
Physics 195 / Applied Physics 195 — Assignment #4
Professor: Donhee Ham
Teaching Fellows: Brendan Deveney and Laura Adams
Date: Oct. 6, 2017
Due: 12:45pm + 10 min grace period, Oct. 13, 2017 at the dropbox outside Maxwell-Dworkin Room 131.

Problem 1 (130 pt; no collaboration allowed): Two-dimensional (2D) lattices and crystals

(a) In two dimensions, there exist five kinds of Bravais lattices, which are shown in Fig. 1. Draw at least
three primitive cells for each of the five lattices. Draw the Wigner-Seitz cell for each of the five lattices.

Figure 1: Five types of 2D Bravais lattices: (a) oblique lattice; (b) rectangular lattice; (c) centered rectangular lattice; (d)
hexagonal lattice, also known as triangular lattice; (e) square lattice.

(b) The hexagonal lattice [Fig. 1(d)] is a special case of the centered rectangular lattice [Fig. 1(c)]. Find
the ratio |~a1|/|~x| (here ~a1 and ~x are in reference to Fig. 1(c)), for which the centered rectangular lattice
becomes the hexagonal lattice.

(c) Let a 2D crystal be constructed by packing circles (representing atoms), with each circle centered at
each hexagonal lattice point. Find the packing ratio—the ratio of the area occupied by the circles to the
total area—for this 2D hexagonal lattice crystal. Repeat the calculation of the packing ratio for a 2D square
lattice crystal. Which crystal packs more densely (and hence can be more energetically favorable)?

(d) Red dots of Fig. 2 are carbon atoms that form graphene, a one-atom thick monolayer of graphite. As
discussed in Lecture #6, this honeycomb net of red dots (carbon atoms) is not a Bravais lattice, and hence
graphene should be described with the lattice-with-a-basis formalism. We can use the hexagonal lattice
(black dots of Fig. 2) spanned by the primitive lattice vectors ~a1 and ~a2 as the Bravais lattice in this case,
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with the corresponding primitive unit cell containing two carbon atoms [Fig. 2].

Figure 2: Honeycomb net of carbon atoms (red dots) in graphene. Black dots form a 2D hexagonal lattice, which we saw in
Fig. 1(d).

• Show that ~a1 and ~a2 are given by:

~a1 =
3a

2
x̂+

√
3a

2
ŷ; (1)

~a2 =
3a

2
x̂−
√

3a

2
ŷ, (2)

where the length a is shown in Fig. 2. Complete the lattice-with-a-basis description of graphene by
specifying the positions of the two carbon atoms in the primitive unit cell.

• Calculate the area of the primitive unit cell, Acell.

• Express the primitive lattice vectors ~b1 and ~b2 of the reciprocal lattice, and identify the type of the
reciprocal lattice (among the five 2D Bravais lattice choices). Draw the 1st Brillouin zone, specifying
characteristic dimensions. Calculate the area of the Brillouin zone, ABZ , and show that

ABZ =
(2π)2

Acell
. (3)

(e) Determine the reciprocal lattice of each type of the five 2D direct Bravais lattices (you have already done
this for the hexagonal lattice in Part (d)). Check Eq. (3) holds true for each case.

Problem 2 (170 pt; no collaboration allowed): Three-dimensional (3D) lattices and crystals

(a) A 3D crystal is described by the direct lattice spanned by the following primitive lattice vectors

~a1 = 3γx̂;

~a2 = 3γŷ;

~a3 = 3γ/2(x̂+ ŷ + ẑ), (4)
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where γ is a constant with the unit of length. Show that this is a BCC crystal. Calculate the volume of the
conventional unit cell and primitive unit cell in terms of γ.

(b) Prove that the reciprocal lattice of FCC lattice is BCC, and the reciprocal lattice of BCC lattice is FCC.

(c) The crystal structure of iron is BCC at temperatures below 910◦C and FCC above. Calculate the ratio of
the mass densities of the two structures, assuming that the atoms are close packed spheres, whose diameters
are the same in both structures. If the density of BCC iron is 7,900 kg/m3, what is the lattice constant of
the conventional unit cell?

(d) At about 13◦C, gray tin (α-Sn) undergoes a phase transition to white tin (β-Sn). α-Sn has a diamond
structure with a conventional-unit-cell lattice constant of a = 0.649 nm, while β-Sn has a body-centered
tetragonal structure with conventional-unit-cell lattice constants of a = 0.583 nm and c = 0.318 nm. Calcu-
late the mass densities in the two phases.

(e) Give a lattice-with-a-basis description for the barium titanate (BaTiO3) crystal in Fig. 3.

Figure 3: Barium titanate (BaTiO3).

(f) Give a lattice-with-a-basis description for the gallium arsenide (GaAs) crystal in Fig. 4.

Figure 4: Gallium arsenide (GaAs).

(g) Consider a general 3D Bravais direct lattice with a primitive unit cell volume of Vcell. Prove the following
general and very important relationship

VBZ =
(2π)3

Vcell
(5)

where VBZ is the volume of the 1st Brillouin zone.
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(h) Prove that the density of lattice points per area in a lattice plane is d/Vcell, where d is the distance from
this lattice plane to its neighboring parallel lattice plane and Vcell is as defined in Part (g). Subsequently,
prove that in the FCC lattice, the lattice planes with the highest point densities per area are the {111}
planes where the Miller index is in reference to the conventional unit cell.

(i) Show that the reciprocal lattice of the reciprocal lattice is the direct lattice.

Problem 3 (0 pt): X-ray diffraction — This is a bonus problem, and will not be graded.

Let’s recap on the derivation of the Laue condition (Lecture #7). Strength of light diffraction by a crystal

is proportional to |〈~k′|n(~r)|~k〉|2, where n(~r) is the periodic electron density distribution across the crystal.1

As n(~r+ ~R) = n(~r) for any direct lattice vector ~R, n(~r) =
∑

~G n~Ge
i ~G·~r where ~G represents reciprocal lattice

vectors with n~G being Fourier components. Then the overlap integral is

〈~k′|n(~r)|~k〉 =

∫
crystal

e−i
~k′·~rn(~r)ei

~k·~rd3~r =
∑
~G

n~G

∫
crystal

ei[
~G−(~k′−~k)]·~rd3~r. (6)

This vanishes unless ~k′ − ~k is equal to a certain ~G. Thus the Laue condition, ~k′ − ~k = ~G, is necessary for
diffraction to occur. In contrast, it is in general not sufficient for diffraction to occur; even if ~k′ − ~k = ~G for
a certain ~G, the resulting overlap integral

〈~k′|n(~r)|~k〉 = V n~G =

∫
crystal

e−i
~G·~rn(~r)d3~r (7)

will vanish if n~G = 0 (V : crystal volume). The situation of n~G = 0 occurs, for example, if a monatomic
crystal with BCC lattice is described using SC conventional unit cell with a basis (two identical atoms). The
spatial frequency of n(~r) coming from all atoms can be twice larger—along certain crystal directions—than

the spatial frequency described by ~G vectors derived from the SC lattice that misses out body-centered
atoms; therefore, n~G = 0 for a certain set of ~G vectors. For another example, for a diatomic crystal of CsCl
structure, whose description is now natural with the SC lattice a basis (two different atoms), if the two basis

atoms have similar electron density distributions, n~G can be close to zero for certain ~G vectors for the same
reason as above.

More generally, n~G will vary with the positions and electron density distributions of basis atoms. To show

this explicitly, we first decompose n(~r) into n(~r) =
∑u

i=1 ni(~r − ~di) (u: number of basis atoms per unit cell;

ni: periodic electron density distribution across the crystal due to the i-th basis atoms; ~di: position of the
i-th basis atom in each unit cell). By plugging this into Eq. (7), we obtain

〈~k′|n(~r)|~k〉 = V n~G =

u∑
i=1

∫
crystal

e−i
~G·~rni(~r − ~di)d

3~r =

u∑
i=1

[
e−i

~G·~di ×
∫
crystal

e−i
~G·~rni(~r)d

3~r

]

=

u∑
i=1

fie
−i ~G·~di , (8)

where

fi ≡
∫
crystal

e−i
~G·~rni(~r)d

3~r, (9)

is the property of the i-th basis atom and is roughly proportional to Zi, the atomic number. For ~G =
l~b1 + h~b2 + k~b3 (l, h, k: integers) and ~di = xi~a1 + yi~a2 + zi~a3 (x, y, z: real),

〈~k′|n(~r)|~k〉 = V n~G =

u∑
i=1

fi exp [−i2π(lxi + hyi + kzi)] . (10)

1Lecture #7 uses V (~r)—effective periodic potential for light scattering—in lieu of n(~r). V (~r) ∼ n(~r) for light scattering.
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This explicitly shows the impact of the electron density distribution and position of each basis atom on the
diffraction strength.

(a) Let a monatomic BCC crystal be described using the SC conventional unit cell with two basis atoms.
Show that diffraction does not occur for (l, h, k) = (1, 0, 0) but occurs for (l, h, k) = (1, 0, 0) × 2; can you
explain this from the Bragg point of view, considering relevant lattice planes? Show that diffraction occurs
for both (l, h, k) = (1, 1, 0) and (l, h, k) = (1, 1, 0) × 2; can you again explain this from the Bragg point of
view? Show in general that no diffraction occurs if l + h+ k is an odd integer.

(b) Consider a monatomic FCC crystal described using the SC conventional unit cell with four basis atoms.
Show that no diffraction occurs unless all of l, h, and k are even integers, or all of them are odd integers.

(c) A monatomic crystal of diamond structure is described using the SC conventional unit cell with eight
basis atoms. State the condition for l, h, and k for diffraction to occur.

(d) Let a NaCl crystal be described with the SC conventional unit cell containing 8 basis atoms (4 sodium
and 4 chloride atoms). Evaluate Eq. (10), while denoting the atomic form factor (fi) for sodium as fNa and
that for chloride as fCl. You may use the approximation fCl/fNa ∼ 17/11. Show that diffraction occurs
only when all of l, h, and k are even integers, or all of them are odd integers. Which of these two diffraction
groups exhibits stronger diffraction?
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