

Standard Partial Molar Enthalpy (Raff p105)

For a molecule A,

• $dH_A = C_{pA}dT + (\partial H/\partial P)dP + \overline{H}_A dn_A$

$$\overline{H}_{A} = \left(\frac{\partial H}{\partial n_{A}}\right)_{T,P}$$
 is the partial molar enthalpy of A.

• At the standard condition (T = 298.15 K, P =1bar) $dH_A = \overline{H}_A dn_A \rightarrow \Delta H_A = \overline{H}_A \Delta n_A$

If we have more than one type of molecule,

$$\Delta H = \Delta n_A \overline{H}_A + \Delta n_B \overline{H}_B + \Delta n_C \overline{H}_C + \dots = \sum_X \Delta n_X \overline{H}_X$$

Reaction Enthalpy using Partial Molar Enthalpy

- For a reaction that takes place at constant P and T, the heat flow needed for a chemical reaction is $\Delta H_{reaction}.$

•
$$v_A A + v_B B \rightarrow v_X X + v_Y Y$$

 $\Delta H_{\text{reaction}} = v_X \overline{H}_x + v_Y \overline{H}_y - v_A \overline{H}_A - v_B \overline{H}_B$
 $\Delta H_{\text{reaction}} = \sum_{i=X} v_i^{\text{Product}} \overline{H}_i - \sum_{k=A} v_k^{\text{Reactant}} \overline{H}_k$

 In general, it is difficult to find partial molar enthalpy. → We use formation enthalpy.

Standard Formation Enthalpy Listed in Appendix B Table 4.1				
Substance	$\Delta H_f^{\circ}(\mathbf{kJ} \operatorname{mol}^{-1})$			
Carbon	You can tell which comp	ound is more stable!		
Graphite(s)	0			
Diamond(s)	1.89			
C(g)	716.7			
CO(g)	-110.5			
Nitrogen				
$N_2(g)$	0			
N(g)	472.7			
$NH_3(g)$	-45.9			
NO(g)	91.3			
$N_{0}(q)$	81.6			

Reaction Enthalpy from Standard Formation Enthalpy (Example)

• C(s, graphite) + $O_2(g) \rightarrow CO_2(g) + q(393.5 \text{ kJ})$ $\Delta H_{reaction} = \Delta H_f^0(CO_2(g)) - \Delta H_f^0(O_2(g)) - \Delta H_f^0(C(s, graphite))$ $= \Delta H_f^0(CO_2(g)) = -393.5 \text{ kJ}$ • $1/2N_2(g) + 3/2H_2 \rightarrow NH_3(g) + q(45.9 \text{ kJ})$ $\Delta H_{reaction} = \Delta H_f^0(NH_3(g)) - (1/2)\Delta H_f^0(N_2(g)) - (3/2)\Delta H_f^0(H_2(g))$ $= \Delta H_f^0(NH_3(g)) = -45.9 \text{ kJ}$ $\Delta H_f^0 \text{ for } CO_2 = -393.5 \text{ kJmol}^{-1}$

Sample Question

 Write reactions to obtain standard formation enthalpy of (a) O₂(g), (b) Hg(l), (c) Hg(g), (d) CO₂(g), (e) H₂O(l) (f)C₁₂H₂₂O₁₁(s)

(a) $O_2(g) \rightarrow O_2(g) + q(0 \text{ kJ})$ $\Delta H_f^0(O_2(g)) = 0 \text{ kJ}$ (b) $Hg(I) \rightarrow Hg(I) + q(0 \text{ kJ})$ (c) $Hg(I) \rightarrow Hg(g) + q(-61.4 \text{ kJ}) \Delta H_f^0(Hg_2(g)) = 61.4 \text{ kJ}$ (d) $C(s, \text{ graphite}) + O_2(g) \rightarrow CO_2(g) + q(393.5 \text{ kJ})$ (c) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I) + q(285.8 \text{ kJ})$ (d) $12C(s) + 11H_2(g) + 5.5O_2 \rightarrow C_{12}H_{22}O_{11}(s) + q(2226.1 \text{ kJ})$

Solution $C(s) + N_2(g) + 2H_2(g) + 1/2O_2(g) \rightarrow H_2N(CO)$	NH ₂ (s)			
$H_2N(CO)NH_2(s) + 7/2O_2(g) \rightarrow CO_2(g) + 2NO_2(g) + 2H_2O(l)$	ΔH_I°	(4		
$\mathbf{C}(s) + \mathbf{O}_2(g) \rightarrow \mathbf{CO}_2(g)$	ΔH_{II}°	(4		
$\mathrm{H}_{2}\left(g\right) + \tfrac{1}{2}\mathrm{O}_{2}\left(g\right) \to \mathrm{H}_{2}\mathrm{O}(l)$	ΔH°_{III}	(4		
$1/2 \operatorname{N}_2(g) + \operatorname{O}_2(g) \rightarrow \operatorname{NO}_2(g)$	ΔH_{IV}°	(4		
$C(s) + O_{2}(g) \rightarrow CO_{2}(g)$ $CO_{2}(g) + 2NO_{2}(g) + 2H_{2}O(l) \rightarrow H_{2}N(CO)NH_{2}(s) + 7/2 O_{2}(g)$ $2 \times [1/2 N_{2}(g) + O_{2}(g) \rightarrow NO_{2}(g)]$ $2 \times [H_{2}(g) + \frac{1}{2} O_{2}(g) \rightarrow H_{2}O(l)]$	$ \Delta H_{II}^{\circ} - \Delta H_{I}^{\circ} - \Delta H_{I}^{\circ} - \Delta H_{II}^{\circ} - \Delta H_{II}^{\circ} $	v		
$C(s) + N_2(g) + 2H_2(g) + 1/2O_2(g) \rightarrow H_2N(CO)NH_2(s)$				
$\Delta H_f^\circ = -\Delta H_I^\circ + \Delta H_{II}^\circ + 2\Delta H_{III}^\circ + 2\Delta H_{IV}^\circ$				

Alternative Solution			
$C(s) + N_2(g) + 2H_2(g) + 1/2O_2(g) \rightarrow H_2N(CO)NI$	$\mathbf{H}_{2}(s)$		
Ax $H_2N(CO)NH_2(s) + 7/2O_2(g) \rightarrow CO_2(g) + 2NO_2(g) + 2H_2O(l)$	ΔH_I^*		
$B X \ C(s) + O_2(g) \to CO_2(g)$	ΔH_{H}^{*}		
$Cx H_2(g) + \tfrac{1}{2} O_2(g) \longrightarrow H_2 O(l)$	ΔH^*_{III}		
$D_X 1/2 N_2(g) + O_2(g) \rightarrow NO_2(g)$	ΔH^*_{IV}		
$\begin{array}{c} C(s) + N_2(g) + 2H_2(g) + 1/2O_2(g) \rightarrow H_2N(CO)NH_2(s) \\ (B) & (D/2) & (C) & (7/2A+B+C/2+D) & (-A) & \rightarrow -A = 1 \end{array}$			
$C(s) + O_2(g) \rightarrow CO_2(g)$	ΔH°_{II}		
$CO_2(g) + 2NO_2(g) + 2H_2O(l) \rightarrow H_2N(CO)NH_2(s) + 7/2O_2(g)$	$-\Delta H_I^\circ$		
$2 \times \left[\frac{1}{2} \operatorname{N}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow \operatorname{NO}_{2}(g) \right]$	$2\Delta H_{IV}^{\circ}$		
$2 \times \left[\mathrm{H}_{2}\left(g\right) + \frac{1}{2} \mathrm{O}_{2}\left(g\right) \to \mathrm{H}_{2}\mathrm{O}(l) \right]$	$2\Delta H^{\circ}_{III}$		

EXAMPLE PROBLEM 4.1

Using the data:

 $\Delta H_f^* \ (C_{12}H_{22}O_{11},s) = -2226.1 \text{ kJ mol}^{-1}$

 ΔH_f° (CO₂, aq) = -412.9 kJ mol⁻¹ and

 $\Delta H_f^{\circ}(\mathrm{H}_2\mathrm{O},l) = -285.8 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

calculate the heat evolved in the oxidation of 1 mol of sucrose $(C_{12}H_{22}O_{11},s)$ to $CO_2(aq)$ and water (*l*) at 1 bar:

 $C_{12}H_{22}O_{11}(s) + 12O_2(g) \rightarrow 12CO_2(aq) + 11H_2O(l)$

Molar mass of sucrose ~342 g

