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Application of an efficient generator-coordinate subspace-selection algorithm to
neutrinoless double-β decay
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The generator coordinate method begins with the variational construction of a set of nonorthogonal mean-field
states that span a subspace of the full many-body Hilbert space. These states are then often projected onto states
with good quantum numbers to restore symmetries, leading to a set with members that can be similar to one
another, and it is sometimes possible to reduce this set without greatly affecting results. Here, we propose
a greedy algorithm that we call the energy-transition-orthogonality procedure (ENTROP) to select subsets of
important states. As applied here, the approach selects on the basis of diagonal energy, orthogonality, and
contribution to the matrix element that governs neutrinoless double-β decay. We present both shell-model and
preliminary ab initio calculations of this matrix element for the decay of 76Ge, with quadrupole deformation
parameters and the isoscalar pairing strength as generator coordinates. ENTROP converges quickly, reducing
significantly the number of basis states needed for an accurate calculation.
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I. INTRODUCTION

The observation of neutrinoless double-β (0νββ) decay, in
which two protons decay into two neutrons without neutrino
emission, would show that neutrinos are Majorana particles.
The half-life for such a decay depends on the nuclear ma-
trix element (NME) of the transition operator between the
ground states of the initial and final nuclei. The NME, which
must be computed, is model dependent with results differing
from model to model by factors of up to three. Reducing
the discrepancy is difficult because each model has its own
uncontrolled approximations. One way forward is to use ab
initio methods to compute the NME from first principles. In
particular, in-medium similarity renormalization group (IM-
SRG) methods [1,2] with chiral interactions are promising
and have already been applied to nuclei such as 48Ca [3,4]
and 76Ge [4] that are of great interest to experimentalists. The
approach leads to effective Hamiltonians and transition oper-
ators to be used together with traditional many-body methods
that cannot by themselves easily incorporate high-energy cor-
relations. With the generator coordinate method (GCM) [5]
as the traditional one, the approach has proved successful in
describing the spectra of low-lying states, and has been used
to compute the NME for 0νββ decay of 48Ca [3,6].
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The GCM, which has been applied most often within
nuclear energy-density-functional theory [7–10], provides an
effective way to construct wave functions that include col-
lective correlations. Such correlations, in particular involving
deformation (both axial and triaxial [11]), and pairing (of both
like-particle and proton-neutron [12,13] type), are important
for 0νββ NMEs. The GCM incorporates the effects of these
degrees of freedom by taking them as “generator coordinates,”
with values on a mesh that approximates the continuum. Un-
fortunately, the method scales exponentially with the number
of coordinates. Including many mesh points leads to a large
set of nonorthogonal states and a significant computational
burden. Some of these basis states, however, may closely
resemble others or have little representation in low-lying wave
functions, and can therefore be omitted. Here, we propose
a schemes that we call the energy-transition-orthogonality
procedure (ENTROP) for rejecting unimportant states. As the
name suggests, the approach is designed to work for transition
matrix elements and we apply it to 0νββ NMEs.

The particular case that we examine is the decay of 76Ge
to 76Se. Both nuclei exhibit triaxial deformation [14,15]. If
the GCM includes two deformation coordinates and one that
represents the effects of isoscalar pairing, [11,13] in a large
single-particle space, the computing time required to restore
all the broken symmetries in the resulting set of states can be
significant, making the three-coordinate case a good one for
testing/applying our algorithms. We do so within two kinds
of calculations, the first in a small shell-model valence space
and an appropriate semi-phenomenological interaction, and
the second in seven major shells and an ab initio interaction
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resulting from the in-medium evolution of a chiral Hamilto-
nian.

The rest of this paper is organized as follows. Section II
discusses the nature of the GCM basis and presents ENTROP,
along with a procedure based on the work of Ref. [16]. In
Sec. III we present the results obtained after the application of
these methods in the computations just described. In Sec. IV,
we offer conclusions.

II. METHODS

M0ν , the NME that we wish to calculate enters the rate
of 0νββ decay that is mediated by the exchange of light
Majorana neutrinos as follows:

[
T 0ν

1/2

]−1 = G0ν (Q, Z )|M0ν |2
∣∣∣∣∣
∑

k

mkU
2
ek

∣∣∣∣∣
2

, (1)

where Q is the energy difference between the initial and final
atoms, G0ν is a phase space factor, the mk are the masses of
the three light neutrinos and the Uek are the elements of the
neutrino mixing matrix that connects the electron neutrino to
the state with mass eigenvalue mk . One traditionally separates
M0ν into Gamow-Teller, Fermi, and tensor pieces,

M0ν = MGT
0ν − g2

V

g2
A

MF
0ν + MT

0ν, (2)

where gV and gA are the nuclear vector and axial-vector weak
coupling constants (we use gA = 1.27 here) and MGT

0ν , MF
0ν ,

and MT
0ν are defined, e.g., in Ref. [17] (though MF

0ν mistakenly
contains an extra factor of g2

V /g2
A there).

The GCM combines constrained mean-field states into a
fully correlated nuclear wave function [18], which we call a
GCM state from now on. The starting point is the set of mean-
field states, for us Hartree-Fock-Bogoliubov (HFB) quasipar-
ticle vacua |ϕ(q)〉, that minimize the energy 〈ϕ(q)| H |ϕ(q)〉
under the constraint that a vector of observables Q̂ =
(Q̂1, Q̂2, . . . , Q̂N ) takes the values 〈ϕ(q)| Q̂ |ϕ(q)〉 = q. The
coordinates q that label the mean-field states are frequently
chosen to lie on an N-dimensional mesh that discretizes the
space of quasiparticle vacua. The coordinate operators Q̂ are
generally those that are important for a good description of the
nucleus. In this paper, we choose the quadrupole operators,
Q̂20 and Q̂22, and the isoscalar-pair creation operator P̂†

0 as
generator coordinates. Details appear in the next section.

A GCM state |�JM
NZ 〉 has the form∣∣�JM

NZ

〉 =
∑
K,q

f J
K,q |NZJMK, q〉 , (3)

where the states |NZJMK, q〉 are projections of the |ϕ(q)〉:
|NZJMK, q〉 = P̂J

MK P̂N P̂Z |ϕ(q)〉. (4)

Here, P̂J
MK is the operator that projects a state onto compo-

nents with well-defined angular momentum J , z-projection M,
and intrinsic-z-projection K . Since K is not a good quantum
number for a triaxially deformed nucleus, components with all
values of K contribute to a GCM state (through “K mixing”).
The operators P̂N and P̂Z project states onto components with
well-defined neutron number N and proton number Z .

The projection operators produce basis states that are not
orthonormal, and lead to the Hill-Wheeler-Griffin (HWG)
equation for f J

K,q,∑
K ′,q′

[HJ
KK ′ (q, q′) − EJNJ

KK ′ (q, q′)
]

f J
K ′,q′ = 0, (5)

where the Hamiltonian and norm kernels H and N are given
by the expressions

HJ
KK ′ (q, q′) = 〈NZJMK, q| Ĥ |NZJMK ′, q′〉 , (6)

NJ
KK ′ (q, q′) = 〈NZJMK, q|NZJMK ′, q′〉 , (7)

and EJ is the energy of the state with angular momentum J
that we are interested in (we have suppressed the labels N and
Z in places for convenience). We solve the HWG equation in
the standard way [18], by diagonalizing the norm kernel to
obtain a basis of “natural states” and then diagonalizing the
Hamiltonian H in that basis. The second diagonalization can
be numerically unstable, a problem we deal with by truncating
the natural basis to include only states with norm eigenvalues
larger than a reasonable value. That step eliminates the insta-
bility by removing states that are nearly linearly dependent on
others.

The computational time in this method lies mostly in the
construction of the kernels for the Hamiltonian and 0νββ

transition operators. That process entails an integration of
matrix elements of two-body operators over Euler and gauge
angles to project onto conserved quantities. The norm ker-
nels require the same integration, though without an operator
sandwiched between states. It is difficult to know ahead of
time how dense to make the coordinate mesh or how far to
extend it, and so we would like to select a subset of points
on the mesh before computing all the kernels. We can expect
some basis states to contribute little to the energy of the GCM
ground state or to the 0νββ NME between two GCM states,
and others to be very similar to one another (the result of too
dense a mesh). Our best prescription for subset selection is
based on three observations:

(i) States with lower expectation values for the Hamil-
tonian are in general more important than those with
higher expectation values.

(ii) The largest contributions to NMEs often come from
transitions between basis states (in our case in two
different nuclei) with the same values for the col-
lective coordinates q, including the isoscalar pairing
coordinate [7,12,19]. These large contributions can be
both positive and negative.

(iii) States that can nearly be represented as a linear com-
bination of states in the selected subset need not
themselves be included in the subset. They add only
numerical noise to the HWG equation that must be
removed in its solution.

ENTROP incorporates these observations through the fol-
lowing procedure: we order the |ϕ(q)〉 in each nucleus by
diagonal energies 〈H〉JKq ≡ HJ

KK (q, q)/NJ
KK (q, q) and select

the one with the lowest value in, e.g., the initial nucleus. We
then move to the final nucleus, selecting first the state with
the lowest diagonal energy and then the state with the same
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Initial Nucleus Final Nucleus

Select state with lowest energy Select state with lowest energy

Select next state in energy
order with L < Lc

Select partner of most recent
unpartnered state from

other nucleus, if L < Lc

Select next state in energy
order with L < Lc

Select partner of most recent
unpartnered state from

other nucleus, if L < Lc

FIG. 1. Schematic diagram of the state selection order produced
by ENTROP.

coordinates q as the first state from the initial nucleus (the
“partner” of that state), provided that its projection onto the
previously included state has squared length L less than some
cutoff value Lc (so that it is nearly linearly independent). Next
we return to the initial nucleus, selecting the state with the
second-lowest diagonal energy and the partner of the first the
state in the final nucleus, again after checking projections. We
continue in this way, including each state that we examine
only if its projection onto the space of previously selected
states has length less than Lc, i.e., if

L ≡ 〈n + 1|P(n)|n + 1〉
〈n + 1|n + 1〉 < Lc. (8)

Here, |n + 1〉 is the state we are testing and P(n) is the pro-
jector onto the n states already selected (see the Appendix for
details). After including each new state we diagonalize H in
the appropriate subset and look for convergence of the eigen-
values and NME. Figure 1 contains a flow chart representing
the selection procedure. The method saves time because we
compute the off-diagonal norm kernels only of the states we
examine and the off-diagonal Hamiltonian and 0νββ kernels
only of the states we eventually select.

The procedure just outlined contains the parameter Lc, the
value of which we have yet to specify. To determine it, we
repeat the entire procedure for a range of Lc and within several
pairs of small subspaces of the full space (one space in the
pair for the initial nucleus and one for the final). We then
choose the smallest value of Lc that “works” within each
pair of subspaces—that is, a value that brings us so close to
the energies and NMEs obtained in each complete subspace
pair that increasing Lc further (and thus including more basis
states) has little effect. We then assume that the same will be
true in any subspace pair, including one that contains all basis
states on the mesh in both nuclei. This assumption cannot be
rigorously justified but is reasonable.

Our original intent was to implement something like the
procedure discussed in Ref. [16], which successfully repro-
duces the low-lying portions of collective spectra within
energy-density functional theory. In that approach, one
starts from random mean-field states (Slater determinants in
Ref. [16] itself) obtained without constraints, descending to-
wards local minima in the energy surface via imaginary-time

evolution and selecting states along the way to subject to
an orthogonality test like the one described here. We test a
modification of that procedure, in which we use gradient de-
scent rather than imaginary-time evolution to approach energy
minima in our space of quasiparticle vacua, for the decay
of 76Ge to 76Se with the shell-model space and Hamiltonian
described at the beginning of the next section. We use 50
randomly selected quasiparticle vacua as starting points, and
then select a random number of states along the corresponding
paths of descent once the energy has dropped below 10 MeV.
In the most successful version of this procedure, we then
order the states by energy and fix a cutoff Lc in the same
way as with ENTROP. We will see shortly that while we can
roughly reproduce the exact spectra of 76Ge and 76Se with
about 30 states in each nucleus (from about 17 distinct starting
points in 76Ge and 18 in 76Se), we are not able to obtain as
accurate an NME as we can with ENTROP. That result is not
entirely surprising because, unlike the GCM, the procedure
of Ref. [16] in no way ensures that states in one nucleus are
similar to those in the other.

III. RESULTS

A. Shell-model test

To test the accuracy of ENTROP, we examine the decay
76Ge −→ 76Se in a model space built on the 0 f5/2, 1p3/2,
1p1/2, and 0g9/2 orbits, with the effective valence-space shell-
model Hamiltonian GCN2850 [20]. The model space allows
an exact solution with modern shell model codes. Ref. [11]
carefully examined the performance of the GCM for this
problem, constructing a mesh of 184 quasiparticle vacua with
constraints on the coordinates representing axial deformation,
triaxiality, and the isoscalar pairing strength. The operators
that correspond to these coordinates are

Q̂20 =
∑

i

r2
i Y 20

i , Q̂22 =
∑

i

r2
i Y 22

i ,

P̂†
0 = 1√

2

∑
l,α

√
2l + 1[a†

l,αa†
l,α]J=1,T =0

M=0,Tz=0, (9)

where i labels nucleons in first quantization, the square brack-
ets signify the coupling of orbital angular momentum, spin,
and isospin, and the operator a†

l,α creates a particle in the
single-particle level with orbital angular momentum l and
other quantum numbers specified by α. Here, we replicate
the calculation of Ref. [11] to test the results of restricting
ourselves to particular subsets of its states. To construct the
basis states and solve the resulting eigenvalue problem, we
use the FORTRAN program TAURUS [21,22]. As mentioned in
the methodology section, in order to choose the cutoff Lc, we
evaluate the NME in subspace pairs with increasing dimen-
sion, here those spanned by the first 20, 40, and 60 states
chosen in the order indicated in Fig. 1, with Lc set to 1 to
make sure no states are skipped. We then find that Lc = 0.995
(so that trial states have to be almost completely expressible in
terms of those already selected to be rejected) is the smallest
value that accurately allows us to reproduce the NME in all
three subspaces.
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(h)
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FIG. 2. Valence-space NME for the decay of 76Ge, computed with the GCN2850 interaction in pairs of subspaces spanned together by the
first 20, 40, and 60 states (top row, middle row, and bottom row) after applying ENTROP up to the combined (from both nuclei) state number
indicated by the x axis. The states are ordered as indicated in Fig. 1, with cutoff values Lc of 0.994 (left column), 0.995 (middle column), and
0.996 (right column). The dashed line is the result produced by the full set of states in each subspace pair. The value Lc = 0.995, corresponding
to the middle column (in red) is the smallest that reproduces the full results in all three subspace pairs.

Figure 2 shows how well the cutoff Lc = 0.995 works for
the NME in the subspaces just mentioned. In all three cases
it yields a number very close to the complete ones, with little
more than half the basis states in the two larger subspace pairs.
This analysis leads us to expect that the states we will discard
with Lc = 0.995 in our complete calculation so nearly lie in
the spaces spanned by the states we will have already selected
that they will not alter the results.

Our expectation turns out to be the case. Figure 3 shows the
results of our analysis in panel (b); after 20 states, the NME is

2.5

3.5

4.5 Energy ordering only (a)

States

2.5

3.5

4.5

M
0ν

ENTROP (b)

0 10 20 30 40 50 60 70

State number

2.5

3.5

4.5 Gradient descent (c)

FIG. 3. Valence-space NME for the decay of 76Ge produced by
ENTROP without including “partner states” (top, see text), by full
ENTROP with Lc = 0.995 (middle), and by the procedure based on
that in Ref. [16] (bottom), at the combined (both nuclei) state number
indicated by the x axis.

very close to the full GCM value. Panel (a) in the same figure
shows what happens when we do not use the 0νββ operator
to select states, that is, when we do not include partner states.
Performance is generally worse, and even after 60 states the
result is not as close to the full one as it is after 20 states in
panel (b). Finally, panel (c) shows the result of the Ref. [16]-
like analysis discussed in the previous section. As we noted
there, our NME does not approach the exact result within the
set of states we collect. Figure 4 shows the always quick con-
vergence of the individual pieces of the matrix element. The
exact values for these Gamow-Teller, Fermi, and tensor pieces
are 2.74, 0.42, and −0.01. Our Gamow-Teller and tensor

0 10 20 30 40 50 60 70 80

State number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
0ν

Fermi
Gamow-Teller
Tensor

FIG. 4. The middle panel of Fig. 3 broken into the three compo-

nents of M0ν : MGT
0ν , − g2

V
g2

A
MF

0ν , and MT
0ν from Eq. (2).
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−67.8
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]

Natural basis

ENTROP

Full result

FIG. 5. Valence-space 76Ge ground-state energy in the natural
basis (blue) and from ENTROP (red). The dashed line is the full
GCM result. Here, the state number refers to a single nucleus only.

values are quite close, but our Fermi matrix element is almost
50% too large, in part because our HFB states can break
the isospin symmetry that is conserved by the shell-model
interaction. When we use an isovector proton-neutron pairing
coordinate in place of the isoscalar version, the discrepancy is
cut in half. The Fermi matrix element is much smaller than its
Gamow-Teller counterpart, however, so the error associated
with isospin breaking does not have a large effect on the
sum M0ν .

The convergence of the ground-state energies under EN-
TROP behaves a little differently than that of the NME.
Figures 5 and 6 show the convergence towards the ground-
state energies of 76Ge and 76Se, respectively, within ENTROP
and in the full-GCM “natural basis”, the one that for a given
number of states picks out the subspace that most closely
spans the full set [25]. Even after the very first state—the
unconstrained HFB minimum, the ENTROP energy is well
within a percent of the correct one. After that it converges
more gradually, eventually tracking the results of the natural-

0 20 40 60 80 100

State number

−87.5

−87.0

−86.5

−86.0

−85.5

−85.0

E
[M

eV
]

Natural basis

ENTROP

Full result

FIG. 6. Same as Fig. 5 but for 76Se.
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FIG. 7. Low-lying energy spectrum of 76Ge and 76Se computed
by shell-model code BIGSTICK [23,24] (Exact), from the procedure
based on that in the Ref. [16] and described in the text (Grad. de-
scent), and by ENTROP. The figure does not show an overall upward
shift in the Grad.-descent energies of about 1.5 MeV in 76Ge and
2 MeV in 76Se. The corresponding upward shift for ENTROP is
about a factor of 10 smaller.

basis truncation. Using a larger value of Lc than 0.995 simply
extends the ENTROP curve along that corresponding to the
natural basis. We believe that this is the best that one can
do without an explicit (and time consuming) consideration of
off-diagonal contributions to the energy. Fortunately, however,
the long tail of rejected states makes almost no difference in
the NME; if we extend the curves in the top two panels of
Fig. 3 the NME never moves significantly from the full GCM
value.

Finally, Fig. 7 shows the low-lying spectra produced by the
184-state GCM and the method related to that of Ref. [16].
Both the approximations do a good job with the excitation
energies, though ENTROP is more accurate.

What states does ENTROP select to achieve these results?
Figure 8 shows the properties of the states it uses. The param-
eters β and γ are defined a little differently than in Ref. [11],
through the relations

β = 4π

3R2
0A

√
〈Q̂20〉2 +

(〈Q̂22〉 + 〈Q̂2−2〉
)2

2
,

γ = tan−1

( 〈Q̂22〉 + 〈Q̂2−2〉√
2 〈Q̂20〉

)
(10)

with R0 = 1.2A1/3 fm and ϕ ≡ 〈P̂†
0 〉. The sizes of the circles

represent their probabilities as given by the collective wave
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γ
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γ
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γ

ϕ = 1.0
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ϕ = 1.5

γ
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FIG. 8. States selected by ENTROP in 76Ge (top) and 76Se (bottom). The colors represent surface-potential energy and the variable ϕ is the
expectation value of the isoscalar pairing operator P̂†

0 (see text). Each red dot represents a selected state, and the size of the dot is proportional
to the square of the collective ground-state wave function at that point. The triaxial parameter γ runs uniformly from 0◦ to 60◦.

functions. Many of the states in 76Se have ϕ = 1, indicating
the significant role played by isoscalar pairing.

B. Ab initio calculation

We turn now to the ab initio computation of the same decay
NME. Using a chiral NN + 3N interaction [26,27] employed
in recent studies of light nuclei [28] and 48Ca [3], and evolving
it and the decay operator according to the equations of the
IMSRG [1] with a reference ensemble comprising prolate,
spherical, and oblate HFB minima in both 76Ge and 76Se and

2.0

2.5

3.0
(a)

2.0

2.5

3.0

M
0ν

(b)

5 10 15 20 25 30

State number

2.0

2.5

3.0
(c)

FIG. 9. Ab initio NME for the decay of 76Ge, with the total
number of states in the subset pairs equal to 20 (top), 30 (middle),
and 40 (bottom), after applying ENTROP up to the combined (both
nuclei) state number indicated by the x axis.

with emax = 6 (i.e., in seven shells), we repeat the steps just
described. Results in a larger space will be published soon.
Unlike in our shell-model computation—and this would be
the case in any realistic application—we do not have “com-
plete” results with which to test our approximations. Our mesh
in the space of deformation parameters β, γ , and ϕ [11] (re-
lated to the axial deformation, triaxiality and isoscalar pairing
strength used in the shell-model calculation) contains 145
points (or 290 if we count the points in both nuclei), and
a complete solution to the HWG equation in the resulting
space is more than we can currently handle. We thus once
again apply ENTROP, this time without comparing to an exact
result.

Figure 9 shows that within subspace pairs consisting of 20,
30, and 40 total states, a cutoff value Lc = 0.902 is sufficient
to obtain the correct NME for each pair. It is the smallest value
of the cutoff that does so. We therefore adopt this cutoff and
generate another sequence of states, leading to the results in
Figs. 10 and 11. Though the energies in Fig. 11 are still falling
slowly after 18 and 16 states in 76Ge and 76Se, the NME in
Fig. 10 has more or less converged long before, by about 20
states from the two nuclei combined. Of course, we cannot be
sure that the long plateau continues indefinitely, but the longer
it extends, the more confidence we have.

The three parts of our NME are

MGT
0ν = 2.68, −g2

V

g2
A

MF
0ν = 0.65,

MT
0ν = −0.16. (11)

A recent valence-space IMSRG calculation obtained MGT
0ν =

2.76, g2
V /g2

AMF
0ν = 0.54, and MT

0ν = −0.49 with the same
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FIG. 10. ENTROP NME for the decay of 76Ge with Lc = 0.902.

chiral interaction and the same value of emax [4]. The main
difference between the two sets of results is in the tensor ma-
trix element. In the valence-space calculation, this component
reduces the total NME by 17%, while in ours it reduces it by
only 5%, a number that is similar to what has been obtained
in more phenomenological computations. We will publish a
more complete calculation of these matrix elements with a
larger value for emax elsewhere.

IV. CONCLUSIONS

We have presented a greedy algorithm called ENTROP
to select the most important mean-field states for GCM cal-
culations of ground-state energies and 0νββ NMEs. The
algorithm starts with one HFB quasiparticle vacuum per point
in a large mesh within a space of collective coordinates, and
reduces the number of projected HFB states that need to
be worked with. The steps in the procedure, briefly, are as
follows:

0 5 10 15 20

State number

−600.5

−600.0

−599.5

−599.0

−598.5

−598.0

E
[M

eV
]

76Ge
76Se

FIG. 11. Ab initio ENTROP ground-state energies for 76Ge
(blue) and 76Se (red), with Lc = 0.902. The state number refers to
a single nucleus only.

(i) Sort the projected states by their diagonal energies.
(ii) Consider the first N states in each nucleus for several

values of N .
(iii) Find the smallest value of Lc that, when the selection

scheme in Fig. 1 is applied, leads to subsets of the
first N states (for all the values of N) that succeed in
reproducing the corresponding NME.

(iv) Use that value of Lc to create a subspace pair in
the full GCM spaces, solve the corresponding HWG
equations, and compute the NME.

The scheme reduces computational effort because we need
to compute norm kernels only for the projected states states
that we test, and Hamiltonian and ββ kernels only for those
that are actually selected. We successfully tested our method
in a computation of the NME for the decay of 76Ge within
a valence shell-model space with a phenomenological inter-
action; it reduced computation time there by more than a
factor of 100. We also applied the method to an ab initio
computation of the same NME with an IMSRG-evolved chiral
interaction, where a full calculation is too time consuming to
carry out. In both our examples, ENTROP appears to lead
to a suitable basis with many fewer states than in typical
GCM calculations, opening up the possibility of adding new
generator coordinates to the usual set.

As we just noted, ENTROP requires norm kernels for the
set of states that are tested, and although those take less time to
compute than do Hamiltonian or ββ kernels, they are still not
always cheap. We have found the use of approximate norm
kernels, e.g., from unprojected basis states to be promising,
and are also exploring machine-learning techniques to reduce
the number of norm kernels that must be calculated.
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APPENDIX: SQUARED LENGTH OF PROJECTION ONTO
A SUBSPACE

To compute L for a given state and a subspace of previ-
ously selected states we proceed as follows. Let the subspace
be spanned by the unnormalized and nonorthogonal vectors
|1〉 , |2〉 , . . . , |n〉. A candidate state |n + 1〉 will not be in-
cluded in this set if it is nearly a linear superposition of those
states. Calling the projector onto the subspace P(n), we have

P(n)|n + 1〉 =
n∑

i=1

α
(n)
i |i〉, (A1)

for some coefficients α
(n)
i , which are determined by requiring

that |n + 1〉 − P(n)|n + 1〉 is orthogonal to |k〉 for all k � n,

〈k|n + 1〉−〈k|P(n)|n + 1〉=0−→
n∑

i=1

〈k|i〉α
(n)
i = 〈k|n + 1〉.

(A2)

In matrix form, Eq. (A2) is

S(n)α(n) = β(n) (A3)

with S(n)
i j = 〈i| j〉 and β

(n)
i = 〈i|n + 1〉. The solution is

α(n) = (S(n))−1β(n). (A4)

The squared length L of the projection of the normalized
candidate state onto the space spanned by the already selected
states is then

L = 〈n + 1|P(n)|n + 1〉
〈n + 1|n + 1〉 =

∑n
i=1 〈n + 1|i〉 α

(n)
i

〈n + 1|n + 1〉

= β(n)†(S(n) )−1β(n)

〈n + 1|n + 1〉 . (A5)
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