Name:		

Multiple Choice: Circle the correct response.

{24 marks}

1. Which is true of acceleration and speed?

	Acceleration	Speed
(A)	scalar	scalar
(B)	scalar	vector
(C)	vector	scalar
(D)	vector	vector

- 2. Which example illustrates uniform motion?
 - (A) A ball rolls down a ramp.
 - (B) A car slows down at a stop light.
 - (C) A pendulum swings 5 times.
 - (D) A puck slides along the ice.
- 3. Which statement is true?
 - (A) Displacement can never be equal to distance.
 - (B) Displacement can never be greater than distance.
 - (C) Displacement can never be less than distance.
 - (D) Displacement is always equal to distance.
- 4. If a physical quantity were defined as the rate of change of displacement, what is the SI unit for the quantity?
 - (A) m
- (B) m/s
- (C) m/s^2
- (D) m^2/s
- 5. If Wayne is travelling at 6.0 m/s for 3.0 minutes, how far does Wayne travel?
 - (A) 2.0 m
- (B) 18 m
- (C) 30.0 m
- (D) 1100 m
- 6. Canada geese can fly at 30.0 km/h. How long would it take to fly 1.0 km?
 - (A) .033 min
- (B) 2.0 min
- (D) 30.0 h
- (D) 120 min
- 7. A car travels 50.0 km in 45 min. What is its speed?
 - (A) 0.90 km/h
- (B) 1.1 km/h
- (C) 38 km/h
- (D) 67 km/h
- 8. A car travels up a 1.0 km hill at a constant speed of 10.0 km/h and returned down the hill at a speed of 20.0 km/h. If the time needed to turn around is ignored, what was the total speed for the trip?
 - (A) 0 km/h
- (B) 13.3 km/h
- (C) 15.0 km/h
- (D) 16.7 km/h

9. The graph at the right plots the displacement of an object vs. its time. In which time interval is the object slowing down and travelling to the left?

- (B) t = 1.5 s
- (C) t = 2.0 s to t = 3 s
- (D) t = 3 s to t = 4 s

10. The velocity-time graph for an object travelling in a straight line is given. Which graph shows the correct position-time graph for the object's motion?

11. Examine the graph at the right. What is the acceleration at t = 3.0 s?

- (B) 6.7 m/s^2
- (C) 10 m/s^2
- (D) 11.7 m/s^2

12. Examine the graph shown at the right. What is the net displacement at t = 12 s?

- (B) 320 m
- (C) 350 m
- (D) 380 m

13. If we assume that motion to the right is positive, then which of the following statements describes the motion of the object depicted in the graph from t = 10 s to t = 12 s?

- (A) moving to the left and slowing down
- (B) moving to the left at speeding up
- (C) moving to the right and slowing down
- (D) moving to the right and speeding up
- 14. Which of the following statements concerning motion graphs is correct?
 - (A) The area under a velocity-time graph gives instantaneous acceleration.
 - (B) The area under a velocity-time graph gives displacement.
 - (C) The area under a position-time graph gives velocity.
 - (D) The slope of a velocity-time graph gives displacement.
- 15. Consider the following velocity-time graph and select the statement that is true.

- (A) The object travels in one direction and then the other.
- (B) The object returns to its original position.
- (C) The object is accelerating throughout the entire recorded time.
- (D) The object speeds up and later slows down.
- 16. The position-time graph pictured below depicts a person, P, running to catch a bus, B, that has just begun to pull away. Which of the following statements is true?

- (A) The person has no chance of catching the bus.
- (B) The person's acceleration is greater than that of the bus.
- (C) The person has two opportunities to catch up to the bus.
- (D) The speed of the bus is always greater than that of the person.

Long Answer: Answer all questions and show all working. Full marks will not be given without workings

1.	A car travels 68 km/h [E] for 3.5 h and 78 km/h [W] for 2.0 h	and then 45 km/h [E] for
	1.5 hours. Find its average speed and average velocity.	{6 marks}

- 2. A car travelling at 10.0 m/s passes a stopped truck. **Three seconds** after the car passes, the truck accelerates from rest at 5.00 m/s² until it reaches 15.0 m/s.
 - (A) Plot a velocity time graph for the car and the truck on the grid. {5 marks}

- (B) When did the car and the truck have the same speed? {1 mark}
- (C) When did truck catch the car? {5 marks}

- 3. Can an object be accelerating and still be travelling at a constant speed? Explain. {2 marks}
- 4. Draw a position-time graph for a runner who moves at 4.0 m/s for 10 s, then at 1.5 m/s for 20 s, -2.5 m/s for 10 s, then 5.0 m/s for 10 s. **{5 marks}**

5. The graph below represent an object's motion for a 20 s time interval. **Positive denotes** eastward.

(A) Calculate the acceleration of the object at t = 6 s. {2 marks}

(B) Describe the motion of the object for the time interval t = 8.0 s to t = 16 s. {2 marks}