Physical Chemistry I for Biochemists

Chem340

Lecture 14 (2/14/11)

Yoshitaka Ishii
-Ch4.1-4.4

Announcement

- Exam 1 will be returned on Friday.
- HW5 is uploaded at the web site. This should be easier.
- Exam 2 will be held 3/18 Right before Spring Break (~ 4 weeks from now)

Ch 4.1 Energy Stored in Chemical Bonds is Related or Taken Up in Chemical Reactions

- Significant amount of internal energy or enthalpy is stored in the form of chemical bond.

$$
\begin{aligned}
& 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{q}(472 \mathrm{~J}) \rightarrow \mathrm{N}(\text { atom }, \mathrm{g}) \\
& 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{q}(218 \mathrm{~J}) \rightarrow \mathrm{H}(\text { atom }, \mathrm{g})
\end{aligned}
$$

Figure: 04-01
Copyright © 2008 Pearson Prentice Hall, Inc.

Which of $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$ Should We Use to Characterize Chemical Reactions?

- Since most of reactions are carried out at a constant pressure, we use $\Delta \mathrm{H}$ rather than $\Delta \mathrm{U}$ to measure the change in the energy associated with chemical reaction.
Constant Volume $\rightarrow \Delta \mathrm{U}$
Constant Pressure $\rightarrow \Delta \mathrm{H}$

For an ideal gas, $\Delta \mathrm{H}=\Delta(\mathrm{U}+\mathrm{PV})=\Delta \mathrm{U}+\Delta(\mathrm{nRT})$

$$
=\Delta \mathrm{U}+\mathrm{RT} \Delta \mathrm{n}
$$

(see Example 4.2 p69; Sec 4.5)
(if $\mathrm{T}=$ const)

Standard Partial Molar Enthalpy

(Raff p105)
For a molecule A,

- $\mathrm{dH}_{\mathrm{A}}=\mathrm{C}_{\mathrm{pA}} \mathrm{dT}+(\partial \mathrm{H} / \partial \mathrm{P}) \mathrm{dP}+\bar{H}_{A} \mathrm{dn}_{\mathrm{A}}$

$$
\bar{H}_{A}=\left(\frac{\partial H}{\partial n_{A}}\right)_{T, P} \text { is the partial molar enthalpy of } A \text {. }
$$

- At the standard condition ($\mathrm{T}=298.15 \mathrm{~K}, \mathrm{P}=1 \mathrm{bar}$) $\mathrm{dH}_{\mathrm{A}}=\bar{H}_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}} \rightarrow \Delta \mathrm{H}_{\mathrm{A}}=\bar{H}_{\mathrm{A}} \Delta \mathrm{n}_{\mathrm{A}}$

If we have more than one type of molecule,

$$
\Delta H=\Delta n_{A} \bar{H}_{A}+\Delta n_{B} \bar{H}_{B}+\Delta n_{C} \bar{H}_{C}+\ldots=\sum_{x} \Delta n_{x} \bar{H}_{x}
$$

Reaction Enthalpy using Partial Molar Enthalpy

- For a reaction that takes place at constant P and T, the heat flow needed for a chemical reaction is $\Delta H_{\text {reaction }}$.
- $v_{A} A+v_{B} B \rightarrow v_{X} X+v_{Y} Y$
$\Delta \mathrm{H}_{\text {reaction }}=v_{X} \bar{H}_{X}+v_{Y} \bar{H}_{Y}-v_{\mathrm{A}} \bar{H}_{A}-v_{\mathrm{B}} \bar{H}_{B}$
$\Delta H_{\text {reaction }}=\sum_{i=X} v_{i}^{\text {Product }} \bar{H}_{i}-\sum_{k=A} v_{k}^{\text {Reactant }} \bar{H}_{k}$
- In general, it is difficult to find partial molar enthalpy. \rightarrow We use formation enthalpy.

Standard Formation Enthalpy

- Consider a reaction from pure elements that are most stable at 298.15 K and 1 bar, which results in the formation of one mole of a molecule of your interest.
- $\mathrm{C}(\mathrm{s}$, graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{q}(393.5 \mathrm{~kJ})$
- $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{3} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{q}(45.9 \mathrm{~kJ})$

Note, the only product should be the molecule of your interest.

- Assume that q is the heat generated for the reaction when $\mathrm{P}=$ 1 bar and $\mathrm{T}=298.15 \mathrm{~K}$ (Standard State). The energy is described as a standard formation enthalpy $\Delta \mathrm{H}_{\mathrm{f}}^{0}$ for $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{NH}_{3}(\mathrm{~g})$ as

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{f}}^{0} \text { for } \mathrm{CO}_{2}=-393.5 \mathrm{kJmol}^{-1} \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0} \text { for } \mathrm{NH}_{3}=-45.9 \mathrm{kJmol}^{-1}
\end{aligned}
$$

Standard Formation Enthalpy Listed in Appendix B Table 4.1

Substance	$\Delta \boldsymbol{H}_{\boldsymbol{\prime}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Carbon	You can tell which compound is more stable!
Graphite (s)	0
Diamond (s)	1.89
$\mathrm{C}(g)$	716.7
$\mathrm{CO}(g)$	110.5
Nitrogen	
$\mathrm{N}_{2}(g)$	0
$\mathrm{~N}(g)$	472.7
$\mathrm{NH}_{3}(g)$	-45.9
$\mathrm{NO}(g)$	91.3
$\mathrm{NO}(o)$	81.6

Reaction Enthalpy using Standard Formation Enthalpy

- For a reaction that takes place at constant P and T, the heat flow needed for a chemical reaction is $\Delta H_{\text {reaction }}$.
- $v_{A} A+v_{B} B \rightarrow v_{X} X+v_{Y} Y$

$$
\Delta \mathrm{H}_{\text {reaction }}=[\mathrm{Q} 1]
$$

- In general,

$$
\begin{aligned}
\Delta H_{\text {reaction }} & =\sum_{i=X} v_{i}^{\text {Product }} \Delta H_{f, i}^{0}-\sum_{k=A} v_{k}^{\text {Reactant }} \Delta H_{f, k}^{0} \\
\text { or } \Delta H_{\text {reaction }} & =\sum_{i} v_{i} \Delta H_{f, i}^{0}
\end{aligned}
$$

(Note use $v_{1}>0$ for products and $v_{1}<0$ for reactants)

Reaction Enthalpy from Standard Formation Enthalpy (Example)

$$
\begin{gathered}
\bullet \mathrm{C}(\mathrm{~s}, \text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{q}(393.5 \mathrm{~kJ}) \\
\Delta H_{\text {reaction }}=\Delta H_{f}^{0}\left(\mathrm{CO}_{2}(g)\right)-\Delta H_{f}^{0}\left(O_{2}(g)\right)-\Delta H_{f}^{0}(C(\mathrm{~s}, \text { graphite })) \\
\\
=\Delta H_{f}^{0}\left(C O_{2}(g)\right)=-393.5 \mathrm{~kJ} \\
\bullet 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{q}(45.9 \mathrm{~kJ}) \\
\Delta H_{\text {reaction }}=\Delta H_{f}^{0}\left(N H_{3}(g)\right)-(1 / 2) \Delta H_{f}^{0}\left(N_{2}(g)\right)-(3 / 2) \Delta H_{f}^{0}\left(H_{2}(g)\right) \\
=\Delta H_{f}^{0}\left(N H_{3}(g)\right)=-45.9 \mathrm{~kJ}
\end{gathered}
$$

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$ for $\mathrm{CO}_{2}=-393.5 \mathrm{kJmol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{f}}^{0}$ for $\mathrm{NH}_{3}=-45.9 \mathrm{kJmol}^{-1}$

Sample Question

- Write reactions to obtain standard formation enthalpy of (a) $\mathrm{O}_{2}(\mathrm{~g})$, (b) $\mathrm{Hg}(\mathrm{l})$, (c) $\mathrm{Hg}(\mathrm{g})$, (d) $\mathrm{CO}_{2}(\mathrm{~g})$, (e) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ (f) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (s)
(a) $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{q}(0 \mathrm{~kJ}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{O}_{2}(\mathrm{~g})\right)=0 \mathrm{~kJ}$
(b) $\mathrm{Hg}(\mathrm{I}) \rightarrow \mathrm{Hg}(\mathrm{I})+\mathrm{q}(0 \mathrm{~kJ})$
(c) $\mathrm{Hg}(\mathrm{I}) \rightarrow \mathrm{Hg}(\mathrm{g})+\mathrm{q}(-61.4 \mathrm{~kJ}) \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{Hg}_{2}(\mathrm{~g})\right)=61.4 \mathrm{~kJ}$
(d) $\mathrm{C}(\mathrm{s}$, graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{q}(393.5 \mathrm{~kJ})$
(c) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{q}(285.8 \mathrm{~kJ})$
(d) $12 \mathrm{C}(\mathrm{s})+11 \mathrm{H}_{2}(\mathrm{~g})+5.5 \mathrm{O}_{2} \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+\mathrm{q}(2226.1 \mathrm{~kJ}$

Quiz

How much is the reaction enthalpy for the following reactions at $\mathrm{T}=293.15 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{bar}$?

- $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{q}(285.8 \mathrm{~kJ})$
$\Delta \mathrm{H}_{\text {reaction }}{ }^{0}=$ [Q1]
- $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta \mathrm{H}_{\text {reaction }}{ }^{0}=[\mathrm{Q} 2]$
- How much is the standard formation enthalpy for $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ? \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{HO}_{2}(\mathrm{I})\right)=$ [Q3]

Sample Question
 Ex. 4.1 (p67)

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})\right)=-2226 \mathrm{kJmol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{CO}_{2}(\mathrm{aq})\right)=-412.9 \mathrm{kJmol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)=-258.8 \mathrm{kJmol}^{-1}$

- How much is the reaction enthalpy for the following reaction?
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{aq})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta H_{\text {reaction }}=v_{X} H_{f X}{ }^{0}+v_{Y} H_{f Y}{ }^{0}-v_{A} H_{f A}{ }^{0}-v_{B} H_{f B}{ }^{0}$
$=12 \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{CO}_{2}(\mathrm{aq})\right)+11 \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)-\mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})\right)$
- $\mathrm{H}_{\mathrm{f}}{ }^{\mathrm{O}}\left(\mathrm{O}_{2}(\mathrm{~g})\right)$
$=12 x(-412.9 \mathrm{~kJ})+11 \mathrm{x}(-258.8 \mathrm{~kJ})-(-2226 \mathrm{~kJ})=-5873 \mathrm{~kJ}$

Hess's Law is Based on Enthalpy Being a State Function

- How can we $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$ calculate from known reaction enthalpy $\Delta \mathrm{H}_{\text {reaction }}$? For example

$$
\mathrm{C}(s)+\mathrm{N}_{2}(g)+2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{NH}_{2}(s)
$$

is the reaction to obtain $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (urea(s)), but this reaction does not happen readily. Instead, we use
$\mathrm{H}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{NH}_{2}(\mathrm{~s})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{NO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H_{i}^{\circ} \quad$ (4.16)
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H_{\text {i, }}$ (4.17)
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H_{i \prime \prime}^{\circ}$ (4.18)
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta H_{i V}^{\circ} \quad$ (4.19)
Q. How to obtain $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ (urea(s))?

	Solution $\mathrm{C}(s)+\mathrm{N}_{2}(g)+2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{N}$	$\mathrm{NH}_{2}(s)$	
	$\mathrm{H}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{NH}_{2}(\mathrm{~s})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$	ΔH_{i}	
	$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	ΔH_{11}	
	$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta H_{1 / \prime}^{\circ}$	
	$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$	ΔH°	
	$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta H_{l \prime}^{\circ}$	
	$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{NH}_{2}(\mathrm{~s})+7 / 2 \mathrm{O}_{2}(\mathrm{~g})$	$-\Delta H_{i}$	
	$2 \times\left[1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})\right]$	$2 \Delta H_{i V}$	
	$2 \times\left[\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]$	$2 \Delta H_{l / \prime}$	
$\begin{gathered} \mathrm{C}(s)+\mathrm{N}_{2}(g)+2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{~N}(\mathrm{CO}) \mathrm{NH}_{2}(s) \\ \Delta H_{j}^{\circ}=-\Delta H_{l}^{\rho}+\Delta H_{i \\|}^{\circ}+2 \Delta H_{I I}^{o}+2 \Delta H_{I V}^{\circ} \\ \hline \end{gathered}$			

Bond Enthalpy

Sample Question (Example 4.2)

- The average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond in water is defined as one-half of the enthalpy change for the reaction $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{q}(927.0 \mathrm{~kJ}) \rightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

What is the bond enthalpy obtained from the following reactions for N_{2} and H_{2} ?
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{q}(944 \mathrm{~J}) \rightarrow 2 \mathrm{~N}($ atom, g$)$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{q}(436 \mathrm{~J}) \rightarrow 2 \mathrm{H}$ (atom, g)
Q. How about the bond for $\mathrm{NH}_{3}(\mathrm{~g})$?
Q. What is the average bond energy for NH_{3} ?

4.4 The Temperature Dependence of Reaction Enthalpies

Suppose we would like to perform a reaction at a higher temperature than 298.15K, the enthalpy can be calculated from

- $\mathrm{H}_{\mathrm{T}}^{0}=\mathrm{H}_{298.15 \mathrm{~K}}+\int_{298.15 \mathrm{~K}}^{T} \int_{\rho}\left(T^{\prime}\right) d T^{\prime}$

For a reaction

$$
\Delta H^{0}{ }_{\text {reaction }, T}=\Delta H_{\text {reaction ,298.15K }}^{0}+\int_{298.15 \mathrm{~K}}^{T} \Delta C_{P}\left(T^{\prime}\right) d T^{\prime}
$$

$$
\Delta C_{p}\left(T^{\prime}\right)=\sum v_{j} C_{p, j}\left(T^{\prime}\right)
$$

EXAMPLE PROBLEM 4.1

Using the data:

$$
\begin{gathered}
\Delta H_{f}^{\circ}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, s\right)=-2226.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}, a q\right)=-412.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and } \\
\Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}, l\right)=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

calculate the heat evolved in the oxidation of 1 mol of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, s\right)$ to $\mathrm{CO}_{2}(\mathrm{aq})$ and water (l) at 1 bar:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s)+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{aq})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Two Type of Reactions and Reaction Enthalpy

Exothermic Reaction: Heat is generated after a reaction. (T is increased).

$$
A+B \rightarrow X+Y+q(>0)
$$

$\Delta \mathrm{H}<0$
Endothermic Reaction: Heat is needed for a reaction. (T is decreased).
$\mathrm{A}+\mathrm{B}+\mathrm{q} \rightarrow \mathrm{X}+\mathrm{Y}$
$\Delta H>0$

Bond Enthalpy
 Sample Question (Example 4.2)

- The average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond in water is defined as one-half of the enthalpy change for the reaction $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{q}(927.0 \mathrm{~kJ}) \rightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

What is the bond enthalpy obtained from the following reactions for N_{2} and H_{2} ?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{q}(944 \mathrm{~J}) \rightarrow 2 \mathrm{~N}(\text { atom }, \mathrm{g})
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{q}(436 \mathrm{~J}) \rightarrow 2 \mathrm{H}(\text { atom }, \mathrm{g})
$$

Q. How about the bond for $\mathrm{NH}_{3}(\mathrm{~g})$?
Q. What is the average bond energy for NH_{3} ?

Figure: 04-01

Bond Energy: $\Delta \mathrm{U}$ for Reactions for a Bond Formation (P69)
 EXAMPLE PROBLEM 4.2

The average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond in water is defined as one-half of the enthalpy change for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$. The formation enthalpies, ΔH_{f}°, for $\mathrm{H}(g)$ and $\mathrm{O}(g)$ are 218.0 and $249.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, at 298.15 K , and ΔH_{f}° for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at the same temperature.
a. Use this information to determine the average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond in water at 298.15 K .

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\text {bond }}{ }^{0}=\Delta \mathrm{H}_{\text {reaction }}{ }^{0 / 2}
$$

$\Delta \mathrm{H}_{\text {reaction }}{ }^{0}=2 \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{H}(\mathrm{g}))+\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}(\mathrm{O}(\mathrm{g}))-\Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)$

$$
=218.0 \times 2 \mathrm{~kJ}+249.2 \mathrm{~kJ}-(-241.8 \mathrm{~kJ})=927 \mathrm{~kJ}
$$

b. Determine the average bond energy, ΔU, of the $\mathrm{O}-\mathrm{H}$ bond in water at 298.15 K. Assume ideal gas behavior.
$\Delta \mathrm{U}_{\text {reaction }}{ }^{0}=\Delta \mathrm{H}_{\text {reaction }}{ }^{0}-\Delta(\mathrm{PV})=\Delta \mathrm{H}_{\text {reaction }}{ }^{0}-\mathrm{RT} \Delta(\mathrm{n})$
Q. What is $\Delta \mathrm{n}$?

4.4 The Temperature Dependence of Reaction Enthalpies

Suppose we would like to perform a reaction at a higher temperature than 298.15K, the enthalpy can be calculated from

- $\mathrm{H}_{\mathrm{T}}^{0}=\mathrm{H}_{298.15 \mathrm{~K}}+\int_{298.15 \mathrm{~K}}^{T} \int_{\rho}\left(T^{\prime}\right) d T^{\prime}$

For a reaction

$$
\Delta H^{0}{ }_{\text {reaction }, T}=\Delta H^{0} \text { reaction ,298.15K }+\int_{298.15 K}^{T} \Delta C_{P}\left(T^{\prime}\right) d T^{\prime}
$$

$$
\Delta C_{P}\left(T^{\prime}\right)=\sum v_{j} C_{p, j}\left(T^{\prime}\right)
$$

HW5 Q1

- Using $\mathrm{dH}_{\mathrm{A}}=\mathrm{C}_{\mathrm{pA}} \mathrm{dT}+(\partial \mathrm{H} / \partial \mathrm{P})_{\mathrm{T}, \mathrm{n}} \mathrm{dP}+(\partial \mathrm{H} / \partial \mathrm{n})_{\mathrm{T}, \mathrm{p}} \mathrm{dn}_{\mathrm{A}}(\mathrm{A}$ $=B, X$, or Y), prove that the reaction enthalpy $\Delta \mathrm{H}_{\text {reaction }}(\mathrm{T})$ is given by eq. (4.27) in the text. Specify the path of (P , T, n) you would like to use. Assume a reaction 2B + C $\rightarrow \mathrm{X}+3 \mathrm{Y}$.

$$
\Delta H^{0}{ }_{\text {reaction }, T}=\Delta H^{0}{ }_{\text {reaction }, 298.15 K}+\int_{298.15 K}^{T} \Delta C_{P}\left(T^{\prime}\right) d T^{\prime}
$$

(1) $2 \mathrm{~B}(\mathrm{~T})+\mathrm{C}(\mathrm{T}) \rightarrow 2 \mathrm{~B}(298 \mathrm{~K})+\mathrm{C}(298 \mathrm{~K})$
$\Delta \mathrm{H}(1)==$ [Q1]
(2) $\mathrm{B}(298 \mathrm{~K}) \rightarrow \mathrm{X}(298 \mathrm{~K})+\mathrm{Y}(298 \mathrm{~K}) \Delta \mathrm{H}(2)=$ [Q2]
(3) $\mathrm{X}(298 \mathrm{~K})+\mathrm{Y}(298 \mathrm{~K}) \rightarrow \mathrm{X}(\mathrm{T})+3 \mathrm{Y}(\mathrm{T}) \quad \Delta \mathrm{H}(3)=$ [Q3]

