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Traditional audio techniques for interactive applications typically involve the cap-

ture and playback of numerous recordings. Such approaches are expensive, time con-

suming and unfeasible for adequately accompanying the ever expanding visuals of an

interactive system. Physically based sound synthesis is an alternative to traditional

techniques that has the potential for additional realism and immersion in audio. It

describes a framework for the synthesis of realistic impact sounds in real time, based

on an object’s rigid body motions. It is achieved by modelling an object’s deformations

when subject to external forces, and subsequently solving for the displacements to pro-

duce a sound wave. However, it is a decidedly expensive task in terms of computation

and implementation.

The contribution of this work is to find new methods to simplify the process and
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ultimately render an implementation more viable. Two approaches are taken. First,

existing methods for the creation of deformation models are explored in detail. A

new approach is defined through the combination of existing techniques. Secondly,

parallelisation of the synthesis is explored, and a robust, coarse-grained approach is

presented, with the capacity for significant performance improvements. Finally, a full

synthesis pipeline and interactive application is developed to evaluate the results.
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Chapter 1

Introduction

1.1 Motivation

Sound and vision are inseparable. Human experience of the world would not be com-

plete without one or the other. For example, consider the terror that can be caused by

thunder and lightning. The lightning itself, while beautiful in many forms, would not

be as awe-inspiring but for the thunderous roar that accompanies it. Our existence is

defined just as much as the sounds we hear, as the sights we see.

Despite this, in the world of interactive applications, audio tends to be a much

less understood component. Indeed, most audio techniques in interactive applications

borrow heavily from the film industry. The result is a strange mix and match between

artistry, engineering and computer science. Recordings of real world sounds form the

basis and can take hundreds if not thousands of man-hours to capture. The next

requirement is to create sophisticated algorithms to allow us to mix and match these

recordings in order to create the desired audio effects. And lastly, is the issue of

playback, where memory management becomes the primary concern. The end product

is frequently a mix of looped sounds, unsubtle triggers and a bizarre discontinuity

between the realism of the rendered visuals and the recorded audio. It just does not

fit.

Consider, for a moment, the medium of film. In film it is not unusual to see the

storyline advanced through audio alone. For example, numerous thrillers feature the

same scene with the heroine walking through a dark room, stalked by an enemy who
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is only given away by the ambient noises she creates. Every movement made, every

step taken, risks drawing the attention to the heroine. Thus, the audio is pushed to

the forefront of the viewer’s attention, and every single background noise sends shivers

down the spine. In contrast, for games the audio typically serves little more than to

complement the environment and establish the mood of the player. The player relies

not on the audio to form the game-play, only where to point their visual attention. This

is because it is not feasible to create such a sophisticated soundtrack through recordings

for an interactive medium with near infinite possible outcomes for the game-play. Yet,

we still rely on audio recordings, much to the detriment of the perceptual experience.

One would never create the visuals of an interactive application through videos and

pictures.

Despite the current limitations in the techniques, many within the industry recog-

nise the importance audio production will play in the future of the interactive applica-

tions [2]. Indeed there are already a waft of new experimental techniques for producing

realistic game audio in the literature. One of these methods is termed Physically Based

Sound Synthesis, and forms the scope of this work.

1.2 Physically Based Sound Synthesis

Physically Based Sound Synthesis is the process of synthesising impact sounds through

rigid body motions. Its foundations lie deep in the theory of vibration. Briefly, when an

object is struck, the forces exerted on it can be decoupled into two main components.

The first is the ‘dynamic force’ which dictates how the object will move in response (i.e.

does it fall over, roll along the ground, get hurled in the air?). These ‘dynamic forces’

are typically modelled in modern interactive applications through the use of ‘rigid body

simulators’ (or ‘physics engines’). The second component is the elastic response ( for

example, stretching, compression or vibration). It is through these elastic forces that

sound is produced in real time. Typically when an object is struck, it will vibrate.

Frequently these deformations are too small to see with the naked eye. However, they

cause displacements in the medium around it and pressure waves are radiated from the

object. These pressure waves are what humans perceive as sound.

Physically based sound synthesis is the process of modelling these elastic displace-

ments in order to synthesize sound. First, a model is created that describes how the
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objects vibrate. Then, forces are captured from the rigid body simulator and used to

excite these deformations. Finally, we solve for the displacements to produce a sound

wave and subsequently render the audio response of the object. The model will be

explained in detail in the following chapters. For now, it is sufficient to note that

physically based sound synthesis is the field of investigation for this work.

1.3 Objectives

Previous work showed how inaccessible physically based sound can be [3], despite a

recent surge of developments in the area. There are a variety of different reasons for

this:

• Physically based sound represents a completely different paradigm to standard

game audio programming. Traditional methods focus on recording sounds and

mixing their playback at run time to create the different sound effects. Physically

based sound, however, requires extensive knowledge of vibrational theory and

digital signal processing, techniques not common in traditional solutions.

• Previous work has, to a large degree, used relatively expensive proprietary soft-

ware and hardware throughout their implementations, for the creation of the

models, and in some cases, the rigid body simulator. For example, van den

Doel uses a specific device that was constructed to model an object’s impulse

response. This has largely prevented the distribution of any tools or libraries,

which, through their absense, have created a barrier to entry in the area. Indeed,

there are only two libraries that we know of for the purposes of synthesis, JASS

[30] and STK [36], and neither is really appropriate for interactive applications.

• There is a distinct lack of comprehensive documentation in the area. To this

author’s knowledge, there are no textbooks or indeed meta-analyses of the work

that has been done, making it difficult in cases to locate and access the required

information. This leaves users working from a limited set of resources, and com-

pounds the barriers to the potential developer.

Thus, it is the intention for this work to focus on finding methods of simplifying

physically based sound synthesis, and in particular to focus on methods that would
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be suitable for developers outside academia who may not have the resources at their

disposal to implement previous work. As this author demonstrated in previous work [3],

the greatest difficulty towards an implementation is presented through the generation

of the models. On the back of this, the generation of modal models will be explored in

detail.

Specifically, this study proposes to explore the possibility of combining simple mass

springs models with data from recordings. The author’s previous work has shown that

the creation of modal models through mass springs do respond in a physically correct

manner to input [12], however, there is a significant loss in quality in the timbre of

an object. Thus, possible improvements to the existing algorithms for recorded data

will be explored, to see if they can be combined in some manner with the physically

based models. If successful, it would represent a method cheap in both resources and

man-hours to create realistic and immersive audio.

Secondly, possible methods for improving the efficiency of synthesis will be ex-

plored. It has been shown in previous work [23] that physically sound synthesis is a

highly parallelisable task and suitable for implementation on the graphics processing

unit (GPU). However, due to the surge in general purpose computation on the GPU

(GPGPU) the graphics card is already the major bottleneck in most systems. Thus,

alternative parallelisation approaches on the central processing unit (CPU) will be

explored.

Finally, it has been noted from reading the literature that the current state of the

art is highly fragmented and, in many respects, inaccessible to the lay user. One of the

possible reasons for this is the lack of any standardised textbook or general platform

for the field. Thus it is a secondary intention for this work to explore the literature

in detail and provide something of an evaluation. This will be performed through

implementing a full synthesis pipeline, in order to identify the current strengths and

weaknesses of the state of the art.

1.4 Outline of the Document

The rest of the document is structured as follows:

Chapter 2 gives a brief overview of the modal synthesis model. It serves as an in-
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troduction to the main concepts used throughout the rest of the document. It

describes the foundations of the model and introduces the reader to the modal

synthesis pipeline.

Chapter 3 discusses the main methods for generating the modal models. It describes

the three main techniques used extensively throughout the literature: that is,

analytical models, numerical models and models generated from recorded data.

In this chapter we also briefly discuss some of the models that have been proposed

for liquid sounds, as well as issues of propagation and emission.

Chapter 4 explains how the input forces for the modal model are obtained. It dis-

cusses how to resolve the synthesis pipeline with the rigid body simulation and

the rendering pipeline, and presents the various methods in the literature for

modelling different types of impact sounds.

Chapter 5 highlights the main concerns of synthesis and the rendering of the au-

dio. It presents a number of different models from the literature for performing

efficient synthesis, and describes additional methods for reducing the overall com-

putational burden.

Chapter 6 is where the main contribution of this work begins. The basic design of a

modal synthesis pipeline is discussed, and how one can derive efficient techniques.

Chapter 7 discusses the implementation, and how the pipeline was assembled.

Chapter 8 gives a detailed breakdown of the results obtained from the implementa-

tion. The overall perceptual quality of the implementation is evaluated, as well

as the performance and weaknesses of the implementation.

Chapter 9 comprises the conclusion. Our main achievements and findings from the

work are outlined. Possibilities for future directions of research are also listed.

It should be noted that the literature review is conducted in Chapters 3 through 5.

This approach was taken so as to clearly identify the primary concerns of the model, of

which familiarisation is necessary in order to understand the aspirations for this work.
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For those readers not familiar with the field of Digital Signal Processing, it is

suggested to read Appendix A before proceeding, as it explains a number of concepts

used extensively throughout the document.

Another important note involves the mathematical notation used throughout this

text. Where possible, it was attempted to standardise the notations used. However,

this proved difficult as the symbols meaning tends to change in relation to the context.

Thus, it is not unusual to see the complex frequency being referred to as ω or Ω.
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Chapter 2

Background

2.1 A Note on Sound

Sound is simply pressure waves in the air. All sounds that we hear are typically the

result of vibrations or displacements in an object’s surface that excites the air around

it and produces the pressure waves that humans perceive as sound. This is because

almost all materials have some elastic properties, so that when a force is exerted on

them, the elastic forces within that object cause it to vibrate until it comes to rest.

Typically these deformations are so small that we cannot see them, however, we need

only look at the vibration of a plucked guitar string or a drum when struck to see this

process taking place.

How an object vibrates is extensively researched in the area of vibrational theory

[18]. What has been discovered is that there are a variety of different patterns of

vibration in an object, inherent to its geometry and material properties. These vibra-

tional patterns are called the ‘modes of vibration’ or natural frequencies of the object

in question. For example, see Figure 2.1 which shows the first four vibrational modes

of a circular drum skin. Analytical solutions have shown that the number of vibra-

tional modes an object contains is infinite [19]. However, through observation we find

that there are only a few characteristic frequencies that determine an object’s overall

sound. Typically, on impact, a very high number of vibrational modes are excited.

Yet most of these modes decay almost instantaneously, particularly those with very

high frequencies, leaving only a few modes that vibrate long enough to be heard. For
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example, for a musical instrument, or an object that exhibits a definite pitch (like a

metal cylinder), the pitch is due to a single mode decaying much slower than all the

others. The frequency of this mode is what determines the pitch.

(a) The first mode (b) The second mode

(c) The third mode (d) The fourth mode

Figure 2.1: The vibrational modes of a circular membrane

Physically based sound synthesis is the process of modelling these vibrations, or

deformations and then directly synthesising them to produce sound. This is achiev-

able because the vibrational modes of an object are shown to exhibit strong sinusoidal

properties. Each mode has a fixed frequency and exponential decay, which is deter-

mined by the internal friction forces of the material in question. As such, almost all

forms of physically based sound synthesis model these vibrational modes a set of linear

harmonic oscillators. The synthesis then is simply a process of finding the response of

each mode to a given impact force.

8



2.2 A Harmonic Oscillator

Before the reader is introduced to the modal synthesis model, the properties of a

linear harmonic oscillator shall be discussed. A harmonic oscillator is any object that

when displaced, experiences a restoring force until it reaches equilibrium. Thus, it will

oscillate about its rest position, until such point that its energy has been dispelled, for

example, through heat, sound or friction. The restoring force is governed by Hooke’s

Law:

F = −kx− cẋ (2.1)

where the force, F is determined by the elastic force, k, and the displacement, x. In

this case we have introduced a dampening value, c. By combining this with Newton’s

Second Law of Motion (F = ma) we arrive at:

mẍ+ cẋ+ kx = 0 (2.2)

This second order, ordinary differential equation (ODE), gives the rate of change

of the oscillator’s displacement. The solution to this equation is given by:

xt = x0e
(ct/2m) cos

(
t
√

(k/m− (c/2m)2)
)

(2.3)

Thus, the solution to any linear harmonic is a sinusoid. And as most sound waves

can be modelled as sinusoids, we have arrived at a powerful method for synthesis.

2.3 Modal Synthesis

The modal synthesis model is presented as follows:

yt =
N∑
n=1

anke
−dntsin(2πfnt) (2.4)

This relation bears a close resemblance to that of the linear harmonic oscillator

above. Indeed, the precise methods used to identify an object’s modes are performed

in a manner similar to the steps above.
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The displacements of the objects N modes, yt, produce pressure waves in the air

that we perceive as sound. The displacements are determined by the natural frequency

(f in Hertz, or ω in radians), the dampening parameter d, and the amplitude or gain for

each mode, ank (in other texts ank is represented by cn). The frequency and dampening

of a mode remain constant, however, the value of the mode’s amplitude depends on

the impact force and the geometric location of where the force is exerted on the object.

Under the assumption of linearity, the precise shape of the modal displacement does

not matter, however, it should be noted that this only results in an approximation of

each mode’s displacement. In reality, non linearity is frequently observed. However, by

and large, the assumption of linearity is perfectly acceptable for synthesising sound.

The amount of modes any particular object contains is infinite, and stretches to

infinitely high frequencies. However, in reality only an impulsive force of infinitely

short duration will excite all the modes. And given the limits of human perception,

we can eliminate many of these modes, as we need only concern ourselves with modes

that oscillate with a frequency in the audible range (that is, 20Hz to 22000Hz).

In order to construct the audio signal of an object’s impact, it is then a simple case

of evaluating the above expression at each point in time, t. This is referred to in the

literature as ‘additive synthesis’, whereby an audio signal is constructed by summing

a set of sinusoids. However, it is an expensive task, due to Nyquist’s law [8, 15]. This

states that in order to reconstruct a signal of a frequency, f , we must sample the signal

at a rate of at least 2f , as failure to do so will result in the inability to capture the

crest and trough of each wave, which renders the signal inaudible. However, given that

the upper limit of human audio perception is 22000Hz, it means in order to recapture

most objects adequately, we must evaluate Equation 2.4 over 44000 times per second.

Thus, modal synthesis can easily become a computationally expensive task.

2.4 Modal Synthesis Pipeline

The entire modal synthesis pipeline can be described briefly as follows:

First, we identify an object’s deformation modes. We then assemble this into a

modal model of the form M = f,d, A. The precise form depends greatly on the

method of identification used, however, it generally consists of column vectors f and

d that describe the frequency and dampening parameters. A is a matrix that is used
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Figure 2.2: A high level diagram of a full synthesis pipeline

to specify the gains for each mode depending on the contact location, k. The precise

methods are discussed in Chapter 3.

The next step is to introduce some adequate contact modelling. This refers to the

process of extracting the forces from the rigid body dynamics and converting them into

a form suitable for audio synthesis. This is a necessary step, as rigid body simulators

run at much lower frequency than the audio processing (60Hz, as opposed to 44100Hz).

The precise method again will depend on the nature of the modal model, and the main

methods for doing so are discussed in Chapter 4.

Finally, we solve the modal displacements for each audio sample, and render the

audio. This is an expensive process, and to do it efficiently we need to use additional

techniques, as opposed to solving the relation above, typically in the form of recursive

filters. These steps, and a number of other speed-ups for the synthesis, are discussed

in Chapter 5.

Overall, the process is analogous to the rendering pipeline, and is illustrated in

Figure 2.2.

It may be noted that there has been no mention of propagation. Propagation is
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the term used to describe how sound waves are scattered throughout its environment,

and how they can be disturbed and manipulated by the objects around them. For

example, the propagation of sound in a very large space will typically cause an echo, as

it reflects off objects and bounces back to the listener at different rates, depending on

the route that needs to be travelled. Typically, however, most implementations thus

far have treated the output of modal synthesis as a point source. Indeed, this makes

for much more simple integration of modal synthesis with traditional audio pipelines.

However, there have been some models created in the literature, and these are briefly

discussed in Chapter 3, although they were not used in this implementation.
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Chapter 3

Generating Modal Models

At the simplest level, generating modal models for real-time applications involves cre-

ating a bank of sinusoids, that when synthesised are added together to render the

characteristic sound of a rigid body when struck. There are quite a number of options

for the creation of models.

Van den Doel et al. showed how it is possible to solve the equation of motion

for simple shapes by hand, and thus construct the frequencies and dampenings [22].

Using these simple solutions for an object’s faces (that is, the faces defined in the three

dimensional mesh), it is then possible to model a variety of different modal models.

An alternative is to extract the modes using recordings. By performing a Fourier

transform on a signal, it is possible to identify the contributing sinusoids, and thus

generate a modal bank.

For more complex geometry, Finite Element Methods (FEM) tend to be the pre-

ferred methods, and indeed tend to be far more robust than other methods. The

following sections go into more details about how one can generate modal models, and

thus make an informed decision for a particular application.

3.1 Analytical Methods

Doel and Pai demonstrated how to generate the parameters needed for modal synthesis

through analytical solutions of simple shapes[21][22][19]. This is done by assembling the

shape’s equation of motion, solving the system and then determining the amplitudes
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of vibration for each mode depending on impact location.

For illustrative purposes, they describe how to create sounds from a rectangular

membrane. The solution to this is well documented in literature on vibrational theory.

The vibration response of the object can be described as µ(x, t). It is assumed that

the vibrational response takes the form of a wave equation:

(A− 1

c2

d2

dt2
)µ(x, t) = F (x, t) (3.1)

In this case A is the differential operator that corresponds to the shape in question.

For example, for the rectangular membrane, A is of the form:

A =
∂2

∂x2
+

∂2

∂y2
(3.2)

To solve the equation, we must give it some initial conditions:

µ(x, 0) = y0(x) (3.3)

∂µ(x, 0)

∂t
= v0(x) (3.4)

In this case v0(x) is the initial velocity, and corresponds to a square membrane that is

attached to a fixed frame, which means there will be no vibration at the edges of the

membrane.

The solution to the equation is given in the form:

µ(x, t) =
∞∑
n=1

(ansin(ωnct) + bncos(ωnct)Ψn(x)) (3.5)

where an and bn are determined by the initial conditions placed on the system, ωncorresponds

to the eigenvalues of the system and ψn(x) are the eigenfunctions.

For the rectangular membrane, the eigenfunctions and eigenvalues are labelled nx

and ny and can be found through:

Ψnxny = sin(πnxx/Lx)sin(πnyy/Ly

ωnxny = π

√
(
nx
Lx

)2 + (
ny
Ly

)2
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The eigenfunctions can then be normalised so that the norm of both (α) is inde-

pendent of n. This means we can define an and bn as:

an =

∫
S

v0(x)Ψn(x)

cαnωn
dk(x) (3.6)

bn =

∫
S

y0(x)Ψn(x)

cαn
dk(x) (3.7)

And the average energy of vibration (assuming mass is uniformly distributed) is given

by:

E = constant×
∞∑
n=1

αnω
2
n(a2

n + b2
n) (3.8)

From the above, we have now arrived at the fundamental frequencies of the modes

of vibration of the membrane. However, in order to produce sound, we need both the

amplitudes and model of how the vibrations are converted to pressure waves in order

to produce sound.

For a given impact point p on the surface of the membrane S, we need to compute

the corresponding amplitudes. To do this we assume initial conditions of:

y0(x) = 0 (3.9)

v0(x) = δ(x− p) (3.10)

where δ is the Dirac-delta function. This will lead to an infinite sum, however, by

ignoring frequencies outside the audible spectrum we can create a finite range. The

amplitudes can then be obtained as a function of the impact location:

an =
Ψn(p)

cαnωn
(3.11)

bn = 0 (3.12)

Then the amplitudes are scaled according to the energy of the impact.

We also need to make some assumption about how the vibration of each mode

decays. A simple method is to assume each mode decays exponentially according to

some internal friction parameter (φ) of the material in question. Thus the decay rate
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for each mode can be computed as:

τi =
1

πfi tanφ
(3.13)

Through the above methods, we can create a sound map of the object in question, with

frequencies, dampenings and amplitudes for each mode.

3.2 Numerical Methods

Numerical methods can also be used to solve for the vibrational modes of a system,

and indeed in most cases are more robust and generalisable than analytical methods

[10][12][11]. Indeed, the process can be described as a discretisation of the system,

whereas the analytical methods are a continuous solution, so in essence we are still

simply solving an object’s equation of motion[10] to model its deformations under

force.

Finite Element Methods (FEM) are largely the preferred choice. A simplistic def-

inition describes it as the process of dividing a structure into elements (or pieces) [5].

This allows us to model the physical behaviour (in our case, vibration) of each element

in a simplistic manner, and then reconnecting the elements at some arbitrarily defined

‘nodes’. However, its applications are far more broad than the analysis of structures,

and it can be used to model everything from stress analysis, sound propagation, heat

propagation to the weather. Indeed, a more general definition describes them simply as

a method for solving, or decoupling partial differential equations (PDE) in the domain

of some spatial field.

The family of methods we are interested in, are dynamic methods, or more specifi-

cally, the family of methods labelled modal analysis. This is the process of determining

the dynamic characteristics in terms of its natural frequencies and modal shapes. It is

similar to the analytical methods above in that what we are interested in is modelling

the vibrational response of an object. It is based on the premise that the vibrational

response of an object can be described in terms of a linear combination of the simple

harmonic motions of its elements.

O’Brien et al. were the first to apply FEM to the domain of physically based sound

[10]. Initially, they constructed a model that allowed them to generate sound waves
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directly from an FEM model of the object in question. However, while arguably the

most physically correct solution, the system was far too slow for real-time applications.

Instead, they were able to conduct the modal analysis as an off-line pre-process, to

solve for the system’s fundamental frequencies (i.e. modes). These modes would then

be mixed at run time (similar to van den Doel’s method). The pre-process allowed

them to separate the deformation model of the modes with the idealised rigid body

motions of the object. This meant the system could be used with any off-the-shelf rigid

body simulator.

Broadly speaking, the offline process has two stages: creating the deformation model

given some geometrical representation of a physical object, and identifying the system’s

modes.

Deformation Model

In order to model the deformations, we need to assemble the object’s equation of

motion. The equation of motion of any discretised system can be given as follows:

K(d) + C(d, ḋ) +M(d̈) = f (3.14)

In this instance, M is the mass matrix, which represents the masses associated with

each element, K is the elastic force matrix and C is the internal damping matrix, which

represents the forces due to node displacements. In this case, f is the external force

applied to the system and d represents the vector of displacement. In order to solve

for the modes of vibration of the object we will need to decouple the system into a set

of linear ODEs. However, how this can be done depends on the properties of the force

matrices of the system. Ultimately, they need to be real and symmetric.

3.2.1 Tetrahedral Methods

There are a variety of different methods available to discretise the system, both from

surface models such as a mass-springs system to volumetric approaches (both of which

shall be discussed later). The method selected by O’Brien et al.[7] uses a tetrahedral

finite element method, and tetrahedral methods have subsequently become the most

widely used in the area of physically based sound synthesis for rigid bodies (it is also

17



used in [7] [1]).

To compute the stiffness and mass matrices of the system, they first compute the

stiffness and mass matrices for each element. These are found using the non-linear

node forces described below for a single element:

f[i]a =
−vol

2

4∑
j=1

p[j]a

3∑
k=1

3∑
l=1

βjiβikσkl (3.15)

The element’s stiffness matrix (k) is then assembled by evaluating the partials of f at

their rest position:

k[ij]ab =
∂f[i]a

∂p[i]b

=
−vol

2
(λβiaβjb + µβibβja + µ

3∑
k=1

βikβjkδab (3.16)

The mass matrix (m) is then computed from the partials of kinetic energy with respect

to the node velocities, as below:

m[ij]ab =
∂k2

∂ρ̇ia∂ρ̇jb

=
ρV ol

20
(1 + δij)δab (3.17)

The element matrices are 12 × 12. These are then assembled into the corresponding

global mass and stiffness matrices (M and K respectively). This is done by simply

accumulating the entries in the element matrices into corresponding entries in the

global matrices. For a rigid body in three dimensional space the global matrices will

be of size 3N × 3N (where N is the number of nodes in the tetrahedral mesh). The

results are large sparse matrices. To save computation time, it is also possible to

accumulate the sum of the rows in the global mass matrix along the diagonal, and then

discard the original entries.

It is also possible to eliminate the need for a damping matrix through the use of

Rayleigh Damping. Rayleigh damping is a non physically based method to express the

global damping matrix in terms of some contribution of both the stiffness and mass
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matrices, as shown below:

C = αK + βM (3.18)

The choice of α and β are somewhat arbitrary, however, in general it is found to be

a useful approximation and the result greatly simplifies the efforts needed to decouple

the system.

Identifying the Modes

Once the global forces matrices have been assembled, the system can be expressed in

the following form:

K(d+ αḋ) +M(βḋ+ d̈) = f (3.19)

This makes the assumption that the deformations are linear and small, which is suffi-

cient for the purposes of sound synthesis as the deformations that produce sound are

very small. The next step is to diagonalise the equation. This allows us to decouple

the system into a set of linear ODEs which we can then solve to find the objects defor-

mation modes. Again, how the system is solved depends greatly on how the matrices

are assembled. If M is diagonal, it is possible to diagonalise K to finds its eigenvectors

and eigenvalues (as we shall see later). If this assumption cannot be made however,

there are other techniques available. O’Brien et al. selected Cholesky factorisation of

M so that it can be expressed in terms of the product of a triangular matrix and its

transpose (M = LLT ). This allows for the introduction of a new variable, y = LTd.

Rewriting in terms of y and multiplying by L−1 yields:

L−1KL−T (y + αẏ) + β(ẏ + ÿ) = L−1f (3.20)

This then allows for L−1KL−T to be decomposed to solve for its eigenvalues and eigen-

vectors (V ΛV T ). By introducing a new variable, z = V Ty and multiplying by V T , the

equation can be rearranged to:

Λ(z + αż) + (βż + z̈) = V TL−1f (3.21)

and then again to:

Λz + (αΛ + βI)ż + z̈ = g (3.22)
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where:

g = V TL−1f (3.23)

Thus, the system has now been diagonalised into a set of ODEs, each of which takes

the form of a harmonic oscillator.

λizi + (αλi + β)żi + z̈i = gi (3.24)

These equations represent the i’th mode of the system, where λi is the i’th entry along

the diagonal Λ. The solutions of the equation are given by:

zit = c1e
ω+

i t + c2e
ω−i t

ω±i =
−(αλi + β)±

√
(αλi + β)2 − 4λi
2

(3.25)

where ω represents the complex frequency of the mode, from which we can derive the

decay rate (Re(ω)) and the angular frequency (|Im(ω)|) needed for sound synthesis.

c1 represents the amplitude (or gain) of the mode. For a given impulse, c is:

c1 =
2∆tgi

ω+
i − ω−i

(3.26)

c2 =
2∆tgi

ω−i − ω+
i

(3.27)

This means our synthesis equation reduces to the following:

zi =
2∆tgi
|Im(ωi)|

etRe(ωi) sin(t|Im(ωi)|) (3.28)

3.2.2 Mass Spring Methods

A simplification of O’Brien’s method was proposed by Raghuvanshi et al. [12]. They

use a mass-spring model derived from an object’s surface geometry to create the modal

models. It makes no assumption about the mesh connectivity, which allows us to use

a wide variety of 3D models common to interactive applications.

The mass-spring system is created from the geometry, where each vertex is replaced

by a particle and each edge is replaced by a damped spring. The masses for each particle
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(mi) and the spring constants for each spring (k) are formulated taking into account

Young’s Modulus of Elasticity, (Y ), the density of the material the object consists of

(ρ) and the thickness of the object’s surface (t). They are given by the following:

k = Y t

mi = ρtai (3.29)

where ai relates to the area that corresponds to a particle. It is found by dividing the

area of each face by the number of its vertices, then summing the contributions for

each face the particle is identified with.

The system is then assembled from each particle’s equation of motion [6]. To

illustrate how this is formulised we will give a simple example to solve for movement

along the x-axis. Given a system with 2 particles (m1 and m2) and 3 springs (whose

constants are denoted by ki) the equations of motion for each particle are given by:

m1ẍ1 + (k1 + k2)x1 − k2x2 = 0

m2ẍ2 − k2x1 + (k2 + k3)x2 = 0 (3.30)

In order to formulate the system’s equation, we assemble the above equations into the

mass and force matrices as below:∣∣∣∣∣ m1 0

0 m2

∣∣∣∣∣ ẍ1

ẍ2

+

∣∣∣∣∣ k1 + k2 −k2

−k2 k2 + k3

∣∣∣∣∣ x1

x2

=

{
0

0

}
(3.31)

Thus we can describe the system as:

Mẍ+Kx = 0 (3.32)

M is the diagonal matrix which corresponds to the particle masses, K is the elastic force

matrix where entries correspond to springs. However, we can see from the above that

this is an undamped system. Like with O’Brien’s method, dampening is introduced in

the form of Rayleigh damping. Thus the linear system takes the following form:

Mr̈ + (γM + ηK)ṙ +Kr = f (3.33)
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where γ is the fluid and η the viscoelastic damping constants. For our system of

N particles in three dimensional space, the size of the mass and force matrices are

extended to allow for 3 degrees of freedom for each particle, so the final size of the

matrices will be 3N × 3N .

This system is very similar to O’Brien’s, and the solution to the system is found by

diagonalising K to find its corresponding eigenvalues and eigenvectors. This results in

the decoupling of the system into a series of linear ODEs. The solutions for each mode

are then given by:

zit = cie
ω+

i t + cie
ω−i t

ω±i =
−(γλi + η)±

√
(γλi + η)2 − 4λi
2

(3.34)

where ω±i represents the complex frequency for each mode. The real part of ω±i rep-

resents the damping of each mode and the imaginary part represents the (angular)

frequency. The constant ci is then found from the impact forces acting upon each par-

ticle, which is determined at run time, allowing us to compute for zi and thus create

our wave form.

3.2.3 Voxelization Methods

To overcome some of the limitations of existing tetrahedral methods, Picard et al.

recently proposed a new finite element method for modal analysis to extract the modes

[11]. This is done through the voxelization of the object. Instead of generating a

tetrahedral mesh, the geometry is broken down into voxels and the system’s matrices

are created from the material parameters. The results, the authors claim, is a far more

robust model, less likely to succumb to numerical instabilities.

The work is based on Nesme et al. [9], which uses hexahedral finite element for

computing the mass and stiffness matrices of a mechanical system. They first generate

a high resolution voxelization of the object, which are then merged to an arbitrary

resolution. The mass and stiffness of a single voxel are then merged from its children,

using a weighted average that takes into account the distribution of the material. To

create the modal bank, a simple extension to the work of Nesme et al. is used to

model the microscopic deformations for sound rendering, similar to O’Brien’s method
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above. The rendered sound is then simply a sum of damped sinusoids, as in previous

approaches.

The main benefits of such an approach are that it is more robust, and indeed

more scalable. Tetrahedral meshes require a considerable amount of assumptions to

be met in order to perform the modal analysis, most of which are inapplicable to

hexahedral models. As a result, hexahedral analysis is much less likely to run into

instabilities or difficulties. Secondly, it allows for greater scalability, as a single voxel

can be created from the sum of its children, and vice versa. Not only can this be used

to reduce the overall expense of creating the modal models, but it also allows for the

future possibility of being able to scale the voxelisation at runtime, although this is

dependent on improvements in hardware.

3.3 Using Recorded Data

One of the difficulties with the above methods are that the models can become very

complex to assemble if the object is inhomogeneous, or indeed if the material parame-

ters of the object are not well documented. For these reasons, van den Doel has tended

to favour the creation of modal models through the use of recorded data [19][17][13].

Conceptually the process is very simple. A recording is made of an impulse striking

the object at a particular location (which we shall denote ki). By analysing this

recording it is possible to identify the object’s characteristic frequencies, and through

their intensity we can identify the gains associated with that mode, and by watching

how the intensity of each frequency changes over time we can identify the decay rate

for the mode. Indeed, the process is so simple that it can be done by hand if preferred,

needing only a spectogram for reference (which can be performed by almost any digital

signal processing package).

However, if one wishes to assemble a high resolution model, automisation is neces-

sary, as it would rapidly become a time consuming process. Van den Doel describes

one such algorithm [19], using Windowed Fourier Transforms. The Fourier transform

is a common method used in Digital Signal Processing to break up a complex time

domain signal into the sum of its sinusoids. This allows us to describe the time domain

signal into the sum of its frequencies (the frequency domain).

One of the limitations of a frequency domain representation of a signal though is
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that the output is not representative of any one point in time, but rather the duration

of the signal that we have sampled. In order to be able to identify how the signal

changes over time, it is necessary to perform multiple overlapped Fourier Transforms

of the signal. And to avoid artifacts, we need to weight the signal by some window

function, in this case a Hann window. The result of this is called a spectogram.

One interesting observation about modal synthesis is that any one mode tends to be

represented as a peak on a spectogram. That is, any one mode tends to be represented

strongly by one particular sinusoid and its most immediate neighbours to a lesser

degree (often only one or two ‘bins’ away). It is this that we exploit when identifying

the frequencies of the constituent modes in a signal. The algorithm itself is relatively

simple. Once we have performed the Windowed Fourier Transform, we identify the

peaks on the spectogram at any one point in time and vote for that frequency. Thus,

the frequencies with the most votes are the modal frequencies we will use for synthesis.

Once the frequencies have been identified, it is then a simple matter of performing

a linear regression as to how the intensity of each sinusoid decays over time. This is

done by fitting the intensity to the linear equation αt+ β (where t represents the next

window in time). From α and β we can estimate the decay rates and amplitudes.

3.4 Radiation

An important observation about the above modal models is that they treat all modal

models as a single point source. This is an important consideration because the defor-

mations occur at various different locations throughout the object’s geometry. Thus,

the pressure waves are slightly convoluted when they reach us as sound, through diffrac-

tion and other artifacts of radiation. For example, if you tap a cup on the side, with

one’s ear over the opening, you will notice a significant difference in the sound than

had you held your ear under the base.

In light of this, James et al. proposed an extension to the modal model to take

into consideration the above phenomenon [7]. This is achieved by introducing the

well documented acoustic transfer function to the synthesis pipeline. This allows for

the effective modelling of diffraction and interreflection of soundwaves that affect the

overall timbre of the object, resulting in a more realistic audio experience.

The method involves solving for each mode’s acoustic transfer function p(x) and
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introducing it to the synthesis pipeline in the form p(x)e+iωt. p(x) models the spa-

tial component of each mode’s pressure field, and is given in the form of a Helmholtz

equation1. This can be a highly expensive process to solve, requiring many differ-

ent boundary conditions to be taken into account. To allow for real time synthesis,

they developed an estimator for p(x) which utilises a precomputed estimations of the

boundary conditions. This is what they term their PAT approximator.

Perceptually it represents a significant improvement to the modal model, although

it does not take anything of the objects environment into account. However, it demon-

strates the near endless possibilities and levels of sophistication the modal model can

attain, reinforcing its importance to the future of interactive applications.

An alternative method for capturing the radiation of pressure waves in the modal

model was proposed by van den Doel using his system ‘Timbrefields’ [13]. Instead of

using numerically solved pressure fields, Doel uses recordings of an object’s impulse

response to capture the spatial variations of a sound relative to the listener. This is

implemented by creating modal models from recordings of multiple contact locations as

described above. However, instead of representing the amplitudes as two-dimensional

matrix, they are represented by a five-dimensional vector that also takes into consid-

eration the location of the listener. By also including impact recordings at various

different listener locations, the gains are then found by interpolating the values found

from the recordings.

Since this is performed as a pre-process, it is significantly less expensive than the

above technique implemented by James et al., requiring only the interpolation between

stored amplitudes at run time relative to the listener. However, the large amount of

recordings that need to be taken require an automated system for doing so. Secondly,

the five-dimensional representation of the amplitudes represents a significant increase

in memory consumption.

3.5 Liquid Models

Until recently, physically based sound synthesis had only been applicable to the mod-

elling of rigid bodies. However, there has been a number of attempts at creating

1the Helmholtz equation is the fourier transform of the wave equation
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physically based models for the production of liquid sounds.

Van den Doel proposed an algorithm for generating liquid sounds based on bubbles

[20]. The physics of bubbles become the focus. This is because water makes very

little in the way of distinguishable sounds to a human. Only when air is trapped and

reaches the surface are sounds perceived. This is because the surface tension excites

the bubbles.

The physics of a bubble is relatively well documented. The impulse response of

a bubble is the familiar sinusoid function, incorporating information on how both

the frequency, dampening and gain change over time. It has been also found, that

both the pitch and dampening constants are related to the radius of the bubble, thus

only bubbles of a certain size produce perceptible noise to humans. And through an

estimation of the energy maintained by a bubble, we are able to generate a prediction

for the amplitude. From this, we can plug the values into any synthesis equation to

create the bubble sound. One distinctive observation though about bubbles, is that

their pitch tends to rise as they come closer to the surface of the water. This is because

as the mass of water above decreases, less force is placed on the bubble’s walls. From

this, it is possible to create an estimation of how the frequency of the bubble changes

over time.

For single drops, the model is unsatisfactory. Large bubbles sound unnatural, while

smaller bubbles sound like drops on a hard surface. However, by exploiting the ob-

servation that bubbles are rarely heard in isolation, it is possible to use the model

for certain sounds. To do this, van den Doel created a bubble generator that creates

bubbles according to a probability distribution that emulates empirical observation of

bubble creation in nature. It is found that by varying certain constants, such as the

maximum depth, the bubble creation rate, and the radii, and the energy, it is possible

to model certain sounds such as rain or waterfalls. It is also found that distance to the

water source can be approximated easily by inserting an exponential constant.

Zheng and James developed a more physically based model [24]. They do so by

expanding existing fluid based simulation for animation with particle systems that

allow for the creation of bubbles. They then solve the acoustic transfer function for

each bubble in the system (a very time consuming process). While it is far from a real

time application, it is nevertheless a promising piece of work in the area of physically

based sound synthesis.
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There are four main steps to the process. They first simulate the fluid in question,

and generate the corresponding bubbles. They then estimate the surface vibration of

the fluid, and from this they estimate the pressure and vibration in the air, then render

the sound.

The primary aspiration was for the application to work in conjunction with existing

fluid models. In their implementation they used the Euler equations governing flow.

They then simulate the bubbles as simple particles. The actual bubbles themselves

can be modelled as a simple harmonic oscillator, as in van den Doel’s work. Like van

den Doel, bubble frequency is a function of time, however, their derivation is more

physically based, taking into account the pace at which the distance from the surface

changes. The acoustic radiation is then modelled using Helmholtz’s equations, using a

Green function to specify the boundary conditions.

In terms of computation, this requires to solve a Helmholtz PDE, for every bubble

in the scene, for each time step. To do this they developed their own parallel integral

solver, to approximate the Helmholtz-Green functions. The entire simulation itself

is run on 96 separate cores, which is far from a real-time application. Nevertheless,

the future remains bright. At the very least it demonstrates that the principles of

physically based sound are not limited to rigid bodies.

3.6 Summary

This chapter has presented the main strategies for the creation of modal models. As

shown above, the current state of the art allows for a wide variety of sounds and levels

of sophistication, capable of meeting a huge range of the demands of current interactive

applications. Secondly, all the models presented here can be automated which signifi-

cantly reduces the burden of man-hours needed to create a highly sophisticated sound

track for an interactive application. However, this is only one half of the picture. What

remains is to model the forces generated by the rigid body simulator, and subsequently

render the audio. This is discussed in the next two chapters.
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Chapter 4

Modelling Impact Forces

For physically based sound synthesis, the creation of the modal model is only half the

battle. In order to adequately synthesize contact sounds we still face the obstacle of

resolving the resonator banks with the rigid body simulator. While our modal models

have shown it is possible to decouple the rigid body motions from the surface deforma-

tions of an impact, we are still left with the difficulty of accounting for the differences

between the visual frame-rate of the rigid body simulator and the audio frame-rate of

the synthesis. In other words, we need some method to translate the impact forces of

the rigid body simulator into forces suitable for the purposes of synthesis (which van

den Doel terms the ‘audio force’). This requires the need to extend the rigid body sim-

ulator in some manner to accommodate our modal model. However, how this problem

can be approached depends greatly on how the modal model is derived.

4.1 Numerical Models

Using the models developed by O’Brien et al. and Raguvanshi et al., the only extensions

required of the rigid body simulator are for it to retain and store the collision forces

for the purposes of synthesis. Given a force vector f that describes the impulsive force

acting on each vertex, it is transformed by the matrix that describes the eigenvectors

of the system (G−1 in the case of Raguvanshi, or V TL−1 in the example of O’Brien et

al.). This transforms the impulse into the local coordinates of the system.

g = G−1f (4.1)
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Thus, the i’th entry of the transformed force g can be used to derive the amplitude of

the i’th mode as below:

c1 =
2∆tgi

ω+
i − ω−i

(4.2)

c2 =
2∆tgi

ω−i − ω+
i

(4.3)

in the case of O’Brien et al.’s model. Or for Raghuvanshi and Lin’s:

ci ← ci +
gi

mi(ω
+
i − ω−i )eω

+
i t0

(4.4)

both of which are then plugged directly into our synthesis algorithm at run time.

4.2 Models generated from Empirical data

For models created from recorded data, it is necessary to apply an additional layer of

logic. The modal model generated by empirical data corresponds to M = {f,d,A}.
The amplitudes A are given by an n× k matrix, where n is the number of modes and

k the number of contact locations. So each column of A corresponds to the observed

amplitudes of an impulse response for a collision at location k. So in order to determine

k, we need an estimation of the point of contact.

One such extension is described by Doel et al. [17]. To find an approximate contact

location, they use sphere trees. They created the tree using a polyhedral approximation

of their model, and then used the reported minimum distances from the sphere tree

to compute the contact locations. A barycentric interpolation scheme determines the

amplitudes from the nearest columns k in A. However, high resolution is required of

both the trees and the recorded contact responses, otherwise artifacts are introduced.

Another difficulty arises from the decoupling of rigid body motions and surface

deformations, with regards to the nature of the observed collisions. The reality is that

due to the surface deformations of an object, even the simplest and hardest collisions

are actually the result of a number of small short duration collisions between the two

objects’ surfaces. And secondly, it is still necessary to convert the dynamic force into

the audio force.
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A simple model for doing so is given by:

Ft = Fmax(1− cos
2πt

T
) (4.5)

where Fmax is the dynamic force generated by the rigid body simulator, and T is the

total duration of the impact in terms of the audio frame rate. This is a non physically

based model. However, it does seem to result in a good approximation. It rises slowly

at first, and then rapidly, which is a good approximation of the elastic tendency of

many materials. However, the suitability of it depends greatly on the type of impact

being modelled. For example, it is noted in [17] that very hard collisions were better

approximated by simulating a series of short duration impulse for the first few modes

in an object.

4.3 Continuous Sounds

‘Continuous sounds’ is the term for impact sounds as the result of continuous contact

between objects, namely rolling and scraping. By and large they are produced by

‘irregularities’ in the surfaces of two objects [17], and as such frequently the rigid body

simulator will not provide enough information to allow for their adequate synthesis.

Doel et al. demonstrated, however, that it is possible to use stochastic models to at

least approximate these sounds.

They found scraping sounds are slightly better documented. They generate the

audio-forces by first creating a surface profile of the objects in question. One require-

ment however, is that these profiles be created at a high enough resolution so that the

surface can be sampled at the audio rate. The profile is created using a wavetable1

generated from a ‘roughness model’. Doel et al. generated this model from fractal noise

passed through a reson filter2. Fractal noise was experimentally found to be a good

indicator of roughness, and the filter scales the frequency according to the velocity of

the objects. The wave table is then sampled using a linear interpolation algorithm.

As rolling is quite similar to scraping in the object’s interactions, they were able to

1a wavetable refers to samples taken from a periodic waveform, or frequency spectrum, which can
be used in a form of additive synthesis

2a reson filter is a recursive digital filter
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extend the roughness model for rolling. What they observed was that rolling sounds

seem to be characterised by much softer impacts which seems to excite only the lower

frequency modes. So they implemented the roughness model with an additional low

pass filter, to cut out higher frequencies. However, the results are not as effective as

for scraping.

Stochastic models may not always be necessary for rolling sounds though. Raghu-

vanshi and Lin found that their technique did not need any additional handling beyond

modelling the impulses [12]. This was largely due to their rigid body simulator, into

which they had integrated more a more complex friction model. This resulted in much

more accurate contact resolution, meaning the rigid body simulator alone was able to

accurately model the softer impulses of a rolling object colliding.

4.4 Summary

While there are a number of different force models available in the literature for imple-

mentation, the task is not as well documented as the other components in the pipeine,

and depends hugely on the models used. Most focus on modelling impacts as a series

of small impulses. However, the success of this is determined both by the models used,

and the overall friction model of the phyiscs engine. Indeed, we have noted that the

most realistic demos in the literature have, in most cases, used custom extensions to the

rigid body simulator. It shall be shown how the existing force models can be difficult

to resolve with the off-the-shelf rigid body simulators in Chapter 7.
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Chapter 5

Synthesis

Once the modal model has been created and the contact forces extracted from the rigid

body simulator, what remains is to synthesise the sounds. As shown previously, the

impact response of the modal model for an impulse can be described as:

y(t) =
N∑
n=1

anke
−dntsin(2πfnt) (5.1)

Thus, to create the waveform, we must evaluate each modes individual response at each

sample in time to create the waveform. This is referred to as time domain synthesis

and requires careful handling. Large scenes with thousands of modes to be evaluated

can cause a system to become quickly overloaded. It is therefore necessary to make the

synthesis of the wave form as efficient as possible. The rest of this chapter describes a

number of methods that have been developed to make the synthesis more efficient.

5.1 Time Domain Synthesis

As mentioned above, time domain synthesis is the process of evaluating each sample

in time, in order to produce the wave form. However, this can be an exceptionally

expensive process. Thus, this section explores the possible techniques to make time

domain synthesis more efficient.

In order to see how this is possible, it is necessary to explore the form of the

modal model again in more detail. An important point that thus far has largely been

32



overlooked in this text, is that the modal model as originally described in Chapter 2

(reproduced here for clarity):

yt =
N∑
n=1

anke
−dntsin(2πfnt) (5.2)

is actually a simplification of the complex wave form:

yt =
∑
n

ane
iΩnt (5.3)

An alternative expression of the complex wave form is:

yt =
∑
n

ane
iΩ+

n t + ane
iΩ−n t (5.4)

where Ω−n is the conjugate of Ω+
n . The important aspect to note is that the imaginary

part of Ωn describes the angular frequency of the mode (ωn) and the real part describes

the dampening parameter. This allows us to simplify equation 5.4 into the form of

equation 5.2 through the observation that:

sin(θ) =
eiθ − e−iθ

2i
(5.5)

However, evaluating a sine function potentially forty thousand times a second for every

single mode is still far too expensive a process for adequate real time synthesis.

Additional manipulations of the complex waveform can lead to some sizeable perfor-

mance improvements. For example, van den Doel describes the process of transforming

the complex waveform into a second order digital filter requiring only three floating

point multiplies [18]. For the purposes of clarity, a brief summary of van den Doel’s

method follows:

The first step is to discretise equation 5.4, arriving at:

y(m) =
m∑
l=0

∑
n

ane
iΩn

SR
(m−l)

(5.6)

This is a convolution equation. By exploiting its inherent linearity, it is possible to
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rewrite it as the recursion relation:

yn(m) = e
i Ωn

SR yn(m− 1) + an (5.7)

where m represents the sampled point in time, and SR is the sample rate. This relation

represents the audio signal Im(y), and requires only five multiplications to compute.

Secondly it is always stable due to the exponential damping component.

Van den Doel further simplifies the equation by separating it into its real and

imaginary components (u(m) + iv(m)), and writing it in the following form:

u(m) = cru(m− 1)− civ(m− 1) + a

v(m) = ciu(m− 1) + crv(m− 1) + a
(5.8)

where

cr = e−d/SRcos(ω/SR)

ci = e−d/SRcos(ω/SR)
(5.9)

The real component can then be expressed in terms of the imaginary component:

u(m) = v(m+ 1)/ci − crv(m)/ci (5.10)

which when substituted into Equation 5.8 yields:

v(m) = 2Rcos(θ)v(m− 1)−R2(m− 2) +Rsin(θ)a(m− 1) (5.11)

where

R = e−Im(Ω)/SR

θ = Re(Ω)/SR
(5.12)

The important thing to note is that 2Rcos(θ), R2 and Rsin(θ) can all be precom-

puted, allowing us to perform only three multiplications per sample. This is called

a reson filter, (as it operates on its past inputs). This currently represents the peak

efficiency for a time domain synthesis implementation, as currently described by the
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literature. It is not ideal though, as it requires evaluating every single sample for every

single mode in a separate expression. However, it is more than adequate for all but the

most demanding synthesis implementations.

5.2 Frequency Domain Synthesis

As opposed to constructing a digital filter, another method of synthesising collision

sounds would be to use Inverse Fourier Transforms [1]. This is referred to as frequency

domain synthesis, as it involves synthesising the output from the frequency domain

representation of the signal (i.e. from the Fourier coefficients found using a Fourier

transform). The advantages of this is that using a Fast Fourier transform algorithm

(FFT) is much faster method to generate a signal. Where time domain synthesis

requires the computation of each sample individually, using a single inverse Fourier

Transform will create multiple samples for the specified window. This results in a

more efficient operation.

One possibility for implementing this would be to create the Fourier Transform of an

impulse response of a mode as a pre-processing stage, and then weighting these by the

amplitudes of impact at run time, before performing an inverse FFT. However, while

efficient, this would result in unacceptably high memory usage, as it would require

storing multiple Fourier coefficients for each mode. To prevent this, Bonneel et al. [1]

developed an efficient estimator of the Fourier coefficients for each mode.

They give the short time Fourier transform of a mode m for frequency λ at some

interval t as:

s(λ) ≈ 1

2
eαt0c0i

(
e−iωt0Fλ(H)(λ+ ω)− eiωt0Fλ(H)(λ− ω)

)
(5.13)

c0 =
e−αt0 − e−α(t0+∆t)

α∆t

where Fλ(H)(λ + ω) is the Fourier Transform of the window function H (typically a

Hann window, taken at the value (λ+ ω).

The actual derivation of the above expression is quite involved and beyond the scope

of this document. However, it is based on the simple observation that all the energy in

a Fourier transform of a mode is to be found in a select few bins (Fourier Coefficients)
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around the characteristic frequency of that mode. Thus, the above expression need

only be evaluated a few times per mode. Also, Fλ(H)(λ+ω) can be precomputed, and

the complex exponentials are conjugate, meaning only one sine and cosine are needed.

Overall the performance speed-up is approximately 5-8 times that of a recursive filter.

On a modern dual core processor, they found that over 30,000 modes can be synthesised

without artifacts, a significant improvement on previous implementations.

There are, however, two limitations with this approach. The first, is that the Fourier

Transform limits what Bonneel et al. term the ‘attack’ of the sound, i.e. the very short

burst of high frequencies on impact that characterise the timbre of the impact. This

is rectified by the choice of the window function used in synthesis. It is typically

found that the Hann window better encapsulates how a signal degrades over time,

and results in smoother overlapping of frames. A rectangular window, however, better

encapsulates a signal at a particular point in time. But this results in artifacts and

additional resonance when used over the length of a signal. So the solution of Bonneel

et al. was to use both.

The first synthesised frame is divided into four subframes. A rectangular window

is used for the first subframe, and the square root of a Hann is used for the following 2,

followed by a semi Hann to blend the rest of the sample into the next. All subsequent

windows then use the square root of a Hann. The square root of a Hann is used to

combat the second limitation, the audible stepping that can occur from FD synthesis.

This is because each Fourier coefficient treats the signal as a point in time, and does

not account for how the signal changes over the duration of the window. By using

the square root of a Hann window twice, that is, once in the frequency domain to

synthesize the signal, and once in the time domain to blend overlapping samples, these

artifacts are eliminated.

5.3 GPGPU Acceleration

With the upsurge in GPGPU in recent years, there have been a number of attempts at

utilising graphics hardware to accelerate the synthesis. This is allowed for the by the

fact, as the modal model is simply a sum of a bank of damped harmonic oscillators,

we can solve for each modes response individually, and then sum them to produce the

buffer. This allows for the creation of a lightweight thread for each mode that would
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run on the GPU’s shaders.

Zheng et al. first attempted this by implementing the synthesis as a fragment shader

(before the advent of unified shaders and GPGPU APIs) [23]. The modal models were

assembled into 2D textures, with each individual mode’s frequency, dampenings and

gains being stored in the RGB channels. The output was then rendered to a 2D render

target.

The actual synthesis itself requires only two steps. The first pass computes the

individual response for each mode (using van den Doel’s reson filter described above).

The second pass then sums the output for each mode into a single array for an object.

The observed speedup was quite significant, with up to 32,000 modes being calcu-

lated per second on a 256MB GPU. The same implementation on a single core CPU

clocked at 2.8GHZ was limited at about 5,000 modes per second. However, the memory

required to store each mode’s input and output resulted in excessive use of bandwidth,

and restricted the performance.

GPU acceleration remains a promising technique for making modal synthesis more

viable for commercial applications, and recent developments such as CUDA and the

creation of unified shaders have the potential to reduce some of the redundancy and

memory latency observed in this particular application.

5.4 Perceptual based Speed-ups

5.4.1 Mode Compression

Another speedup technique was developed by Raghuvanshi and Lin. [12], which they

referred to as ‘mode compression’. This is derived from a very simple observation about

auditory perception, that humans cannot distinguish between two distinct frequencies

if they fall within a range. Thus, we can traverse the frequencies of a modal model,

and if two frequencies fall between the imperceptible limit, they can be replaced by a

single frequency.

The actual interval at which other frequencies cannot be distinguished is referred to

as the Difference Limens to Change (DLC), and was first described by Sek and Moore

in 1995 [14]. What they found was that frequency discrimination was a function of

frequency. At 2KHz, the DLC is just under 5 Hz, meaning a frequency of 1998Hz is
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indistinguishable from a frequency of 2KHz. But at 8KHz, the interval is over 80Hz.

What this means is that for any modal model, regardless of how many modes are

originally found, the number of modes can be capped at no more than 1000, without

much degradation on the resulting sound quality. Raghuvanshi et al. also note, that

as most objects have a sparse frequency domain representation, there are typically

no more than 200 modes needed to adequately synthesise the impact sounds. This

represents a significant improvement in performance.

The actual implementation varies depending on the type of models used. As Raghu-

vanshi and Lin used the mass-springs method, they utilise the gains matrix (G, the

matrix that represents the eigenvectors of the system). They simply sort through the

gains matrix according to each column’s corresponding frequency. Then for each set of

frequencies within the DLC, they replace the corresponding columns with a single col-

umn equating to the sum of the discarded columns. This allows the model to maintain

its physically correct responses, as the number of rows remains the same.

It can also be easily implemented for models made using recorded data. Like above,

we simply traverse through the frequencies to find pairs of modes that fall within the

imperceptible limit. For each pair, we then simply sum the amplitudes, average the

dampings and replace the two modes with a single mode.

Modal compression is performed entirely as a pre-process, so there is absolutely no

additional computation required at runtime. There is some perceptible loss in quality,

particularly as two close frequencies produce phase variations that can be easily heard.

However, overall the impact sound retains its original characteristics.

5.4.2 Mode Truncation

Mode truncation was also developed by Raghuvanshi and Lin [12]. The idea behind it

is to ‘stop mixing a mode as soon as its contribution falls below a certain threshold, τ ’.

This is based on the very simple observation that at the point of impact, there are a

large number of high frequencies emitted that are characteristic of the object’s timbre.

However, after a very short period of time, their contribution becomes negligible and

they fade away into the background leaving only a set of lower frequencies that charac-

terise how the object resonates. Indeed they observe that after 0.2ms, typically up to

30% of an object’s modes can be excluded. This represents a significant performance
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gain.

This is derived from the synthesis equation (3.34), which Raghuvanshi and Lin have

manipulated to show the precise cut off point of a particular mode:

tc ≤ 1

−Re(ω+)
ln

(
2|c||ω+|

τ

)
(5.14)

Given an impact, and the mode gain c, it is then simply a process of evaluating the

above expression for each mode to ascertain its cutoff point tc. Using the resulting

value for tc we can stop calculating the contribution of a mode when it falls below τ .

The value τ itself is somewhat arbitrary. Raghuvanshi and Lin noted best results when

τ = 2.

5.4.3 Temporal Scheduling

Temporal scheduling was developed by Bonneel et al. [1]. While not a speed-up

technique as such, it is a method designed to limit audio artifacts as a result of compu-

tational peaks. It was observed that most of the computational peaks that occur in the

synthesis application arise immediately after impact. These peaks occur as a result of

resolving the contact forces, and speed-up techniques, such as mode truncation, that

require an evaluation on impact.

Bonneel et al. developed a simple method to combat this that exploits audio-

visual asynchronicity. It is well documented that humans compensate unconsciously

for delays in audio-visual synchronicity through causal inference. This means that if

the associated audio of any audio-visual event is delayed, the discontinuity between

the audio and visuals is not perceived, up to a certain threshold T (typically 200ms).

Thus, if there are a large number of impacts that need processing, it is possible to

delay the processing of certain impacts. For example, if there are 20 impacts proposed

by the Physics engine, and 120 audio updates per second, it is possible to compute one

impact per audio update without adversely affecting the end result to the user.
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5.5 Quality Scaling

‘Quality scaling’, as coined by Raghuvanshi and Lin, is the process of scaling the audio

quality of the scene to fit the computational budget. It is an essential component of

any synthesis application as it is the final form of insurance against audio artifacts

arising from excessive computational load. The requirements are simple; it must be

efficiently implemented in the manner least obvious to the user.

In terms of modal synthesis, the only fully flexible technique is to place a cap on

the total number of modes that can be evaluated at any one time. This was initially

implemented by Raghuvanshi and Lin. [12]. For their implementation, they sorted the

objects in the scene according to their position relative to the user, with the purpose

of prioritising those objects in the foreground. The rationale is simple: objects in the

foreground attract the attention of the user more than those at a distance. From this,

the objects are assigned a computational limit, as defined by some arbitrary linear

scale. They then evaluate the modes of each object according to its priority in line

with the budget. The modes are then evaluated in order of amplitude, highest first,

until the computational budget has been exhausted. If, however, the budget is not fully

exhausted, the remainder is then allocated to the next object in the priority queue.

Quality scaling was then extended by Bonneel et al. [1]. Again, the observation

on which their implementation is based is straightforward. They note that the overall

energy of a sounding object plays an important role in perception. This is based on the

observation that a large object impacting in the background will mask out the sounds

of smaller objects in the foreground. For example, a piano impact at 50 metres will

draw much more attention than a tin can falling at 5 metres.

To implement this, they compute the total energy for a given impact sound (Es)

and allocate the computational budget in line with this value. This is computed from

the sum of each mode’s individual energy (Em), which is given by:

Em =
1

4

ω2

α(α2 + ω2)

(
a2
)

(5.15)

Modes are then sorted according to Em. Thus the n modes evaluated are those with

the highest energy. It is also efficient. The entire relation, with the exception of the

amplitudes, can be precomputed.
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5.6 Summary

Overall, the synthesis represents a different paradigm to that of the deformation and

force models. Where the creation of the models is concerned with realism, the main

priority for the synthesis is for it to be efficient. Currently, frequency domain synthesis

represents the peak efficiency in the literature. However, there is great scope to improve

on existing synthesis strategies, and thus enhance performance. These possibilities are

discussed in Chapters 6 & 7.
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Chapter 6

Design

The major components of a synthesis system have by now been outlined to the reader

in full, and can be seen in Figure 2.2. However, there still remains a sizeable number

of decisions to be made on the methods implemented. Firstly, we must decide on a

suitable method for generating the modal models, which shall be selected from the

methods outlined in Chapter 3. The resolution of the contact forces also requires

some thought, although most of the decisions are determined by the nature of the

components selected. Finally, how the synthesis is performed is crucial to the overall

success and viability of the application. The rest of this chapter outlines the decisions

that were taken, along with a number of contributions that were made to provide a

more robust and efficient synthesis system.

6.1 Plan

The aspirations for this work are to provide a full and efficient synthesis pipeline that

would be both easy to implement, yet sophisticated enough to use in a final end product.

It was intended to develop techniques that would be both an improvement perceptually,

yet a simplification in terms of implementation, to previous work. Thus, two main

features were identified that this work would focus on:

1. Using modal models generated from recorded data to enhance the rendered qual-

ity of that from numerical models.

2. Creation of an efficient parallelisation strategy for synthesis.

42



3. Development of an efficient synthesis pipeline that was both robust and flexible.

The final results would then be demonstrated in a single interactive application (the

details of which are discussed in Chapter 7).

6.2 Generating Modal Models

One of the major objectives for this project was to attempt to find a method of combin-

ing empirical and numerical models. It was felt this was an appropriate exercise, based

on our observations of the demos made of other implementations. What was noticed,

was that while numerical models tend to be accurate in the variation of frequencies

depending on contact locations (their ‘attack’), their overall ‘timbre’ is not quite as

perceptually correct as those generated from empirical models. In short, we felt they

sounded to be more ‘toy like’ in their timbre than those of recordings. We have no real

rationale as to why this might be the case, perhaps the algorithms for recorded data are

slightly more effective for compensating for nonlinearities in the deformations. How-

ever, we speculate that the discretization of the models might also results in a failure

to adequatley capture the resonance of an object.

Our efforts were concentrated on finding a non physically based method that would

achieve similar results. Specifically we wanted something that would be relatively

simple to implement. Given what we already know about a modal model (specifically,

that it is only the amplitudes of the frequencies that vary with impact), it might be

possible to correct an FEM model by forcing the amplitudes of its natural frequencies to

correspond to some minimum contribution as determined by a set of recorded models.

However, in order to evaluate the potential for this, it would first be necessary to

decide upon the methods for creating modal models using both numerical methods and

recorded data. This is discussed in the following sections.

6.2.1 Creating Numerical Models

As described in Chapter 3, there are a wide variety of different methods for creat-

ing numerical models. Initially, it was proposed to use tetrahedral methods, using a

structural engineering application such as ABAQUS. However, it soon became clear

that such methods were fraught with difficulty, both in parsing the geometry for the
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application to perform the analysis, and in the expertise required to perform such an

analysis. FEM require extensive knowledge of vibrational and elastic theory, and great

care is needed when constructing the tetrahedral elements to ensure they fit the as-

sumptions of the analysis being performed. This represents a sizeable obstacle, both in

terms of time and accessibility. And most audio programmers are unlikely to have the

necessary backgrounds and resources to be able to fulfil this easily. As a result, simpler

methods were felt to be more suitable in resolving the goals of this work. Thus, for the

numerical models, Raghuvanshi and Lin’s mass-spring simplification was selected [12].

6.2.2 An Algorithm for Recorded Data

With regards the algorithms for existing data, there was little to choose from. The

only algorithm documented in full was that of van den Doel, as he presented it in his

thesis [19]. As mentioned previously in Chapter 3, this algorithm identifies the peaks

in the frequency spectrum to find the frequencies. What remains is to perform a linear

regression of the intensity of the signal over time, in order to estimate the amplitudes

and dampening parameters for each mode. For readers not familiar with the digital

signal processing, we refer them to Appendix A, which gives an overview of the Fourier

Transform and other concepts used here.

However, it becomes apparent that the algorithm is woefully ineffective at distin-

guishing those peaks created by noise from those that characterise our object’s modal

response. This causes the slightly bizarre phenomenon of the algorithm appearing to

randomly sample the frequency spectra. This is because the algorithm traverses over

each window of the Short Time Fourier Transform (STFT) of the recording, giving a

vote to each frequency that it identifies as a spectral peak. However, it does not take

into account the intensity of the signal, so noise can easily be overestimated in the

results. Thus, it was necessary to devise a method to overcome this.

The solution is actually rather simple. By weighting each vote by the square of

the intensity of the signal at that frequency, it is assured that the meaningful parts of

the signal are easily identifiable from the noise. Thus, the algorithm we elected to use

takes the following form:

1. Perform a Short Time Fourier Transform over the signal, of widow-size N and

number of windows k.
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2. Obtain the intensity of each window in the signal in order to determine the start

of the impact. This is performed by taking the absolute value of the complex

output of the STFT.

3. Initialise an array of bins of size W/2 + 1, which correspond to the output of the

STFT. This will be used to store the weighted votes for each frequency.

4. Loop through the output of each window of the STFT. Create an inner loop to

traverse each frequency and identify the peaks.

5. For every peak found, increase the value of bins(i) by the square of the intensity

of frequency (i) in window k (i in this case refers to the i’th frequency of the

STFT).

6. Select the bins with the largest values. These are the identified modes.

7. Regress the intensity of the signal onto time using a linear least squares algorithm,

to obtain the value of the slope mi and offset β.

The frequencies f , dampings d and amplitudes a are then obtained from the fol-

lowing relations:

fi =
SR× (i+ t)

N
(6.1)

di =
Q× SR×mi

N
(6.2)

ai =
eβ × diN

SR

1− e
diN

SR

(6.3)

This is largely unaltered from van den Doel’s original algorithm, with the exception

of step 5, which was modified to take into account the intensity of the signal. Another

modification was to ignore finding the end of the signal. This was in the initial al-

gorithm to ensure the regression was not being performed over empty portions of the

signal, which would skew the damping parameters. However, in the presence of noise it

can be difficult to obtain the end of the signal, and in general we found it more reliable

to manually edit recordings to exclude empty portions.
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The final alteration we made was to include a tuning parameter t when estimating

fi. There are more robust ways to estimate the frequency [17], however, for the purposes

of this implementation it would suffice to simply tune the found frequencies to the

correct pitch by hand by simply modifying the value of t.

Combining Recorded Models

One of the limitations of the algorithm above, is that it is a single modal model for a

single contact location. It does not give any indication of how the amplitudes should

change depending on the contact location of the impact. Thus, it is necessary to

assemble a single modal model from multiple models of recorded data taken at various

different contact locations, in order to capture how the amplitudes change depending

on the location. Previous implementations have not discussed in detail how to perform

this though, so we shall give a short account of our approach to the issue.

First the k modal models are assembled from their recordings (where k describes the

number of contact locations allowed for, and thus number of recordings made). Taking

the first models frequencies as the base, we then loop over all subsequent models to

indentify the modes that share the same frequency. If a frequency of a subsequent

recording is found that matches a frequency of the base, we enter the amplitudes

into the corresponding columns of the amplitudes matrix, and take the average of the

dampenings. It is a very simple method, but has been found quite effective.

One might argue that by discarding frequencies that are present in the base column,

we are omitting crucial information on the model, however, we argue otherwise. This

is because of the simple observation that frequencies not present across all the contact

models tend be largely a result of noise. Certainly if one looks at a spectogram of two

recordings of the same object struck in different locations, one observes that all the

significant frequencies are present in both of the recordings to a degree, and the crucial

information that defines the contact is in how their intensities change. Thus, no special

handling is needed beyond what we mentioned above.

One clear weakness, however, is in the dampenings. Typically, averaging the damp-

enings tends to result in an overdamped model. An obvious possibility would be to

take the mode of the dampenings for each contact location. However, in practice the

least squares algorithm will never find an exact match. Through experimentation, we
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found the most perceptually correct method was to simply take the mean value, and

if necessary scale it by same arbitrary constant C where C ≤ 1 to correct them.

6.2.3 The Minimum Impulse Response

In order to evaluate this hypothesis, we first need to estimate this minimum contri-

bution of a mode for any possible impact. This actually turned out to be a simple

procedure. Given an assembled modal model from recorded data, we can assume that

the minimum contribution of a mode mi is its lowest observed amplitude in the ith

row of the amplitudes matrix A. Thus we can construct what we term the ‘minimum

impulse response’ of a modal model as Mmin = {fi, di,min(Ai)}.

6.3 Parallelising the Synthesis

Modal synthesis is a highly parallelisable task, and indeed offers great scope for variety

in implementation. For example, additive synthesis can be performed by constructing a

portion of each sinusoid individually before adding them to the audio buffer. Or indeed,

a different approach could be taken, where each sample could be solved individually of

the others by evaluating the mode contributions at that particular sample. And based

on the performance of previous GPGPU implementations, the potential performance

gains from parallelisation are sizeable.

Initially, a potential implementation using CUDA was evaluated [27]. As opposed

to the previous implementation by Zhang et al. [23], it was deemed the recent emer-

gence if unified shaders might yield an additional performance improvement. This was

primarily because unified shaders should allow greater scope in only placing parts of

the synthesis on the graphics pipeline without impacting too severely on the graphics

pipeline. Unified shaders are dynamically allocated the stages of the rendering pipeline

to allow for great flexibility in the rendering pipeline. However, it soon became obvious

from the documentation that the size of the small memory caches allowed per thread

would largely negate any performance increase, and that computing large audio buffers

could easily result in trashing, or at the very least, excessive use of bandwidth between

passes.

Thus, we focused on parallelising the synthesis on the CPU, something previously
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not discussed in the literature. This was deemed an acceptable approach, as multi-

core CPUs have become the norm throughout the industry, and further increases in

processing power come largely from increased parallelisation (for example, Intel re-

cently reintroduced hyper-threading on its Core i7 series, which results in 8 hardware

threads per CPU). And as parallelisation practices have yet to become the norm in the

Interactive Entertainment industry, there would be sufficient resources available to ac-

commodate this in most interactive applications run on multi-core CPU architectures.

6.3.1 Selecting the Granularity

For a CPU implementation, the fine grained parallelism as seen in [23] would be un-

acceptable, due the much higher cost of launching a thread on the CPU as opposed

to CPU. Also, it would introduce a much higher possibility for deadlock, as each in-

dividual thread of a modes response would ultimately be sharing the same resources

(the audio buffer). Thus, a coarse-grained approach is deemed more suitable for an

implementation on the CPU.

As the unit of parallelisation, the sounding object itself was deemed a good option.

Each object’s response is entirely independent of the other objects on screen. This is

because only the contact forces are dependent on the interaction between objects, and

these are determined by the rigid body simulator before the object is sounding. Thus,

a coarse-grained approach can be easily constructed by simply threading each objects

individual response.

Secondly, as mentioned above, when parallelising for the CPU, one must take into

consideration the cost of executing the individual threads. While the GPU is designed

with the purpose of executing numerous lightweight threads, the CPU is not. Thus,

a fine-grained approach would be completely unsuitable for execution on the CPU, as

the overhead of creating additional threads is sizeable (through informal experiments

we found the additional cost incurred to completely outweigh the benefits of the paral-

lelisation). A coarse-grained approach would perform better when threads are kept to

a minimum. Thus we designed a strategy that would allow for flexible thread creation,

so that as many threads could be created to exploit the nature of the current CPU,

without overburdening the application.
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6.3.2 The Strategy

The decision was taken to initiate all threads upon the initialisation of the synthesis

application, based on the observations above. This would ensure that the overhead of

thread creation would not impact on the cost of the real-time synthesis.

The unit of granularity would be the modal object, with the maximum number

of possible threads being the total number of sounding objects on screen. This was

selected as it allows for a high level of parallelisation and flexibility. Each modal objects

response is entirely independent of the other objects on screen. This might seem at

odds with perception, for example the sound of a ceramic cup falling on concrete is very

different to it falling on wood. However, the response of the cup itself is only influenced

by the collision forces between the two objects, which needs to be solved before the

synthesis takes place, so the synthesis of both the cup and the wood can be performed

entirely independently. This is the fundamental observation that the parallelisation is

built upon.

Thus, the strategy is simple. An arbitrary number of modal objects are grouped

together. A worker thread with its own continuous update loop is initiated on ini-

tialisation of the Sound Manager, and is assigned the group of objects to iterate over.

Thus, the functionality of the thread would be to simply listen for flagged updates, and

produce the buffer portions of its assigned objects that are sounding. As the collision

forces are computed by the PhysX, the only additional requirements are to give the

physics engine access to the modal objects so that a collision can be flagged. The

worker thread will then simply see the new collision flag, and begin synthesising the

audio upon its next update. Thus, in order to keep the rigid body simulator and the

audio engine consistent, it is simply a case of using a number of Boolean flags in the

objects themselves.

Dividing the workload among threads

While the above design showed a large capacity for potential performance gains, it

is very much a näıve process. It assumes all threads have equal access to the same

resources, and that all threads have an equal distribution of active objects. Thus, it

is necessary to arrive at a more sophisticated budget allocation method in order to

efficiently balance the workload among threads.
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We decided on a method to do so, using Bonneel et al’s energy estimator for each

mode. The idea is simple, allocate objects to threads according to the resources avail-

able to it. To do so, we simply define an active working list for each thread and do the

following:

1. Compute the maximum modes for each thread.

2. Compute the current percentage usage of a thread.

3. Allocate new impacts to the working list of the thread with the least usage.

Sounding objects then remain on the working list of a thread until they are no longer

sounding. If a new impact occurs, we avoid reallocating an object and instead simply

flag a new collision in the object itself, so the thread continues updating it as normal.

In theory there is still a possibility of a single thread becoming overburdened by contin-

ually impacting objects. However, in practice, this no longer becomes a major concern,

as this results in a relatively equal distribution of the objects amongst threads.

6.4 Quality Scaling

As discussed in the previous chapter, quality scaling is the process of degrading the

overall quality of the audio by finding methods for excluding certain modes from com-

putation. It is a necessary component for any synthesis application, as it ensure its ro-

bustness and extends the system’s capacity to handle large amounts of impact sounds.

The rest of this section describes the main design decisions for taken to implement

quality scaling in this work.

6.4.1 Budget Allocation

In order to efficiently implement some of the perceptual speed-ups available, it is nec-

essary to have an efficient and robust estimator of the budget allowed for each update.

We devised a simple method to do this, that has no impact on the runtime burden of

the synthesis. It involves simply performing a quick initial ‘stress test’ of the Sound

Manager’s capacity in the given environment, and takes no longer than a second to

perform.
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First, we create a new thread, and add objects to the total of 5000 modes to the

scene. We then compute the maximum length of time allowed for each update (Tmax)

from the following:

Tmax =
SamplesPerUpdate

SampleRate
(6.4)

Using a timer accurate to the nearest nanosecond, we then record the time it takes to

record an impact and synthesise five subsequent ‘frames’ of audio, and take its average.

We then express this as a fraction of Tmax and compute the maximum amount of modes

allowed for by dividing the current amount of modes in the scene by the fraction of

Tmax.

Fallowed =
Taverage
Tmax

(6.5)

Nmax =
Ncurr

Fallowed
× C; (6.6)

It should be noted, that this is something of an optimistic estimator, and that

larger amounts of modes may incur more latency than experienced in the Stress Test.

However, in practice we found that by simply setting C to 0.9 in the above, we can be

sure of the estimators robustness.

6.4.2 Energy Estimator

Using the above budget allocation, it would be possible to implement the energy es-

timator developed by Bonneel et al. (discussed in Chapter 5) in order to efficiently

prioritise the modes for synthesis. Bonneel et al’s method was deemed the most suit-

able as the only alternative in the literature is to use the square of the amplitudes

[12]. The square of the amplitudes would be effective for numerically created models,

however there is no gain in using it for models created from recorded data as they are

already sorted in order of amplitude.

Two potential uses were determined for the energy estimator. The first would be

in calculating the modal budget for each object. By calculating the total energy for

a particular object it would then be possible to express this as a fraction of the total

energy in the scene. This fraction can then be used to determine the maximum number

of modes mixed for a modal object (nmax) from the overall maximum as determined
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by the stress test:

Pallowed =
Eobject
Escene

(6.7)

nmax = Nmax × Pallowed (6.8)

The second use would be in determining what modes in an object to prioritise, as

in Bonneel et al. Upon a new impact, they simply estimate the energy for all modes

in the object, and then sort the modes according to their energy. Thus, the next time

the synthesis is performed the nmax modes that are calculated are those deemed to

contribute the most according to their energy.

6.4.3 Mode Truncation

The final component we elected to implement was modal truncation, as developed

by Raghuvanshi and Lin (discussed in Chapter 5). Mode truncation is the process of

identifying when the total contribution of a mode falls below a certain level, and thus no

longer mixing it in the main synthesis algorithm. As this implementation would focus

primarily on the use of recorded models, it would be perfectly acceptable to implement

this as a pre-process, leaving only the process of performing a single comparison for

each mode at run time.

6.5 A Full Synthesis Pipeline

The final design for the synthesis pipeline can be viewed in Figure 6.1. To summarise,

it is a simple two class design. Sound Manager is responsible for managing the buffers,

allocating the computational budget, creating the threads and ensuring the Modal

Objects are sounding in a state consistent with the visuals. The Modal Objects main

functionality is to compute the buffer portions required for the playback, however, it

also includes the functionality for computing the energy of a mode and its cut-off point.

The design is simple, scalable and robust. The precise details of implementation are

given in Chapter 7.
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Figure 6.1: A class diagram illustrating the synthesis components
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Chapter 7

Implementation

7.1 Component Choice

In line with the aspirations, we selected components that were widely available and

portable.

7.1.1 Creation of the Models

The choice of algorithm for the creation of the models was the most difficult decision.

As mentioned previously, Finite Element Methods are the most physically accurate,

however, they are largely the most involving method for creating the models available.

While conceptually simple, the large size of the systems of PDEs generated makes an

implementation from scratch a daunting prospect. In the previous work it is common

to see the modal analysis performed by using commercial applications such as Abaqus.

We elected to create the models using MATLAB [32]. This was something of a

compromise, but nevertheless it is a product that is widely available in most academic

institutions. And due to the simple nature of its programming syntax, code imple-

mented in matlab is highly portable to other applications. It also has a number of

routines such as LAPACK [31] and FFT that would simplify the process of creating

models significantly.

54



7.1.2 Interactive Application

For the interactive application, there are a much wider variety of choices available for

us to implement. The aspiration here was to use components that were freely available

and well documented, that would reflect methods common throughout the industry.

Rendering Engine For the rendering engine Ogre3D was selected [34]. This choice

was somewhat arbitrary, based on the large volume of documentation available

for it and its frequent use in academia [1].

Physics Engine The Physics simulator to use was again somewhat arbitrary. It was

decided to avoid using a simulator with custom extensions to model contact,

as such modifications may not be feasible to implement in a highly demanding

commercial application. Instead, it was intended to explore the complexity of

linking physically based audio with existing simulators common in industry.

In the end PhysX was selected [33]. This came down to a number of factors; firstly,

its GPGPU acceleration would free up more clock cycles for synthesis. Secondly,

the documentation and level of support are quite good as it is a commercial

application that has been used extensively in the industry. And lastly, that it

has been shown to perform well for modal synthesis previously [1] [3].

Audio Playback With regards the audio playback, the choice was somewhat limited.

We needed an API that would allow us not just playback audio, but directly ma-

nipulate and give us direct access to the audio buffers. In recent years audio APIs

have focused much more on playback and positional audio (such as XAudio2),

and as a result their scope has been limited when it comes to synthesis. We se-

lected to use the DirectSound API [28], as it has been in existence for a number

of years now, and is more comprehensive in its abilities than some of its newer

successors.

As a side note, there were a number of SDKs available for synthesis, namely JASS

[30], created by Van den Doel, and the Synthesis Toolkit (STK) [36], created by

Perry Cook. However both are largely unsuitable for interactive applications,

particularly JASS as it is written in Java. It was decided to avoid these as a

result.
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7.2 The Visuals

This section describes the process of integrating the rendering engine and the physics

engine in order to create the basic framework for the interactive application. The

following is simply a brief description of how the two components were integrated.

7.2.1 Ogre3D

Ogre3D is a comprehensive rendering engine. The SDK itself is encapsulated in the

Root object. To render an object with Ogre, there are three main objects that need

to be invoked. The first is the ‘scene manager’, which keeps track of all the objects

on screen. Any object added to the scene manager takes the form of a ‘scene node’,

with this node consisting of one or more ‘entities’, which define the geometry and other

materials in the object.

A basic Ogre implementation was created using the tutorials and examples in the

SDK. We used the ExampleApplication header file which initialises the SDK, and

creates the SDK and the frame listener. The basic flow of the application is as follows:

1. Create the Root

2. Define the Resources

3. Choose the Render System

4. Create the Render Window

5. Initialise the Resources

6. Create the Scene

7. Create the Frame Listener

8. Begin the Render Loop

7.2.2 PhysX

The hierarchy of PhysX is surprisingly easy to work with, and a scene is built from a

few small objects. The SDK itself is encapsulated in the class NxPhysicsSDK. Once
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initialised, this then returns a class NxScene which describes the physics environment

and their interactions. A separate class, NxActor is used to initialise and describe each

rigid body added to the scene.

The integration with Ogre3D is achieved in a few short steps, and was based heavily

on an online tutorial [35]. First we initialise the PhysX SDK when Ogre creates the

scene, and add our actors. Then we simply call the update in a frame listener declared

using Ogre. The only additional handling required was to define a structure that

encapsulates the PhysX actor and the Ogre node, to provide a one to one relationship

when updating the node’s world position based on that of the physics simulation.

7.2.3 Content Management

One other concern would be the coherent handling of geometry. For the application,

a simple function was found that would allow us to use the Ogre mesh binary1 and

use the NxCooking Facility to create a corresponding triangular mesh for PhysX [35].

This should result in adequate coherency between both Ogre and PhysX.

As for the creation of the modal models, OBJ files were selected. This was due to

their ease of parsing regardless of application or platform. The only concern is that the

mesh binary and the OBJ file be coherent, however this is made less of an issue due

to the abundance of different exporters available for most modelling applications. Co-

herency between the two would be a simple matter of choosing the correct exporter for

geometry. For this implementation, we used a simple application called WinMeshView

[37] to convert OBJ files into mesh binaries.

7.3 Pre-processing

As mentioned above, the creation of the modal models was implemented in a pre-

processing stage using MATLAB scripts. Both van den Doel’s algorithm for recorded

data, and Raghuvanshi’s mass spring methods were implemented in separate matlab

functions.

1a .mesh file is a binary representation of a triangular mesh, and can be directly rendered in Ogre
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Models from Recorded Data

In order to capture the recordings of impacts, we simply used a microphone from a

Creative gaming headset. There was no elaborate method into creating the impulse

responses, models were simply struck using a hard blunt instrument that did not res-

onate, typically the end of a plastic pen. The impacts were made as short as possible,

and although it was attempted to be consistent with the force of impact, there were

no specific measures taken to ensure this was the case. Audacity was used in order to

record and edit the impulse responses [25]. Typically, one long recording was made of

a series of impacts, and these were then edited and exported into a number of small

wav files for analysis in MATLAB.

The algorithm was implemented with the extensions described in Chapter 6. Given

a set of a recordings, we pass each of them through van den Doel’s binning algorithm

to get the set of frequencies, dampings and amplitudes that describe the impact. Once

these have been obtained, they are assembled into a single modal model of the frequen-

cies common across the recordings.

Numerical Models

For the numerical models, an implementation of Raghuvanshi’s mass-spring method

was created, again in MATLAB. The precise procedure is as follows:

1. Geometry is obtained by parsing OBJ files into MATLAB and stored as a struc-

ture.

2. From the vertex and edge descriptions, the corresponding mass-spring damping

system as described in Raghuvanshi’s algorithm.

3. The System matrices are then assembled from the mass spring system.

4. The solution to the system is found by diagonalising the elastic forces matrix, K,

to obtain the eigenvectors and the eigenvalues.

5. The modal parameters are then obtained from the complex frequency of each

mode which is found using the quadratic formula .
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In order to speed up the development process, a number of functions were used from

MATLAB Central2. Specifically, user-created files were used for parsing the OBJ files3,

and a second user-created matlab script was extended in order to assemble the system’s

matrices4.

Formatting the Output

The greatest difficulty that arose during the development, was actually in attempt to

find a simple way of formatting the output to be used in the interactive application.

Initially, we created a specific filetype, .mm, to describe the different models, which

we had hoped to parse from within the synthesis application. The format itself was

simply a text file that contained a sequence of numbers to describe the frequencies,

dampings and amplitudes, with an integer at the start of the file to indicate the total

number of modes in the model. However, there were a number of downsides to this. It

was found reading in the files was an exceptionally slow task that significantly added

to the loading time. And secondly, the dynamic allocation of memory when the files

were being read was extremely inefficient and resulted in a huge performance hit.

In the end, the simple process of directly generating C++ code in MATLAB was the

most efficient. It was slightly cumbersome, as it meant having to manually add in the

code to the project, however, in terms of performance it was by far the most effective

solution, as it significantly reduced the overheads caused by the dynamic allocation of

memory.

7.4 Real-Time Synthesis

The real-time synthesis system was developed largely by extending work done for a

previous project [3]. This involved the two component design described in the previous

chapter: A general ‘Sound Manager’ class responsible for the creation and mainte-

nance of the audio buffers, including playback, and a separate ‘Modal Object’ class

2MATLAB Central is an online repository for sharing Matlab resources and community created
scripts. It can be seen at: http://www.mathworks.com/matlabcentral/fileexchange/

3The specific function is ‘readObj’, created by Bernard Abayowa. It can be obtained at
http://www.mathworks.com/matlabcentral/fileexchange/18957

4The function ‘MDK’ was obtained here, developed by Brent Lewis. It can be found at:
http://www.mathworks.com/matlabcentral/fileexchange/14854
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which would encapsulate all the data for a single sounding object, as well as including

functionality to compute the audio samples. This design was ultimately similar to the

previous project implemented [3], however, it was extensively rewritten. Indeed, the

only aspect of the Synthesis system that remained entirely unchanged was the recursive

reson-filter used to compute the audio samples, which was directly re-used from the

original project, although like previously, it created using the DirectSound API. The

rest of this section describes the development in detail:

7.4.1 DirectSound

The DirectSound API is an audio playback library that is part of Microsoft’s DirectX

framework [28]. It was designed primarily with WAV playback as its central theme. It

is no longer actively maintained by Microsoft, as since DirectX 10, XAudio has become

the main audio API of the DirectX system. However, XAudio is designed exclusively

for WAV playback and its functionality for directly manipulating WAV data is limited,

which is why the DirectSound API is still in common use, and indeed why it was

selected for this project.

The central functionality of the DirectSound is accessed through its audio buffer

features [8]. In DirectSound, there are two main types of audio buffer; the primary

buffer and the secondary buffer. The primary buffer encapsulates the data that is

directly played back through the hardware. The secondary buffer is then the object

that the WAV data is directly written to. DirectSound will then mix all the active

secondary buffers then directly to the primary buffer, which is then sent to the audio

device.

The basic flow of a DirectSound implementation is as follows: An object, called

‘device’ that links to the audio hardware is initialised. Then a handler to the Primary

buffer is created, although typically never used. Finally, any number of secondary

buffers are created that can be loaded with data, and then simply triggered to play a

sound effect.

For this application, DirectSound was implemented largely as described above. The

device and primary buffer are both initialised upon creation of the sound manager ob-

ject. Then for every modal object added to the scene, sound manager creates an

additional secondary buffer that is stored in the modal object itself. Once an impact is
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detected, it is then a simple case of loading the secondary buffer with the audio output

of the modal object, and then calling play on the secondary buffer, which results in the

audio being mixed directly into the primary buffer and outputted. DirectSound pro-

vides plenty of additional functionality beyond this, in terms of special effects and 3D

spatialisation of audio. However, for this implementation we avoided adding additional

complexity to the audio engine to save both time and resources.

7.4.2 Synthesis Algorithm

The selection of the synthesis algorithm was made less by choice than necessity. Initially

it was hoped to implement Frequency Domain synthesis, using the STFT estimator of

a mode created by Bonneel et al [1] and described in Chapter 5. The initial aspirations

were to implement the estimator, and then use the optimised Fast Fourier Transform

library FFTW [29] to perform the inverse Fast Fourier Transform. However, there were

a number of setbacks that prevented an implementation.

The first was that experiments with the estimator in MATLAB showed it to be

highly unreliable. We were unable to ascertain whether this was due to an error in the

implementation or due to a missing assumption as regards the nature of the Fourier

Transforms performed. Either way, our results were entirely unstable. Occasionally

the estimator would perform perfectly. Unfortunately more often than not it was so

inaccurate as to hardly produce any audible output.

The second stumbling block that occurred was the failure to integrate the FFTW

library into the interactive application. Again, it is not entirely clear as to why this

would occur. However, we speculate it may be due to the fact the library was de-

veloped with UNIX systems in mind, and that perhaps some quirk of the Windows

compiler or linker interferes with performance. Another possibility might be due to an

incompatibility with Windows Vista. Regardless, given these obstacles, and a rapidly

diminishing schedule, frequency domain synthesis was shelved, and we used a form of

time domain synthesis that we had developed for a previous project [3].

The exact algorithm used was one developed by van den Doel [18] and described

in Chapter 5. It takes the form of a recursive digital filter, where the output is some

combination of the last two previous outputs, the exact combination being determined

by constants derived from the frequency and dampenings of a mode. It is, to our
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knowledge, the most efficient form of time domain synthesis, needing only three mul-

tiplications to perform. Given the limited success with frequency domain synthesis, it

seemed appropriate to reuse it for this application.

The algorithm itself is implemented in the Modal Object class. When an impact

is triggered, the constants are initialised for each mode and stored in arrays. The

Sound manager then simply requests subsequent buffer portions for playback, which

are generated using the recursive filter. The last set of outputs are then continually

stored in the object and reused until such point as the object is no longer sounding.

7.4.3 Parallelisation

The parallelisation of the synthesis was implemented using the Boost Threads Library

[26]. The library largely acts as a wrapper for threads in C++, presenting a program-

ming paradigm more similar to those familiar with Java or C#. Threads are launched

by simply calling the ‘boost::thread’ function, and threads can be bound to specific

functions using ‘boost::bind’.

For this implementation, the parallelisation was performed in line with the design

provided in Chapter 6. An additional update function was implemented in the Sound

Manager object. This function would continually update the audio of a set of assigned

modal objects, looping through each modal object assigned to it and creating the buffer

portions as required. Once the Sound Manager was initialised, and all the modal objects

added to it, the update function is bound to a number of boost threads, each with its

own subset of the modal objects to iterate over.

The implementation of this was entirely straightforward due to the atomic nature of

the modal object. As each modal object maintained its own data set to operate on along

with its own buffer, there was absolutely no possibility of deadlock, or inconsistencies

arising.

The only special handling required to ensure consistency was the processing of

impacts. This was handled by the creation of a separate update thread with the sole

purpose of processing impact data generated by the physics engine, which when it had

processed new impacts, would simply activate a flag in the modal object to indicate

a new impact had occurred and that audio needed to be synthesised. Overall, this

led to an exceptionally lightweight, flexible and robust system, that could fulfil the
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requirements of the most demanding synthesis applications.

Dynamic Allocation of Workload

It should be noted, however, that the strategy to balance the workload among the

worker threads was disabled in the final application. Overall, the budget creation and

allocation is successful. However, occasionally floats so small that they are treated as

zero are computed, particularly when calculating the energy of a mode. This has the

undesirable effect of interfering with all the subsequent calculations and thus completely

breaks down the budget allocation, and at times, completely eliminating the synthesis.

Thus, for the final implementation, we used the stress test to compute the maximum

number of modes (described below). Then, the computational budget for an individual

object is found from its total energy, and these allocated for every object in the scene.

Thus to ensure effective parallelisation, we then simply distribute the workload evenly

among threads regardless of whether the objects are sounding or not. In practice it

introduces additional expense as the threads now iterate over objects not sounding.

However, this additional computation does not severely impact on the overall rendered

audio.

7.4.4 Speed-ups

The speed-ups selected for implementation (mode truncation, energy estimation and

quality scaling) were discussed in Chapter 6. Implementation was uneventful, and

performed exactly in line with how they were described in Chapter 5. As these were

not the centre for the work, they are evaluated only briefly here.

Mode Truncation: This was implemented as described by Raghuvanshi. It is per-

formed as a preprocess on initialization of the application. Overall it was found

to have minimal impact on the overall cost of synthesis. In order for it to signif-

icantly reduce the computation it results in audible artifacts.

Energy Estimation: Again implemented as described by Bonneel et al. As we were

using models from recorded data in the interactive application, it was imple-

mented as a pre-process. It is performed immediately after the initialisation of
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the modal parameters. Overall it was found to be quite robust, although occa-

sionally the calculations do break down as frequently the numbers computed are

miniscule and treated as zero. It requires quite careful handling to implement.

Budget Allocation: As described in Chapter 6, budget allocation and quality scaling

were performed using the energy estimator and the total time to compute a buffer

portion. The stress test created to identify this was a simple implementation. A

new thread is launched that simulates the impact and synthesis of 5000 modes

for 5 frames of audio. The time taken is then averaged and used to compute

the maximum number of modes. The modal budget is then allocated among

the objects proportional to their total energy. Overall, it was found to be very

effective and allowed a significant improvement to the total number of objects

the synthesis pipeline could handle.

7.5 Resolution of Contact Forces

Most of the functionality for resolving the contact forces was provided by PhysX. This

is achieved by extending the ‘NxUserContactReport’ class in the SDK.

NxContactNotify is a callback function that is called every time a collision is de-

tected in the physics engine. The implementation is straightforward. First, when

initialising the physics scene and adding the actors to it, we specified a number of

flags that indicate we want notification of the collisions between the flagged objects.

Thus, any time a collision is flagged, NxUserContactReport returns the pair of actors

in contact and an event flag that indicates the type of contact. The necessary contact

information is then provided by iterating over the pair using the ‘NxContactStreamIt-

erator’ object in the SDK. This object then iterates over the manifolds of the actors

in contact to find the locations of the contact, along with the force information. This

information is then simply added to the object in question, and is used to call the audio

synthesis in the next main update of the game loop.

What remains is to convert this dynamic force into an audio force; that is, process

the force into a form suitable for audio synthesis. There are two steps to this. First,

we must identify the vertex that has been struck in the collision. Secondly, we need to

model the contact force as an impulse (or set of impulses).
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Ultimately, we failed at the first step. It was planned to implement a sphere tree in

order to resolve the contact location determined by PhysX with those accommodated

for in the models. However, this stage was never reached. This was due to a number of

factors. First, the modal models created were not particularly successful at capturing

an object’s variation (this is discussed in more detail in the next chapter). We simply

did not have the hardware to make a modal model of recorded data at a high enough

resolution, and the output of the numerical models was less than satisfactory. This

meant we unable to validate whether an implemented technique had worked success-

fully or not. Secondly, the contact notification by PhysX did not appear particularly

robust, and quite a few collisions went unflagged. We had initially shelved the idea of

implementing a sphere tree until a successful workaround had been developed for the

above. However, unfortunately time was exhausted before that stage was reached.

We did, however, successfully implement the second steps, modelling the impulses

using the cosine function developed by van den Doel [18] and described in Chapter

4. The alternative was to model the impulses as a Dirac impulse of infinitely short

time, as described by Raghuvanshi. However, this was found to be not as perceptually

correct as van den Doel’s model.

7.6 The Final Product

The final application is illustrated in Figure 7.1. This illustrates the breakdown of the

main components into their major constituent classes.

The main game loop is maintained in the rendering engine. The rendering engine

consists of two main classes: the main ‘scene manager’ into which all the geometry

onscreen is added for rendering in the form of a ‘scene node’. The second class is the

‘frame listener’, which unsurprisingly listens for a frame update of the main render

loop and has a callback function that is invoked every time this occurs. This frame

listener is arguably the most important component in the application, as it is the class

that ensures the rendering, the physics and the audio are all in a consistent state.

The physics engine, again, has two main classes of note. The physics scene which

describes all the actors that have been added and their current state in the physics

simulation. And the ‘Contact Report‘ class, which performs the processing of the

collisions through invoking the ContactStreamIterator described above.
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Figure 7.1: A high level class diagram of the interactive application

And finally, the Synthesis Pipeline, which consists of the sound manager, and any

number of modal objects.

The overall flow of the application is as follows:

1. Initialise the Ogre SDK and load the content

2. Initialise the scene manager and the frame listener

3. From within the frame listener, initialize the physics engine and the audio man-

ager

4. Add all geometry to the three components

5. Start the audio worker threads

6. Start the physics scene

7. Begin rendering

Then, every time the frame listener is called:

1. Update the positions of the scene nodes with the current positions determined

by the physics scene
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2. Flag and trigger the audio for any collisions that are detected

3. Advance the physics scene forward in time

7.7 Optimisation

In terms of optimisation, there was one specific task performed. This was to generate

C++ code directly from the matlab scripts, as described previously. Overall, the

application is not heavily optimised. Fixed sized arrays were used wherever possible,

and did seem to render a slight performance improvement, however, for the most part,

dynamically allocated arrays are necessary in most parts of the applications. One

possible performance improvement might to use statically declared global arrays for the

modal parameters, and use pointers within the modal objects to perform the synthesis.

However most would shun thus as appalling design so it was not implemented here

(although it should be noted, that a slight performance improvement was seen when

using global variables during the development).
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Chapter 8

Evaluation

8.1 Creating Models

Models from Recorded Data

Success was had creating a variety of different models from recorded data. However,

as was mentioned previously, the success of the recorded algorithms depends greatly

on the type of material being modelled. This is illustrated in Figure 8.1.

Figure 8.1(a) shows the frequency spectrum of a recorded impact of a cardboard box.

Figure 8.1(b) shows the impact response of the synthesised model. While in general

the algorithm is very good at obtaining the dominant frequencies in the recording, it

is clear that the resulting modal model is lacking, as beyond the 50th bin it fails to

capture any of the frequencies in the resulting spectogram. The synthesized model is

still very similar to the original model, and the distinguishing characteristics of the

sound are preserved. However, when played side by side, there are notable differences

in both pitch and timbre between the two models.

The same results were seen when modelling a ceramic cup. Figure 8.1(c) shows the

recording, and Figure 8.1(d) shows the synthesised response. Overall the audio match

is quite good, however again there is some discrepancy between the recording and the

synthesis, primarily in pitch, although occasionally additional artifacts in phase are

heard. While again the algorithm is only capable of picking up the dominant modes, it

should be noted that the more equally distributed frequency spectrum of the ceramic

cup results in a slightly better model.
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(a) The frequency spectrum of a recording of a
cardboard box’s impulse response

(b) The synthesised impulse response of a card-
board box

(c) The frequency spectrum of a recording of a
ceramic cup’s impulse response

(d) The synthesised impulse response of a ce-
ramic cup

Figure 8.1: Spectograms illustrating the results of the empirical model
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Additional difficulties were had, however, when combining the recorded models

into a single modal model. This was primarily due to inconsistencies in the identified

frequencies. Some models would be slightly above pitch, and others would be slightly

below. There are more robust methods for identifying frequencies available than the

algorithm implemented here, however, the problems are more due to the ‘binning’

process to identify the modes. If a mode’s energy at a particular contact location is

not strong enough to create an identifiable peak in the spectrum, it is generally lost

in the noise of the signal which results in inconsistencies across the recorded models.

This can be rectified somewhat by hand tuning each modal model, but by and large,

there can be a significant loss in quality for certain contact locations. This suggests

that algorithms for recorded data alone are simply not a viable solution in the long

term.

Numerical Models

The numerical models proved much more difficult, however, to extract meaningful data

from than the recorded methods. Some success was achieved through the implemen-

tation of Raghuvanshi’s mass-spring method. We successfully modelled an aluminium

gourd, the frequency response of which can be viewed in Figures 8.2(a) and 8.2(c). It

produces acceptable quality audio, along the lines of a metallic object. However, while

its frequency response did respond correctly to excitation on exploring the frequency

spectrum, the changes were too subtle to be heard in the resulting sounds without

greatly exaggerating the input force data.

Combining Recorded Data with Numerical Models

Unfortunately, limited success was attained when generating other models through

these means. This is primarily because the correct values for the fluid and damping

parameters were not well documented in the literature. This is a major obstacle that

needs to be overcome in order to create an effective synthesis pipeline for a large scale

application, as currently, it is difficult to model objects with enough variety to create

a truly immersive experience.

Greater success was had when combining the minimum impulse response with the

numerical model. The results of this can be viewed in Figure 8.2. The minimimum
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(a) The numerical model alone for an impact on
the 2nd vertex

(b) The numerical model and minimum im-
pulse response combined for an impact on the
2nd vertex

(c) The numerical model alone for an impact
on the 144th vertex

(d) The numerical model and minimum im-
pulse response combined for an impact on the
144th vertex

Figure 8.2: Spectograms show the result of combining numerical and empirical models
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response captured was that of a ceramic object, and this response was overlaid on top

of the response of the metallic gourd discussed above. Overall, the impact on the audio

was quite successful. The minimum impulse response successfully added a ceramic feel

to the resulting rendered audio, however, not to the extent of drowning out the original

impact response and masking its subtle variations on impact. Overall, we feel this has

promise in overcoming the limitations of the numerical models.

8.2 Performance

Performance was tested on a Core i7 920 quad core CPU clocked at 2.66GHz with an

Nvidia GTX285 GPU.

8.2.1 Test Scene

In order to test the performance of the interactive application, we created a number

of simple test scenes. We modelled a number of boxes using the recording technique

described previously. Each box contains 50 modes, and was modelled as either ceramic,

or cardboard. We then placed an arbitrary number of these objects on screen to model

their collision with a simple plane. The plane itself is not sounding in the test scenes.

The rendering and audio creation were implemented in separate threads, and the rigid

body simulation was accelerated on the GPU. The test scene itself can be seen in Figure

8.3.

8.2.2 Synthesis

The overall performance is listed in Table 8.1 for a variety of different test scenes. Over-

all the application was capable of handling approximately ten thousand active modes

with ease. Above this, notable artifacts are introduced to the audio quality, although

the application itself does not break down entirely until we added over 400 hundred

objects, which also represented the limits of the rigid body simulator. This represents

a somewhat disappointing figure, although there are no adequate comparisons to be

made as the literature generally does not reveal the total number of active modes at

any one point in time. However, while the numbers were disappointing, the synthe-
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Figure 8.3: Screenshot of the developed application

Number of Objects Total Modes FPS Perceived Audio Quality
100 5000 190 Good
196 9800 145 Some asynchronicity
225 11250 120 Some asynchronicity
298 14450 100 Noteable artifacting
400 20000 60 Severe Distortion

Table 8.1: A table illustrating the performance of the application under different con-
figurations

Number of Threads: 1 2 3 4 5 6
T : 2.14s 0.86s 0.464s 0.2997s 0.2478s 0.086s

Fallowed : 42.81 17.21 9.2822 5.993 4.9566 1.7393

Table 8.2: A table illustrating the performance of the application utilising different
levels of parallelisation
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sis system has demonstrated itself capable of handling all but the most demanding of

interactive environments.

Effectiveness of the Parallelisation

In order to evaluate the parallelisation, and additional test was performed. As opposed

to the previous perceptual test, the focus of this would be the maximum time taken

to perform a single update. The strategy was simple, the total time taken T would

be expressed as a fraction of the maximum allowed time for a single update Fallowed =

T/Tmax. Thus, if this figure became greater than one, the application was no longer

synthesising sounds in real time.

A single test was performed, where 1225 sounding objects were placed on screen.

As budget allocation was disabled, this would mean a total of 61,250 modes that had to

be rendered simultaneously. The cost being evaluated was that of computing a buffer

portion of 2205 samples, which was to be rendered at 44100Hz. Thus the maximum

time allowed for any update was no more than 50ms, in order for the audio to be

rendered in real-time. The results are given in Table 8.2.

The results are as one would expect. Overall the synthesis scales especially well

using our coarse-grained approach. The comparison of the single thread test as opposed

to the six threaded shows a massive improvement in performance, with an overall

capacity greater than twenty times that of the single threaded application.

However, there are some questions raised by these findings. In particular, why is

that the numbers show the multi-threaded application with a modal capacity greater

than thirty thousand modes, whereas the informal perceptual tests showed the appli-

cation breaking down at just over ten thousand? It is not entirely clear, however, it

should be noted that there was no handling introduced should the computed audio

buffer be of a higher bit rate than that allowed for by the direct sound implementation

(it’s normally not an issue for WAV playback and not documented). Thus, it could

easily be the case that at approximately ten thousand modes our output becomes too

loud for the audio device to adequately render.
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8.3 Contact Sounds

The quality of the resulting variations in contact sounds were mixed. Successful contact

modelling was somewhat hampered by PhysX’s contact notification structures. By

and large, they are successful. However, they do not appear particularly robust, and

occasionally impacts go unflagged. Handling the resulting forces for audio was also not

particular successful, largely because PhysX’s contact forces seem greatly exaggerated,

it frequently outputs values higher than 1010. Scaling these forces by an arbitrary

value was an obvious necessity, and seemed successful. However, very large forces

are occasionally still flagged, which can frequently cause distortions in the output of

the reson filter. A simple resolution would be to place a cap on the maximum value.

However, this itself is undesirable as it results in the impacts realism being reduced.

Using a higher bit rate might rectify this, however, this will result in higher memory

and computational times.

Another limitation, was the failure to introduce models that adequately captured

an object’s sounding variation in response to different contact locations. This partly

due to the weaknesses discussed above, and also partly due to the difficulty in resolving

the contact locations as flagged by the rigid body simulator with the modal models.

This is again a process not particularly well documented in the literature. It was hoped

to implement a sphere tree, however, this would still represent a significant additional

computational load to the overall application.

8.4 Limitations and Weaknesses

Aside from the limitations discussed above, the primary weakness of the system was

its robustness. In theory, having dynamic budget allocation of the synthesis workload

should prevent artifacts and distortions, even if the resulting audio suffers a dramatic

loss in quality. However, in practice this is a very difficult task to achieve. This is

primarily due to additional computation of the impact processing and resolution of

the force data. Through test results, we found computing the initial buffer portion of

an object’s impact was on average twice as expensive as producing all the subsequent

audio portions (60ms to create the first audio frame of 5000 modes as opposed to

30-35ms for all subsequent frames in our above test scene). Thus, large numbers of
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impacts at any one point in time will break down all but the most sophisticated of

synthesis solutions. Efficient strategies for resolving the impact forces are something,

we believe, requires more extensive research if commercial applications of physically

based sound are to be computationally viable.
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Chapter 9

Conclusion

9.1 Achievements

We were successful in implementing a full synthesis pipeline and achieved many of the

initial goals we had set out for this work, although they were not quite up to the level

of sophistication we had sought from the onset. Nevertheless, the main achievements

are listed as follows:

1. Successful creation of modal parameters from recorded data, including some

amendments to the existing algorithms to make them more robust.

2. Creation of a useful strategy for combining numerical models and models from

recorded data in an inexpensive manner.

3. Somewhat successful contact resolution and extraction of forces from the rigid

body simulator (although it still requires extensive work).

4. Design of an efficient parallelised synthesis pipeline using a flexible coarse-grained

approach for multi-core CPUs.

5. Implementation of a successful strategy for dynamic budget allocation.

Overall, the viability of Physically Based Sound was explored and discussed. In

short, a successful implementation of a full pipeline has been produced in a relatively

short space of time, through limited resources. This demonstrates the viability of the
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techniques for a full scale commercial implementation. There is extensive additional

research that needs to be carried out (some of which will be discussed below), however,

the current state of the art is not far off the production of a final end product. Ulti-

mately, it is felt this work has given additional strength to the foundations of physically

based sound and has provided additional insight into the creation of a full synthesis

pipeline.

9.2 Future Work

Accessibility of the Area

One of the main difficulties experienced throughout this work was the process of locat-

ing and assimilating the main concerns in the literature. This is primarily because the

literature is quite fragmented and somewhat limited in scope. This makes it difficult to

identify the key works in the area and more importantly, to relate them to each other.

As such, there is a distinct lack of introductory material or standard works in the area,

and this represents a significant barrier to anyone wishing to engage with the topic.

In light of this, we believe much more work should be made to provide a single

standardised framework for the implementation of Physically Based Sound. It is our

belief that this work is one of the few that attempt to combine all of the major con-

tributions so far into a single volume of work. If Physically Based Sound is ever to

have widespread commercial appeal, standardised methods and accessible tools will be

essential to providing any kind of viable coherent framework. Thus, one of our main

aspirations would be to create something of an international forum for Physically Based

Sound, in the hope of providing a dedicated platform for promoting and sharing ideas

across the community.

Creation of Modal Models

The creation of modal models is also another area that we feel requires continuing

research. As stated previously, it was felt that Finite Element Methods, while no

doubt effective, were cumbersome to work with, particularly when it came to resolving

the input geometry with that which is to be rendered. Complex geometry can be

highly expensive to perform modal analysis on, and without careful handling, the risk
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of running out of memory is considerable.

It is our belief that the future lies in combining numerically created models with

models created from recorded data. However, considerable effort is still required for this

to be achieved. There is a small body of research in the area of structural engineering

that focuses on correcting the numerically created models with experimental data [16].

It should be possible to provide a framework for applying this to the area of physically

based sound. However, this also requires additional extensive research with regards

making methods for identifying modal parameters from recorded data more robust

and reliable. Nevertheless, we have shown there is sufficient data captured in recorded

models already to allow us to enhance the numerically created models, if we so wish.

In future we would hope to provide a more physically correct solution for doing this.

Frequency Domain Synthesis

Frequency domain synthesis remains one of the most promising techniques to efficiently

synthesise the impact sounds. However, attempts to implement it in this application

proved fruitless. However, we found the estimation of the STFT to be unreliable. Our

attempted implementation estimated some modes with uncanny accuracy, however

estimations of other modes would be so far removed from the correct values that

they would hardly produce an audible contribution. That is not say we consider the

technique itself to be unreliable, more that the documentation of it seems incomplete

and not fully developed. We believe more research is required to ensure its reliability

and confirm its effectiveness.

Another aspiration would be to parallelise the process using GPGPU techniques.

Frequency domain synthesis is a much better candidate for hardware acceleration than

time domain synthesis, primarily as summing the STFT estimation of all the modes

prior to the inverse FFT synthesis greatly reduces the required bandwidth. Secondly,

the FFT itself is known to be highly parallelisable, and there are dedicated APIs for

this purpose already in existence. A reliable implementation of the STFT estimator,

coupled with hardware acceleration of the inverse FFT should be capable of synthesising

more sounding objects than most existing rigid body simulators can handle. Thus,

frequency domain is one of the prime candidates for further research within the existing

pipeline.
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9.3 Final Remarks

At the time of writing, and given the resources available, it is believed this work is

among the most holistic attempts undertaken in the area of Physically Based Sound

since van den Doel’s original thesis. Through the analysis, and explorations, the current

state of the art was deemed to be something of a mixed affair. Current modal models

are robust and perform well, however, they do not seem to be as accurate as one would

expect. Current force models, while effective, are not particularly well developed, and

perhaps lacking in implementation details. And the synthesis, while no doubt efficient,

is still slightly more expensive than one would like. Overall, the literature was found

to be a collection of elegant ideas but somewhat lacking in a coherent strategy and

methodology.

Through the achievements in consolidating the existing volume of work, clear strate-

gies were developed for a more effective synthesis pipeline. And while the work is far

from complete, it shows significant scope for improvement. However, while those who

work with the traditional audio production techniques struggle to find new advances in

realism, Phyiscally Based Sound has already shown itself to be a viable alternative, of-

fering better realism, and reduced man-hours. In time, one hopes that these techniques

will find their way into the industry and fully develop, so they may lay the foundations

for a truly immersive interactive experience.
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Appendix A

Digital Signal Processing

Digital Signal Processing is the term used to describe a family of methods to analyse,

process and generate signals [15]. When a periodoc signal is converted into a digital

form, it is represented as a series of samples of varying values. The process of generating

meaning from these values (which will often seem highly random in nature) is the main

focus of digital signal processing.

A.1 Pulse Code Modulation

Pulse Code Modulation (PCM) is the dominant technique for representing and cre-

ating audio signals in a digital format. The magnitude of an audio signal is sampled

uniformly, and then quantized to allow it to be stored in a numeric form.

One vitally important aspect is the rate at which the audio is sampled (sample

rate), as this is hugely determinant of the overall audio quality. The most important

principle is what is known as ‘Nyquist’s law’. This states that in order for a sound

to be captured digitally, it must be sampled at least twice the value of the maximum

frequency [4]. As humans typically can hear frequencies up to a maximum of 22,000Hz,

most audio is sampled at 44,100Hz.
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A.2 Digital Filters

A digital filter is a system that operates on streams of data in a uniform manner [4].

A digital filter will typically operate on both its past inputs and outputs. A simple

digital filter is given as follows:

yn = αxn + yn−1 (A.1)

where x is the input, y the output and n is the current sample in time. Digital filters are

used extensively in audio processing, for adding effects, removing noise and frequently

for analysing the input signal also.

A.3 Fourier Analysis

The Fourier Transform is a family of methods, named after Jean Baptist Fourier (1768-

1830) [15]. Fourier claimed that any periodic signal could be represented as the sum of a

select few sinusoids, and while the notion was soundly rejected at the time, nevertheless

it led to the creation of Fourier Analysis, which is fundamental to signal processing

today. The purpose of Fourier Analysis is to represent a complex signal in terms of

simple sinusoids, which are easier to infer meaning from.

There are four separate families of Fourier Transform. The Fourier Transform and

the Fourier Series are used for signals that are continuous and infinite in length, and

as such are impossible to perform using digital computers. The Discrete Time Fourier

Transform (DTFT) is used for discrete signals that are aperiodic, and the Discrete

Fourier Transform for signals that are periodic and discrete. However, as the DTFT

assumes a signal of infinite length, the only possibility for discrete signals is to use the

DFT. However, to do so, it is necessary to assume that our aperiodic digital signal is

simply a single period of a periodic signal.

A DFT transforms any signal from its time domain representation to its fre-

quency domain representation. The time domain is so-called because the most com-

mon form of input signal is through ‘samples taken at ‘regular intervals of time’ [15],

often denoted by x[]. The frequency domain is then used to describe the representation

of the signal in terms of its sines and cosines and their amplitudes, X[]. A forward
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DFT is used to transform a time domain signal into a frequency domain signal, and

the inverse DFT transforms a frequency domain representation into a time domain

representation. Another important note is that X[] is two parts, both real and imag-

inary, both of length (N/2+1). This is because the DFT can only discern frequencies

up to one half of the length of samples the DFT is performed upon. The actual set of

samples a DFT is performed upon is frequently referred to as the window.

A.4 Short Time Fourier Transform

The most common application of a DFT is in the area of spectral analysis. One of the

common variations is to use the Short Time Fourier Transform. This is where a

time domain signal is broken down into a number of different windows, of equal length,

to perform a DFT on each window. This allows us to analyse how the frequencies and

amplitudes of a signal change over time. It is typically graphically represented as a

spectogram. When performing spectral analysis it is also common to see each window

multiplied by a window function, (most commonly a Hamming or Hann window). This

is because window functions tend to smooth out the signal, and reduce the level of

noise in the resulting spectrum.

A.5 Fast Fourier Transform

The DFT can be expensive to compute, and as such it is especially important for

synthesis applications to have an optimised implementation. The most common algo-

rithm used is the Fast Fourier Transform (FFT). The FFT is a highly complicated

algorithm, based on the complex DFT. In short, it decomposes a signal of N points

into N signals of a single point. For each signal it then calculates the corresponding

frequency spectra, and then synthesizes these into a single frequency spectrum. In

terms of speed, for synthesis it would typically be in the area of 300 times faster than

all other implementations (assuming a 1024 point window) [15].
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A.6 Complex Frequency

The complex frequency, typically denoted by ω, is a representation of sinusoids used

extensively in DSP. For the purposes of Physically Based Sound synthesis the imaginary

part of the waveform (Im(ω)) denotes the natural frequency in radians per second, and

the real part (Re(ω)) represents the value of the exponential dampening. However,

more commonly used in DSP are the phase, represented by the angle between Re(ω)

and Im(ω), and the magnitude of the signal, given by |ω|.
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Appendix B

Additional Resources

B.1 Source

The accompanying CD contains the source code of the implemented pipeline.

Interactive Application The folder Application contains the developed interactive

application along with the necessary libraries to run it.

Empirical Model The folder Recorded contains the matlab script that implements

the algorithm for creating recorded models. It also contains a number of record-

ings for the reader to experiment with.

Numerical Model The folder Numerical contains the implementation of Raghuvan-

shi’s mass spring method, along with a number of obj files for the reader to

experiment with the algorithm.

Miscellaneous The folder Miscellaneous contains another of other matlab scripts the

reader may find useful, including the attempted implementation of the STFT

estimator.

B.2 Demo

A demo of the developed application can be found online at:

http://www.youtube.com/watch?v=hJTR4rR5278
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