibitors

Antimicrobial Agents' Modes of Action

Cellular targets of physical and chemical agents:

- 1. The cell wall cell wall becomes fragile and cell lyses; some antimicrobial drugs, detergents, and alcohol
- 2. The cell membrane loses integrity; detergent **surfactants**
- 3. Cellular synthetic processes (DNA, RNA) prevention of replication, transcription; some antimicrobial drugs, radiation, formaldehyde, ethylene oxide
- 4. Proteins interfere at ribosomes to prevent translation, disrupt or denature proteins; alcohols, phenols, acids, heat

12/30/13

Dr. Shyamal Kr Paul, Streilization

Dr. Shyamal Kr Paul, Streilization

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (a) Native State

Methods of Physical Control

- 1. Heat moist and dry
- 2. Cold temperatures
- 3. Desiccation
- 4. Radiation
- 5. Filtration

Mode of Action and Relative Effectiveness of Heat

- Moist heat lower temperatures and shorter exposure time; coagulation and denaturation of proteins
- Dry heat moderate to high temperatures; dehydration, alters protein structure; incineration

Heat Resistance and Thermal Death

• Bacterial endospores most resistant – usually require temperatures above boiling

Copyright I The McGraw-Hill Companies, Inc. Permission required for reproduction or display.			
TABLE 11.4			
Thermal Death Times of Various Endospores			
Organism	Temperature	Time of Exposure to Kill Spores	
Moist Heat Bacillus subtilis	121°C	1 min	
B. stearothermophilis	121°C	12 min	
Clostridium botulinum	120°C	10 min	
C. tetani	105°C	10 min	
Drv Heat			
Bacillus subtilis	121°C	120 min	
B. stearothermophilis	140°C	5 min	
Clostridium botulinum	120°C	120 min	
C. tetani	100°C Shyamal Kr Paul	60 min Streilization	

14

Thermal Death Measurements

- Thermal death time (TDT) shortest length of time required to kill all test microbes at a specified temperature
- Thermal death point (TDP) lowest temperature required to kill all microbes in a sample in 10 minutes

Decimal Reduction Time (DRT)

• Minutes to kill 90% of a population at a given temperature

	Time (min)	Deaths per Minute	Number of Survivors
	0	0	1,000,000
	1	900,000	100,000
	2	90,000	10,000
	3	9000	1000
	4	900	100
	5	90	10
	6	9	1
12	2/30/13	Dr. Shyamal Kr Paul, Streilizatio	n Table

	Agent	Mechanisms of Action	Comments
	Moist Heat, boiling	Denatures proteins	Kills vegetative bacterial cells and viruses Endospores survive
	Moist Heat, Autoclaving	Denatures proteins	121°C at 15 p.s.i. for 30 min kills everything
2	Moist Heat, Pasteurization	Denatures proteins	Kills pathogens in food products
	Dry Heat, Flaming	Incineration of contaminants	Used for inoculating loop
	Dry Heat, Hot air oven	Oxidation & Denatures proteins	170°C for 2 hours; Used for glassware & instrument sterilization
	Filtration	Separation of bacteria from liquid (HEPA: from air)	Used for heat sensitive liquids
	Cold, Lyophilization (also desiccation)	Desiccation and low temperature	Used for food & drug preservation; Does not necessarily kill so used for Long-term storage of bacterial cultures
	Cold, Refrigeration	Decreased chemical reaction rate	Bacteriostatic
2	Osmotic Pressure, Addition of salt or sugar	Plasmolysis of contaminants	Used in food preservation (less effective against fungi)
	Radiation, UV	DNA damage (thymine dimers)	Limited penetration
	Radiation, X-rays	DNA damage Dr. Shyamal Kr Paul, Streiliza	Used for sterilizing medical supplies
	Strong vis. Light		Line-drying laundry

Application of Heat

- Dry heat kills by oxidation (slow, uneven penetration)
- > Heat is frequently used to kill microorganisms
- Moist heat kills by protein coagulation (denaturation) so requires lower temperatures or shorter times, but the moisture must penetrate to pathogens to be effective (grease & oil can block)

12/30/13

Moist Heat

- Moist heat kills microbes by denaturing enzymes (coagulation of proteins)
- Boiling (at 100°C, I.e., at sea level) kills many vegetative cells and viruses within 10 minutes
- Autoclaving: steam applied under pressure (121°C for 15 min) is the most effective method of moist heat sterilization—the steam must directly contact the material to be sterilized
- Pasteurization: destroys pathogens (*Mycobacterium tuberculosis*, *Salmonella typhi*, etc.) without altering the flavor of the food—does not sterilize (63°C for 30 seconds)
- Higher temperature short time pasteurization applies higher heat for a much shorter time (72°C for 15 seconds)
- An ultra-high-temperature, very short duration treatment (1240¹C for 3 second as a second of stephilizer dairy products 19

12/30/13

- $> 171^{\circ}$ C, 60 minutes, dry heat > 160° C, 120 minutes, dry heat > 149° C, 150 minutes, dry heat > 141° C, 180 minutes, dry heat \geq 121° C, 12 hours, dry heat $> 121^{\circ}$ C, 15 minutes, moist heat (but don't start the clock until entire item is
 - up to temp—e.g., large volumes fluid)

Moist Heat Methods

- **Steam under pressure** sterilization
- Autoclave 15 psi/121°C/10-40min
- Steam must reach surface of item being sterilized
- Item must not be heat or moisture sensitive
- Mode of action denaturation of proteins, destruction of membranes and DNA

Autoclaving

TABLE 7.3	The Relationship Between the Pressure and Temperature of Steam at Sea Level*	
Pressure (ps of atmosphe	i in excess ric pressure)	Temperature (°C)
01	osi	100
5	osi	110
10	osi	116
15	osi	121
20	osi	126
30	osi	135

*At higher altitudes the atmospheric pressure is less, which must be taken into account in operation of an autoclave. For example, in order to reach sterilizing temperatures (121°C) in Denver, Colorado, whose altitude is 5280 feet (1600 meters), the pressure shown on the autoclave gauge would need to be higher than the 15 psi shown in the table.

"Dr. Shyamal Kr Paul, Striet Fizza Beneric Inc., publishing as Benjamin Cummings.

Autoclaving

- Autoclaving
 - Extra time to reach center of solids
 - Paper should be used to wrap instruments
 - Indicators
 - Strips
 - Tape

Dr. Shyamal Kr Paul, Streilization Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

Dr. Shyamal Kr Paul, Streilization

Nonpressurized Steam

- **Tyndallization** intermittent sterilization for substances that cannot withstand autoclaving
- Items exposed to free-flowing steam for 30 60 minutes, incubated for 23-24 hours and then subjected to steam again
- Repeat cycle for 3 days.
- Used for some canned foods and laboratory media
- Disinfectant

Boiling Water

- Boiling at 100°C for 30 minutes to destroy non-spore-forming pathogens
- Disinfection

Pasteurization

- **Pasteurization** heat is applied to kill potential agents of infection and spoilage without destroying the food flavor or value
- 63°C 66°C for 30 minutes (Holding method)
- 71.6°C for 15 seconds (flash method)
 Ultra-high-temperature: 140°C for <1 sec
- Not sterilization kills non-spore-forming pathogens and lowers overall microbe count; does not kill endospores or many nonpathogenic microbes

Dry Heat

- **Dry heat** using higher temperatures than moist heat
- Incineration flame or electric heating coil
 - ignites and reduces microbes and other substances
 - Red Heat- 300°C
- Dry ovens 150-180°C- coagulate proteins

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12/30/13

Dr. Sityamal KPPauls Stielnization

Cold

- Microbiostatic slows the growth of microbes
- Refrigeration 0-15°C and freezing <0°C
- Used to preserve food, media and cultures

Desiccation

- Gradual removal of water from cells, leads to metabolic inhibition
- Not effective microbial control many cells retain ability to grow when water is reintroduced
- **Lyophilization** freeze drying; preservation

12/30/13

- **Ionizing radiation** (X rays, gamma rays, electron beams)
 - Ionizes water to release OH•
 - Damages DNA
- Nonionizing radiation (UV, 260 nm)

– Damages DNA

• **Microwaves** kill by heat; not especially antimicrobial

12/30/13

- **Ionizing radiation** deep penetrating power that has sufficient energy to cause electrons to leave their orbit, breaks DNA,
 - gamma rays, X-rays, cathode rays
 - used to sterilize medical supplies and food products

12/30/13

- Nonionizing radiation little penetrating power must be directly exposed
- UV light creates thymine dimers, which interfere with replication.

37

Filtration

- Physical removal of microbes by passing a gas or liquid through filter
- Used to sterilize heat sensitive liquids and air in hospital isolation units and industrial clean rooms

Filtration

• HEPA

removes microbes >0.3 μm

Membran
 e filtration
 removes

removes microbes $\gtrsim 0.22 \ \mu m^{2}$

Dr. Shyamal Kr Paul, Streilization

39 Figure 7.4

Copyright © The McGraw-Hill Companies, Inc. Pennission required for reproduction or display.

Dr. Shyamal Kr Paul, Streilization

Chemical Antimicrobials

Agent	Mechanisms of Action	Comments
Surfactants	Membrane Disruption; increased penetration	Soaps; detergents
Quats (cationic detergent)	Denature proteins; Disrupts lipids	Antiseptic - benzalconium chloride, Cepacol; Disinfectant
Organic acids and bases	High/low pH	Mold and Fungi inhibitors; e.g., benzoate of soda
Heavy Metals	Denature protein	Antiseptic & Disinfectant; Silver Nitrate
Halogens	Oxidizing agent Disrupts cell membrane	Antiseptic - Iodine (Betadine) Disinfectant - Chlorine (Chlorox)
Alcohols	Denatures proteins; Disrupts lipids	Antiseptic & Disinfectant Ethanol and isopropyl
Phenolics	Disrupts cell membrane	Disinfectant Irritating odor
Aldehydes	Denature proteins	Gluteraldehyde - disinfectant (Cidex); Formaldehyde - disinfectant
Ethylene Oxide	Denaturing proteins	Used in a closed chamber to sterilize
Oxidizing agents 12/30/13	Denature proteins Dr. Shyamal Kr Paul, Streilization	Hydrogen peroxide – antiseptic; Hydrogen peroxide – disinfectan; Benzoyl peroxide – antiseptic

Chemical Agents in Microbial Control

- Disinfectants, antiseptics, sterilants, degermers, and preservatives
- Desirable qualities of chemicals:
 - rapid action in low concentration
 - solubility in water or alcohol, stable
 - broad spectrum, low toxicity
 - penetrating
 - noncorrosive and nonstaining
 - affordable and readily available

Levels of Chemical Decontamination

- High-level germicides kill endospores; may be sterilants
 - devices that are not heat sterilizable and intended to be used in sterile environments (body tissue)
- Intermediate-level kill fungal spores (not endospores), tubercle bacillus, and viruses
 - used to disinfect devices that will come in contact with mucous membranes but are not invasive
- Low-level eliminate only vegetative bacteria, vegetative fungal cells, and some viruses
 - clean surfaces that touch skin but not mucous membranes

What is Disinfection?

Disinfection (in Microbiology) :

- 1. To kill most of microbial forms except some resistant organisms or bacterium spores
- 2. Categorizing: High-level \Leftrightarrow sterilization

Intermediate-level-Low level ———

Not effective for all bacteria or spores

3. Disinfectant: a substance or method used to kill microbes on surfaces

High-level disinfectants

Used for items involved in invasive procedures but NOT withstand sterilization, e.g. Endoscopes, Surgical instruments

Heat	
Moist heat	75°C to 100°C for 30 min (high)
Liquid	and the second state of th
Glutaraldehyde	2% (high)
Hydrogen peroxide	3% to 25% (high)
Formaldehyde	3% to 8% (high/intermediate)
Chlorine dioxide	Variable (high)
Peracetic acid	Variable (high)
Chlorine compounds	100 to 1000 ppm of free
and the second second	chlorine (high)

Intermediate-level disinfectants

Used for cleaning surface or instruments without bacterial spores and highly resilient organism, eg. Laryngoscopes, Anesthesia breathing circuits...etc

Alcohol (ethyl, isopropyl)	70% to 95% (intermediate)	
Phenolic compounds	0.4% to 5.0% (intermediate/	
Iodophor compounds	low) 30 to 50 ppm of free iodine/L (intermediate)	

Low-level disinfectants

Used to treat non-critical instruments and devices, not penetrating into mucosa surfaces or sterile tissues

Quaternary ammonium 0.4% to 1.6% (low) compounds

Factors that Affect Germicidal Activity of Chemicals

- Nature of the material being treated
- Degree of contamination
- Time of exposure
- Strength and chemical action of the germicide

Germicidal Categories

- 1. Halogens
- 2. Phenolics
- 3. Chlorhexidine
- 4. Alcohols
- 5. Hydrogen peroxide
- 6. Detergents & soaps
- 7. Heavy metals
- 8. Aldehydes
- 9. Gases
- 10. Dyes

Halogens

- Chlorine Cl₂, hypochlorites (chlorine bleach), chloramines
 - denaturate proteins by disrupting disulfide bonds
 - intermediate level
 - unstable in sunlight, inactivated by organic matter
 - water, sewage, wastewater, inanimate objects
- Iodine I₂, iodophors (betadine)
 - denature proteins
 - intermediate level
 - milder medical & dental degerming agents, disinfectants, ointments

Phenol (carbolic acid) and derivatives Affect plasma membrane, inactivates enzymes, and denature proteins > Stable, persistant, and especially effective ci, when dealing with disinfecting materials contaminated with organics... ... but leave residual films, can irritate skin, don't kill endospores, and are corrosive to rubber and plastics > Some phenolics are mild enough for use as antiseptics while others are tod, harsh or otherwise dangerous to be employed on living tissue

Hexachlorophene, Triclosan, Lysol, soap

Phenolics

- Disrupt cell walls and membranes and precipitate proteins
- Low to intermediate level bactericidal, fungicidal, virucidal, not sporicidal
 - lysol
 - triclosan- antibacterial additive to soaps

Chlorophene Hexachlorophene 12/30/13 (a chlorinated phePro\$hyamal Kr Paul, Streationshenol)

Chlorhexidine

- A surfactant and protein denaturant with broad microbicidal properties
- Low to intermediate level
- Hibiclens, Hibitane
- Used as skin degerming agents for preoperative scrubs, skin cleaning and burns

Alcohols

- Ethyl, isopropyl in solutions of 50-95%
- Act as surfactants dissolving membrane lipids and coagulating proteins of vegetative bacterial cells and fungi
- Intermediate level

Hydrogen Peroxide

- Weak (3%) to strong (25%)
- Produce highly reactive hydroxyl-free radicals that damage protein and DNA while also decomposing to O₂ gas – toxic to anaerobes
- Antiseptic at low concentrations; strong solutions are sporicidal

Detergents and Soaps

- Quaternary ammonia compounds (quats) act as surfactants that alter membrane permeability of some bacteria and fungi.
- Very low level
- Soaps mechanically remove soil and grease containing microbes

Heavy Metals

- Solutions of silver and mercury kill vegetative cells in low concentrations by inactivating proteins
- Oligodynamic action
- Low level
- Merthiolate, silver nitrate, silver

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Aldehydes

- Glutaraldehyde and formaldehyde kill by alkylating protein and DNA.
- Glutaraldehyde in 2% solution (Cidex) used as sterilant for heat sensitive instruments
- High level
- Formaldehyde disinfectant, preservative, toxicity limits use
 - formalin 37% aqueous solution
- Intermediate to high level

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases and Aerosols

- Ethylene oxide, propylene oxide
- Strong alkylating agents
- High level
- Sterilize and disinfect plastics and prepackaged devices, foods

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 11.8

12/30/13

Active Ingredients of Various Commercial Antimicrobial Products

Product	Specific Chemical Agent	Antimicrobial Category
Lysol and Chlorox Sanitizing Wipes	Dimethyl benzyl ammonium chloride	Detergent (quat)
Tilex and Lysol Mildew Remover	Sodium hypochlorites	Halogen
Ajax and Dial Antibacterial Hand Soap	Triclosan	Phenolic
Lysol Disinfecting Spray	Alkyl dimethyl benzyl ammonium saccharinate/ethanol	Detergent (quats)/alcohol
ReNu Contact Lens Solution	Polyaminopropyl biguanide	Chlorhexidine
Wet Ones Antibacterial Moist Towelettes	Benzethonium chloride	Detergents (quat)
Noxzema Triple Clean	Triclosan	Phenolic
Scope Mouthwash	Ethanol	Alcohol
Purell Instant Hand Sanitizer	Ethanol	Alcohol
Pine-Sol	Phenolics and surfactant	Mixed
Allergan Eye Drops	Sodium chlorite	Halogen

