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Connected with the relation 
of dislocations to plastic 
deformation
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http://en.wikipedia.org/wiki/Frank-Read_Source
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4Elementary Dislocation Theory, J. Weertman and J. R. Weertman, P. 125.
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5.2 Nucleation of Dislocations
 Dislocations can also be formed without the aid of 

Frank-Read or similar sources.



 Metal is not suitable for the dislocation nucleation studies
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Newly formed
(large squares)

(network dislocations
closely spaced smaller
pits) 

Low-angle grain boundaries

(r.t.)
Grown-in
(high temp.)
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new Original (old)



9

5.3 Bend Gliding:
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tensile

compressive
Shear stress

Max.

Max.

ZeroNeutral axis

Slip planes



x b



Narrow section surrounding the axis:
free of dislocations
=> under moderate stresses (not plastic)
 will not be stressed above the elastic limit

Extra plane Slip plane



5.4 Rotational Slip:
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 The slip plane

 Torsional deformation such as this can
be explained in terms of screw 
dislocations lying on the slip plane.



Atoms just above 
the slip plane.

Atoms just below 
the slip plane.
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5.5 Slip Planes and Slip Directions
 Experimental fact: slip occurs preferentially on planes

of high atomic density

(111)FCC
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mn: close packed direction
qr: not Burgers vector

Burgers vector



 Strain energy w = (b2/4)ln(r/r)
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mn: close packed direction
qr: not

screw

edge



5.6 Slip Systems:
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[1210]

[1120]



An : cross section area perpendicular to the
specimen axis



A(stress on sp)

Tensile force

R
d: Slip direction

(sp normal)

( +  = 90)

5.7 Critical Resolved Shear Stress (yield stress)

An = Asp cos 

Asp : the slip plane



R: resolved shear stress (shear stress on the slip
plane in the slip direction)    
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

A

 or tensile force

R

d: Slip direction


R = 
fn cos

Asp

fn cos
An

(An = Asp cos)

cos

=

fn= An
coscos  coscos=

Acos=

A : the stress on the slip plane (Asp), in the direction of fn

 : fn/An, the normal tensile stress on An

: Schmid’s law

Asp 



Asp//  

 For these extreme orientations the crystal ordinarily fractures
rather than deforming plastically.

=90

R=0
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 if R > crss (critical resolved shear stress)
=> plastic deformation by slip.

R =  coscos : Schmid’s law
 Maximum shear stress (0.5) occurs when  =  = 45o.

http://www.doitpoms.ac.uk/tlplib/slip/slip_geometry.php
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crss (fixed) =  cos cos



Smallest  to get crss

Stress hardening

Totally pure metals: very high R
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 There are five main strengthening mechanisms for metals

 Strengthening of metallic materials:

 such as beating a red-hot piece of metal on anvil, has been
used for centuries by blacksmiths to introduce dislocations
into materials, increasing their yield strengths.

1. Work hardening
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2. Solid Solution Strengthening/Alloying (impurity)

3. Precipitation Hardening (impurity)
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4. Grain Boundary (Grain Size) Strengthening

5. Transformation Hardening
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 Dislocation density () :
1. by estimating the length of the dislocation line (cm/cm3)
2. by the number of dislocation etch pits (#/cm2).

5.8 Slip On Equivalent Slip Systems

5.9 The Dislocation Density



Slip Systems in FCC:
 close packed direction: <110>; four closed packed

planes (octahedral plane): (111), (-111), (1-11), (11-1);
Each octahedral  plane have three slip directions
=> 4  3 = 12 slip systems.
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5.10 Slip Systems in Different Crystal Forms
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 If the slip planes intersecting each other, or mutual
interference of dislocations gliding on intersecting
slip planes, 
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[100] [010]

[011]

(easy glide)

Multiple glide

Strain hardening and slip
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Any plane contains a close-packed <111> direction
can act as a slip plane.



5.11 Cross-Slip (different from dislocation intersection)

1

due to prism plane
due to basal plane
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b b: Burgers vector 

 Screw dislocations move in
different planes
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Prism plane {10-10}

basal plane
(0001)
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 In many HCP metals, no cross-slip can occur because the slip
planes are parallel (not intersecting).

A single crystal of Mg (HCP) can be stretched into a ribbon-like
shape four ~ six times its original length. 

 However, polycrystalline Mg shows limited ductilities (brittle).

The science and engineering of materials, p. 135



5.12 Slip Bands:

narrow

moderate
Etch pits
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5.13 Double Cross-Slip:

Screw dislocation
on the cross-slip 
plane

 bc: dislocations can be
created on the new slip
plane.

 Similar to Frank-Read
source.

 These freshly created
dislocations will not have
enough time to become
pinned by impurity atoms.

 More probable than grown-in dislocations (slide 7).  

Double cross slip

expanding

Cross slip plane



5.14 Extended Dislocations and Cross-Slip:5.14 Extended Dislocations
and Cross-Slip
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Common slip direction
[-110]

     112
6
1121

6
1101

2
1


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Extended

Stair-rod dislocation
(immobile, not in any plane)

Shockley partial
(free to move)

     011
6
1211

6
1112

6
1



     112
6
1121

6
1101

2
1



Shockley partial

[-110]

(11-1)

Stair rod

     101
2
1211

6
1112

6
1



]011[
6
1]121[

6
1]112[

6
1



Stair rod

Shockley partial

partials
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Stair rod



5.15 Crystal Structure Rotation during Tensile and
Compressive Deformation

1

Stress axis

 In compression:
slip plane normal
// stress axis
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Active slip direction



d: Slip direction

1
0
0

100

a1

[101]

[111]

tensile

[111]
or

Stress axis
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101

110431

[43-1]  [111]   ~ 47
[43-1]  [1-11]   ~ 90

Potential active
slip plane

 coscoscoscoscos 
n

n
AR A

f

Primary slip system: (111) [101]
Cross slip system:     (111) [101]
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Active slip direction

Slip plane pole

b  [1-1-1];  ~ 47
b  [111];  ~ 96

b [3-51]

Primary slip system: (111) [011]
Cross slip system:     (111) [011]Potential active

slip plane

b
[011]

[111] 

[111] 
or



5

101

111

stress



a
Slip plane normal

[111]
[101]

d: Slip direction



5.16 The Notation For The Slip Systems in The Deformation
of FCC Crystals

101

110431

Potential active
slip plane

Primary slip system: (111) [101]

Cross slip system:     (111) [101]
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101 111

1

primary slip direction

conjugate slip direction

(primary slip plane)
(cross slip plane)

conjugate slip plane

critical plane

F. D. Rosi and C. H. Mathewson, Trans AIME, 188, 1159 (1950)



 The crystal will continue to rotate with deformation occurring
on alternating slip.

 Conjugate slip system: happen once the rotation of the crystal
out of its original stereographic triangle into the one adjoining it.
=> resolved shear stress is greater on the (111)[110] slip system.
 a3  a4
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DISLOCATIONS AND MECHANICAL BEHAVIOUR OF MATERIALS p. 144

Ductility: FCC > HCP > cubic



5.17 Work Hardening:
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Plastic deformation

Elastic deformation
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 Engineering stress and strain: expressed in terms of original
sample dimension (A0, l0).
e = P/A0 (P: load); e = (li-l0) /l0  =l / l0
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Begin to neck 

 The corrected a  a’ takes into account
the complex stress state within the neck
region 

t = P/Ai (P: load); t = l/li (li = l0 + l)
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A true stress and strain curve has less practical meaning for the
engineering application. 
 Because you have to keep tracking the size for each strain, and

what the engineers care most is how strong the materials are and
when they are going to fail. 
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t: true stress; 
e : engineering stress;
P: load
t: true strain;
e: engineering strain;
l: increase in length.

 ee 


 1
0

0

000 l
ll

A
P

lA
Pli

Aili

Pli

Ai

P
t =

t = P/Ai; t = l/li e = P/A0; e = l/l0

 e





 
1ln

ln
00 l
li

l
dlli

lt ln
0l

l0+ l

=

li = l0 + l
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Begin to neck 

Necking region

fracture

fracture
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5.18 Considere’s Criterion 

Strain hardening >
reduction in area

Reduction in area >
strain hardening  
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=>

=>

=>

P = t A =>

: Considere’s criterion
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5.19 The Relation Between Dislocation Density
And The Stress (Experimentally Observed)

Actual experimental results



 : flow stress
 : measured dislocation density
0: extrapolated to zero
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 : flow stress
 : measured dislocation density
0: extrapolated to zero

 If  is zero, the metal could not be deformed. 
 0 and 0 are best considered as convenient constants rather

than as simple physical properties.

2/1
0  k

2/1
0  k



where k = b 20

5.20 Taylor’s Relation

 =  = b/(2r) 

2/12/12/1  kbb  

= b/r

r  -1/2





d
t



time

1. From experimental data => Johnston and Gilman found
ln v  ln 

D: the stress yields at v =1 cm s-1; : applied shear stress
m: exponent; function of purity, temp. etc.

2. Temperature dependence of v
=> ln v

25C > T > -50C

Stress
dependence term

Temperature
dependence term

E: activation energy;
T: absolute temperature;
k: Boltzmann’s constant

 Dislocation velocity (v)
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5.21 Dislocation velocity

3. Combine 1 & 2: single expression

v = d/t

power law: v = (/D)m

v = f() e-E/kT

tf: time of flight be tween obstacles 



5.23 The Orowan Equation (Strain Rate) 
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 relation between the velocity (v) of the dislocations
and the applied strain rate (  ).

In (c):  Shear by an amount =
A

Ab
x

xb 





x b
x displacement

=
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: the dislocation density

Shear strain rate:

  (bx/x)/x = bx (because (1/x2) = ) 

vb
t
xb

t














vb
2
1

2
1

 Tensile strain rate:

Schmid orientation factor



 In real crystal, there are a lot of obstacles in lattice
=> the movement of a dislocation is not smooth and

continuous, but rather it occurs in steps.
=> Moves rapidly for a short distance; it stops and waits at

an obstacle while eventually it passes; it moves rapidly 
again to the next obstacle. 
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5.22 The Discontinuous Nature of Dislocation Movement
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Neutral axis

b

RHS

-E
+E

LHS

Shear Stress

Slip direction

b

LHS

+E
RHS

-E
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