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¥ Chapter Five:

Dislocations and Plastic
Deformations

Connected with the relation
of dislocations to plastic
deformation




FIG. 5.1 Frank-Read
source. The dislocation
segment xy may move in
plane ABCD under the
applied stress. Its ends, x
and y, however, are fixed




http://en.wikipedia.org/wiki/Frank-Read Source




Elementary Dislocation Theory, J. Weertman and J. R. Weertman, P. 125. 4




5.2 Nucleation of Dislocations

e Dislocations can also be formed without the aid of
Frank-Read or similar sources.




e Metal 1s not suitable for the dislocation nucleation studies
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FIG. 5.3 The large square etched pits in horizontal rows correspond to dislocations
formed in LiF at room temperature, while the smaller, closely spaced pits lying in
curved rows were grown into the crystal when it was manufactured (Gilman, J. J.,
and Johnson, W. G., Dislocations and Mechanical Properties of Crystals, p. 116, John
Wiley and Sons, Inc., New York, 1957. Used by permission of the author.)




<+— Dislocation

FI1G. 5.4 Dislocation movement in LiF as revealed by repeated
etching (Reprinted with permission from J.J. Gilman and W.G.

Johnson, Journal of Applied Physics, Vol. 30, Issue 2, Page 129,
Copyright 1959, American Institute of Physics)




5.3 Bend Gliding:

. -
Tensile stress — |
_— a

My M:bending moment
7 y:vertical distance
[: moment of nertia
(= nr*/4; for a circular rod)

e The stress distribution: o, =




I ne< . p
tensile Slip planes

FI1G. 5.6 The stress distribution on sli lanes corresondin to the elastic

leformation shown in Fig.




Positive edges

Neutral axis

éﬁ\(\* Positive edges

FI1G. 5.7 The effect of the stress distribution on the movement of disloca-
tions. Positive-edge components move toward the surface; negative edges
oward the neutral axis




FIG. 5.8 Distribution of the excess edg
dislocations in a plastically bent crystal

mNarrow section surrounding the axis:
free of dislocations

=> under moderate stresses (not plastic)
— Will not be stressed above the elastic




5.4 Rotational Slip:

AXis FIG. 5.9 A single crystal can be rotated about
an axis normal to a slip plane that contains

iJ_ The Sllp plane several slip directions

e Torsional deformation S¢S Rl EYex:1g!
be explained in terms o #E &N,
=22 dislocations lying on t =k el Elal=
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FIG. 5.10 An array of parallel screw dislocations. Open circles represent atoms just
above the slip plane, while dots correspond to atoms just below it




Screw
dislocation

Screw
dislocation
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FI1G. 5.11 A double array of screw dislocations. This array does not have a long-
range strain field; open circles show atoms above the slip plane, while dots represent
those below the plane




5.5 Slip Planes and Slip Directions

e Experimental fact: slip occurs preferentially on planes
of high atomic density
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FIG. 5.12 Two ways in which a simple cubic lattice can be sheared while still maintaining
he lattice symmetry: (A) Crystal before shearing, (B) shear in a close-packed direction, and
shear in a non-close-packed direction




e Strain energy w = (ub?/4mw)In(r'/r)

mn: close packed direction
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FIG. 5.12 Two ways in which a simple cubic lattice can be sheared while still maintaining
he lattice symmetry: (A) Crystal before shearing, (B) shear in a close-packed direction, and
shear in a non-close-packed direction




5.6 Slip Systems:

(XX

FIG. 5.13 The three slip directions (S.D.) in a
plane of closest packing. Notice that this type of
plane occurs in both the hexagonal close-packed
and the f: enter 1bic latti

a,=[2110]

FIG. 1.18 Determination of indices
of a digonal axis of Type I—[21 10]




5.7 Critical Resolved Shear Stress (yield stress)

An — ASp COS 9 /—i\(e + (I) — 900)

A, : cross section area perpendicular to the
specimen axis

A, - the slip plane

fa

FIG. 5.14 A figure for the determination of
the critical resolved shear stress equation




_ f,cos 5,COSh = f,cosd (A=A coso) o or fiensile force
RTTA, AT TA
P D d: Slip direction
¢ coso

C0sO COS¢ = o €0sO cosd : Schmid’s law

n

1. resolved shear stress (shear stress on the slip
plane in the slip direction)
oy - the stress on the slip plane (Ay;), In the direction of f,

o f /A, the normal tensile stress on A,

fo

FIG. 5.14 A figure for the determination of
the critical resolved shear stress equation

bo K . *

15=0 i
| —= [r=0 7[R = max = Agyllc |
- " / €< —» .
AspJ— @) ' ¢=90' ,f_,g @ij ' e 900 il
Jv rintatol e crysal orcinar :
e For these extréme orientations’the crystal ordinarily fractures

rather than deforming plastically. 2t



R= 0 cosO cos¢ : Schmid’s law
e Maximum shear stress (0.5c) occurs when ¢ = 6= 45°,

o If 7, > 1 (critical resolved shear stress)
=> plastic deformation by slip.

http://www.doitpoms.ac.uk/tlplib/slip/slip_geometry.php



FIG. 5.15 The tensile yield point for magne-
sium single crystals of different orientations.
Abscissae are values of the function cos 6 cos ¢.
Smooth curve is for an assumed constant critical
resolved shear stress of 63 psi (Burke, E. C., and
Hibbard, W. R., Jr., Trans. AIME, 194, 295
[1952].)

j _%pallest G to get T,

4 :
o5 0 Terss (FIXed) = o cosO cosd

cos 6 cos ¢

v O

Tensile stress, MPa

FIG. 5.16 Variation of the critical resolved
Ag shear stress with purity of the metal (After

Str S hardeningRosi, E. D., Trans. AIME, 200, 1009 [1954].
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Fig. 5.17 Effect of temperature
_on the critical shear stress. Note:
The data on which these curves are
based predate those of Table 5.2.
The higher critical stresses in this
case correspond to crystals of
lower purity. (Schmid, E., and
Boas, W., Kristallplastizitdt, Julius
Springer, Berlin, 1935.) -



e Strengthening of metallic materials:

e There are five main strengthening mechanisms for metals

1. Work hardening

—> such as beating a red-hot piece of metal on anvil, has been
used for centuries by blacksmiths to introduce dislocations
Into materials, increasing their yield strengths.



2. Solid Solution Strengthening/Alloying (impurity)

3. Precipitation Hardening (impurity)



4. Grain Boundary (Grain Size) Strengthening

5. Transformation Hardening



5.8 Slip On Equivalent Slip Systems

5.9 The Dislocation Density

e Dislocation density (p) :
1. by estimating the length of the dislocation line (cm/cm?3)
2. by the number of dislocation etch pits (#/cm?).

28




5.10 Slip Systems in Different Crystal Forms

Slip Systems in FCC.:

e close packed direction: <110>; four closed packed
planes (octahedral plane): (111), (-111), (1-11), (11-1);
Each octahedral plane have three slip directions
=>4 x 3 =12 slip systems.




e If the slip planes intersecting each other, or mutual
Interference of dislocations gliding on intersecting
slip planes,




Strain hardeniig and slip

[011]

Multiple‘glide

] 0
teasy glide) ~ [100]  [010]
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Strain, percent

FI1G. 5.17 Typical face-centered cubic single crystal stress-strain curves.
Curve a corresponds to deformation by multiple glide from start of defor-
mation; curve b corresponds to multiple glide after a period of single slip
(easy glide). Crystal orientations are shown in the stereographic triangle




TABLE 5.3 The ¢/a Ratio
for Hexagonal Metals.

c/a




— Any plane contains a close-packed <111> direction
can act as a slip plane.

FIG. 5.19 The (110) plane of the body
centered cubic lattice




5.11 Cross-Slip (different from dislocation intersection)

Basal
plane

Slip
direction

— —Slip
direction

FI1G. 5.20 Schematic representation of cross-slip in a hexagonal metal:
(A) Slip on basal plane, (B) slip on prism plane, and (€) cross-slip on basal
and prism planes -




Shear stress
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Shear stress

b: Burgers vector

shearstress @ Screw dislocations move In
e different planes
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Screw dislocation

Shear stress

FI1G. 5.22 Motion of a screw dislocation
during cross-slip. In the upper figure the
dislocation is moving in a vertical plane,
while in the lower figure it has shifted it
slip plane so that it moves horizontall




basal plane
(0001)

FIG. 5.21 Cross-slip in magnesium. The vertical slip plane traces correspond to
the {1010} prism plane, whereas the horizontal slip plane traces correspond to
the basal plane (0002). 290 X (Reed-Hill, R. E., and Robertson, W. D., Trans.

AIME, 209 496 [1957].)




e |n many HCP metals, no cross-slip can occur because the slip
planes are parallel (not intersecting).

e A single crystal of Mg (HCP) can be stretched into a ribbon-like
shape four ~ six times its original length.

e However, polycrystalline Mg shows limited ductilities (brittle).

The science and engineering of materials, p. 135




5.12 Slip Bands:

Etch pits
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FIG. 5.24 Slip bands in LiF. Bands formed at —196 °C and 0.36
percent strain (Reprinted with permission from J.J. Gilman and
W.G. Johnson, Journal of Applied Physics, Vol. 30, Issue 2, Page 129,
Copyright 1959, American Institute of Physics)




5.13 Double Cross-Slip:

e bc: dislocations can be .
eXba I Cross-slip plane

created on the new slip
plane.

Imi th sl
e Similar to Frank-Read \ . /:9/\ \‘p’:‘anee cross-slip

SOUrce. - Cross slip plane
e These freshly created vty o™

dislocations will not have

enough time to become \b\

pinned by Impurity atoms. .
e More probable than grown-in dislocations (slide

Screw dislocation

\E)ouble cross slip|

S)



Primary
slip plane

5.14 Extended Dislocations
and Cross-Slip
/~_ Common slip direction

S/ [-110]

Cross-slip plane
(A)

[110]-2[r27]+ 2 [2u1]

FIG. 5.26 The cross-slip of an extended dislocation /
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FI1G. 5.26 The cross-slip of an extended dislocation
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5.15 Crystal Structure Rotation during Tensile and
Compressive Deformation

Tensile FIG. 5.27 Rotation of the crystal lattice in
stress tension and compression

Tensile
stress

\ e In compression:
Siip \ oy slip plane normal

lane Compressive -
= P stress /] stress axis
STess é\ '

I

Tensile Tensile Compressive Compressive
stress stress stress stress

(B)
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FIG. 5.28 In tension the lattice rotation is equivalent to a rotation of the FIG. 5.14 A figure for the determination o
stress axis (a) toward the slip direction. This stereographic projection he critical resolved shear stress equation
hows this rotation in a face-centered cubic crystal




[43-1] o [111] = 6 ~ 47°
[43-1] o [1-11] = 6 ~ 90°

‘ Primary slip system: (111) [10i]

- !
RN o m

N N E Cross slip system:  (111) [101]

~45°
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FI1G. 5.29 The original stress axis orientation in Fig. 5.28 lies about 45°
from the pole of the (111) plane and about 90° from the pole of (111).
hese are the two slip planes that contain the active slip direction




FI1G. 5.28 In tension the lattice rotation is equivalent to a rotation of the
stress axis (a) toward the slip direction. This stereographic projection
shows this rotation in a face-centered cubic crystal

b [3-51]
b e [1-1-1]; 6 ~ 47°
b e [111]; 6 ~ 96°

Primary slip system: (111) [011]

Cross slip system:  (111) [011]




hs—Slip plane pole

Slip plane, As,

FIG. 5.14 A figure for the determination o
the critical resolved shear stress equation

FIG. 5.30 In compression, the stress axis (a) rotates toward the
pole of the active slip

f» SLress




5.16 The Notation For The Slip Systems in The Deformation
of FCC Crystals

\ Potential active Pole of active
\ slip plane slip plane

\
1 O
‘\\ IRRVAN

h \ 43\1 O110
Primary slip system: (111) [101] e

RN

o T

Cross slip system:  (111) [101]

FI1G. 5.29 The original stress axis orientation in Fig. 5.28 lies about 459
from the pole of the (111) plane and about 90° from the pole of (111).
hese are the two slip planes that contain the active slip direction




F. D. Rosi and C. H. Mathewson, Trans AIME, 188, 1159 (1950)



e Conjugate slip system: happen once the rotation of the crystal
out of its original stereographic triangle into the one adjoining it.
=> resolved shear stress is greater on the (111)[110] slip system.

— a3 —> 4,
e The crystal will continue to rotate with deformation occurring
on alternating slip.




FIG. 21.3 (A) Crystal oriented for double slip
(B) Development of a neck. (€) Chisel edge

Ductility: FCC > HCP > cubic

DISLOCATIONS AND MECHANICAL BEHAVIOUR OF MATERIALS p. 144




5.17 Work Hardening:

F1G. 5.32 Normally when a metal is deformed
to a strain such as €, and then it is unloaded, it
will not begin to deform until the stress is raised
back to o,. The strain €, raises the flow stresses
from o 10 o,.




e Engineering stress and strain: expressed in terms of original
sample dimension (A, |y).

o, = PIA, (P: load); €,

= (I-1y) /1, = Al / 1,

o711 Typical
engmeerlng
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]
LT T
o !
o 1
o~ 1
25 > & | —
| . V4 Pl RN
| T t nmn! M V4 / == \
1 i S/ / L] \
Bee Trcular i ingets 7 I (7] \
EThe I [ 1) |
.. + the 1 \ =] /
[ . renrcbcm Bl \ JE /
[ . A Y
B aan etrv of the i 1574
[ -k o
m-m rlcne{'lmel'l ]
w I-lvr E
t various points &
along the curve.
= <
& &

{
.
-
A
e i £ N
A N ™
Pl N AN
/ o \ N
/ | \ AN
[ i/ | ), -
| 1} | PK
\ 1] I 7
\ JEL /4 f
\ . 7 Py
i > AT O\
- P, o N
/ (] \
Kg/\
|
Riedu e
I e ) i
Iy i l_ Diamelar —- £~ Dijamater
i - ¥
Gauge length Radius

Strain

Figure 7.2 A
standard tensile
specimen with
circular cross

secion.



Stress

o, = PIA, (P: load); g, = Al/l (I = 1, + Al)

b’ FIG. 5.33 A comparison between an engineering
stress-strain curve and the corresponding true-stress

and true-strain curve.

True-stress
true-strain
curve

<— Begin to neck

Maximum
load

Engineering stress
strain curve

e The corrected a — a’ takes into account
the complex stress state within the neck

region

Strain



e A true stress and strain curve has less practical meaning for the

engineering application.

— Because you have to keep tracking the size for each strain, and
what the engineers care most is how strong the materials are and
when they are going to fail.




= PIA;; g, = Al/l; c. = PIAy; &, = Al/l,

P_PI_PL_PLFA_ o,y h=hra
—Oq, +&
A ALAL A L

O =

o;. true stress;
o, . engineering stress;

P: load
g, true strain;
idl i _ lo+ Al £, engineering strain;
J-|O | =N | Al: increase in length.

= |n€|_+ Ee)



fracture

b’ FIG. 5.33 A comparison between an engineering
stress-strain curve and the corresponding true-stress

eglon and true-strain curve.
<— Begin to neck

b

True-stress
true-strain

curve
Maximum

load

Engineering stress
strain curve fraCtu e

Stress

Strain



5.18 Considere’s Criterion

stress

Reduction in area >
strain hardening

True-stress
true-strain
curve

A

Maximum
load

Engineering stress
strain curve

\

Strain hardening >
reduction in area

Strain



loading Area reduction "
P = g; A=>dP=|Ado; Ho,dA=0 => do, =-0, —

Strain hardening

dV =d(Al) = Adl+IdA=0 —>d—A' _dh_ =—deg,

A l
do, do, do,
dA~ di g Considere’s criterion

Ak

=> O, =—



5.19 The Relation Between Dislocation Density
And The Stress (Experimentally Observed)

FIG. 5.34 To determine the variation
of the dislocation density with strain
during a tensile test, a set of tensile
specimens are strained to a number o
ditferent positions along the stress-
strain curve, such as points a to fin
this diagram. These specimens are
then sectioned to obtain transmission
electron microscope foils

"Actual experimental results

e 18ugrain size
O 2.6pgrain size
® 0.8pgrain size

Stress, kg/mm

I
15

P —cm

FIG. 5.35 The variation of the flow-stress o with the square root of the
dislocation density p'/2 for titanium specimens deformed at room tem-
perature, and at a strain rate of 1074 sec™! (After Jones, R. L., and
Conrad, H., TMS-AIME, 245 779 [1969].)

18




yo o flow stress
— + ] . ]
O =0 p : measured dislocation density
G, extrapolated to zero

, T flow stress
T=1, +kp]j p :measured dislocation density
T,: €xtrapolated to zero

e |f p IS zero, the metal could not be deformed.
— o, and T, are best considered as convenient constants rather
than as simple physical properties. 10



5.20 Taylor’s Relation

7= uy=ub/(2nr) = aubl/r

1/2

r=oyb/ p* =ayubp"? =kp"'*  where k = aub



5.21 Dislocation velocity W‘— @ T
v d |

e Dislocation velocity (V) _
- N —— t time
v =d/t T
1. From experimental data => Johnston and Gilman found
Invecint

power law: v = (t/D)"™

D: the stress yields at v =1 cm s; t: applied shear stress
m: exponent; function of purity, temp. etc.

. Temperature dependence of vVt time of flight be tween obstacles
=>Inv «x 1/T (phonon effect)

. Combine 1 & 2: single expression

v = f(c) e'FKT 25°C>T>-50°C T: absolute temperature;
. " k: Boltzmann’s constant
Stress Temperature
dependence term  dependence term

E: activation energy;




5.23 The Orowan Equation (Strain Rate)

/Edge dislocation AX d Isplacement
gF—————— o —————————] b —
o~ Slip plane X b
. _ (A) . Ax
v Displacement=b Displacement=b~
e e
| l Edge /
! /dislocation
——————————————— ey
(B) (@]

FIG. 5.36 The displacement of the two halves of a crystal is in proportion to
the distance that the dislocation moves on its slip plane

e relation between the velocity (v) of the dislocations
and the applied strain rate (g).
bAX bAA

In (c): Shear by an amount =
X A

22



Ay oc (DAX/X)/X = pbAX (because (1/x?) = p)

p: the dislocation density

A . AX _
Shear strain rate: A Yy = P0 = pbv
At At
g
- - Y A
Tensile strain rate: ¢ = 57/ — prv

Schmid orientation factor



5.22 The Discontinuous Nature of Dislocation Movement

e |n real crystal, there are a lot of obstacles in lattice
=> the movement of a dislocation is not smooth and
continuous, but rather it occurs In steps.
=> Moves rapidly for a short distance; It stops and waits at
an obstacle while eventually it passes; it moves rapidly

again to the next obstacle.




Shear Stress ~—__

Neutral axis

Slip direction
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