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Theoretical Discussion

For each of the linear kinematic variables; displacement ~r, velocity ~v and acceleration ~a; there is a corre-

sponding angular kinematic variable; angular displacement ~θ, angular velocity ~ω, and angular acceleration
~α, respectively. Associated with these kinematic variables are dynamical variables—momentum and force
for linear variables—angular momentum and torque for angular variables. The rotational analogue of the
inertial mass m is the moment of inertia I[1]. The relationships are summarized in table I.

Linear variables analogous angular variable

displacement ~r angular displacement ~θ

velocity ~v = d~r
dt

angular velocity ~ω = d~θ
dt

acceleration ~a = d~v
dt

angular acceleration ~α = d~ω
dt

momentum ~p = m d~r
dt

= m~v angular
momentum

~L = ~r × ~p

= I
d~θ

dt
= I~ω

force ~F = m d~v
dt

= m~a torque

~τ = ~r × ~F

= I
d~ω

dt
= I~α

TABLE I: Linear variables and their angular analogues

According to the table, torque is the angular analogue of force: In other words, just as force acts to change
the magnitude and/or direction of an object’s linear velocity, torque acts to change the magnitude and/or
direction of an object’s angular velocity. The equation

~τ = I
d~ω

dt
= I~α (1)

describes the effect of a torque on the object’s angular kinematic variables. It tells you what a torque does,
but not where it comes from. A torque arises whenever a force acts upon a rigid body that is free to rotate

about some axis. If the applied force is ~F and the displacement vector from the axis of rotation to the point
where the force is applied is ~r, then the torque is equal to

~τ = ~r × ~F (2)

Using the definition of the vector cross product, the magnitude of the torque is

τ = rF sin θ (3)

where θ is the smallest angle between the vectors ~F and ~r. The direction of the torque vector is given by the

right-hand rule—place the fingers of your right hand along ~r and curl them into ~F : your thumb will point

in the direction of ~τ . The directional relationships between ~F , ~r, and ~τ are shown in figure 1.

So long as the total net force on an object is zero, the velocity of its center of mass will not change. However,
it is possible for an object to have zero net force acting on it, but to nevertheless have a non-zero torque



FIG. 1: Directional relationships between ~F , ~r, and ~τ

acting on it. Figure 2 shows one such possible scenario. The velocity of the center of mass of the object in
figure 2, acted upon by two equal and opposite forces, will remain constant, but since the torque is non-zero,
it will spin about its axis at an ever-increasing rate of rotation.

FIG. 2: Equal forces applied to opposite sides of a rotation axis

For an object to remain in static equilibrium, so that both the velocity of its center of mass and its angular
velocity about any axis are constant, both the net force and the net torque on it must equal zero. The
conditions for static equilibrium are:

~Fnet = 0 (4)

~τnet = 0 (5)

Center of Mass

The center of mass coordinate of a system or an extended object is defined so that Newton’s law of motion,
in the form

d~p

dt
= ~Fext (6)



applies to the sytem or object as if it were a point particle located at the center of mass coordinate and the
external force were applied at that point. If we define the center of mass coordinate as

~rc.m. =

∑
j mj~rj∑
j mj

=

∑
j mj~rj

Mtot
(7)

where mj is the mass of the jth particle in the system or object, ~rj is the position vector of the jth particle,
and Mtot is the system or object’s total mass, we see that the center of mass so defined does indeed satisfy
equation 6, since

d~p

dt
=

d

dt
(Mtot~vc.m.)

=
d

dt

(
Mtot

d~rc.m.

dt

)

=
d

dt

∑
j

mj
d~rj
dt


=

d

dt

∑
j

~pj


=

∑
j

~Fj

= ~Fext

Since the center of mass coordinate is defined so that the external force can be taken to act at that point,
it is constant in time, and the geometric interpretation of Newton’s Law for rotational motion (equation 8);

~τext =
d~Lc.m.

dt
=

d

dt
(~rc.m. × ~pc.m.) = ~rc.m. ×

d~pc.m.

dt
= ~rc.m. × ~Fext (8)

is that the displacement vector ~rc.m. points from the pivot point to the center of mass coordinate. Figure 3
depicts this geometric interpretation. Using the right-hand rule, we see that the torque in this case is negative
(into the page), so that the celebrated swingee will rotate clockwise under the influence of gravity.
Since the magnitude of the vector cross product is given by

∣∣∣ ~A× ~B
∣∣∣ = |A||B| sin θ

where θ is the smallest angle between ~A and ~B, then the magnitude of the torque is given by equation 9
below.

|~τext| = |~rc.m.||~Fext| sin θ (9)

Equation 9 makes clear that the torque vanishes whenever the vector ~rc.m. from the pivot point to the center

of mass is colinear with the external force ~Fext. For an object suspended at rest under its own weight, this
implies the following results, which we will make use of in this experiment:

• An object suspended at rest under its own weight is in static equilibrium. Therefore, both the net
force and net torque on it are zero.



FIG. 3: Relative orientation of the vectors ~rc.m. and ~Fext for a celebrity suspended from a pivot.

• Since the torque will only vanish in the gravitational field if ~rc.m. and ~FG are parallel (or anti-parallel),
the object will align itself so that the vector ~rc.m. from the pivot point to the center of mass is vertical.

It follows that in suspending a massive object from a variety of different pivot points, all vertical lines
originating from the respective pivot points will intersect at the center of mass. In today’s lab you will use
the conditions for static equilibrium to measure the mass of a meter stick that is balanced on a knife-edge
fulcrum. You will also find the center of mass coordinate of an angled bar.

Procedure for Determining the Mass of a Meter Stick

FIG. 4: Experimental setup for using torque to weigh a meter stick

The experimental setup is shown in figure 4. Suppose you can get your meter stick in balance as shown
in the figure. There are three forces acting on the left-hand side of the stick and one force acting on the
right-hand side. The mass of the section of ruler on the right hand side is mrhs = m l2

l , where l = 100 cm is



the length of the ruler. The center of mass of the ruler material on the right-hand side is located a distance
l2
2 from the fulcrum, as illustrated in figure 5. Since the force acts at right angles to the displacement, the
magnitude of the total torque acting on the right-hand side is

τright = mrhsg
l2
2

= mg
l22
2l

(10)

FIG. 5: Illustration of the balance of torques

On the left hand side, there are the gravitational forces due to m1, m2, and the mass of the ruler material
mlhs on the left-hand side of the stick. The magnitude of the forces arising from these three sources are,
respectively,

F1 = m1g

F2 = m2g

F3 = mlhsg = m
l1
l
g

The center-of mass of the ruler material on the left-hand side is located a distance l1
2 from the fulcrum. Since

all three forces act at right angles to the displacement, the total torque on the left-hand side is

τleft = m1gr1 +m2gr2 +mg
l21
2l

(11)

All of the downward forces acting on the ruler are countered by an equal and opposite upward reaction force
(normal force) that acts at the point of the fulcrum. Since it acts at the fulcrum point, it exerts no torque,
so that the equation for static equilibrium is

τleft = τright −→ m1gr1 +m2gr2 +mg
l21
2l

= mg
l22
2l

(12)

Cancelling the common factor of g, and re-arranging the equation, you get an equation for the mass of the
ruler:

m =
2l(m1r1 +m2r2)

(l22 − l21)
(13)



By varying the fulcrum point, and hence the values of l1 and l2, and adjusting the locations of m1 and m2

to achieve static equilibrium, you can obtain independent measurements of the mass of the ruler.

Procedure for Finding the Center of Mass of an Angled Bar

Figure 6 depicts the experimental set-up for this experiment. In brief, you will sequentially suspend the
L-bracket from each of three pivot points. In each case, you will trace a vertical line along a plumb bob
hanging from the pivot point. The point where all three lines intersect is the center of mass of the L-bracket.
Note that the center of mass coordinate of a body need not lie within the body itself.

FIG. 6: Experimental scheme for measuring the center of mass.

FIG. 7: Analysis method for reporting the center of mass.



Summary

• Weighing the meter stick

1. Set the fulcrum location at approximately 30 cm.

2. Bring the meter stick into balance (static equilibrium) by varying the positions of the two masses,
m1 and m2. The inner mass m2 (mass closest to the fulcrum) should be about 150 g. The outer
mass m1 should be about 10–20 g. You can use the position of m1 to “fine-tune” the balance.

3. Record the distances r1, r2, l1, l2, m1 and m2.

4. Calculate the ruler’s mass using the method of static equilibrium (equation 13) and label it mexp.

5. Weigh the ruler using the mass balance. Record this value as mb.

6. Calculate and report the fractional discrepancy δ between mexp and mb.

• Finding the center of mass of the angled bar

1. Tape a sheet of paper into the inside corner of the L-bracket, as shown in figure 6.

2. For each of the three possible pivot points:

(a) Hang a plumb bob from the pivot point.

(b) Mark two points along the plumb line, widely separated enough so that you can later draw
an accurate line.

3. Remove the L-bracket from the hanger and carefully draw in the three lines indicated by your
points.

4. The lines should intersect at a single point, or at worst, make a small triangle. In the former case,
you have located the center of mass coordinate. In the later case, if all sides of the triangle are
smaller than 1 cm, take the center of the triangle as the center of mass coordinate. Otherwise,
repeat the measurements.

5. Report your measured center-of-mass for the object, using the origin and method shown in figure 7.

[1] The moment of inertia I is defined as I =
∫
r2dm, where the displacement r is from the axis of rotation to the

location of the mass element dm.


