Physics 111: Mechanics Lecture 3

Bin Chen

NJIT Physics Department

Chapter 4 Newton's Laws of Motion

\square 4.1 Force and Interactions

- 4.2 Newton's First Law
- 4.3 Mass and Weight
- 4.4 Newton's Second Law
- 4.5 Newton's Third Law
- 4.6 Free-Body Diagrams

Isaac $\mathcal{N e w t o n ' s ~ w o r k ~ r e p r e s e n t s ~ o n e ~ o f ~ t h e ~ g r e a t e s t ~}$ contributions to science ever made by an individual.

Kinematics and Dynamics

\square Kinematics: Describing object's motion by answering: When? Where? How fast? How far? How long? without asking: Why is object moving in a certain way?

Displacement, Velocity, Time and Acceleration

Kinematics and Dynamics

\square Dynamics: Describing object's motion by answering: Why is the object moving in a certain way? What causes the object to change its velocity?
\square Dynamics studies motion on a deeper level than kinematics: it studies the causes of changes in objects' motion!

- Its trajectory depends only on $\overrightarrow{\boldsymbol{v}}_{0}$ and on the downward acceleration due to gravity.

Dynamics

\square Describes the relationship between the motion of objects in our everyday world and the forces acting on them
\square Language of Dynamics

- Force: The measure of interaction between two objects (pull or push). It is a vector quantity - it has a magnitude and direction
- Mass: The measure of how difficult it is to change object's velocity (sluggishness or inertia of the object)

Forces

- The measure of interaction between two objects (pull or push)
\square Vector quantity: has magnitude and direction
\square May be a contact force or a field force
- Contact forces result from physical contact between two objects
- Field forces act between disconnected objects
- Also called "action at a distance"

Forces

\square Gravitational Force
\square Tension Force

\square Normal Force
\square Friction Force
\square Spring Force

Physics at

Vector Nature of Force

\square Vector force: has magnitude and direction
\square Net Force: a resultant force acting on object

$$
\vec{F}_{n e t}=\sum \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots \ldots
$$

\square You must use the rules of vector addition to obtain the net force on an object

Physics at

Newton' s First Law

\square An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force

- An object at rest remains at rest as long as no net force acts on it
- An object moving with constant velocity continues to move with the same speed and in the same direction (the same velocity) as long as no net force acts on it
- "Keep on doing what it is doing"

Newton' s First Law

\square An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force

- When forces are balanced, the acceleration of the objection is zero
- Object at rest: $v=0$ and $a=0$
- Object in motion: $\mathrm{v} \neq 0$ and $\mathrm{a}=0$

$$
\vec{v}=\vec{v}_{0}+\vec{a} t
$$

- The net force is defined as the vector sum of all the external forces exerted on the object. If the net force is zero, forces are balanced.

$$
\vec{F}_{n e t}=\sum \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots \ldots=0
$$

Mass and Inertia

- Every object continues in its state of rest, or uniform motion in a straight line, unless it is compelled to change that state by unbalanced forces impressed upon it
- Inertia is a property of objects to resist changes in motion!
- Mass is a measure of the amount of inertia.

\square Mass is a measure of the resistance of an object to changes in its velocity
\square Mass is an inherent property of an object
\square Scalar quantity and SI unit: kg

Newton' s Second Law

\square The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass

$$
\overrightarrow{\boldsymbol{a}}=\frac{\overrightarrow{\boldsymbol{F}}_{\mathrm{net}}}{m}=\frac{\sum \overrightarrow{\boldsymbol{F}}}{m}
$$

$$
\overrightarrow{\boldsymbol{F}}_{\mathrm{net}}=\Sigma \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}}
$$

Units of Force

\square Newton's second law:

$$
\overrightarrow{\boldsymbol{F}}_{\mathrm{net}}=\Sigma \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}}
$$

\square SI unit of force is a Newton (N)

$$
1 \mathrm{~N}=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}
$$

More about Newton's 2nd Law

\square You must be certain about which body we are applying it to
$\square \overrightarrow{\boldsymbol{F}}_{\text {net }}$ must be the vector sum of all the forces that act on that body
\square Only forces that act on that body are to be included in the vector sum
\square Acceleration along an axis is determined by the net force component along the same axis

$$
F_{n e t, x}=m a_{x} \quad F_{n e t, y}=m a_{y}
$$

Net Force and Acceleration

\square The figure shows overhead views of four situations in which two forces accelerate the same block across a frictionless surface. Rank the situations below according to the magnitude of the horizontal acceleration of the block, greatest first.

Newton' s Third Law

\square If object 1 and object 2 interact, the force exerted by object 1 on object 2 is equal in magnitude but opposite in direction to the force exerted by object 2 on object 1

$$
\overrightarrow{\boldsymbol{F}}_{A \text { on } B}=-\overrightarrow{\boldsymbol{F}}_{B \text { on } A}
$$

- Equivalent to saying a single isolated force cannot exist

Newton' s Third Law cont.

$\square F_{12}$ may be called the action force and F_{21} the reaction force

- Actually, either force can be the action or the reaction force
\square The action and reaction
 forces act on different objects

Action and Reaction Force

\square If a bird collides with the windshield of a fastmoving plane, which experiences an impact force with a larger magnitude?
A) The bird.
B) The plane.

C) The same force is experienced by both.
D) Not enough information is given

Action and Reaction Force

\square Which experiences greater acceleration?
A) The bird.
B) The plane.

C) The same acceleration is experienced by both the bird and plane.
D) Not enough information is given

Physics at

Applying Newton's Third Law I

- An apple rests on a table. Identify the forces that act on it and the action-reaction pairs.
[Conceptual Example 4.9 in the textbook]
(a) The forces acting on the apple
(b) The action-reaction pair for the interaction between the apple and the earth
mutual inter a
mutual interaction of two different objects.

(c) The action-reaction pair for the interaction between the apple and the table

The two forces on the apple CANNOT be an action-reaction pair because they act on the same object. We see that if we eliminate one, the other remains.
(d) We eliminate one of the forces acting on the apple

Applying Newton's Third Law II

- A person pulls on a block across the floor. Identify the action-reaction pairs.
[Conceptual Example 4.10 in textbook]
(a) The block, the rope, and the mason

(b) The action-reaction pairs

$$
\overrightarrow{\boldsymbol{F}}_{\mathrm{B} \text { on } \mathrm{R}}{\overrightarrow{\overrightarrow{\boldsymbol{F}}_{\mathrm{R} \text { on } \mathrm{B}}}}^{\text {rent }}
$$

(c) Not an action-reaction pair

$\overrightarrow{\boldsymbol{F}}_{\mathrm{B} \text { on } \mathrm{R}}+\cdots{ }_{\vartheta} \cdots \overrightarrow{\boldsymbol{F}}_{\mathrm{M} \text { on } \mathrm{R}}$
These forces cannot be an action-reaction pair because they act on the same object (the rope).
(d) Not necessarily equal

These forces are equal only if the rope is in equilibrium (or can be treated as massless).

A paradox?

- If an object pulls back on you just as hard as you pull on it, how can it ever accelerate?

These forces are an action-reaction pair. They have the same magnitude but act on different objects.

