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Unit 6: Conservation and Mass-Energy Conversion 
 
Exercise 6.1: Relativistic Mechanics → Cleanup and Warmup 
 
Last week, we modified Newtonian mechanics so that it works at speeds close to the speed of 
light.  Following Einstein, we built the theory of relativistic mechanics from these 4 hypotheses: 

① 
 

!
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d
!
p

dt
            ② 
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p = m

inertial
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c
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From these hypotheses, you yourself derived our new master relation (in the box below) between 
an object’s total energy E, momentum p, and rest mass m0.  You also derived exactly how 
Einstein’s minertial varies with speed.  Third, we presented a definition of kinetic energy: it is 
simply the difference between an object’s total energy and its rest energy.   
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Finally, you derived these useful combinations of the relations above: 
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Today we’ll add two key pieces to our theory: energy & momentum conservation.  We will 
find that these lead to a profound consequence of relativity: mass-energy conversion.  But first, 
let’s spend a bit more time with our formulae and address some common points of confusion. 
 
(a)  As you work with these equations, you quickly realize that we can do some cleanup:  
inertial mass can be removed from our theory entirely.  Replacing the “m” in p = mv with a 
variable quantity “minertial” was an enormous leap of intuition, but now that our theory is built 
minertial plays no role → it is just a redundant variable representing the combination γm0.   
To make this crystal clear, draw a big X through the equations above that involve minertial.  
Really! Find them, and X them out.  Do you see how no information is lost by removing this 
quantity?  Please be clear on this point; if you have any questions, ask! 
 
  So:  From now on, m means rest mass.  
 
You can still call it “m0” if you want (I generally will in this unit); there’s just no need to carry 
that extra subscript around any more as rest mass is the only mass you will ever see in any 
calculation or table of masses.  In Special Relativity, the inertial mass γ m0 is essentially a 
historic concept that is now neatly absorbed into the formulae of relativistic mechanics.  
 
(b)  Momentum has direction → it’s a vector.  However, it often appears as just “p” without a 
vector sign, e.g. in some of the formulae above.  Suppose you have a particle moving in the  
–x direction.  Should you assign a negative value to the symbol “p” in this case? 



Physics 225  6.4 
 

 6.4 

Answer: NO!  The symbol “p” represents the magnitude of the vector 
 

!
p  and never has a 

negative sign.  So where does the direction information go? → in the components of 
 

!
p .  

Magnitudes of vectors don’t have signs, only the components of vectors have signs.  In the 
previous example, you would assign the component px a negative value, but p is always positive. 
 
(c)  Newton’s most famous formula is F = ma … yet it is conspicuously absent from our 
summary of relativistic mechanics.  Hmm.  Most of Newton’s other formulas are preserved, like 
p = mv.  Honestly, it looks like all the relations underlying F = ma are still there, yet our familiar 
friend is absent.  What has happened to F = ma?  Maybe it’s fine, maybe it’s so easy to derive 
from the other relations that we just didn’t bother to write it down.  What do you think?   
Try to derive F = ma from F = dp/dt and our new relation p =γm0v and see what happens. 
 
 
 
 
 
 
 
 
 
(d)  As we learned over the past week, the photon can be easily incorporated into our new 
mechanics as a particle of zero rest mass: that gives E = (pc)

2
+ (m

0
c
2
)
2
= pc , which is 

exactly the energy-momentum relation for light that comes from Maxwell’s equations.  
Wonderful!  Now consider another of our relations: p = γ m0v.  How does that apply for a 
photon??!  With m0 = 0, the formula seems to tell us that photons always have zero momentum!  
Is that so?  Or is this formula somehow invalid for photons?  Think a bit, and you’ll figure it out. 
 
 
 
 
 
 
 
(e)  Our formulae for relativistic mechanics relate all the many properties of a particle.  Here is 
the full list of every particle property that appears on the previous page: E, 

 

!
p = (p

x
, p

y
, p

z
) , KE, 

m0, minertial, 
 

!
v = (v

x
,v

y
,v

z
) , β, γ .  That’s 12 symbols!  It looks like a mess … but it’s not really.  

The Key Question is: how many of those symbols are independent?  i.e., what is the minimum 
number of particle properties we need to know in order to know everything about that particle?   
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The answer to that last question is … drum roll … four.  A particle’s kinematics can be 
completely described by exactly four quantities.  A very standard set to choose is: 

• total energy E 
• all three components of momentum 

 

!
p = (p

x
, p

y
, p

z
)  

If you know those four things about a particle, you can calculate everything else.  Any set of four 
independent quantities will do.  For example, if you know a particle’s rest mass m0 and velocity 
vector 

 

!
v = (v

x
,v

y
,v

z
)  you can also calculate everything about it.  If direction is not known or not 

interesting, only two quantities are needed, e.g. m0 and v.  
 
(f)  Particle physics detectors have many subsystems that  measure different particle properties.  
A typical setup is to use a tracking system plus a magnetic field to measure the momentum 
vector 

 

!
p  of each particle, while time-of-flight detectors determine each particle’s speed 

! = v / c .  Suppose your detector measures a track with these four properties: 

px = 2 GeV/c,     py = 1 GeV/c,     pz = 0,     β = 0.92 
This is a complete set of information.  Now you be the analysis software and do particle 
identification (PID for short): figure out what sort of particle this is.  There are only five 
charged particles in nature that live long enough to leave observable tracks in a detector:  

• electrons e– and positrons e+ : mass 0.51 MeV/c2 
• muons µ± : mass 106 MeV/c2 
• pions π± : mass 140 MeV/c2 
• kaons K± : mass 494 MeV/c2 
• protons p and antiprotons p  : mass 938 MeV/c2  

What sort of particle did you detect? (See footnote1) 
 
 
 
 
 
 
 
Exercise 6.2: Conservation of Energy and Momentum 
 
It’s time to add two more pieces to relativistic mechanics.  Fortunately, they are old familiar 
friends: the laws of conservation of energy and conservation of momentum, which are 
fundamental to all of physics.  What does “conservation” mean exactly?  It means “remains 
constant for an isolated system”.  The total energy and momentum of an isolated system remain 
constant, so they are conserved quantities.  To be precise, four things are conserved:  

• total energy E is conserved 
• each component of momentum is conserved: px, py, and pz 

                                                
1 The mass you get will not exactly match any of the listed particle masses → this is a realistic, real-world problem 
and no detector has perfect accuracy.  The number of significant digits provided for the momentum and speed 
measurements always indicates how precise those measurements were.  
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These conservation laws allow us to tackle collision problems: any situation where you have an 
isolated system consisting of one or more objects, then some interaction happens within the 
system, then the system continues in a modified state.  Such situations include elastic collisions, 
inelastic collisions, and decays2.  Relativistic collisions reveal something very interesting … 
but first, let’s make sure you know how to set up conservation relations, particularly the signs … 
 
(a)  A “2-to-2” particle collision is shown below, with its conservation conditions written in 
different forms.  Taking +x to be to the right, put a sign (+ or –) in front of each p or E symbol: 
 
• p vectors:              

 

!
p
1
      

 

!
p
2

  =      
 

!
p
3
      

 

!
p
4
 

• p components:       p1x      p2x  =       p3x      p4x 
• p magnitudes:        p1        p2   =        p3        p4   
• energy:                  E1        E2   =        E3        E4 

 
(b)  Two lumps of clay, each of rest mass m0, collide head-on at speed 3/5 c (i.e. they are moving 
directly towards each other with equal and opposite velocities 3/5 c).  They stick together, 
forming one big lump of clay. What is the rest mass M0 of the composite lump?   
 
Tactics for all collision problems: first make a sketch with labels of course , then write down 
the conservation relations for E, px, py, and pz.  These are the very constraints that nature uses to 
decide what happens!  Then work as usual to get what you want in terms of what you know.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Energy-to-Mass Conversion 
 
If everything went correctly, you should find that the mass M0 of the composite lump of clay is 
larger than the sum of the contributing rest masses m0 (25% larger in this example).  Wow, there 
is more mass around after the collision than before!  This is energy-to-mass conversion at work 
→ the kinetic energy of the original clay lumps was converted into mass.   

                                                
2 Jargon check on “elastic” and “inelastic”: An elastic collision is one where you have the same particles in the 
initial and final states. A classic example is the scattering of billiard balls.  In an inelastic collision, the nature of the 
system fundamentally changes: you may have more or fewer particles after the collection, or some of the particles 
may change state.  An example would be a ground state atom which absorbs a photon and becomes an excited atom. 
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In Newtonian mechanics, this doesn’t happen: mass is always conserved.  But energy is 
conserved too.  What happens to the kinetic energy of the initial state in Newtonian mechanics?  
In classical mechanics, we would say that this energy is converted into heat, a concept which 
represents the total internal energy of the tiny pieces making up the clay.  Relativity doesn’t 
dispute that.  Rather, it says that a particle’s total energy is reflected in its inertial mass.   
Quite literally, a hot potato is heavier than a cold potato!   
 
(c)  A charged pion at rest decays into a muon and a neutrino.  Find the energy of the outgoing 
muon in terms of the rest mass mπ of the pion and the rest mass mµ of the muon, taking the 
neutrino to have zero rest mass.3   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d)  Plug in the actual rest-mass numbers from a couple of pages ago to get the energy of the 
muon in MeV.  Now fill in this table with numbers to see what has happened: 
 

Final State 
 

Initial State 
Pion π  Muon µ Neutrino ν Total Final State 

Rest energy m0c2 (MeV)     

Kinetic energy KE (MeV)     

Energy E (MeV)     

                                                
3 Only in the last few years have we discovered that the neutrino has non-zero mass, but the mass is extremely small.  
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Mass-to-Energy Conversion 
 
This problem is the inverse of the previous one: we start with a massive object at rest (the pion) 
and we end up with two particles fleeing the scene at high speed.  The kinetic energy of the final-
state particles came from the mass of the initial-state pion.  This is an example of mass-to-
energy conversion.  A more famous example is the Uranium-235 nucleus, which decays to a 
Thorium-231 nucleus and an alpha particle.  The final-state products of this decay have kinetic 
energy, derived from the initial mass of Uranium-235, which is more massive than a Thorium-
231 nucleus plus an alpha particle at rest.  The final-state kinetic energy can be converted to heat 
(e.g. the decay products can be directed at a material, which heats up), and that heat can be 
further converted to mechanical energy.  We have thus made a useful power generator!  
Uranium-235 is one of the key elements in modern nuclear reactors. 
 
Potential Energy 
 
The energy E in our kinematic formulae represents a particle’s total internal energy, including 
its kinetic energy (due to its motion) and its internal energy not related to its motion (due to its 
rest mass, which for complex objects includes internal sources of energy like binding energy or 
heat).  You may be wondering about potential energy … where is it?  If your particle is an 
electron and is sitting near a charged plate, it has potential energy due to the force exerted on it 
by the plate’s electric field.  The potential energy of a particle in a force field of external origin is 
not included in E = γm0c2. Why? Because potential energy involves an outside force: it is 
not internal to the particle, but instead reflects the particle’s environment.  
 
Conserved Quantities: Newton vs Einstein 
 
In Newtonian mechanics: 

• the total (rest) mass m0 of a system is conserved 
• the total kinetic + potential energy, KE+U, of a system is also conserved  

(assuming, of course, that there are no other forms of energy like heat in the problem).   
A glance at your table on the previous page reveals that relativistic mechanics does not conserve 
rest mass m0!  Instead, Einstein’s E = m0c2 + KE is conserved.  What about when potential 
energy is involved?  The work energy theorem (hypothesis 3) on page 6.3 provides the answer: 

 
W =

!
F !i!d

!
l = !E" , and since potential energy is defined by  

 
!U = "

!
F !i!d

!
l#  we immediately 

obtain !E + !U = 0 , i.e., that E+U is conserved = never changes.  
 
To summarize, in relativistic mechanics: 

• the total rest mass m0 of a system is not conserved 
• the total internal + potential energy E+U of a system is conserved 

Einstein’s E is the sum of rest energy m0c2 and kinetic energy KE; it is this combination that, 
when added to potential energy, always remains the same for an isolated system.  
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Exercise 6.3: Now in 2D 
 
So far in this unit, we’ve only considered problems involving motion along a single direction.  
That was all we needed to explore the new physics of energy-to-mass and mass-to-energy 
conversion.  But now, on to more general collision problems involving some angles. 
 
(a)  To remind ourselves how this works, consider a simple non-relavistic problem.  (You can 
use Newtonian or relativistic formulae, we’ve just kept the speeds of everything small enough 
that you’ll get the same result to a high degree of accuracy.)  A race car of mass 4,000 kg speeds 
along a straight track at 90 mph (which is 40 m/s) and crashes into a large crate left on the track.  
The crate is smashed into two pieces of debris, each of which goes flying away from the track 
with momentum 1.0 × 105 kg⋅m/s.  One piece of debris flies off to the left and the other to the 
right, with both trajectories making an angle of 60° with the track.  The race car continues along 
the track after the collision, but it has been slowed down.  What is the momentum of the race car 
after the collision?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Self-check: the car’s final momentum is in footnote 4.  If that’s not what you got, scrutinize your 
work and see if you can find your error. 
 
Now, on to a relativistic collision problem in 2D! 

                                                
4  The answer to (a) is 0.6 × 105 kg⋅m/s.  
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An electron beam of momentum 3 GeV/c is fired along the +x direction at a stationary proton 
target.  The (rest) masses of the electron and proton are 0.5 MeV/c2 and 1 GeV/c2 respectively.  
An elastic collision occurs.  The electron beam is scattered at a sharp 90° angle, and heads off in 
the +y direction.  The proton target is deflected differently; after the collision, its trajectory 
makes an angle θ with the x axis.  Your job is to calculate this angle θ.   
 
(b)  First, formulas only, no numbers: Obtain an expression that is solvable for the angle θ.  
Don’t try to solve this expression (it’s just a mess of uninstructive algebra), but make sure it 
contains only the angle θ and known quantities — that’s what we mean by “solvable”! 
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(c)  To obtain a numerical answer, notice how light the mass of the electron is compared to its 
momentum in this problem.  This is a standard situation in nuclear and particle physics, we 
discussed in class, and it is very common to approximate the electron as massless  (thus treating 
the electron like a photon).  Taking this approximation, calculate the deflection angle θ of the 
scattered proton.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
5 The answer is θ = 14°.  If you got it, congratulations!  You are a master of collision problems ... and algebra.  
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Summary of Relativistic Mechanics 
 
The formulas for relativistic mechanics are derived from the following four postulates: 

① 
 

!
F =

d
!
p

dt
            ② 

 

!
p = m

inertial

!
v            ③ 

 
W =

!
F !i!d

!
l = !E"           ④  E = m

inertial
c
2  

I’ve greyed-out the relations involving the speed-dependent inertial mass because, as we 
discussed today, once we figured out that minertial = γ m0, maintaining a separate symbol for that 
combination is unnecessary overhead.  From the 4 hypotheses, you obtained these key relations: 
 

m
inertial

= !m
0
                    E = (pc)

2
+ (m

0
c
2
)
2                  KE ! E " m

0
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Don’t forget why the energy-momentum relation is in a box: (1) it is the one you are most likely 
to avoid because it is unfamiliar and has a nasty square root, and (2) it is generally the most 
useful of all the formulae!  These other useful relations are readily derived from those above: 
 

 

!
p = !m

0

!
v                E = !m

0
c
2                 ! =
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E

m
0
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The remaining elements of the theory we’ve developed so far are: 

• The photon is incorporated into relativistic mechanics as a particle of zero rest mass. 
• The total energy E of an isolated system is conserved (or E+U if forces are present). 
• Each component pi of the total momentum 

 

!
p  of an isolated system is conserved. 

 
With that, we’ve successfully patched Newtonian mechanics to (1) apply to speeds close to c, 
and (2) incorporate the photon and its strange energy-momentum relation Eγ  = pγc. 
Finally, we discussed some important calculational tips that are especially valuable in 
conquering the jungle of relativistic mechanics formulae: 
 

• Pick the right formula for the job → the one that has only the variables you care about 
• Avoid velocity! → E, p, and m0 are generally the best variables to work with.  
• Dimensionless terms are awesome → “factor out the units” wherever you can. 

 
 
For convenience, here are the formulae for boosting velocities between frames: 
 

u
x
=

!u
x
+ v

1+ !u
x
v / c

2
         uy,z =

!uy,z

" (1+ !uxv / c
2
)

 

 
One more week and we’ll have the boost formulae for all of our kinematic quantities.   
 


