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Summary 

The basis of the popular Cole-Cole rheological model in viscoelasticity is investigated by using the first-
principle physics. The Cole-Cole model is usually, viewed a convenient way to fit the observed frequency-
dependent attenuation and velocity-dispersion spectra, but its time-domain and numerical formulations are 
excessively complex and physically inconsistent (for example, requiring special mathematical “operators” 
such as fractional derivatives and memory variables). However, we show that the Cole-Cole spectra can be 
naturally explained by standard Lagrangian mechanics with nonlinear energy dissipation, and therefore no 
such mathematical extensions are required. For linear dissipation, the Lagrangian model extends to many 
other rheologies, such as all viscoelastic linear solids and Biot’s and double-porosity poroelasticity. The 
new model also provides straightforward ways for numerical modeling of waves and any other 
deformations of media with Cole-Cole attenuation spectra.  

Introduction 

Seismic-wave attenuation spectra often exhibit broad peaks with frequency, which are caused by various 
elastic or inelastic mechanisms due to the complexity of the Earth. The mechanisms of internal friction 
include grain sliding, poroelasticity and multiple-porosity effects, solid viscosity, a broad group of wave-
induced fluid-flow processes in mesoscopic heterogeneities, and numerous scattering effects such as 
produced by finely-layered elastic structures. These attenuation mechanisms are often 
phenomenologically described by linear viscoelastic (VE) models, such as the standard linear solid (SLS) 
for attenuation within a narrow frequency range and the generalized SLS (GSLS) or Cole-Cole models 
describing broader frequency bands of seismic attenuation. These VE models are broadly used for 
interpreting experimental data and for numerical forward modeling of seismic waveforms. 

While comparing several types of mathematical VE models, several authors (Chapter 3 in Wang, 2008; 
Picotti and Carcione, 2017) argue that the Cole-Cole model gives a better description of physics of the 
attenuation and dispersion. However, the physical reasons for preferring the Cole-Cole models have still 
not been clearly stated, and this preference is usually based on empirical observations, such as variable 

and often broader attenuation (Q1(f)) peaks predicted by the Cole-Cole model. Usually, a larger number 
of Maxwell’s bodies is required in order to fit an observed spectrum by a GSLS than by a Cole-Cole 

model. Thus, the Cole-Cole model seems to better represent an individual observed peak in Q1(f), which 

is often viewed as a “relaxation mechanism”. The Cole-Cole model can also be fit to Q1(f) spectra 
varying with frequency steeper than those for an SLS. Nevertheless, these are still not “physical” reasons 
but preferences for the shapes of the observed spectra. 

Thus, it should be useful to identify the physical principles of the GSLS and Cole-Cole models and get a 
clearer understanding about what kinds of the “relaxation mechanisms” may be identified in these 
models. The procedure for constructing physical theories is well known in theoretical physics (e.g., 
Landau and Lifshitz, 1986), and in this paper, we employ this procedure in order to suggest the physical 
origins of the GSLS and Cole-Cole models used in seismology and materials science.  
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In the following sections, we compare two definitions of the Cole-Cole model. In the first approach, the 

Cole-Cole model of order  (which is equivalent to an SLS for   1) is interpreted as a mathematical 
relation between the time- or frequency-dependent stress and strain measured in some experiments. 
This mathematical relation can be described empirically and without any knowledge of the physical 
interactions involved. By contrast, the second approach focuses on finding the physical laws for a 
medium that would lead to the Cole-Cole (or SLS) relations between the strain and stress. This approach 

reveals that the case   1 requires a nonlinearity of internal friction, such as nonlinear viscosity. 

Cole-Cole Model 

The general time-retarded stress-strain relation can be presented by using partial derivatives in time as 
(Tschoegl, 1989) 
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where M0 is the static (relaxed) modulus. and  are the stress -relaxation and strain-retardation times, 

respectively. For linear VE models such as the SLS and GSLS, h  k  1 are taken in eq. (1). For the 
Cole-Cole model, the corresponding differential stress-strain relation is (Tschoegl, 1989) 
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where  is a parameter ranging from 0 to 2, operator    1
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derivative of order , and F and F1 are the forward and inverse Fourier transforms, respectively. The 

complex-valued modulus M() is obtained by transforming eq. (2a) into the frequency domain 
(Jones, 1986): 
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In eq. (2b), we use a negative sign in 
i  corresponding to the selection of 

the form of  exp  i t  for harmonic 

oscillations, where t is the time. When 

 = 1, Eq. (2b) describe the standard 
linear solid (SLS).  
The dependences of the modulus M and 
attenuation Q-1 on frequency for the 

Cole-Cole model with several values of  

are shown in Figure 1. For fixed  , 
and consequently the frequency of the 
attenuation peak in the Cole-Cole model, 

the magnitude of modulus dispersion and attenuation increases with increasing For  > 1, the interval 
of strong attenuation and positive dispersion is narrow (about one octave in frequency) and is flanked by 
intervals of weak negative dispersion (black dotted lines in Figure 1).  

Elastic Medium with Linear Viscous Friction (General Linear Solid) 

In eqs. (2), the strain (t) and stress (t) may have various meanings and can even be taken at different 
points within the body. However, in order to understand this ratio as a “rheological law” for the material, 

we need to find the actual “causal” (physical) relations between (t) and (t). More generally and 
precisely, we need to find the mechanical equations of motion governing the displacement, u(x,t) of every 

point in the medium. To perform this task, we need to specify the procedure of measurement of (t) and 

 

Figure 1. Complex moduli for a Cole-Cole body with different values of order . 
a) Inverse Q, b) modulus dispersion. 
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(t) more completely. Let us assume that (t) and (t) represent measurements conducted at the same 
point in a uniform and isotropic medium, and try determining the mechanical properties of this medium.  

In classical mechanics, the dynamics of the medium can be described by giving its Lagrangian function L 
(kinetic and elastic energy densities) plus the dissipation pseudo-potential D if the medium is lossy 
(Landau and Lifshitz, 1986). In a model called the General Linear Solid (GLS), Morozov and Deng (2016) 
proposed the following forms of these functions: 
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Here, V is the volume of the body, the overdots denote the time derivatives, the spatial coordinates are 
indicated by subscripts i and T denotes the matrix transpose. Model vector u contains N ≥ 1 elements, of 
which the first element is the observable displacement of the rock and the rest correspond to internal 
degrees of freedom, such as filtration fluid flows or displacements of grain assemblages. By using 

standard relations from the theory of elasticity, the bulk strain  and deviatoric strain ijε  are derived from 

vector u (Morozov and Deng, 2016). The mechanical properties of the material are described by the 

constitutive parameter matrices in eqs. (3): K and  are the bulk and shear moduli, k and  are the 
corresponding bulk and shear viscosities, and matrix d describes Darcy friction of the pore fluid. In this 

paper, we do not consider pore fluids and therefore set d  0.  
By using the Euler-Lagrange equations, all equations of motion are obtained from eqs. (3): 
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Eqs. (4) can be used to describe all types of media while 
using strictly macroscopic variables. For example, Biot’s 
poroelasticity is obtained by taking N = 2 and setting 

K
η 0 ,


η 0  and d 0 . All types of VE models (such as 

SLS or GSLS) are obtained by setting  
K
η 0 ,


η 0  and 

d 0 ; and finally, an elastic medium in any of these cases is 

obtained by taking 
K
η 0 ,


η 0  and d 0   (Morozov and 

Deng, 2016). Eqs. (3)-(4) can be used to model propagation 
of any waves or the behavior of a rock sample in any 
experiment (Morozov and Deng, 2016a). 

For broad attenuation peaks ( ≤ 1), the Cole-Cole spectra 
can be predicted with good accuracy by GLS models 
(eqs. (3)-(4)) with multiple internal variables. For example, 

Figure 2 shows such an approximation for   0.5 and 0.75 

by GLS (linear-viscosity) media with N  6 and 5, 
respectively. The required dimension N increases with 

decreasing Cole-Cole model parameter. Such prediction of 
the Cole-Cole spectra by the GLS rheology (eq. (3)) is equivalent to formally approximating these spectra 
by those of a GSLS. However, the important difference of the present approach is in providing a rigorous 
physical meaning for all variables and complete differential equations of motion (4) without hypothetical 
“material memory” and frequency-dependent material properties. 

Nonlinear Viscous Friction (Cole-Cole) 

It is often considered physically beneficial (Picotti and Carcione, 2017; Szewczyk et al., 2017) to 

approximate the observed ()() ratios by a single Cole-Cole spectrum rather than by a GSLS with 

 

Figure 2. GLS and GSLS approximation of Cole-Cole 

model with a)   and b)    
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multiple elements. However, this reduction of the number of variables is achieved by using multiple 
orders of derivatives in the Hooke’s law (eq. (1)) or fractional derivatives (eq. (2a)), which in fact 
represent integral, “non-instantaneous” operators. Such operators are highly undesirable in the 
mechanical framework (eqs. (3)), in which the functions L and D would then become dependent on 
multiple orders of derivatives or on time integrals (Landau and Lifshitz, 1986). The key mechanical 
concepts such as the elastic energy and energy dissipation rate would become double integrals in time 
that would be difficult to measure and interpret. Nevertheless, a simple a natural alternative to such 
complicated mechanics exists in the form of the model (3) with a nonlinear dissipation function D 

(Coulman et al., 2013): 
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The construction of this dissipation function is based on three simple principles: A) isotropy and 
dependence on the invariants of the strain and strain-rate tensors (Landau and Lifshitz, 1986); B) power-

law dependence on strains and strain rates, so that with     1, the quadratic function  (second 

eq. (3)) is obtained; and C) this function D is linear with respect to the total strain amplitude. Parameter r 
is the reference time scale that maintains the correct dimensionality of D, and it can be set equal 1 s by 

selecting the appropriate units for viscosity (Coulman et al., 2013). Parameters  and  are the bulk and 

shear exponents for non-Newtonian viscosity, respectively, and notation 
1 , ν ν
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,   a b a b
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,a b

ε .  

Clearly, the non-quadratic 
function D in eq. (5) is only one 
possible example of non-
Newtonian viscosity. Other 
forms of D can be considered 
yielding similar results. In 
particular, we might relax the 
requirement C) above by 
selecting more general power-

law dependencies a
Δ  and bΔ  in 

eq. (5). With any of such 
choices, the important common 
observation is that once 

function D has a power-law dependence on Δ  and/or ε , the resulting equations of motion lead to Cole-

Cole spectra for frequency-dependent stress-strain ratios. When   1, the energy dissipation rate is 
independent of the strain but is proportional to the square of the strain rate. Such dependence is typical 

for linear viscosity (Landau and Lifshitz, 1986). For   1, the dissipation increases slower with strain 
rate, but it also increases with strain. As noted above, this dependence on strain is only inspired by the 
requirement C) and is not significant for the model. The non-quadratic dependence of D strain rate 
(which leads to viscosity dependent on strain rate; Coulman et al., 2013) is characteristic for non-
Newtonian viscosity.  

By using the nonlinear D in eq. (5), the equations of motion (4) become 
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If we select 2 1  , then by solving eqs. (6) for a harmonic P-wave, the exact Cole-Cole spectra 
shown in Figure 2 are obtained with N =2. Interestingly, Coulman et al. (2013) estimated the rheologic 

exponent  ranging from 0.56 to 0.79 in Earth materials, which leads to the corresponding Cole-Cole 

parameters  = 0.12 to 0.58. 

 

Figure 3. Approximation of a) bitumen sand’s P-wave attenuation and b) modulus 
dispersion by using different model. 
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The attenuation and dispersion of bitumen sands are approximated by solving eqs. (6) and by using GLS 
model respectively (Figure 3). Compare to the fitting by GLS with N=6, nonlinear viscosity model with 
N = 4 can provide a more accurate approximation. The reduction of N indicates that nonlinear viscosity is 
a more physical meaningful interpretation for the attenuation and dispersion of the bitumen sands. 

Conclusions 

Lagrangian mechanics with nonlinear energy dissipation helps explaining the popular Cole-Cole model in 
a rigorous and purely mechanical manner. In contrast to the conventional Cole-Cole model, the 
Lagrangian model directly relates the experimental data to physical properties, such as elastic moduli 
and viscosity, without the use of fractional derivatives or “memory variables”. This model also leads to 
generalizations of the Cole-Cole mode to more complex systems and to new algorithms for numerical 
modeling of seismic wavefields. 
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