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0.1 Introductory remarks

Goals. The primary, overt goal of this class is to use simple physical systems to

introduce some important mathematical concepts, mostly in algebraic topology. For

starters, this will include homology, cohomology and homotopy groups. When I say

physical systems what I really mean is toy models of physical systems.

The secondary, hidden goal is to smuggle in as much physics as possible. This will

certainly include physics of topological phases of matter, about which there is a lot to

say and a lot which is not yet understood. We will also talk about supersymmetry, a

beautiful idea still looking for its rightful place in observable physics, but which has

many deep connections to geometry and topology.

So although the primary goal is mathematical, this is not a math course in many

ways. One is that I will try to restrict myself to subjects where I think physical insight

is helpful (or where I can at least find another good excuse).

A brief overview of topology in many-body physics. There are many differ-

ent manifestations of topology in physics, even just within condensed matter physics.

Probably the manifestation of which the largest number of people are aware these days

is band topology, or topological insulators. This is an example where the physics is

extremely simple – it involves free fermions, so everything can be solved completely –

but the mathematics is fancy (twisted equivariant K-theory). Maybe we’ll get there.

I am going to start instead with some situations where the physics is fancy or

exotic – in the sense that it requires interactions or hasn’t been found in earth-rocks

yet – but the mathematics is stuff everyone should know: homology, cohomology,

homotopy. I’m pretty excited that all of these things (which are squarely the subject

of e.g. Hatcher’s Algebraic Topology book) can be explained quite adequately using only

familiar ideas from physics. In particular, all the (forbidding, homological) algebra of

algebraic topology will take place in the comfort of a friendly Hilbert space.

Generally covariant theories. There are many ways in which a physical system

can be topological. One definition of topological is independent of a choice of metric

(and therefore insensitive to distances between points).

By this definition, historically the first topological theory then is actually general

relativity. With general relativity (GR), we have a system defined on some smooth

manifold without a choice of metric, because the metric is a fluctuating degree of

freedom. In the language of path integrals (perhaps not entirely well-defined for GR),

the metric is just an integration variable. (In low-enough dimensions this statement is

known to be correct.)

Towards the end of last century a large new collection of topological theories came
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from several different directions. One is the study of solutions of equations which

simply don’t require a choice of metric. An example is Chern-Simons theory, with

action S[A] = k
4π

∫
M

tr
(
A ∧ F + 2

3
A ∧ A ∧ A

)
. My point in writing the action here is

to show that the metric does not appear. I hope I will say more later. Another, harder,

example is the self-dual Yang-Mills equations – Donaldson theory of 4-manifolds.

A more sophisticated origin of topological systems is supersymmetric field theories.

Witten defined a procedure called twisting by which one can construct a set of observ-

ables which do not depend on the metric. The fact that Donaldson theory also arises

this way allows one to use the Seiberg-Witten solution of 4d N = 2 supersymmet-

ric gauge theory to compute Donaldson invariants. I’ll talk about first steps in this

direction in §2. These topological field theories generally have the shortcoming that

they are not unitary. What I mean by this is that they cannot arise as a low-energy

description of a condensed matter system.

Gapped phases of matter. This leads to a third origin of topological physics:

gapped phases of quantum matter.

First let’s define the notion of a gapped quantum phase. A nice context is: consider

a Hilbert spaceH = ⊗xHx made from finite-dimensional Hilbert spaces distributed over

space, and a local Hamiltonian H =
∑

xHx. Local means Hx acts nontrivially only on

degrees of freedom near x.

E

∆E

groundstates

not related

by local operators

Roughly, a groundstate has a gap if the energy difference ∆E to the

first excited state stays finite in the thermodynamic limit (L → ∞,

where L is the linear size of the system).

In contrast, a massless field in a box of linear size L has a level spacing

of order 1/Lz, which vanishes in the thermodynamic limit.

More precisely, we will allow some number of states below the gap,

with a level spacing that decays faster than any power of L. (It is sim-

plest when the number of such states is finite. But in fact in gapped

fracton phases the number of these states diverges exponentially with

L.) Most interesting will be the situation when any state obtained by

acting on a groundstate by (superpositions of) local operators has a

finite energy above the groundstates in the thermodynamic limit. If

the putative groundstates were related by acting with a local opera-

tor, 〈ψ1| Ox |ψ2〉 6= 0, we could add that operator to the Hamiltonian

∆H =
∑

x cOx and split the degeneracy by a finite amount, so it

would not be a stable situation.
You may think this notion of having a gap is a property of the Hamiltonian and

not just of the groundstate, but in fact a groundstate knows whether it is gapped or

not. One signature is exponential decay of equal-time correlators of local operators. (I
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don’t know how to prove this; it is a piece of folklore.)

Different gapped states are in different phases if we can’t

deform the Hamiltonian to get from one to the other

without closing the gap. The idea is that their ground-

states are related by adiabatic evolution. So it is tempt-

ing to say that a gapped phase is an equivalence class of

Hamiltonians. In the figure at right, [A] = [A′] 6= [B].

A

Wall of Gap-Closing

A′

B
space of H

Before you get too excited about the Wall of Gap-Closing: note that the closing of

the gap does not by itself mean a quantum critical point: at a first order transition, just

the lowest levels cross each other at some random point in parameter space. The two

states which become degenerate are related by some horrible global rearrangement and

not by acting with local operators, but the situation is unstable. So it’s not necessarily

true that any gapped state with a finite number of levels below the gap represents a

phase of matter. A gapped state which does represent a phase of matter has an energy

gap above a stable groundstate subspace. By stable I mean that there is an open set in

the space of Hamiltonians in which the dimension of this subspace doesn’t change.

Actually, there is an important extra equivalence relation that we must include:

We don’t care if on top of some nontrivial phase of matter someone sprinkles a dust

of decoupled qubits which are totally inert and do nothing at all. This represents

the same phase of matter. Then, further, we are allowed to adiabatically deform the

Hamiltonian1 including these decoupled bits, so that they can interact with the original

degrees of freedom. So: in addition to allowing adiabatic variation of couplings, we

also allow the addition of decoupled local degrees of freedom2.

This definition is non-empty. An example of a gapped phase of quantum matter

is obtained by putting a qubit on every site of some lattice, and taking H = H0 =

−
∑

sXs where Xs ≡ σxs acts only on the qubit at site s as the Pauli x operator.

Its groundstate is the product state ⊗s |→〉s, no matter what lattice we choose. The

equivalence class of states obtained by deforming this Hamiltonian, or equivalently, by

acting on this completely unentangled state with finite-depth local unitaries, is called

the trivial phase.

1Adiabatically here means without closing the gap, so we can make the change slowly enough not

to create excitations in an amount of time independent of the system size. This means that the unitary

operator taking one groundstate to the other (U(T ) = T ei
∫ T
0
dtH(t), H(0) = HA, H(T ) = HA′) has

finite depth ∼ T . Note that different sectors of the groundstate subspace evolve independently under

such finite-depth unitaries, and are not mixed by them.
2This enlarging of the space of equivalent states can be called stable equivalence after the very

analogous equivalence relation on vector bundles in K-theory. More on this next quarter.
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You might be bothered by the following: it is hard to imagine checking that there

is no way around the wall of gaplessness between two potentially-distinct states. Don’t

we have to consider every possible change to the Hamiltonian, after adding arbitrarily

many ancillary bits? The way to avoid spending our lives doing this is to find sharp

characterizations of such states, like integer labels, which cannot change smoothly

(e.g. under adiabatic variation). This is the very definition of topology. An important

goal in condensed matter physics is to figure out labels that can be put on states,

computable just from the states themselves, that can distinguish them as distinct

phases of matter.

There are roughly three classes of such labels that have been found: (1) symmetry-

breaking, (2) topological order, (3) edge modes. (1) The first is ancient: the idea is

that whether or not a symmetry is broken is a yes or no question with nothing in

between. An Ising magnet has two groundstates in the broken phase and only one

in the unbroken phase. Actually phases labelled by what symmetries they break can

already teach us about topology: their defects are classified by homotopy groups3. (3)

The third is the subject of topological insulators and symmetry-protected topological

(SPT) phases, which I’ll put off to last. (2) We’ll learn to think of topological order

as a generalization of symmetry-breaking, and this is where we’ll focus our efforts for

a while (§1, 3.9). We can already see an example of a topological label on phases of

matter in the definition of gapped state above: the dimension of the stable groundstate

subspace is an integer which cannot change smoothly.

Now, to highlight the value of such labels, consider the following. Think of a lattice

model of the form described here as arising by discretizing some continuous system, as a

short-distance regulator – by chopping a continuous space X up into small disk-shaped

regions. How does the metric on space, or more generally the shape of the space, enter

into a lattice model? In two ways: the coupling constants multiplying terms in the

Hamiltonian, and the arrangement of the degrees of freedom. Now what is the effect

of making small, smooth changes in the metric on one of our topological labels? Es-

sentially by definition, such changes fall under the class of adiabatic variations (adding

in decoupled bits and varying couplings without closing the gap) that cannot change

within the phase. This means that our topological labels (such as the dimension of

the stable groundstate subspace) are not only topological labels on phases of matter

but also topological invariants of the space X on which we defined our system. If the

same phase of matter on two spaces X and Y have distinct labels, then X and Y are

topologically distinct.

Since the topologists, attempting to decide which spaces can be reached from each

other by continuous deformations, have exactly the same problem as we do (where the

3I had planned to cover this, but decided to postpone it until next quarter’s class
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analog of the Wall of Gap-Closing is the Wall of Tearing), such labels on spaces are valu-

able. We’ll see that many of the labels on spaces we get this way, at least from simple

examples of topological phases, have already been discovered by the mathematicians.

A final word about mathematical underpinnings. This being a physics class it is

not as essential that we say precisely what we are talking about as it would be in a

math class. In §3.1 I plan to have some mathematical self-defense training. Part of the

goal is to be a little more precise, but a more important goal is to arm ourselves to be

able to get more out of the math literature. Here is a quote from Mermin articulating

the principle we will follow:

I rely heavily on the reader’s firm intuitive grasp of the notion of continuity, and

invite readers possessing the appropriate blend of ingenuity and perversity to add

whatever assumptions of regularity are needed to exclude whatever pathological

counterexamples they may come up with. This is, admittedly, a dangerous game to

play, but it has had a long and honorable history of successful practice. In my opinion

the substantial gain in clarity it achieves more than compensates for the reduction in

certainty. Bridges would not be safer if only people who knew the proper definition of

a real number were allowed to design them.

[End of Lecture 1]
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0.2 Conventions

For some of us, eyesight is a valuable commodity. In order not to waste it, I will often

denote the Pauli spin operators by

X ≡
(

0 1

1 0

)
Y ≡

(
0 −i

i 0

)
Z ≡

(
1 0

0 −1

)
(rather than σx,y,z) in the Z basis. I’ll write |0〉, |1〉 for the Z eigenstates, Z |0〉 = |0〉
and Z |1〉 = − |1〉 and |±〉 for the states with X |±〉 = ± |±〉.

≡ means ‘equals by definition’. A
!

= B means we are demanding that A = B.

A
?
= B means A probably doesn’t equal B.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

A useful generalization of the shorthand ~ ≡ h
2π

is

d̄k ≡ dk

2π
.

I will also write /δ(q) ≡ (2π)dδd(q).

I try to be consistent about writing Fourier transforms as∫
ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

WLOG ≡ without loss of generality.

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

iid ≡ independent and identically distributed.

We work in units where ~ and kB are equal to one unless otherwise noted.

Please tell me if you find typos or errors or violations of the rules above.
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0.3 Sources

This list will grow with the notes.

Bott and Tu, Differential Forms in Algebraic Topology.

A. Hatcher, Algebraic Topology.

G. Bredon, Topology and Geometry.

M. Nakahara, Geometry, Topology and Physics. I was not a big fan of this book when

I was a student because I thought it was superficial. Looking at it again now,

I see its virtues more clearly. It has lots of useful things in it and it is mostly

written for physicists.

Nash and Sen, Geometry and Topology for Physicists.

G. Moore, Some Remarks on Topological Field Theory.
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1 The toric code and homology

We begin with an example of a nontrivial gapped phase of quantum matter in the sense

defined above. It is an example of a spin liquid phase.

An example of a spin system which emerges gauge theory. [Kitaev, quant-

ph/9707021, §1,2] The example we’ll begin with is a realization of Z2 lattice gauge

theory. Gauge theory has a long history which I won’t discuss right now. This model

produces the same physics at low energies but avoids many of the confusions by having

a Hilbert space which is just a product of local Hilbert spaces, just like an ordinary

spin system. It is called the toric code, for no good reason.

To define the Hilbert space, put a qubit on every link of some graph. Let us begin by

thinking about the square lattice, but, crucially for our purposes, the model is defined

much more generally.

A term in the Hamiltonian is associated with

each site j → Aj ≡
∏

l ends on j Zl
each plaquette p→ Bp ≡

∏
l∈∂pXl.

H = −
∑
j

Aj −
∑
p

Bp.

These terms all commute with each other because they all share an even number of

Zls and Xls (which anticommmute). That means we can diagonalize the Hamiltonian

by minimizing one term at a time.

Which states satisfy the ‘star condition’ Aj = 1?

In the Z basis there is an extremely useful visu-

alization: we say a link ` of the lattice is covered

with a segment of string (an electric flux line) if

Z` = −1 and is not covered if Z` = +1:
∣∣∣ 〉

≡
|Z` = −1〉. In the figure at right, we enumerate the

possibilities for a 4-valent vertex. We conclude that

Aj = −1 if a flux line ends at the site j.

So the subspace of H satisfying the star condition at every site is spanned by closed-

string states, of the form
∑
{C}Ψ(C) |C〉, where C is a collection of closed loops on the

lattice, indicating which qubits are in the state |1〉, while the rest are in the state |0〉.

Because [Bp, Aj] = 0 Bp acts within the subspace of closed-string states. Now we

look at the action of Bp on this subspace of states:
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Recall that X |0〉 = |1〉 , X |1〉 = |0〉. If C does not

intersect p, it creates a little loop of string on the links in

the boundary of p, which we’ll denote ∂p. If C includes

∂p it erases it. If C includes part of ∂p, it erases that

part and covers the rest. These rules can be summarized

as

Bp |C〉 = |C + ∂p〉

where the addition is understood mod two.

The condition that Bp |gs〉 = |gs〉 is the equivalence relation defining homology. We

will devote a lot of attention to this point, but first we’ll talk about the physics. In

words, the eigenvalue equation B2 = 1 says Ψ(C) = Ψ(C ′) whenever C ′ = C + ∂p

for some plaquette p in the lattice. By repeatedly applying this rule, this means the

wavefunction is the same whenever C ′ and C can be continuously deformed into each

other by attaching or removing any collection of plaquettes.

If the lattice were simply connected4 – if all curves are the boundary of some region

contained in the lattice – then this would mean that there is a unique groundstate

Ψ(C) = 1

|gs0〉 =
∑
C

|C〉 =
∏
p

1

2
(1 +Bp)⊗x |0〉x ,

the uniform superposition of all contractable loops. In the second expression we act

on a trivial product state (satisfying the closed-string condition) with a projector onto

Bp = 1 for all p. You can see that its binomial expansion creates the superposition.

Topological order. In contrast, if the space has non-contractible loops, as for

example if we impose periodic boundary conditions on our square lattice, then the

local eigenvalue equation Bp = 1 does not determine the relative coefficients of loops of

different topology! On a space with 2g independent non-contractible loops, there are

22g independent groundstates.

Let me be more explicit about the torus groundstates. The torus is just a square

with periodic boundary conditions in both directions, which I denote by . Let

P ≡
∏

p
1
2

(1 +Bp) be the projector onto all plaquette operators equal one. Then the

4A distracting persnicket that you should ignore: You might complain that the only simply-

connected space without boundary in two dimensions is the 2-sphere. But it is not possible to have

a perfect square lattice on a sphere. This is forbidden by Euler’s theorem which says that if we chop

up a surface into simply-connected pieces, the number of vertices V , edges E and faces F satisfy

V −E + F = χ = 2− 2g. But on a perfect square lattice, each face is associated with one vertex and

two edges, so χ = 0. One way out is to allow a boundary; that works but requires saying something

about boundary conditions, which I postpone until §1.6. Another way out is to allow some of the

faces not to be squares, which we will see momentarily is quite innocuous.
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groundstate subspace is spanned by

P

∣∣∣∣∣
〉

= |gs0〉 , P

∣∣∣∣∣
〉
, P

∣∣∣∣∣
〉
, P

∣∣∣∣ 〉
= P

∣∣∣∣∣
〉
.

For example the groundstate P

∣∣∣∣∣
〉

is a superposition of all closed loops, an odd

number of which wind around the x direction (and an even number of which wind

around the y direction).

The number of these groundstates is an integer which distinguishes this phase from

the trivial phase, which has a unique groundstate (the representative is ⊗x |→〉x) on

any space.

To see that this degeneracy is stable to local perturbations of the Hamiltonian,

observe that no local operator mixes these groundstates. Instead, they are connected

only by the action of WC – Wilson loops:

WC ≡
∏
`∈C

X`,

where C is a non-contractable curve – a closed curve which is not the boundary of

a collection of plaquettes in the lattice. Acting on the state which is the uniform

superposition of contractable loops |gs0〉, this operator creates a non-contractable loop.

Note that WC commutes with P , so P

∣∣∣∣∣
〉

= PWCx

∣∣∣∣∣
〉

= WCx = P |gs0〉.

To see that the resulting state must be independent of |gs0〉
and to understand the multiplicity better, define the conju-

gate (magnetic) loop operator

VČ ≡
∏
`⊥Č

Z`,

where Č is a path which passes in between the lattice points,

and ` ⊥ Č means ` is a link crossed by this path. (Soon we

will learn to view Č as a path in the dual lattice.)

The operators V and W commute with HTC and don’t commute with each other –

specifically WC anticommutes with VČ if C and Č intersect an odd number of times

VČWC = (−1)#C∩ČWCVČ . (1.1)

This algebra (sometimes called a Heisenberg algebra) must therefore be represented

on the groundstates (actually on every energy level), and it has no one-dimensional
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representations. I’ll say more about the representations in a simple example in a

moment.

The resulting degenerate space of groundstates is protected: the operators which

take one of these states to another are not local operators. Rather, the logical operators

which take one groundstate to another are the loop operators V,W . A hostile environ-

ment coupling to the quantum system probably couples to it just by local operators,

and will act trivially on the degenerate subspace. This is the idea of topologically

protected quantum memory. Each pair of V and W that anticommute act as Pauli X

and Z on a protected qubit.

Consider the infinite cylinder. There is a nontrivial class

of loops, call a representative γ. Let η be a line running

along the long direction of the cylinder, as in the figure. A

new groundstate is generated from |gs0〉 by the action of the

‘Wilson loop operator’

W (γ) ≡
∏
`∈γ

X`.

in the sense that

|gs1〉 = W (γ) |gs0〉 . (1.2)

This is also a groundstate (of HTC) since there is no plaquette that violates Bp or star

that violates Aj (more simply: [HTC,W (η)] = 0). These two states can be distinguished

by the action of

V (η) ≡
∏

` crossed by η

Z`

in the sense that

V (η) |gsα〉 = (−1)α |gsα〉 , α = 0, 1.

How did I know this? Since V 2 = W 2 = 1, the eigenvalues of V and W are ±1. And

{V (η),W (γ)} = 0 because they share a single link (the one pointed to by the yellow

arrow in the figure). If we diagonalize V , the two eigenstates are exchanged by the

action of W :

V (W |V = −1〉) (1.1)
= −WV |V = −1〉 = +W |V = −1〉 implies W |V = −1〉 = |V = +1〉 .

Now consider a perturbation of the toric code hamiltonian:

H = HTC − g
∑
`

X` − h
∑
`

Z`.

13



At finite g, h (and in finite volume), there is tunneling between the topologically de-

generate groundstates, since in that case

[H,
∏
`∈γ

X`], [H,
∏
`∈η

Z`] 6= 0.

This means

〈gs0|H |gs1〉 ≡ Γ 6= 0,

which will lead to a splitting of the topological degeneracy. However, arriving at a

nonzero amplitude Γ in perturbation theory requires the creation of a particle excitation

on some site (i.e. a site j with Aj = −1, which costs energy 2 times the coefficient

of the star term which I set to 1; actually it must also have a partner, so it costs

energy 4), which then must hop (using the −gX term in H) all the way along the path

γ, of length L (and annihilate with its partner), to cancel the action of W (γ). The

amplitude for this process goes like

Γ ∼ 〈gs0| (−gX1) (−gX2) · · · (−gXL) |gs1〉
4 · 4 · . . . 4

∼
(g

4

)L
= e−L| log g/4|

which is extremely tiny in the thermodynamic limit (if g < 4). The way to think

about this is that the Hamiltonian is itself a local operator, and cannot distinguish

the groundstates from each other. It takes a non-perturbative process, exponentially

suppressed in system size, to create the splitting.

Spontaneous breaking of one-form symmetries. An interpretation of this

phenomenon which may make it seem more familiar is the following. Recall that

spontaneous symmetry breaking happens when the groundstate does not respect a

symmetry of the Hamiltonian. A symmetry G of the hamiltonian is implemented on

the Hilbert space by a collection of unitary operators U which form a representation

of G. The symmetry is broken if U |gs〉 6= λ |gs〉 for some phase λ, meaning that U |gs〉
is a linearly independent groundstate.

This looks just like what happened in (1.2). The only difference is the following.

Ordinary symmetries, associated with a transformation that acts everywhere in space,

are represented by operators of the form U =
∏

x ux where ux has support near the

point x, and the product runs over all space. For example, in the Ising ferromagnet,

there is a Z2 symmetry acting by Zi → −Zi for all i, generated by U =
∏

iXi.

In contrast, the unitary symmetry operator W (γ) is supported only on the curve γ.

Moreover, the action of W on the space of groundstates is not changed if we deform
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the path η by adding collection of plaquettes. This is called a one-form symmetry56

Topological order is spontaneous breaking of discrete higher-form symmetries.

String condensation. Notice that the phase with topological order involves the

condensation of the electric flux strings, in the sense that the operators B2 (or more

generally WC for contractable loops) which create these strings have a nonzero ground-

state expectation value:

〈gs|B2 |gs〉 g=∞= 1.

This is the order parameter for the 1-form symmetry-breaking. As with an ordinary

condensate of bosons, away from the zero-correlation-length limit (g = 0), the conden-

sate will not be exactly 1, since nonzero g suppresses configurations with electric flux.

But within the topologically-ordered phase it will be nonzero.

Unlike condensation of particles and breaking of 0-form sym-

metries, which can be realized by product states, string con-

densation means long-range entanglement: The picture at

right shows why – in a state described by fluctuating closed

strings – there is a contribution to the entanglement entropy

of region A which is independent of the size of A: if a string

enters A and it is known to be closed, then it must leave

again somewhere else; this is one missing bit of freedom, so

S ∼ L/ε− log 2.
[fig: Tarun Grover]

It is nice to try to incorporate topological order into the Landau paradigm for

ordered phases, but here is a small warning. Higher form symmetries do not al-

ways behave in the same way as ordinary (0-form) symmetries. In particular, notice

that away from the toric code fixed point, the one-form symmetry is not exact, since

[H,W ] 6= 0, [H, V ] 6= 0. However, this microscopic violation of the 1-form symmetry

heals itself at low energies – it is an emergent symmetry.

Gauge theory notation. Why do I call the operators W Wilson loops? To make

it look more like gauge theory familiar from high energy physics, regard the variable

5Notice that the operators WC and WC+∂p act in the same way on the groundstates. Such string

operators are deformable. This distinguishes one-form symmetry from what is called subsystem sym-

metry: this is when the unitary operator implementing a symmetry is supported on a subsystem, but

the detailed geometry of which subsystem makes a difference. This results in a much larger symmetry

group and is associated with fracton physics.
6In the previous footnote, I said the word ‘group’. It’s true that the string operators form a group.

But note that the composition of two string operators wrapping e.g. conjugate cycles of the torus

gives an operator which is supported on a region which is not a manifold, since the two strings cross.

More generally, one must allow symmetry operators supported on graphs.
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X appearing in the plaquette operator as

“ Xij = ei
∫ j
i ~a·d~s ′′

the holonomy of some fictitious continuum gauge field integrated along the link. More

precisely, let

Xij ≡ eiπaij , aij = 0, 1.

Then the plaquette operator is

B2 =
∏
`∈2

X` “ = ei
∮
∂2 ~a·d~l ” = eiπ

∑
◦

∂2a
Stokes

= eiπb2 ,

where b2 is the (discrete) magnetic flux through the plaquette 2. In the penultimate

expression, the symbol
∑
◦ is intended as an analog of

∮
to emphasize that we are

summing the as around a closed loop.

In the Hamiltonian description of gauge theory, the field momentum for ~a is the

electric field ~e. So, we call

Z` ≡ eiπe` , e` = 0, 1.

The idea is that X`Z` = −Z`X` then follows from the canonical commutation relation

[a`, e`′ ] ∝ iδ``′ upon demanding that both a and b are periodic and discrete variables.

The star operator is

A+ =
∏
`∈+

Z` = eiπ
∑
`∈+ e` ≡ eiπ(∆·e)+

where ∆ is a lattice divergence operator. (Think about applying the divergence theorem∫
D
~∇·~e =

∮
∂D
d~̀×~e on a small diskD around the point.) In this notation, the constraint

is

1 =
∏
`∈+

Z` ↔ ∆ · e = 0 mod 2.

This is binary electrodynamics, electrodynamics mod two. Electric charges are viola-

tions of the Gauss’ Law constraint: if

(∆ · e) (i) = 1 mod 2

at some site i, we say there is a Z2 charge at site i.

Excitations. There are two kinds of particle excitations in the 2d toric code:

violations of As = 1 and violations of Bp = 1. Notice that the former kinds of defects

would be strictly forbidden in ‘pure gauge theory’ since As = 1 is the Gauss’ law

constraint. So pure Z2 gauge theory is the limit where the coefficient of As goes to

infinity.
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But there is something funny about these excitations: it is not possible to create

a single excitation from the groundstate. Instead, the excitations are created by the

endpoints of open Wilson lines. Again there are two kinds:

WC =
∏
`∈C

X`, VČ =
∏
`⊥Č

Z`.

Here C is a curve in the lattice, and Č is a curve in the dual lattice, but now we allow

endpoints. Endpoints of WC violate As and are called e-particles. The ∆H = −g
∑

`X`

term is a kinetic term for the e-particles – when g = 0 they are localized in the sense

that they have a flat dispersion; a small g splits this degeneracy into a band.

Endpoints of VČ violate Bp and are called m-particles. At a plaquette around which

−1 = Bp = ei
∮
∂p a = ei

∫
p
~∇×a is some localized magnetic flux adding up to π – a lump

of π-flux. In the presence of the ∆H = −h
∑

` Z` term, this is a dynamical particle

which can hop around.

The e-particles and m-particles are both bosons in the sense that we can make a

collection of many e particles and the wavefunction is symmetrized. (Don’t be confused

by the fact that they are their own antiparticles.)

But the e-particles and m-particles are mutual semions.

What I mean by this is that if we put an m particle some-

where in the lattice and move an e particle around it, its

wavefunction acquires a minus sign. You can see this be-

cause the WC and VČ which create these particles and move

one around the other must share a single link and hence will

anticommute. From the gauge theory point of view, this is

just the Bohm-Aharonov effect of moving an electric charge

around a clump of π-flux.

This also means that a boundstate of e and m (which is called ε) is a fermion. A

fermion is a particle where

[End of Lecture 2]

The mutual statistics of e and m implies the topological groundstate degeneracy.

This is because we can regard the V and W operators (whose algebra generates the

groundstate subspace) as arising by creating a pair of anyons, moving one member of

the pair around a non-contractable loop, and then re-annhilating them.
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The phase diagram. Perturbations ∆H =

−
∑

l (gXl + hZl) produce a nonzero correlation length.

These couplings h and g are respectively an electric string

tension, and a hopping amplitude and fugacity for the e

particles. Make these too big and the model is confined

or higgsed, respectively. These are actually adiabatically

connected [Fradkin-Shenker 1979]: Both are connected to

the trivial state where e.g. H =
∑

lXl whose groundstate

is a product ⊗l |→l〉.
from Tupitsyn-Kitaev-Prokof’ev-Stamp, 2008

Confinement versus Higgsing. Consider for a moment the limit where h is

large and the coefficient of the gauss law (star) term is large, both compared to the

plaquette term. In that case, we can make the big terms happy just by setting Z = 1:

no electric flux. Inserting a pair of charges is accomplished by violating the star term

at two sites – this forces an odd number of the nearby links to have Z = −1. What’s

the lowest energy state with this property, as a function of the separation between the

two charges?

Its energy isthe potential between static

charges V (x). To find it, we need to mini-

mize

H(h→∞) = −h
∑
l

Zl

= E0 + 2hL(string) .

Here E0 = −h2N is the energy of the state with no electric flux and no external

charges, where 2N is the number of links. L(string) is the length of the electric flux

string: the string can be said to have a nonzero tension (energy per unit length), 2h.

Clearly this minimization is accomplished by a straight line, and the potential between

the charges is

V (x) = +2hx

which is linearly rising with the separation x between the charges, and implies a con-

stant attractive force

F = −∂xV = 2h.

This is confinement.

Taking large h is adding lots of m-particles and letting them hop around. If instead

we take large g, this is adding lots of e-particles – charges of the gauge theory – and

letting them hop around. Very roughly the transition happens when their dispersion
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curve touches the groundstate energy. Then they condense. Condensing the charges

leads to the Higgs phase of the gauge theory. In this model the confined phase at

h → ∞ and the Higgs phase at g → ∞ are adiabatically connected – they are both

the trivial phase, and their representatives ⊗` |0〉` and ⊗` |+〉` are related by a local

unitary rotation.

Stability of topologically ordered phases of matter. I’ve argued that the

special solvable toric code groundstate represents a phase of matter. My argument was

that the topological groundstate degeneracy can’t be lifted by adding local operators

to the hamiltonian because the degenerate groundstates are related only by the action

of string operators. This argument can be strengthened by showing what happens to

the string operators when perturbing the hamiltonian away from the solvable limit.

They are no longer supported on just a single curve of links, but rather develop some

thickness of order the correlation length. They can be constructed by a procedure

called quasiadiabatic filtering [Hastings-Wen 2004].

Renormalization group comment. The toric code is a special representative of

this phase, where the correlation length is zero (because all the terms in the Hamil-

tonian commute, nothing moves). In general, any gapped phase should have such a

special representative, which is easier to understand: it arises as the limit of any renor-

malization group (RG) flow starting from a point within the phase. Recall that at

a fixed point of the RG, the correlation length must be infinity or zero; for a gapped

fixed point, it is zero. The consolation prize is that such a fixed point is attractive from

all directions. The fixed point Hamiltonian for the trivial phase is −
∑

j Xj, which we

reach from the toric code in the limit h→∞.

A little more about gauge theory. I said earlier that the difference between

pure gauge theory and the toric code is just that in gauge theory states the violate

the gauss law are strictly forbidden, while in the toric code, they are only discouraged

energetically. It is also true that the (perturbed) toric code is identically the same as

Z2 gauge theory with charged massive bosonic matter fields, φi, living on the sites and

creating or annihilating the e particles. In the presence of charged particles, gauss’

law is modified to ∇ · ~E = 4πρ; the binary, lattice version of this is Aj(−1)n
φ
j = 1

where nφ = 0, 1 is the number operator for e particles. This model with φi has a gauge

redundancy (generated by Aj(−1)n
φ
j ) acting by φi → siφi, Xij → siXijsj, si = ±1.

The perturbation ∆H =
∑

` gX` is just a hopping term for these particles φiXijφj,

written in unitary gauge, where we choose si to set φi = 1.

General graphs. So far we’ve focussed on the toric code on the 2-dimensional

square lattice. Here is a simple and vast generalization. First, from the point of view of

the toric code, there is nothing special about the square lattice. The model is perfectly
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well-defined on any cell complex (and we’ll see soon that the space of groundstates and

the excitation types are independent of the details of the triangulation). Rather than

defining right now what I mean by cell complex (wait for §1.1), let me just say that

we can put the toric code on an arbitrary graph with some extra data. As before, put

qubits on the links.

The star operator associated with a site (“0-cell”) s is As ≡∏
`∈v(s) Z` where v(s) ≡ {`|s ∈ ∂`}, the set of links which

end on the site s (‘v’ is for ‘vicinity’).

The extra data, required to define the plaquette operators,

is some notion of faces of the graph: which 2-dimensional re-

gions w with boundary a collection of links in the graph do we

include. The plaquette operator associated with a face w is

Bw ≡
∏

`∈∂wX`. These star and plaquette operators all still

commute because they share either zero or two links. Again

the Hamiltonian is minus the sum of all star and plaquette

operators.

So we can indeed put the system on a contractable space without boundary, such

as the sphere. And we would find a unique groundstate.

Notice that this definition does not require that the graph is

2-dimensional (though for a planar graph it is obvious what

we mean by faces). For example, we can put the toric code

on the cubic lattice in 3 dimensions. We choose the faces to

be just the square faces of the cubes. In that case, the star

and plaquette operators are as in the figure at right.

Let’s talk about the excitations of the 3d toric code. A violation of the star operator

is still created by an open-string operator WC =
∏

`∈C X`. The ends of the string still

create e-particles.

But now the conjugate object is quite different. It

is an operator supported on a membrane M , a two-

dimensional subset of links:

VM ≡
∏
`⊥M

Z`.

At right I’ve drawn the operator associated with a

piece of flat membrane M in the cubic lattice.

As long as M has no boundary, ∂M = 0, this operator commutes with HTC. On

the boundary, ∂M , however, it fails to commute with the plaquette operators (the ones
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indicated in the figure) and creates a 1-dimensional locus of excitations – a magnetic

flux loop. Note that it must be a loop since ∂2M = 0, the boundary of a boundary is

empty.

In 3d the analog of braiding of e and m particles is now

braiding of the e particle around the m flux loop; again they

get a minus sign because the string operator C and membrane

operator M which accomplish this operation share a single

link, as in the figure at right on the three-torus T 3 = S1×S1×
S1 (i.e. periodic boundary conditions in all three directions).

1.1 Cell complexes and homology

Let’s extract the purely mathematical idea here. Take a d-dimensional manifold X

whose topology is of interest and chop it up into simply-connected cells. By “simply-

connected” here I just mean that each cell can be deformed into a ball. For d = 2

e.g. this means a triangulation (or squarulation or · · · ) into a set of 2-cells which

are triangles (or squares...), 1-cells which are intervals, and 0-cells which are points.

It is what physicists might call a lattice, though no translation symmetry is actually

required or assumed here. But it has more structure – it knows how it is glued together.

This gluing data is encoded in a boundary map ∂, which we define next. Let ∆k be the

set of k-cells in the triangulation of X, and choose an an abelian group A (e.g. Z2).

Define a vector space

Ωk ≡ Ωk(∆, A) ≡ spanA{σ ∈ ∆k}

to be spanned by vectors associated with k-cells σ, with coefficients in A. (We are

writing the group law of A additively, so e.g . for Z2 it is 1 + 1 = 0.) It does no harm to

introduce an inner product where these vectors σ are orthonormal. An element C ∈ Ωk

is then a formal linear combination of k-cells, and is called a k-chain – it’s important

that we can add (and subtract) k-chains, C + C ′ ∈ Ωk. A k-chain with a negative

coefficient can be regarded as having the opposite orientation.

The boundary map takes the vector space Ωk to the corresponding vector space for

the (k-1)-cells, Ωk−1:

∂k : Ωk → Ωk−1

This map ∂ is linear and takes a basis vector associated with a k-cell to the linear

combination (with signs for orientation and multiplicity) of cells the union of which lie
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in its boundary. (And it takes a basis vector associated to a collection of k-cells to the

sum of vectors.) For example, in this figure, w
y1y2

y3

we have ∂w = y1−y2+y3

(where I denote the vectors associated with the simplices by the names of the simplices,

why not?). This construction is called a cell complex7. A chain C satisfying ∂C = 0 is

called a cycle, and is said to be closed.

The fact that the boundary of a boundary is empty makes this series of vector

spaces connected by linear maps into a chain complex, meaning that ∂2 = 0. So the

image of ∂p+1 : Ωp+1 → Ωp is a subspace of ker (∂p : Ωp → Ωp−1). This allows us to

define the homology of this chain complex – equivalence classes of p-cycles, modulo

boundaries of p+ 1 chains:

Hp(∆, A) ≡ ker (∂ : Ωp → ∆p−1) ⊂ Ωp

im (∂ : Ωp+1 → Ωp)
.

These objects depend only on the topology of X and not on how we chopped it up.

Below we’ll discuss several points of view on this independence of homology on the

triangulation.

Hp(∆, A) is a vector space over A. In the case when A is a field (such as Zp for p

prime) the dimensions of these vector spaces over A are called the Betti numbers of

X. When A is not a field there can be more information called torsion, which we’ll

discuss.

Note that Hp(X,A) is also itself a group. The group law is just addition of rep-

resentatives: if C and C ′ are cycles, then the sum of their equivalence classes modulo

boundaries is [C]+[C ′] = [C+C ′]. This is independent of the choice of representatives.

So notice that states in Ω1(X,Z2) label a basis of the Hilbert space of the Z2 toric

code with qubits on the 1-cells ofX: an element of Ω1 is specified by a 0 or 1 for each link

of the cell complex. ker ∂1 is the subset of closed loops, and ∂2 : Ω2 → Ω1 determines

the action of the plaquette operator, so H1(X,Z2) labels a basis of groundstates. The

kernel condition comes from the star operator, the image condition comes from the

plaquette operator. In the next subsection, we’ll define the p-form toric code, with

degrees of freedom on the p-cells of a cell complex, whose hamiltonian is determined

exactly by the data of ∂p and ∂p+1, and its groundstate subspace is Hp(X). So the whole

homology of X is equivalent to a collection of p-form toric codes for every p = 0...d.

7There are many very closely related constructions (such as simplicial complex or ∆-complex or

semi-simplicial complex or CW-complex) but I will not distinguish between them. One distinction is

that we don’t care that all the cells are triangles or their higher-dimensional generalizations.
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[End of Lecture 3]

1.2 p-form ZN toric code

Consider putting a spin variable on the p-cells of ∆. More generally, let’s put an N -

dimensional hilbert space HN ≡ span{|n〉 , n = 0..N − 1} on each p-cell (the argument

of the ket is understood mod N), on which act the operators

Z ≡
N−1∑
n=0

|n〉〈n|ωn =


1 0 0 . . .

0 ω 0 . . .

0 0 ω2 . . .

0 0 0
. . .

 , X ≡
N−1∑
n=0

|n〉〈n+ 1| =


0 1 0 0

0 0 1 0
...

...
...

. . .

1 0 0 . . .


where ω ≡ e2πi/N is an Nth root of unity, ωN = 1. These satisfy the Heisenberg or

clock-and-shift algebra: XZ = ωZX. For N = 2 ω = −1 and these are Pauli matrices.

The new ingredient for N > 2 is that this requires us to choose an orientation of each

p-cell. We define Z−σ = Z−1
σ . The choice of orientation for each p-cell is completely

arbitrary, but making a different choice would change the form of the boundary map

and hence of the Hamiltonian8.

Because of the orientation, we need to define more carefully the ‘vicinity’ map v

which goes in the opposite direction from ∂ (but is not the inverse):

v : Ωp → Ωp+1,

σ 7→ v(σ) ≡ {µ ∈ ∆p+1|∂µ = +σ + anything} (1.3)

– it picks out the p+ 1-cells in whose boundary the p-simplex appears with a +19. To

be more precise, the property we really need for v is that it is the adjoint of ∂ with

respect to the innocent little inner product we introduced on the complex Ω:

〈σ, vµ〉 ≡ 〈∂σ, µ〉 . (1.4)

8Note that we can do this even if the manifold we are triangulating is not orientable, like the Klein

bottle or RPn for n even. Non-orientability is a global problem about parallel transporting a choice

of orientation around cycles of the manifold. Here we are just choosing an orientation locally, just a

reference orientation of each p-cell.
9For this to work out, it will be useful to assume that the coefficients in the boundary map are

only ±1, 0. I think the general definition is

v(σp) =
∑

µ∈∆p+1,∂µ=kσp+···

kµ.
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Consider the Hamiltonian

H = −Jp−1

∑
s∈∆p−1

As − Jp+1

∑
µ∈∆p+1

Bµ − Γp
∑
σ∈∆p

Zσ + h.c.

with

As ≡
∏

σ∈v(s)⊂∆p

Zσ, Bµ ≡
∏
σ∈∂µ

Xσ .

(The “+h.c.” means “plus hermitian conjugate” and makes the hamiltonian hermitian.

Unlike the case N = 2, the star and plaquette operators are not hermitian for N > 2.)

I claim that

0 = [As, As′ ] = [Bµ, Bµ′ ] = [As, Bµ], ∀s, s′ ∈ ∆p−1, µ, µ
′ ∈ ∆p+1

so that for Γp = 0 this is exactly solvable. Here’s why: the nontrivial one is

BµAs =
∏
σ′∈∂µ

Xµ

∏
σ∈v(s)

Zσ = AsBµ

∏
σ∈v(s)

∏
σ′∈∂µ

ω〈σ,σ
′〉 = AsBµω

〈v(s),∂σ′〉 (1.4)
= AsBµω

〈s,∂2σ′〉 ∂2=0
= AsBµ.

So the terms commute because of the fact that ∂2 = 0, the boundary of a boundary is

empty. This is the same reason that the homology of the complex Ω is well-defined. I

find this very satisfying.

For example, in the figures at right we show the case of d = 3

and p = 2 – the 2-form toric code on the cubic lattice. The

degrees of freedom live on the plaquettes. We can orient each

plaquette so the normal points in the +x̂,+ŷ or +ẑ direction.

A star operator is associated with each link and involves the

four adjacent faces, two are Zσ and two are Z†σ. The analog of

the ‘plaquette operator’ is now a volume operator associate

to each cube. It involves the six faces of the cube, three Xσs

(for the ones with normals pointing out of the cube ) and

three X†σs (for the ones pointing in). Any pair of star and

volume operators shares an even number of faces. If they

share two faces, one pair has XZ and the other pair has

X†Z, so the product commutes.

Here’s the solution: Suppose for motivation that Jp−1 � Jp+1,Γp so that we should

satisfy As = 1 first. This equation is like a gauss law, but instead of flux lines in the

p = 1 case, we have flux sheets for p = 2 or ... whatever they are called for larger

p. The condition As = 1 means that these sheets satisfy a conservation law that the

total flux going into the p − 1 simplex vanishes. So a basis for the subspace of states

satisfying this condition is labelled by configurations of closed sheets. For N = 2 there
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is no orientation, and each p-simplex is either covered (Zσ = −1) or not (Zσ = 1)

and the previous statement is literally true. For N > 2 we have instead sheet-nets

(generalizing string nets), with N kinds of sheets labelled by k = 0...N − 1 (including

the trivial one with k = 0) which can split and join as long as they satisfy∑
σ∈v(s)

kσ = 0 mod N, ∀s ∈ ∆p−1. (1.5)

This is the Gauss law of p-form ZN gauge theory.

The analog of the plaquette operator Bµ acts like a kinetic term for these sheets.

In particular, consider its action on a basis state for the As = 1 subspace |C〉, where

C is some collection of (N -colored) closed p-sheets – by an N -colored p-sheet, I just

mean that to each p-simplex we associate an integer kσ (mod N), and this collection of

integers satisfies the equation (3.3). The action of the plaquette operator in this basis

is

Bµ |C〉 = |C + ∂µ〉

Here C+∂µ is another collection of p-sheets differing from C by the addition (mod N)

of a sheet on each p-simplex appearing in the boundary of µ. The eigenvalue condition

Bµ = 1 then demands that the groundstate wavefunctions Ψ(C) ≡ 〈C|groundstate〉
have equal values for chains C and C ′ = C + ∂µ. But this is just the equivalence rela-

tion defining the pth homology of ∆. Distinct, linearly-independent groundstates are

labelled by pth-homology classes of ∆. More precisely, they are labelled by homology

with coefficients in ZN , Hp(∆,ZN).

We can reinterpret the toric code above as a p-form ZN gauge theory with ‘electric’

charged matter by associating an HN to each ` ∈ ∆p−1; I’ll call its Z operator Φ`.

Notice that Φ−` = Φ†`. We can introduce ZN gauge transformations

Φ` 7→ ω`Φ`, Zσ 7→
∏
`∈∂σ

ω`Zσ

(notice that the latter generalizes the transformation of a link variable, in which case

the boundary of the link is the difference of the two sites at its ends), in which case

the coupling

He =
∑
σ∈∆p

∏
`∈∂σ

Φ`Zσ + h.c.

is gauge invariant. Now notice that we may choose unitary gauge where we completely

fix the gauge redundancy by setting Φ` = 1. This produces the p-form toric code above.

(For the case p = 1, N = 2, this is explained in Fradkin’s book, 2d edition.)

It is interesting to consider other possibilities the collection of simplices on which

the matter resides. For example, put a spin on every simplex. With the appropri-
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ate hamiltonian, this should compute the whole homology complex H•(∆,ZN) =

⊕dp=0Hp(∆,ZN).

Ferromagnets and H0. An important special case is when the degrees of freedom

live on the 0-cells. The resulting model is a model of a ferromagnet: since there are no

(−1)-cells, there is no star term. The analog of the plaquette terms are just

−
∑
`∈∆1

∏
s∈∂`

Zs = −
∑
〈ij〉

ZiZ
†
j

for any pair of neighboring sites 〈ij〉. This term is minimized when Zi and Zj point in

the same direction.

What mysterious topological invariant is computed by the groundstates of a ferro-

magnet? If the space X is connected (meaning that there is a path of edges connecting

any site to any other), then there are |A| groundstates which tell us nothing about the

topology of X. But if X has more than one connected component, then each compo-

nent may independently choose a direction in A, and there will be |A|x groundstates

where x = H0(X) is the number of connected components of X. This is the point in

life of H0(X).

1.3 Some examples

The simplest possible example is complex with only a single 0-cell, a point. This has

H0(pt, A) = A, and all other Hn>0 vanish. If our cell complex were k 0-cells, we would

find H0(k pts, A) = Ak in agreement with the discussion above about ferromagnets.

Circle. Consider the cell complex at top right. This is a cellulation

of a circle with one 1-cell and one 0-cell. The boundary map is ∂e1 =

e0 − e0 = 0. The kernel is everyone and the image is no one. So the

homology (with integer coefficients) is H0(S1, A) = A = H1(S1, A).

Another cell decomposition of the circle is the bottom figure at right.

Now there are two 1-cells and two 0-cells with boundary map ∂y1 =

p1 − p2 = −∂y2. Now the complex looks like

0→ A2

 1 −1

−1 1


→ A2 → 0.

The kernel of ∂ is generated by y1 + y2. The complement of the image is gener-

ated by p1 ' p2 mod ∂. So we find the same answer for the homology as above,

b0(S1) = b1(S1) = 1.

Ball. Consider what happens if we add to the first example a 2-cell e2 whose boundary
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is e1 – i.e. fill in the interior of the circle in the picture. This makes a cellulation of a

2-ball. The complex is

0→ A
1→ A

0→ A→ 0.

In that case, e1 ∈ Im∂2, so it kills the first homology – Ω1 and Ω2 eat each other. This

complex has the same homology as a point. We’ll see later that this is because they

are related by homotopy – a family of continuous maps which starts at one and ends

at the other.

An important point: a demand we make of our cellulations is that each k-cell is

topologically a k-ball.

Torus. Consider the cell complex at right: It has one 2-cell

w, two 1-cells y1, y2 and two 0-cells p1, p2. Opposite sides are

identified. This is a minimal cell complex for the 2-torus,

T 2 = S1 × S1.

The boundary map on 2-cells is ∂w = y2 + y1 − y2 − y1 = 0.

One 1-cells it is ∂y1 = p− p = 0, ∂y2 = p− p = 0.

w

y1

y1

y2y2

p

p

p

p

All the boundary maps are zero! The chain complex is

0→ A
0→ A2 0→ A→ 0

This means that every generator of the cell complex is a generator of homology, and we

have H0(T 2, A) = A,H1(T 2, A) = A2, H2(T 2, A) = A (the betti numbers are b0(T 2) =

1, b1(T 2) = 2, b2(T 2) = 1.

We can also choose a less-minimal cellulation, as at right.

The boundary maps are ∂w1 = y3−y1−y2, ∂w2 = y1+y2−y3,

∂yi = 0. Now the complex is

0→ A2 ∂2→ A3 0→ A→ 0

with ∂2 =

(
−1 −1 1

1 1 −1

)
. Clearly ∂2 has rank 1, so the ex-

tra 2-chain and the extra 1-chain just eat each other leaving

behind the same homology as before.

w1

y1

y1

y2y2

p

p

p

p

w2

y3
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More generally, we can make a cel-

lulation of a genus g Riemann sur-

face Σg using a single plaquette, 2g

1-cells, and a single 0-cell. (The

torus is the case g = 1.) At right

is a cellulation of a genus 3 Rie-

mann surface. Again the bound-

ary maps are all trivial, and we see

that b0(Σg) = 1 = b2(Σg), b1(Σg) =

2g. You can see that we’re losing

some information here by choosing

an abelian group.

a1

a1

a2

a2

a3

a3

b3

b3

b2

b2

b1

b1

w

Spheres. Generalizing in another direction, we can make a sphere Sn, n ≥ 1

starting with an n-dimensional ball Bn– a single n-cell – and identifying all the points

on its boundary10 to make a single 0-cell: Sn = Bn/∂Bn. The boundary map for this

complex is again trivial. So b0(Sn) = bn(Sn) = 1 and all others are zero.

[End of Lecture 4]

Alternatively, we can make a sphere iteratively. Start with an

S0 (two points (S0 = {x|x2 = 1}) which I’ll call σ0 and Tσ0,

where T stands for anTipodal map), and glue in two 1-cells

(intervals, B1, which I’ll call σ1 and Tσ1) as in the figure at

right, so that ∂σ1 = σ0 − Tσ0 and ∂(Tσ1) = Tσ0 − σ0. This

makes an S1 as before. Now glue on two 2-cells (disks, B2,

which I’ll call σ2 and Tσ2) so that ∂σ2 = σ1+Tσ1 = −∂(Tσ2).

You see that this can go on forever with an alternation in the

sign ∂σk = σk−1 + (−1)kTσk−1 so that ∂2 = 0.

For example, for the 4-sphere we find the complex

0→ A2

 1 1

−1 −1


→ A2

 1 −1

−1 1


→ A2

 1 1

−1 −1


→ A2

 1 −1

−1 1


→ A2 → 0.

Now the boundary map in each dimension but the first and last has a 1d kernel and a

1d image, so no homology. So we get the same homology as above.

10Note that a single n-cell is not by itself an acceptable complex, since that n-cell has a boundary

and the boundary map needs somewhere to go.
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An example with torsion. Consider the cell complex at right: It

has one 2-cell w, two 1-cells y1, y2 and two 0-cells p1, p2. Opposite

sides are identified, but top and bottom are identified with a twist.

This is a minimal cell decomposition for the Klein bottle, an example

of an unoriented closed surface.

The boundary map on 2-cells is ∂2w = y2 + y1 − y2 + y1 = 2y1. On

1-cells it is ∂1y1 = p− p = 0 = ∂1y2.

w

y1

y1

y2y2

p

p

p

p

Here is the first place where we have to say something about the choice of A. If our

coefficient group were Z2, the map ∂2 would just be zero, and we would find the same

answers for H0,1,2(∆,Z2) as for the torus. With e.g. Z3 coefficients, however, 2y1 = y1

mod 3, so we find no generator of H2(∆,Z3), and only one generator of H1(∆,Z3).

With integer coefficients, we find

H2(∆,Z) = 0, H1(∆,Z) = 〈y1, y2|2y1 = 0〉 = Z2 ⊕ Z, H0(∆,Z) = Z = 〈p〉 .

(Here I am using an additive notation for these abelian groups, since we add the

coefficients.) The finite-group summands are called torsion homology.

With A = Z6 we find

H2(∆,Z6) = 〈3w|6w = 0〉 = Z2, H1(∆,Z6) = 〈y1, y2|2y1 = 0〉 = Z2⊕Z6, H0(∆,Z6) = Z6 = 〈p|6p = 0〉 .

The reason A = Z6 can detect the torsion is because Z6 contains zero-divisors, a

nontrivial torsion subgroup TG = {g ∈ G|ng = 0, n ≥ 1}. In contrast, if we choose

the abelian group to be a field (such as Zp with p prime or the rationals Q), which by

definition has no zero-divisors, the information about torsion is lost, as you can see in

the examples above.

You can see that the homology with coefficients in Zn is not just the integer ho-

mology mod n. Below I’ll say a little more about how they are related.

It is sometimes useful to think about the data specifying the boundary map as an

attaching map describing how the cell complex is assembled starting from the 0-cells

and working up in dimension, as the following examples illustrate. These examples

also show that torsion homology can occur for oriented manifolds.

RPn. Real projective space RPn is the space of lines through the origin in Rn+1.

Such a line is specified by a vector up to rescaling by a nonzero real number: RPn =

{~v ∈ Rn+1}/ (~v ∼ λ~v) , λ ∈ R\{0}. By rescaling, we can pick a gauge where |~v| = 1; this

leaves just the sign of λ unfixed, so RPn = Sn/ (v̂ ∼ −v̂) – the sphere with antipodal

points identified. The upper hemisphere (a Bn) is a fundamental domain for this Z2

action, but the Z2 still acts on the equator, which is a Sn−1:

RPn = Bn/
(
v̂ ∼ −v̂ on ∂Bn = Sn−1

)
.
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So we see that the boundary of the ball is itself RPn−1.

So we obtain a cell complex for RPn from one for RPn−1 by attaching

a single n-cell. What is the attaching map? Well, we’re going to again

divide up Sn−1 into two hemispheres, each of which will be associated

with a single (n− 1)-cell, σn−1. This one (n− 1)-cell is obtained from

the cell complex we made above for Sn by identifying its two (n− 1)-

cells, σn−1 and Tσn−1. There is one tricky point about the orientation

here. Let’s do the first couple: ∂σ1 = σ0 − Tσ0 = σ0 − σ0 = 0. But

as you can see from the figure at right ∂σ2 = σ1 + Tσ1 = 2σ1.

In fact ∂σ3 = σ2 − Tσ2 = σ2 − σ2 = 0 – it couldn’t be a plus sign because then

we’d get ∂2σ3 = 4σ1 6= 0, not a chain complex. The point is that the antipodal map in

dimension n reverses the orientation if n is even. So ∆(RPn) = σ0 ∪ σ1 · · · ∪ σn where

∂σi = (1 + (−1)i)σi−1. Torsion up the wazoo. So the complex is

· · · 0→ Z 2→ Z 0→ Z 2→ Z 0→ Z→ 0.

This gives

Hi(RPn,Z) =


Z, i = 0

Z2, i odd, < n,

Z, i = n, n odd,

0, else

.

You can check this answer for n = 2 with the cell complex at right, which

gives the complex

0→ Z ∂2→ Z2 ∂1→ Z2 → 0

with ∂2 = (2, 2), ∂1 =

(
1 −1

−1 1

)
.

w

y1

y1

y2y2

p2

p1

p1

p2

This is overkill on this example, but one way to compute the homology of a complex

is using the software Macaulay2. Here are the necessary commands for this example,

with integer coefficients:

d1=matrix{{1,-1}, {-1,1}}

d2=matrix{{2},{2}}

C = new ChainComplex; C.ring = ZZ;

C #0 = target d1; C #1 = source d1; C #2 = source d2;

C.dd #1 = d1; C.dd #2 = d2;

answer = HH C;

prune answer
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Incidentally, the group manifold of the rotation group SO(3) is RP3.

CPn. Complex projective space CPn is the space of complex lines (copies of C)

through the origin in Cn+1, CPn = {~z}/ (~z ∼ λ~z) , λ ∈ C \ {0}. We can choose a gauge

where |~z| = 1, leaving just a phase ambiguity: CPn = S2n+1/ (~z ∼ λ~z) , |λ| = 1. To fix

the phase, consider the region where zN+1 6= 0. Then we can use λ to set zN+1 > 0,

so that a general point is of the form ~z = (~w,
√

1− |~w|2), |~w|2 ≤ 1. But the set of

points {~w ∈ Cn, |~w|2 ≤ 1} is a B2n. Its boundary occurs when zN+1 = 0, which means

|~w| = 1, which is an S2n−1. On this locus, the phase redundancy still acts. So:

CPn = B2n/
(
ŵ ∼ λŵ on ∂B2n = S2n−1

)
.

Therefore the boundary is a copy of CPn−1. So a cell complex for CPn is ∆(CPn) =

σ0 ∪ σ2 ∪ · · · ∪ σ2n, and the boundary map is just zero. bi(CPn) = 1 for i even and

bi(CPn) = 0 for i odd.

At right is a visualization

of homology which I find

useful.

Euler-Poincaré theorem:

χ(X) ≡
d∑
p=0

(−1)pIp =
d∑
p=0

(−1)pbp.

Here Ip is simply the number of p-simplices in the triangulation. We’ve seen that this

is sometimes saturated by the minimal cellulation, i.e. no cancellation is required at

all.

Proof: Ip = dim Ωp = dim ker ∂p+dim Im∂p. This is made clear by the visualization

above. Now when we add these up with alternating coefficients, we get the alternating

sum of the betti numbers bp = dim ker ∂p − dim Im∂p+1, using the fact that 0 =

dim Im∂d+1. This gives a proof that the euler character is a topological invariant,

independent of the triangulation. �
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1.4 Higgsing, change of coefficients, exact sequences

[Bredon §IV.5] Suppose we’ve been talking about the toric code with gauge group A1

so far. And suppose A2 ⊂ A1 is a nontrivial subgroup (i.e. not A1 itself or the trivial

group with one element). (Since A1 is abelian, it is a normal subgroup.) How are

the toric codes with gauge group A1 and A2 related? One way they are related is by

Higgsing: For example, if A1 = Zpq, A2 = Zp for primes p, q, and X` is the generator of

A1, then we can add ∆H = −h
∑

`X
q
` . If we add such a term with large enough h this

term will cause a phase transition to a phase where the charges in A2 are proliferated,

a Higgs phase. Strings labelled by elements of A2 (multiples of q in the example) can

break, so they don’t produce nontrivial topological sectors. We end up with a toric

code with gauge group A1/A2 (= Zq in the example).

Consider the exact sequence

0→ A2
i→ A1

π→ A1/A2 → 0 (1.6)

where the map i is just inclusion, and π(g) is the projection onto the equivalence class

[g] modulo A2. Exact means that the image of i is the kernel of π.

Some brief comments: An exact sequence of groups like (1.6)

is called a group extension, more specifically, an extension of

G = A1/A2 by A2.

In general, a short exact sequence (meaning it has only three

nodes) can be visualized as a fiber bundle. The first node is

the fiber, the middle node is the total space the last node is

the base. A nice visualization I learned from Greg Moore is

at right.

i

π

This short exact sequence produces a corresponding short exact sequence on the

chain complexes

0→ Ω•(A2)
i→ Ω•(A1)

π→ Ω• (A1/A2)→ 0 (1.7)

where by putting • what I mean is that it’s true for any p. (Sometimes these maps

are denoted i], π] but I don’t feel a strong urge to distinguish them from the maps on

groups.) As long as the maps i, π commute with the boundary operator ∂ (such things

are called chain maps), any such a short exact sequence on chain complexes produces

the following long exact sequence on their homology:

Hp(A2) Hp(A1) Hp(A1/A2)

Hp−1(A2) Hp−1(A1) Hp−1(A1/A2)

∂?
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I’ve only drawn one step of it, but it is long in the sense that it continues above

and below what I’ve drawn. The horizontal maps are just the maps i and π acting on

representatives of homology. The vertical maps are the boundary maps ∂. The mystery

is the connecting homomorphism ∂?, sometimes (in this case) called the Bockstein.

Here’s the idea: Consider the following commuting diagram, which is just (1.7) with

the boundary maps ∂ written too:

Ωp(A2) Ωp(A1) Ωp(A1/A2)

Ωp−1(A2) Ωp−1(A1) Ωp−1(A1/A2)

∂ ∂ ∂

i

i

π

π

cb

∂ba = ∂?c 0

0

00

0

Ωp−2(A2) Ωp−2(A1) Ωp−2(A1/A2)
i π

00

∂ ∂

00

∂

Start with an element c ∈ ker ∂ ⊂ Ωp(A1/A2). Since the sequence is exact, this

means c = π(b) for some b ∈ Ωp(A1). Now act with ∂ on this guy: ∂(b) has the

property that it vanishes modulo A2, that is π(∂(b)) = 0 ∈ Ωp−1(A1/A2), since π

commutes with ∂ in the upper right box. But by exactness of the sequence, this

means ∂(b) ∈ Im (i : Ωp−1(A2)→ Ωp−1(A1)), that is, there exists a ∈ Ωp−1(A2) with

i(a) = ∂b. Using [i, ∂] = 0 in the lower left box, we have ∂a = 0, so a determines an

element of Hp−1(A2) – this is who we were looking for: ∂?c = a. This kind of argument

of homological algebra is called a diagram chase. A less explicit way to say what is the

connecting homomorphism ∂? is ∂?[c] = [i−1∂π−1(c)].

It remains to show that the resulting sequence is exact, so we have a little more

diagram-chasing to do. This step, of taking a short (2-step) exact sequence on the

complex and making from it a long-exact sequence on homology (or homotopy!) groups

is powerful and ubiquitous. Notice that it didn’t use any information about the nature

of the maps, except that they were chain maps.

Let me change notation for generality and hopefully clarity here. Suppose our short

exact sequence of chain maps is

0→ A•
i→ B•

π→ C• → 0.

We want to show that

...
∂?→ Hp(A)

i?→ Hp(B)
π?→ Hp(C)

∂?→ Hp−1(A)
i?→ · · ·
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is exact. This involves three statements: exactness at each of the three kinds of nodes.

These arguments are harder to read than they are to figure out. At each step there’s

basically only one thing you can do.

To see exactness at H•(A), suppose i?[a] = 0 for some a ∈ Ap. This means i(a) = ∂b

for some b ∈ Bp+1. What can we do with such a b? We can take π of it: π(b) = c.

Now what is ∂c = ∂πb = π∂b = πia = 0 by exactness of the short exact sequence. So

c represents a homology class, and by construction ∂?[c] = [a].

To see exactness at H•(C), suppose ∂?[c] = 0 for some c ∈ Cp. This means there’s

b ∈ Bp with πb = c, and ∂b = ia, with [a] = ∂?[c]. Now this means a = ∂a′ for some

a′ ∈ Ap. But ∂b = ia = i∂a′ = ∂ia′ means ∂(b− ia′) = 0 and π(b− ia′) = c, so we find

[c] = π?[b− ia′].

Finally, to see exactness at H•(B), suppose π?[b] = 0 for some b ∈ Bp. This means

πb = ∂c for some c ∈ Cp+1. By the fact that π is onto, this is c = π(b′) for some

b′ ∈ Bp+1. But now what is ∂b′? It’s not b. Consider

π(b− ∂b′) = πb− ∂πb′ = ∂c− ∂c = 0.

But now ker π = Imi implies that (b − ∂b′) = ia for some a ∈ Ap which is closed

because i(∂a) = 0 and i is injective. Therefore i?[a] = [b]. �

You can check that our answers for the homology of the Klein bottle above with

coefficients in Z2,3,6 are consistent with the long exact sequence induced by the short

exact sequence 0→ Z2
i
↪−→ Z6 → (Z6/Z2 = Z3)→ 0.

Universal Coefficients Theorem. I’ve explained the toric code for ZN gauge

group. Any discrete abelian group is of the form

A = Z× Z× · · · × Z× Zp1 × Zp2 · · · . (1.8)

It’s a theorem (the Universal Coefficients Theorem) that taking A = Z contains

all the information we would get by choosing other abelian groups. So although it’s a

bit pathological in that the local hilbert spaces are infinite-dimensional, the toric code

with gauge group Z is universal in this sense. I’m not going to explain this theorem

in lecture because it’s a bit complicated and I’m not sure I have any physics insight

about it to share11. [End of Lecture 5]

11Here’s how to find Hp(X,A) given Hp(X,Z). There’s an exact sequence (meaning a complex of

maps (the image of each one is in the kernel of the next) with no homology)

0→ Hp(X,Z)⊗A→ Hp(X,A)→ Tor(Hp−1(X,Z), A)→ 0.

If we know H•(X,Z), we know the first and third steps, so we know the middle step. Now what is

this Tor(B,A)? It is a gadget that asks whether the abelian groups B and A have zero-divisors in
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ZN toric code with N →∞? The toric code with the gauge group (1.8) is just a

collection of toric codes for each of the factors, sitting on top of each other, but some

of gauge group Z. You can ask it makes sense to study the toric code with gauge group

Z. The clock and shift operators are a bit singular in this limit. In particular, the

phases of the eigenvalues of Z get closer and closer together as N → ∞ – the space

of eigenvalues approaches U(1). This is the familiar fact that a discrete variable is

conjugate to a periodic variable (at finite N both conjugate variables are discrete and

periodic): think of the phase of Z = ei2π
n
N as the position of a particle on a circle of

unit radius, and then X = eip̂ is the translation operator.

In the limit N →∞ (to the extent that it can be said to exist) the state space runs

over all integers H∞ = span{|n〉 , n ∈ Z}. This is the Hilbert space of a U(1) rotor.

Another useful basis is the theta-vacua, aka Bloch waves:

|θ〉 =
∑
n

einθ |n〉 , θ ≡ θ + 2π .

We can think of θ as the direction in which the rotor is pointing.

In this case, we need no longer write the ‘mod N ’ in the star condition

0 =
∑
`∈v(s)

n` .

common.

To be more explicit about the definition of Tor: Any discrete abelian group is of the form Zm2

modulo some relations which say that some elements are zero divisors. A free resolution of B is an

exact sequence of the form

0→ Zm1 → Zm2 → B → 0

which encodes these relations in second map. If we tensor this sequence with A, we find

Am1 → Am2 → A⊗B → 0

that there can be a kernel in the first map. That kernel is defined to be Tor(B,A):

0→ Tor(B,A)→ Am1 → Am2 → A⊗B → 0

is exact. Tor(B,A) is independent of the choice of free resolution and is symmetric in its two argu-

ments. For example, a free resolution of B = Z2 is

0→ Z 2→ Z→ Z2 → 0.

Tensoring with A = Zn gives

0→ Tor(Z2,Zn)→ Zn
2→ Zn → · · ·

so we learn that Tor(Z2,Zn) = Zgcd(n,2). If you want to learn more about this I highly recommend

this concise and clear video. (Amazingly, Prof. Borcherds seems to be producing one such video every

day.)
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This is more obviously a lattice version of the gauss law condition 0 = ~∇ · ~E for E&M.

A term which imposes this condition energetically just as well as As = 1 is the first

term in

H = −J
∑

s∈∆p−1

 ∑
σ∈v(s)

nσ

2

−
∑

µ∈∆p+1

∏
σ∈∂µ

eiθσ + h.c..

where

[nσ, e
±iθσ′ ] = ±eiθσδσ,σ′

– i.e. e±iθ are raising and lowering operators. This second term more obviously ap-

proaches cos ~∇× ~A in the continuum limit. Near the minima of the cosine, where (∇×
~A)2 is small, we can Taylor expand and the Hamiltonian looks like H =

∫
d2x

(
J (∇ · E)2 +B2

)
,

not quite the Maxwell energy. If we take J → ∞ (to impose Gauss’ law exactly) and

perturb by

∆H = −g
∑
`

(Z` + h.c.) = −g
∑
`

cosn` ' const +
g

2

∑
`

n2
` + · · · '

∫
g

2
E2 + · · ·

we get the Maxwell energy. As Polyakov showed, in low dimensions, ignoring the

nonlinear terms in the cosines is not always a good idea. If it is a good idea, the theory

has a gapless photon. If it’s not a good idea then the theory confines, which means (in

the absence of symmetry) that it is in the trivial phase. For more on this see §7.2 of

these lecture notes.

Notice that for any finite N there are two conjugate ZN operations we might con-

sider, one generated by X, which acts by O → XOX†, so in particular

ZXN : Z→ ωZ,X→ X,

and one generated by Z, which acts by O → ZOZ†,

ZZN : Z→ Z,X→ ωX.

In the limit N →∞, one of these acts by the U(1) transformation θ → θ + ε.

1.5 Independence of cellulation

We’ve seen in a few examples that subdividing a cell into two cells does not change the

homology of the complex.

Here is a mathy version of the general argument. Begin with a cellulation of a

manifold, which produces a cell complex Ω•. (The • is meant to indicate the collection

of all possible indices.) Consider subdividing a single cell. In the figure we do this for
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a two-dimensional space, by replacing a 2-cell w0 by three 2-cells w12, w23, w31, three

1-cells yi, i = 1..3 and one new 0-cell p. This produces a new cell complex Ω̂•.

w12 w23

w31

y2

y1 y3

p
w0

p1

p2

p3

y12
y23

y31

These complexes participate in a short exact sequence:

0→ Ω•
i→ Ω̂• → Ω′• → 0

where each Ω′q ≡ Ω̂q/Ωq is defined by the demand that the sequence is exact. The map

i : Ωq ↪−→ Ω̂q is an inclusion defined by |w0〉 7→
∑

i |wi〉 (and any other cell just maps

to the cell with the same label). Since this map is injective (and any equivalence class

[σ] ∈ Ω̂q/Ωq has a representative σ ∈ Ω̂q), the sequence is exact.

As in the previous subsection, this short exact sequence on chain complexes pro-

duces a long exact sequence on homology:

Hp(Ω) Hp(Ω̂) Hp(Ω
′)

Hp−1(Ω) Hp−1(Ω̂) Hp−1(Ω′)
(1.9)

But now I claim that H•(Ω
′) = 0. The exactness of the sequence (1.9) then implies

that H•(Ω) = H•(Ω̂). To be completely explicit: if we have an exact sequence of

the form 0 → A
φ→ B → 0, exactness at A says ker φ = 0 and exactness at B says

Imφ = ker (0) = B, so φ is an isomorphism. We conclude that the homology is

unchanged by subdivision.

To see that H•(Ω
′) = 0 notice that because Ω′ ≡ Ω̂/Ω, it only contains those cells

which are added by the subdivision. In the example above,

Ω′0 = 〈p〉Ω′1 = 〈yi〉 ,Ω′2 =

〈
wij|

∑
ij

wij = 0

〉
.

By 〈x〉 I mean ‘the vector space over A generated by x’ The relation among the 2-cells

comes from the fact that
∑

ij wij = w0 is the original cell, which is in Ω, and hence

37



equivalent to zero in Ω′ = Ω̂/Ω. The boundary operator is:

∂wij = yi − yj + yij = yj − yi mod Ω, ∂yi = p− pi = p mod Ω

where in both cases we set to zero components of the boundary which are part of Ω.

So the relevant part of the complex Ω′ (with an extra generator at Ω′2) is

Z3 M→ Z3 N→ Z→ 0,

with (in the basis (12, 23, 31) for the faces)

M =

−1 1 0

1 0 −1

0 −1 1

 , N =
(
1 1 1

)
.

As you can see, NM = 0. Since p ∈ Im∂1 = ImN , H0(Ω′) = 0. On Ω′1, ∂1 = N

has a 2-dimensional kernel, but ∂2 = M has a 2-dimensional image from Ω′2. (M has

rank 2 since, e.g., its singular values are (
√

3,
√

3, 0)). The only kernel of ∂2 = M is∑
ij wij = 0 in Ω′2.

More poetically, the complex Ω′ describes a triangulation of a disc, but with the

nontrivial homology (in p = 0) removed.

But for our purposes, there is a better way to demonstrate the subdivision invari-

ance.

X

Z

The figure is describing a process of

adding an ancilla qubit and incorpo-

rating it into the lattice model. In

each case, the ancilla begins its life in

a trivial decoupled state. In the top

row, its hamiltonian is H0 = −cX,

in the bottom row, it is H0 = −cZ,

where c is some large energy. Recall

that adding decoupled bits is allowed

and doesn’t change the phase.

We act on the hamiltonian with a (brief!) series of 2-qubit gates. You should

think of this as varying the coupling constants of the hamiltonian within the phase.

The specific gates are as follows: the black arrows indicate CNOT gates, which act on

2-qubits as

CX ≡ |0〉〈0|C ⊗ 1T + |1〉〈1|C ⊗XT

where C is for ‘control’ and T is for ‘target’. The arrow points from the control

bit to the target bit, C → T . When conjugating operators the CNOT gate acts as
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(O ↔ CXOCX)

1CZT ↔ ZCZT
1CXT ↔ 1CXT

ZC1T ↔ ZC1T
XC1T ↔ XCXT

It is a fun exercise to convince yourself that this maps the TC Hamiltonian on the

initial graph to a Hamiltonian with the ‘stabilizer algebra’ of the final graph. (That

little outpouring of jargon was necessary because the terms in the resulting H are not

exactly the same; rather we get terms like Bp1Bp2 + Bp1 where p1 and p2 are the new

plaquettes. But the set of groundstates is the same.) That is

Hcoarse = HTC ⊗ 1 + 1 ⊗H0 7→ Hfine ≡ UH0U
†

which has a groundstate subspace isomorphic to HTC on the finer lattice.

You can convince yourself that any two cell decompositions of a given manifold are

related by a sequence of these two operations.

These operations were written down in this paper by Vidal and Aguado. They were

thinking of it as entanglement renormalization: a sequence of steps starting from the

groundstate of a given hamiltonian on a fine lattice to produce a groundstate of the

hamiltonian on a coarser lattice (times a bunch of decoupled bits). Since the operations

are unitary, they are completely reversible and can be regarded either as subdivision

or coarse-graining.

1.6 Gapped boundaries and relative homology

So far I haven’t said much about spaces with boundary. Many boundary conditions

are possible on the toric code. Two are special in that they are gapped.

At a rough boundary, plaquettes are missing a link;

we still include the broken plaquette operatorB123 =

X1X2X3 in the hamiltonian. At a smooth boundary,

stars are missing a link; we still include the broken

star operator A456 = Z4Z5Z6.

1

2
3

4

5

6

rough

smooth

All these operators still commute, and the groundstates still have the same form,

except: for rough boundaries, the strings (over which we sum in the groundstates) are

allowed to end at the boundary – this doesn’t violate any star operators.
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Relative homology. Consider a space X and a subspace Y which includes its

boundary. Cellulate X and Y into associated cell complexes CX and CY . The inclusion

Y ⊂ X means that there is a short exact sequence on the complexes:

0→ CY
•

i→ CX
•

π→ CX/Y
• → 0. (1.10)

If you like, the complex at right, the quotient, is defined by making this sequence

exact. The idea is that in the complex CX/Y , a chain in Y is regarded as zero12. We

already studied an example of this in our discussion of subdivision. The homology of

this complex is called the relative homology H•(X/Y ) (of X relative to Y ).

But this is just what we get by taking the toric code on a cellulation ofX and cutting

out (erasing) the subspace Y so that X ends with with all-rough boundary conditions.

(In fact the answer with all-smooth boundary conditions is not really different; they

are related by a duality. But the description is different and not quite the same as

relative homology.)

As you might have expected, the short exact sequence (1.10) induces a long exact

sequence relating the homology of X, of Y and the relative homology:

· · · → Hp+1(X/Y )
∂?→ Hp(Y )

i?→ Hp(X)
π?→ Hp(X/Y )

∂?→ Hp−1(Y )→ · · ·

So if you know the homology of all of X and of Y (which by the way, has smooth

boundary conditions), then you can use this exact sequence to figure out the relative

homology. Or, more often, if you know the homology of Y and the relative homology,

you can find the homology of all of X.

12Warning about notation: I called this complex CX/Y because it enjoys an equivalence relation

where cells in Y are regarded as zero. A distinct thing we could mean by X/Y is the space where

we say that each point in Y is equivalent to every other, i.e. identify Y to a point. Perhaps a better

notation would have been CX\Y . Thanks to Ahmed Akhtar for pointing out this ambiguity.
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Physical picture of boundary conditions. Consider how

the smooth and rough boundary conditions interact with the

excitations of the toric code. At a rough boundary, an e-

particle (the end of an electric string) simply disappears into

the boundary. But an m-particle gets stuck – there is still

a (broken) plaquette operator to be violated at the bound-

ary. At a smooth boundary, the situation is reversed: an

m-particle is absorbed into the boundary without violating

any terms in the hamiltonian, while the e-particle gets stuck

(still violates the broken star operator).

A smooth boundary is like removing a row of faces, saying we don’t care if those

terms are violated, while a rough boundary is like removing a row of sites.

We can say that at a rough boundary the e-particle is condensed. Recall that

saying that an excitation p is condensed in state |ψ〉 means that its creation operator

Op has an expectation value: 〈ψ|Op|ψ〉 6= 0. A creation operator for an e-particle at

site i is just Xij for any link ij ending at i. We can make this operator condense by

adding a term to the hamiltonian ∆H = −ΓbigXij. Then this will persuade the qubit

on this link to be in the state |+〉 with Xij |+〉 = |+〉, meaning that acting on this

state we can regard Xij as 1. Then in any plaquette operator in which it participates,

Bijkl = XijXjkXklXli, we can replace it with 1, leaving behind XjkXklXli, the broken

plaquette defined above.

So a good way to think about the relative cohomology of X relative to Y is to

imagine adding ∆H = −Γbig

∑
`∈Y X` to condense e particles everywhere in Y and put

the system into the higgs phase in that region. Then we don’t care if we violate the

star operators in that region because they’re already violated.

[End of Lecture 6]

Rough and smooth boundary conditions are dual to each other in a way I will

explain in §1.7.

Oracular comment on larger picture. [Kitaev-Kong 1104.5047] So we’ve seen

that there is an interesting interplay between the data of the bulk excitations and their

behavior at a gapped boundary. Which subsets of the anyons can be condensed? To
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condense two anyon types in the same state requires the anyons to have trivial mutual

statistics – to be mutually local. It turns out that the possible boundary data actually

determines the bulk topological order up to a certain equivalence relation (‘Morita

equivalence’) which turns out to be just duality.

1.7 Duality

You may notice an apparent asymmetry between our descriptions of rough and smooth

boundary conditions on the toric code: the electric strings (over which we sum in the

groundstate wavefunction) are allowed to end on a rough boundary and not on a rough

boundary. The asymmetry arises because we wrote the wavefunction in the Z-basis,

where the star operator is diagonal.

Let’s write the wavefunction in the X-basis and see what happens. A configuration

which satisfies the plaquette condition Bp = 1 then has
∏

`∈∂p x` = 1. We can interpret

this again as a closed-string condition in the following way: introduce the dual lattice.

Let’s do it first in two dimensions. For each 0-cell in the original complex ∆, introduce

a 2-cell in the dual complex ∆∨. For each 2-cell in the original complex, introduce a

0-cell in ∆∨. For each 1-cell in ∆, we have a 1-cell in ∆∨. It remains to define the

boundary map. Let’s postpone the general description for a moment and show how it

works for the square lattice.

In the figure at right, the black edges are the original square

lattice; the green edges are the dual lattice. You can see

that the plaquette operator on the original lattice is a star

operator on the dual lattice, up to the exchange of Z` for X`.

But this is just a local basis transformation, accomplished

by an on-site unitary operator, HZH = X,HXH = Z, H =

|0〉〈+| + |1〉〈−| = 1√
2

(
1 1

1 −1

)
,H† = H,H†H = 1,H2 = 1 (the

Hadamard gate). The plaquette operator on ∆ also becomes

the star operator on ∆̌, with the same interchange.

It’s not hard to check that the orientations work out in the ZN case. For A = ZN ,

the matrix which generalizes H is the character table of G (normalized to make it

unitary)13. For example, for N = 3, it is

H =
1√
3

1 1 1

1 ω2 ω

1 ω ω2

 .

13In case you’ve forgotten, the character table is χαa ≡ trRa
U(gα) = trRa

U(hgαh
−1), where α labels

a conjugacy class of A, while a labels an irreducible representation (irrep) of A.
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So we see that the Z basis is labelled by conjugacy classes while the X basis is labelled

by irreps. For an abelian group there is not much difference between either of these

and elements of the group. But this is a hint about the generalization to nonabelian

groups (§3.9), where these are very different things.

Let’s go back to writing the groundstate wavefunctions in the X basis: this real-

ization restores the symmetry between electric and magnetic excitations. If we draw

links of the original lattice when they are in a state X = −1, the plaquette condition

is hard to interpret. But suppose instead we draw the links of the dual lattice. Then

the plaquette condition (of the original lattice) is just the condition that the strings

on the dual lattice are closed. And the star operator As on the original lattice hops

these strings across the plaquette of the dual lattice corresponding to the site s. That

is: the wavefunction in the X-basis is just uniform superpositions of closed (magnetic)

strings on the dual lattice. Just as the electric string on a curve C is created from∏
` |0〉` by the operator WC , the magnetic string on a curve Č is created from

∏
` |+〉`

by the operator VČ .

This lattice duality operation extends to more general cell

complexes, not just a regular lattice. A useful orientation

convention is that the orientation of the new green link per-

pendicular to a link of the original lattice makes a right turn

relative to the orientation of the original link.

More generally, for a d-dimensional cell complex (where d is the dimension of the

largest-dimension cells), we replace p-cells in ∆ with (d− p)-cells in ∆∨. A good way

to think about the duality map is that to each p-cell σp of ∆ we associate a (d−p)-cell

σ∨d−p roughly in such a way that they combine to form a local volume element. More

precisely, I believe the boundary map on ∆∨ can be defined by

∂
(
(σp)

∨) ≡ (v(σp))
∨ ∈ ∆∨d−p−1 .

If the space being triangulated is not oriented, I don’t know how to make this work for

ZN , N > 2. We need a choice of orientation in saying which way was a ‘right turn’ in

defining the boundary operator.

This operation we’ve defined here isn’t really a duality from the physics point of

view – it’s just a relabelling of the local variables. Mathematically, it says something

interesting, however: it says that when this operation of constructing the dual cell

complex makes sense (it certainly makes sense for A = Z2 (or any other field) and for

cellulations of oriented manifolds X14), there is a dual description of the same space

14Full disclosure: I’m still not entirely sure what goes wrong if X is not oriented, but we’ve already
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of groundstates (hence the (torsion-free) homology of X) which interchanges the roles

of p-cells and (d− p)-cells. This implies (let’s just say with Z2 coefficients to be safe)

that Hp(X,Z2) ' Hd−p(X,Z2). This is a version of Poincaré duality.

Corollary: χ(Mn) = 0 if n is odd.

In 3d, for example, this operation exchanges the 1-form toric code (with degrees of

freedom on the links) and the 2-form toric code (with degrees of freedom on the plaque-

ttes). Here is a way to make this less surprising: Write the groundstate wavefunctions

for the original 1-form toric code in the X-basis. How to describe the plaquette condi-

tion? As in 2d, the best way is in terms of the dual lattice (note that here I won’t switch

X and Z on the dual lattice since the model is not self-dual anyway): If a link is in the

state X = −1, cover the plaquette of the dual lattice that it pierces. The plaquette

operator demands that the set of covered plaquettes is closed. The star operator for

a site s As =
∏

`∈v(s) Z` hops these plaquettes across the volume cell dual to s. Thus,

the wavefunctions of the 1-form toric code in the X-basis are uniform superpositions

of closed membranes.

In any dimension duality exchanges the 0-form toric code, i.e. the ferromagnet, with

the d-form toric code, which is (at least on an oriented space) also just a ferromagnet.

Finite temperature quantum memory. In 4d something interesting happens:

the 2-form toric code is self-dual in the same way the 1-form toric code in 2d is self-dual.

This means there are no particle excitations (created by string operators). This model is

extremely interesting for the following reasons15. All of the topological phases of matter

we’ve discussed so far are zero-temperature phases – properties of the groundstate.

What happens if we put them at finite temperature (i.e. consider the mixed state

ρ = e−βH/Z for β < ∞)? Do they still represent a phase distinct from the trivial

product state that one reaches at β → 0, infinite temperature?

The answer, in all the examples so far until this one, is no: At any finite temperature

such topological order is destroyed by the proliferation of defects of the appropriate

nature. For 1-form gauge theory in any dimension, the appropriate defects are par-

ticles; the topologically-protected degenerate groundstates differ by the action of the

holonomy of these particles around topologically non-trivial curves (the Wilson loop op-

erators). Any finite temperature introduces a system-size-independent density of these

particles, n(T ) ∝ e−∆/T , where ∆ is the energy gap. Away from the zero-correlation-

seen some examples where Hp(X,A) 6= Hd−p(X,A), such as X = K, Klein bottle, A = Z6, where

H0 6= H2. Another example is X = K × S1 and A = Z6, where H1 6= H2. Thanks to Bowen Shi for

discussions of this point.
15I think this was first pointed out in Dennis-Kitaev-Landahl-Preskill, 2001; the following discussion

comes from here. Perhaps later I’ll have a chance to explain what we were doing in that paper. Another

paper which discusses these issues is this one
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length fixed point, these defects can move around and they can move around the

nontrivial cycles of space, and their holonomy produces the logical operators which

mix the degenerate groundstates.

The situation for (p ≥ 2)-form gauge theory in d > 3 is different. (d > 3 is required

because as we just saw, 2-form gauge theory in d = 3 dimensions can be dualized to

1-form gauge theory.) The defects which destroy the topological order are large, closed

strings (more generally, p− 1-dimensional objects). On a generic space, they must be

large (scaling with system size) because they must wrap topologically non-trivial one-

cycles. The Boltzmann factor therefore provides a system-size-dependent suppression

of the density of such defects.

The statistical mechanics of strings whose energy is dominated by a tension term

is governed by a Hagedorn equation of state: the entropy at fixed energy is linear in

the energy, S(E) = aE, with a coefficient determined by the string tension. The idea

is that the energy goes like the length E ∼ σL, while the number of states of the

string eS grows exponentially in the length (for example, a random walk independently

chooses a direction at each step). Therefore, the free energy F = E−TS = (1−aT )E.

This Peierls-type argument implies a transition at some ‘Hagedorn’ temperature above

which the canonical ensemble in terms of strings breaks down. Above this temperature,

strings are condensed, and in the 2-form gauge theory context, the topological order is

destroyed. Conversely, below the Hagedorn temperature, the entropic contribution is

overwhelmed by the tension, and the ensemble is dominated by small strings. Hence,

there is a temperature below which the 2-form topological order persists.

Notice that this Poincaré duality exchanges rough and

smooth boundary conditions. This is consistent with the

fact that in the 2d toric code it exchanges e and m parti-

cles. Notice also that it exchanges the couplings g and h and

therefore acts as a diagonal reflection on the phase diagram,

exchanging Higgs and confined phases. In this example, these

phases are actually the same phase. The line where g = h is

self-dual and some interesting things happen there, as first

found here. Some very recent progress is here.

Kramers-Wannier-Wegner duality. Discrete gauge theory participates in an-

other, it seems to me quite distinct, duality, also involving the dual lattice.

Consider the quantum clock model on one of the cell complexes described above.

This model has H = ⊗s∈∆0HN , N states on each site. The Hamiltonian is

Hclock = −Γ
∑

`∈∆1,∂`=i−j

XiX
†
j − g

∑
i∈∆0

Zi + h.c. . (1.11)
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For N = 2, this is the quantum transverse-field Ising model16. Notice that if we

diagonalize Xi = ei2πki/N , ki = 1..N , then

−XiX
†
j + h.c. = −2 cos

2π

N
(ki − kj)

– it is minimized when ki = kj.

In any d, the following duality (due to Wegner, for a review see Savit) maps this

model to a gauge theory on the dual cell complex ∆∨. I will describe first the case

where the variables live on the sites of ∆ and then we can figure out the general

construction. The idea is to put a variable on each links of ∆ (or equivalently each

(d− 1)-cell of ∆∨) that keeps track of the change of X across the link; for N = 2, this

is a sign which is −1 only if Xi and Xj disagree:

Z2 : σz
ij ≡ XiXj.

For N > 2, Xi and Xj can differ by a phase, so the domain

wall takes values in N -th roots of unity:

ZN : σz
ij ≡ XiX

†
j.

The edge 〈ij〉 ∈ ∆1 = ∆∨d−1 corresponds to a (d − 1)-cell of

the dual lattice – a wall. At right is the picture for d = 2.

Not all configurations of the σz
` s are attainable by this map. If we label the (d−1)-

cells of the dual lattice by a color according to k` in σz
` = ωk` , then these walls form

closed membranes in the same sense as above (i.e. literally closed, unoriented loops

for d = 2, N = 2, and more generally ZN -string-nets or brane-nets in d > 2). This is

just the familiar fact that level-sets of a function are collections of closed curves. The

allowed configurations of the σ` ≡ e
2πim`
N satisfy

1 =
∏
`∈∂w

σz
` , ∀w ∈ ∆2 = ∆∨d−2, or

∑
`∈v∨(s)

m` = 0 mod N, ∀s ∈ ∆∨d−2.

This is just the star condition, i.e. the gauss law, for a (d − 1)-form gauge theory on

the dual lattice. In 1+1 dimensions, this condition is empty and the model is self-dual

(up to global issues), as observed by Kramers and Wannier for N = 2.

16The quantum Potts model is defined on the same Hilbert space, but with the Hamiltonian

HPotts = −β
∑

`∈∆1,∂`=i−j

N∑
p=1

Xp
i

(
Xp
j

)† − Γ
∑
i∈∆0

N∑
p=1

Zpi + h.c. .

They both reduce to the quantum transverse-field Ising model for N = 2.
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Here is the picture for d = 3: A link of ∆ is dual to a 2-

cell of ∆∨. A product of XiX
†
js around a loop equals one,

which means that the product of σzws in the right figure is

one. This is the star condition for 2-form gauge theory on

the dual lattice.

What about the Zi term in (1.11)? σzij counts the number of domain walls on the

link of the dual lattice separating sites i and j of the original lattice. But Zi changes

the value of Xi fixing X†j and hence creates domain walls on each of the links of the

dual lattice surrounding the site i:

Zi =
∏
ij∈v(i)

σxij =
∏

`∈∂∨(i∨)

σx`

and i∨ is the plaquette of the dual lattice corresponding to the site i. This is the

plaquette term of the dual gauge theory. [End of Lecture 7]

What I mean by global issues: the σzs do not completely specify the configurations

of the Xi: if we act by
∏

i∈∆0
Zi, to rotate every site by ω, nothing happens to the σz

ij.

This is just one global integration constant in ZN . Conversely, the loops making up the

groundstate of the dual gauge theory arise as boundaries of domains of values of the

kj variables. Hence they are always contractible – we only get one of the groundstates

of the dual gauge theory.

More generally, to dualize a gauge theory with dofs on the p-cells, with

H = −Γ
∑

σ∈∆p+1

∏
`∈∂σ

X` − g
∑
`∈∆p

Z`

(with the Gauss law constraint 1 =
∏

`∈v(w) X`, ∀w ∈ ∆p−1 imposed as a constraint)

we will want a duality equation like:

∀σ ∈ ∆p+1 = ∆∨d−p−1 : σz
σ ≡

∏
`∈∂σ

Z` which satisfy 1 =
∏
σ∈∂w

σz
σ, ∀w ∈ ∆p+2 = ∆∨d−p−2

by virtue of ∂2 = 0.

Here is the picture for (p = 1)-form gauge theory in d = 3:

A plaquette of ∆ is dual to a 1-cell of ∆∨. A product of

plaquette terms around the faces of a 3-cell equals one, which

means that the product of σz` s in the right figure is one. A

3-cell of ∆ is dual to a 0-cell of ∆∨, so is the star condition

for 1-form gauge theory on the dual lattice. So under this

duality, 1-form gauge theory is self-dual in 3d.
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This transformation then takes the term

Zσ =
∏

w∈∂(σ∨)

σxw

to the analog of the plaquette term.

This exchanges degrees of freedom on the p-cells with degrees of freedom on the

(d−p−1)-cells. It is like electric-magnetic or Hodge duality in spacetime; for example

in U(1) p-form gauge theory in the continuum, the duality relation is

dAp = ?dǍd−p−1.

? here is the Hodge duality operation of contracting with the εi1···iD tensor17. Here

D = d + 1 is the number of spacetime dimensions. So Hodge duality exchanges a

p-form potential for a (d− p− 1)-form potential. Under this transformation, Maxwell

theory in D = 3 + 1 is self-dual. In D = 2 + 1 this duality relates a Maxwell field to a

scalar (Goldstone) field, i.e. an XY model.

Physically, this change of variables is much more nontrivial and interesting than one

that gives Poincaré duality. For example, when g � Γ we are in the confined phase in

the ∆ variables (the single-link term is more important than the plaquette term). But

in the ∆∨ variables, the roles of those two couplings are interchanged, so this g � Γ

regime is in the deconfined phase of the ∆∨ variables! But mathematically it is less

interesting. In fact those ‘global issues’ I mentioned earlier exactly account for the fact

that naively one side of the duality has topological order and the other side does not.

If we are careful about the global issues we will see that this does not happen, just as

in the p = 0 case, the duality forgot about the N degenerate groundstates related by

the global symmetry.

17I’ll say more about in the next section, but a little more precisely, the Hodge dual of a q-form ω

is

(?ω)iq+1···iD =

√
γ

q!
εi1···iDω

i1···iq

where γij is the metric on spacetime.
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2 Supersymmetric quantum mechanics and coho-

mology, index theory, Morse theory

2.1 Supersymmetric quantum mechanics

Most of the contents of this chapter are from these papers: [Witten NPB 202 (1982)

253, NPB 188 (1981) 513, Journal of Differential Geometry, Volume 17, Number 4

(1982), 661-692].

Supersymmetry. [A good reference is Argyres’s notes. You may also find useful

chapter 10 of this book] A supercharge Q is an anticommuting symmetry generator.

An interesting algebra that such an operator can generate is:

[Q,H] = 0, {Q†, Q} = 2H, {Q,Q} = 0. (2.1)

A consequence of this supersymmetry algebra is that H ≥ 0, the resulting hamiltonian

has a spectrum bounded below by zero, since {Q†, Q} is a positive operator18.

In a many body system with Lorentz symmetry, the Hamiltonian H is the time

component of a D-vector Pµ. The generalization of the supersymmetry algebra is

{Q†α, Qβ} = 2γµαβPµ + CI
αβZI (2.2)

where α, β are spinor indices. Here CI are invariant tensors for the Lorentz group and

ZI are called central charges. Let’s set them to zero for now.

So Q is like a square root of translations. It is sometimes useful to regard it as

a ‘translation in a fermionic direction’ whose coordinate is a grassmann variable. A

space with such coordinates is called a superspace. This idea is actually useful for

constructing supersymmetric actions.

Returning to the quantum mechanics (D = 1 spacetime dimensions) case (2.1),

consider the spectrum of H: H |n〉 = E |n〉. Acting on such an energy eigenstate,

{Q†, Q} |n〉 = 2En |n〉. If En > 0, let a† ≡ Q†√
2En

, a ≡ Q√
2En

then these operators satisfy

{a†, a} = 1, a2 = 0, an ordinary fermionic creation-annihilation algebra of a single

fermion mode. This algebra is represented on a two state system:

a |−〉 = 0, a† |−〉 = |+〉 , a |+〉 = |−〉 , a† |+〉 = 0 .

In this basis, the matrix elements are a =

(
0 0

1 0

)
, a† =

(
0 1

0 0

)
. Another important

18For any state |ψ〉, 〈ψ| {Q†, Q} |ψ〉 = ||Q |ψ〉 ||2 + ||Q† |ψ〉 ||2 ≥ 0. This inequality is only saturated

if Q |ψ〉 = 0 and Q† |ψ〉 = 0, assuming unitarity, which implies no nonzero zero-norm states.
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operator on this 2-state system is the fermion parity

(−1)F ≡ 2a†a − 1 =

(
1 0

0 −1

)
.

It satisfies {(−1)F , a} = 0 = {(−1)F , a†} – the fermionic operators a, a† change the

fermion parity. The key point is that states with En > 0 come in pairs of opposite

fermion parity.

In contrast, on states withE = 0, the supersymmetry algebra becomes {Q†, Q} |E = 0〉 =

0 which has 1d irreps: Q |E = 0〉 = 0 = Q† |E = 0〉 on which (−1)F (defined to anti-

commute with Q and Q†) can have either sign.

We conclude that states with E > 0 come in bose-fermi pairs, while there can be

any number of groundstates with E = 0.

Spontaneous supersymmetry breaking is said to occur if there exists no state with

E = 0, in which case the groundstate has E > 0. This is not a bad name, since it means

that the groundstate is acted upon nontrivially by the (super)symmetry generator Q.

It is a strange phenomenon compared to spontaneous breaking of ordinary symmetries,

however, because it can happen in finite volume19. In fact, there are examples where

in the thermodynamic limit, the groundstate energy approaches zero, so that the spon-

taneous breaking only happens in finite volume! See the appendix of Witten’s paper

for an example.

A reason to care about supersymmetry breaking is that supersymmetry may be

realized in Nature. The argument above extends to the relativistic case (2.2). But

if Q |vacuum〉 = 0, then Q is linearly realized on 1-particle states – for each bosonic

particle, there is a fermionic particle of the same mass. But this is observed not to be

the case, so if supersymmetry is a symmetry of the world, it must be spontaneously

broken by our vacuum.

Here is a first example of a quantum system that realizes the algebra (2.1). Take

19Why do we expect symmetries to be restored in finite volume (systems with a finite number of

degrees of freedom)? Because there can be tunneling events which mix the degenerate states.

There are other examples where this degeneracy is not lifted. One class of examples is represented

by an SU(2) ferromagnet, where the order parameter is a conserved quantity. Another example more

similar to what happens for supersymmetry was suggested by Zhengdi Sun: take a particle on a

ring with π-flux through the ring. This model has a finite number of degrees of freedom (one) so is

certainly not in the thermodynamic limit, but it has two degenerate groundstates which are related

by time-reversal symmetry. Here the idea is that the contributions of tunneling events in the path

integral destructively interfere because of the θ term in the action: an instanton with winding number

Q contributes with a phase eiπ
∮
φ̇ = (−1)Q.

In the supersymmetric case, too, there is a cancellation of instanton contributions, which can be

understood in terms of fermionic collective coordinates of the instantons.
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the Hilbert space to be that of a single particle on the line times a complex canonical

fermion ψ (meaning that {ψ†, ψ} = 1, ψ2 = 0),

H = span{|x〉} ⊗ span{|−〉 , ψ† |−〉 ≡ |+〉}.

This is the Hilbert space of a particle in 1d with spin one-half. Let

Q = ψ (p− iW ′(x)) , Q† = ψ† (p+ iW ′(x)) ,

where p = −i∂x on wavefunctions as usual. These satisfy

{Q,Q} = 0, {Q†, Q†} = 0, {Q†, Q} = p2 + (W ′(x))
2 − [ψ†, ψ]W ′′(x), (2.3)

resulting in a hamiltonian H = 1
2
{Q,Q†} the terms of which are respectively a standard

kinetic term p2

2
, a potential V = 1

2
(W ′(x))2, and a Zeeman term. To interpret the last

term in this way, regard the two states |±〉 (with |+〉 = ψ† |−〉 etc) as spin eigenstates

of the particle in the z-basis, so ψ = σ−, ψ† = σ+ and [ψ, ψ†] = −σ3. Q is a symmetry

generator, [Q,H] = 0, is automatic from (2.3).

It is easy to look for supersymmetric groundstates, much easier than solving the

second-order Schrödinger equation HΨ(x) = EΨ(x). We just have to solve the first-

order equations Q |Ψ〉 = 0 = Q† |Ψ〉. In fact, the solution is just

|Ψ〉 =

∫
dx |x〉 (Ψ−(x)⊗ |−〉+ Ψ+(x)⊗ |+〉) , Ψ±(x) = c±e

±W (x)

– if these functions are normalizable.
Witten index. What happens as we vary parameters of

H? (In the example, this means the shape of W ; call the

coupling parameter g.) States with E > 0 move around in

pairs of opposite fermion parity. They can go to E = 0 in

such pairs. The crucial point is that unpaired states at E = 0

are stuck at E = 0. This means that the difference in the

number of odd and even E = 0 states, the Witten index

nE=0
B − nE=0

F ≡ tr(−1)F

is topological, it cannot change under adiabatic variations of

H.

Now I will explain the “tr” notation. Since states with E > 0 come in pairs with

opposite fermion parity,

tr(−1)F = tr(−1)F e−βH
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– the states with nonzero energy cancel in pairs. But this is independent of β, so we

can regard tr(−1)F as a sum over all the states in the Hilbert space20

This is an index in the following sense. We can decompose the Hilbert space into

odd and even eigenspaces of (−1)F , H = HB ⊕ HF . Under this decomposition, a

hermitian supercharge has the form

Q+Q† =

(
0 M †

M 0

)
.

Odd E = 0 states satisfy M †ψF = 0. Even E = 0 states satisfy MψB = 0. Therefore

the index of the operator M is

ind(M) ≡ dim ker M−dim cokerM ≡ #{solutions of Mψ = 0}−#{solutions of M †ψ = 0} = tr(−1)F .

One reason to care about the Witten index is that if tr(−1)F 6= 0, supersymmetry is

unbroken. (The converse is not true, since there could be an equal number of odd and

even E = 0 states.) Although we defined the Witten index in the context of D = 1, the

definition works perfectly well in QFT. You might worry about short-distance issues

but you should not.

In contrast, there is a real danger at long distances in field

space: E = 0 vacua can run off (or come in from) x = ∞.

For example, consider the family of models with W ′(x) =

mx−gx2. At g = 0 this is just a spinful particle in a harmonic

oscillator potential, V
x→∞∼ x2. In stark contrast, at small

g, V
x→∞∼ x4. A new minimum of V appears suddenly at

x ∼ m/g. If the field space is compact, there is no such

issue.

[End of Lecture 8]

For purposes of generalization, an action is useful. An action which produces by

Legendre transform the Hamiltonian above is

S[x, ψ, ψ̄] =

∫
dt

(
1

2
ẋ2 + iψ?ψ̇ − 1

2
(W ′(x))

2
+

1

2
W ′′(x)[ψ?, ψ]

)
. (2.4)

20If you are happy regarding the thermal partition function tre−βH as a path integral with periodic

imaginary time of period β, then the Witten index is also a natural object: it is the same path integral,

but with periodic boundary conditions for the fermions – the Matsubara frequencies for the fermions

are also integers.
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Following Noether’s theorem, this action is invariant (the variation of the Lagrangian

is a total derivative) under the supersymmetry transformation generated by Q,Q†:

δεx ≡ i[εQ− ε̄Q†, x] = εψ − ε̄ψ? (2.5)

δεψ ≡ i[εQ− ε̄Q†, ψ] = −iε̄(p+ iW ′(x))

δεψ
? ≡ i[εQ− ε̄Q†, ψ] = iε(p− iW ′(x)).

Don’t trust my signs – I am rusty with this stuff.

Side remark on superspace: these transformations can be regarded as translations

on superspace, with coordinates (t, θ, θ̄). Since grassmann variables have θ2 = 0, the

general real function on superspace is

X(t, θ, θ̄) = x(t) + θψ(t)− θ̄ψ?(t) + θθ̄F,

a superfield. If we write the action as an integral over all of superspace S =
∫
dtdθdθ̄L(X(t, θ, θ̄)),

it is automatically supersymmetry invariant. (The supersymmetry transformation of

X is X → X + ε(∂θ + iθ̄∂t)X − ε̄(∂θ̄ − iθ∂t)X – basically a translation in θ.) Note that∫
dθdθ̄

(
+...θθ̄Z

)
= Z integration just picks out the highest component. For example,

choosing L = 1
2
DXD̄X +W (X), with D = ∂θ − iθ̄∂t a covariant derivative, gives∫

dθdθ̄L(X(t, θ, θ̄)) =
1

2
F 2 −W ′F +

1

2
ẋ2 + iψ?ψ̇ +

1

2
W ′′(x)[ψ?, ψ].

The field F is an auxiliary field – it has no derivatives and can be integrated out by

solving its equation of motion F = W ′; plugging back in gives back the action (2.4).

This technology is very useful if you find yourself needing to write down supersymmetric

actions, but I don’t want to say more about it.

Supersymmetry and cohomology, first pass. Part of the supersymmetry al-

gebra was Q2 = 0. That means we can regard

· · ·HB
Q→ HF

Q→ HB
Q→ · · · (2.6)

as a complex, and consider its cohomology:

HB(Q) ≡ ker Q : HB → HF

im Q : HF → HB
, HF (Q) ≡ ker Q : HF → HB

im Q : HB → HF
.

But now consider some nonzero-energy eigenstate |α〉 of the Hamiltonian H. If it

is Q-closed, act on it with the operator 1 = (QQ† + Q†Q)/(2E). This shows that
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it is also Q-exact21. We conclude that HB/F (Q) is the space of bosonic/fermionic

supersymmetric groundstates.

Sometimes there is a finer grading on the complex. This happens if there is a

conserved U(1) charge F , [F,H] = 0, with F taking integer values, satisfying [F,Q] =

Q. For some reason such a symmetry, under which the supercharge is charged, is called

an R-symmetry. Then the complex (2.6) can be refined to

· · ·Hp−1 Q→ Hp Q→ Hp+1 Q→ · · ·

where Hp is the eigenspace of F with eigenvalue p. In this case, we can define a

cohomology group for each p:

Hp(Q) ≡ ker Q : Hp → Hp+1

im Q : Hp−1 → Hp
.

The Witten index is the Euler character of the complex

tr(−1)F =
∑
p∈Z

(−1)p dimHp(Q).

It is called cohomology rather than homology because Q increases the index p. More

significantly we will see that there is some reversal of arrows relative to homology.

So whenever we can define a nilpotent Q (i.e. Q2 = 0) we can construct cohomology

groups. You can expect that these groups are invariant under continuous deformations

(i.e. topological), but we haven’t shown that yet.

Given a Lorentz-invariant supersymmetric QFT in D dimensions, we can try to put

it on a D-manifold X. For general curved X, there will be no global spinors and hence

no Q – supersymmetry will be broken by the curvature. Witten discovered a procedure

called topological twist to use an R-symmetry to change the spin of the supercharges, so

that one of them is a scalar and hence exists on any manifold. The cohomology of this

Q then produces invariants of X. To see that this data is topological, one observes that

the stress tensor Tµν (which encodes the dependence on the metric, since Tµν ∝ δS
δgµν

)

is of the form Tµν = {Q, λµν} for some operator λ. This means it is Q-exact and so

the Q-cohomology is independent of the metric22.

Below we study a less fancy and more direct way to make invariants of a manifold

using supersymmetry.

21The operator Q†

2E is playing the role of a homotopy operator here. In general, if we can find an

operator K : Ωp → Ωp−1 such that 1 = dK + Kd, then the cohomology of d is trivial; K is called a

homotopy operator.
22To be more explicit, it means, for example, that the change in the partition function under a
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By the way, the supersymmetric quantum mechanics algebra (2.1) can be realized in

many-body lattice models of itinerant fermions. An interesting series of papers on such

models has been written starting with this paper of Fendley, Schoutens and de Boer.

The simplest possibility is to take the Hilbert space to represent the free-fermion algebra

{ci, c
†
j} = δij, and consider Q =

∑
i c
†
i , but this leads to a trivial hamiltonian which

is just a c-number. Instead they study a system of hard-core fermions, where states

with fermions occupying neighboring sites are removed from the Hilbert space, and let

Q =
∑

i c
†
iPi, where Pi ≡

∏
j next to i(1 − c†jcj) is the projector requiring neighboring

sites to be empty. This produces an interesting Hamiltonian and a nonzero Witten

index related to some interesting combinatorics problems.

Note that on a Hilbert space which is just a finite tensor product of finite-dimensional

Hilbert spaces and free fermion operators, the Witten index must vanish. This is be-

cause it is the index of a finite-dimensional square matrix. It is square because for each

bosonic state in such a Hilbert space, there is a fermionic state. Thanks to Bowen Shi

for pointing this out.

change in the action of the form ∆S =
∫
{Q,λ} is

δZ =

∫
Dφe−S{Q,λ} = δsusy

(∫
Dφe−S

)
= 0

since the measure and the action are invariant under a supersymmetry transformation. More generally,

any correlation function of Q-closed observables [Q,O] = 0 will also be unchanged.
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Supersymmetric nonlinear sigma model. Choose a smooth manifoldM with

Riemannian metric γij. A nonlinear sigma model (NLSM) is a field theory of maps

from a base space (which we’ll take to be flat) into a target space, M. In terms of a

set of coordinates φi on M, we can define an action for such a field theory by

S[φ, ψ, ψ̄] =

∫
dDx

(
1

2
γij(φ)

(
∂µφ

i∂µφj + ψ̄iiγµDµψ
j
)

+
1

8
Rijkl(φ)ψ̄iψkψ̄jψl

)
. (2.7)

The ψi are a collection of n ≡ dimM majorana fermions23. Here Rijkl(φ) is the

Riemann curvature of the metric γij. I emphasize that we’re studying a field theory

living in D-dimensional flat space. The n scalar fields φi are coordinates onM, and the

metric data γij play the role of coupling constants. In the case whereM is a symmetric

space G/H for two Lie groups G,H, such non-linear sigma models arise frequently as

effective field theories of phases with spontaneously-broken continuous symmetries, as

we’ll discuss further next quarter. This action (2.7) is more general in that M need

not be a symmetric space; it is more specific in that it is supersymmetric.

The field theory with action (2.7) is supersymmetric for D ≤ 324. What is its

Witten index? Or more ambitiously how many supersymmetric groundstates does it

have? We’ll answer this question in two different ways which illuminate each other, and

lead us to discover the important mathematical ideas in the heading of this section.

Classically, any constant configuration φ(t) has zero energy. And any dependence

on space φ(x) costs energy going like 1/V , the volume of the base space. So we can

lower the energy by keeping φ uniform in space. Because of this, we can capture the

essential physics of the supersymmetric groundstates by dimensionally reducing the

system (2.7) to 0 + 1 dimensions. That is: plug in a configuration φ(t, x) = φ(t), and

do the integrals over x. This gives25

S[φ, ψ, ψ̄] =
V

2

∫
dt

(
γij(φ)φ̇iφ̇j + γij(φ)ψ̄iiγ0D0ψ

j +
1

4
Rijkl(φ)ψ̄iψkψ̄jψl

)
. (2.8)

23The covariant derivative on the fermion field is

Dµψ
i ≡ ∂µψi + Γijk∂µφ

jψk,

where Γijk is the Christoffel connection for γij . This says that under coordinate transformations ψi

transforms like a tangent vector (or that ψi ≡ γijφj transforms as a cotangent vector).
24To be Lorentz invariant and supersymmetric in higher dimensions puts constraints on the form

of M. This is because a spinor has more components in higher dimensions, so supersymmetry is

more constraining. We will restrict ourselves to two-component majorana spinors. So here we are

studying D = 3,N = 1 supersymmetry. The nomenclature N counts the number of minimal-spinor

supercharges in D spacetime dimensions. 4D N = 1 supersymmetry requires four real supercharges.
25Alternatively, this action follows directly from the 0+1d superspace Lagrangian∫
dθdθ̄γij(Φ)DΦiD̄Φj , with Φi = Φi(t, θ, θ̄) = φi + θψi − θ̄ψ̄i + θθ̄F i a real superfield as

above.

56

https://mcgreevy.physics.ucsd.edu/s21/


Quantum mechanically the story is more interesting: the wavefunction spreads over

M. To see what happens, choose a basis for the gamma matrices (γ0 = σz) so that

the Majorana condition is ψ =

(
ψ

ψ?

)
. Doing the Legendre transformation, we have

pi = ∂L
∂φ̇i

= −iDφi acts as a covariant derivative on wavefunctions, and {ψi, ψj} =

0, {ψi, ψ?j} = γij(φ). The supercharges are

Q = i
∑
i

ψ?ipi, Q? = −i
∑
i

ψipi

and satisfy Q2 = (Q?)2 = 0, {Q,Q?} = 2H. (The supersymmetry algebra fixes the

additive normalization of H and hence removes any possible operator-ordering ambi-

guity.)

By the way, this action (2.8) has a symmetry under

ψi → e−iαψi, ψ̄i → eiαψ̄i. (2.9)

The associated conserved Noether charge is F = γijψ̄
iψj, the fermion number. Quan-

tumly, we have [H,Q] = 0. (Note that this is consistent with [F,Q] = Q, [F,Q?] =

−Q?.) F generates the transformation (2.9) in the sense that δαO = iα[F,O].

Now let’s build the Hilbert space. Start with a vacuum |0〉 of all the fermions,

satisfying ψi |0〉 = 0,∀i = 1..n. Let’s declare that this has fermion number 0: F |0〉 = 0.

(That is, I’ve fixed the ordering ambiguity in F so that quantumly F = γijψ
?iψj.) We

can make many states from this vacuum by multiplying by a function of the bosonic

variables A(φ). From the fermionic vacuum, we can make states with one fermion:

Ai(φ)ψ?i |0〉

or two fermions:

Aij(φ)ψ?iψ?j |0〉 , Aij = Aji.

we can continue until we get to states with n = dimM fermions:

Ai1···in(φ)ψ?iiψ?i2 · · ·ψ?in |0〉 ,

which state is proportional to the ‘plenum’ – the state with one of each type of fermion,

annihilated by all the fermionic creation operators.

The antisymmetric objects Ai1···ip(φ) are the components of differential forms; with

p indices they are called p-forms. Let’s denote by Ωp(M) the space of such p-forms (we

will impose some regularity conditions later). Differential forms are usually written as

Ai1···ipdφ
1 ∧ · · · dφp. Here dφi means the same thing as ψi? – it’s an anticommuting
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object which transforms under a coordinate change φi → xI(φ) like dφi = dxI ∂φ
i

∂xI
. We

conclude that the Hilbert space of the NLSM is

H =
n⊕
p=0

Ωp(M)

the space of all p-forms on M. The subspace Ωp is the states with fermion number

F = p. Upon adding just a little more structure this is called the de Rham complex of

M.

To see this extra structure, we ask: how does Q = ψ?jpj act on H? The observables

act on H as follows26

pi = −iDφi , ψ?i = dφi∧, ψi = γiji∂φi

where ∧ is the wedge product on forms and iv : Ωp → Ωp−1 is the map which contracts

with v on the first index: If A = Aijkdφ
i ∧ dφj ∧ dφk, then ivA = viAijkdφ

j ∧ dφk. So

on a state with fermion number q,

Q |Aq〉 ≡ Q
(
Ai1···iq(φ)ψ?i1 · · ·ψ?iq |0〉

)
(2.10)

= DφjAi1···iq(φ)ψ?jψ?i1 · · ·ψ?iq |0〉 (2.11)

=
1

(q + 1)!

(
∂φi1Ai2···iq+1(φ)± perms

)
ψ?i1 · · ·ψ?iq+1 |0〉 (2.12)

= |dAq〉 .

Here d : Ωq → Ωq+1 is the exterior derivative. Note that the covariant derivative

doesn’t matter because the extra bits cancel in the antisymmetrization. The fact that

d2 = 0 is usually an annoying thing to show; here it is automatic from the fact that

Q2 = 0. This makes the Hilbert space of the NLSM, Ω•, into a complex, the de Rham

complex.

[End of Lecture 9]

In contrast, Q? removes a fermion of type i and differentiates in the i direction – it

is a divergence operator. More precisely,

Q? |A〉 = γjiqDφjAi1···iq(φ)ψ?i2 · · ·ψ?iq |0〉 =
∣∣d†A〉 .

WhenM is oriented, this operation is the adjoint of d with respect to the inner product

on forms defined by

(ω1, ω2) =

∫
M
ω1 ∧ ?ω2

26If you have not ever seen differential forms before, take a peek at the beginning of §2.2 to get the

notation.
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where ? is the Hodge dual operation taking p-forms to (n− p)-forms27 ; in components

it is

(?ω)ip+1···in =

√
γ

p!
εi1···inω

i1···ip .

(Indices are raised using the metric, ωi ≡ gijωj.) A good coordinate-free way to think

about the definition of the Hodge star is that for any η:

η? ∧ ?ω = (η, ω)vol

where vol is the volume form onM. We can find a useful expression for d† in terms of

? just using the definition of adjoint:

d† = (−1)x ? d?

where x depends on dimM and the degree of the form which you can figure out. This

follows from Stokes’ theorem, 0 =
∫
M d(ω1 ∧ ?ω2) ifM is closed (has no boundary). A

hint is that ?2 = (−1)p(n−p). Note that (d†)2 = 0, too.

Then

H =
1

2
{Q?, Q} =

1

2

(
dd† + d†d

)
≡ 4,

the Laplace-Beltrami operator – the Laplacian on forms. A supersymmetric ground-

state has a wavefunction which is a harmonic p-form, that is, it is annihilated by 4.

The number of these is bp(M), the pth Betti number. (We’ll see that this definition

agrees with our previous definition in terms of homology.) Since on a p-form state,

F
∣∣A(p)

〉
= p

∣∣A(p)
〉
, we have

tr(−1)F =
n∑
p=0

(−1)pbp(M) = χ(M)

the Euler characteristic of M.

Suppose that M has an isometry k – this means there is an operator K on the

Hilbert space of the NLSM with [H,K] = 0 = [Q,K]. K acts on each Ωp(M) inde-

pendently, and we can diagonalize it on the harmonic forms. Let bp(κ) be the number

of harmonic p-forms with eigenvalue κ of K (KAi1···ip = κAi1···ip). Then

tr(−1)FK =
dimM∑
p=0

(−1)pκbp(κ) ≡ Lef(K)

27Note that if we were considering differential forms with complex coefficients, we would define the

inner product to be (ω1, ω2) =
∫
M ω?1 ∧ ?ω2. Since the NSLM has a time-reversal symmetry, the

eigenfunctions of its Hamiltonian can be taken to be real, and we don’t need to worry about this right

now.
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is called the Lefschetz number of the isometry K. Nonzero Lefschetz number for some

isometry also means unbroken supersymmetry, since it requires there to be a super-

symmetric groundstate (i.e. at least one harmonic form).

Back to the exterior derivative. Since we already know Q2 = 0, Ω• with the exterior

derivative forms a complex: since d2 = 0, the image of d : Ωp−1 → Ωp is a subspace of

the kernel of d : Ωp → Ωp+1. So we can define the cohomology of the complex

Hp(M) ≡ ker d : Ωp−1 → Ωp

imd : Ωp → Ωp+1
,

the de Rham cohomology of M.

The Hodge star operator gives a linear map Ωp → Ωn−p. What is this operation

physically? It’s the particle-hole transformation that replaces each filled fermion level

with an empty one, and vice-versa. As we’ll see, this induces an isomorphism on the

cohomology.

To be more explicit, notice that the NLSM in D = 2 has a discrete chiral symmetry,

ψ → γ5ψ where γ5 =
∏D

i γi is the product of all the gamma matrices. In the Weyl

basis (where γ5 is diagonal) with Q =

(
Q+

Q−

)
, this acts by Q± → ±Q±, that is,

γ5Q± = ±Q±γ5. For Q−, this is just like the algebra {(−1)F , Q} = 0, which means

just as before that E > 0 states are paired with one of each chirality, while E = 0

states can be chiral. Therefore trγ5 is also topological, and also only gets contributions

from E = 0 states. (Also if trγ5 = 0, then supersymmetry is unbroken.) Given an

isometry of M, trγ5K is also topological.

To be more explicit, the majorana basis operators ψ?i , ψi are γ0 eigenstates, but

{γ5, γ0} = 0, so γ5 : ψ? ↔ ψ acts by particle-hole transformation. This means further-

more that it takes the empty state |0〉 to the completely filled state |1〉 ≡ ψ1? · · ·ψn? |0〉,
since it takes the condition ψ |0〉 = 0 to the condition ψ? |1〉 = 0. On a q-form state,

then,

γ5ψi1 ? · · ·ψiq ? |0〉 = cεi1···inψ
iq+1 ? · · ·ψin ? |0〉

it gives a (n − q)-form, where c is chosen so that (γ5)
2

= 1. To compute trγ5 then,

we decompose Ωq ⊕ Ωn−q into eigenstates of γ5 (the eigenvalues are ±1). Calling the

number of ± eigenstates bq±, we have

trγ5 =

bn/2c∑
q=0

(bq+ − b
q
−) = signM,

the Hirzebruch signature.
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2.2 Differential forms consolidation

[Bott and Tu, early sections, Polchinski §B.4, Nash and Sen §2.3] A p-form on a smooth

manifold M is made from a completely-antisymmetric p-index tensor Ai1···ip

A =
1

p!
Ai1···ipdx

i1 ∧ · · · ∧ dxip . (2.13)

Here dxi are coordinate differentials, i.e. a basis of cotangent vectors associated with a

set of coordinates onM (dxi(∂xj) = δij)
28. The set of p-forms onM (perhaps with some

smoothness and integrability properties) is a vector space Ωp(M). The coefficients can

be from any field, but we will think mostly about R. These vector spaces enjoy a

product, the wedge product, which we’ve already written in (2.13). A good way to

define the wedge product is in terms of the coordinate differentials: the wedge product

dxi1 ∧ dxip is completely antisymmetric and separately linear in each factor.

(Ap ∧Bq)i1···ip+q =
(p+ q)!

p!q!
A[i1···ipBip+1···ip+q ]

where the square brackets indicate antisymmetrization of indices, i.e. average over

permutations weighted by (−1)σ, the sign of the permutation. The wedge product is

graded antisymmetric, meaning

Ap ∧Bq = (−1)pqBq ∧ Ap.

The exterior derivative is a linear differential operator d : Ωp → Ωp+1 defined by

d = dxν ∧ ∂ν , or more explicitly

(dAp)i1···ip+1 = (p+ 1)∂[i1Ai2···ip+1].

It satisfies d2 = 0 by equality of mixed partials: [∂i, ∂j] = 0 on smooth functions.

28In case you are not familiar with these notions, here is brief recap to explain the notation. A

tangent vector on a manifold M at a point p, v ∈ TpM, is of the form v = vi ∂
∂xi in terms of some

local coordinates xi. It is a differential operator in the following sense. For any function f and for

any curve xi(t) through p, the rate of change of f along the curve is

df

dt
|p =

dxi

dt

∂

∂xi
f |p.

Since this is true for any dxi

dt = vi and any point p and any f , the important part is the ∂
∂xi .

The second ingredient is that a cotangent vector is an element of the dual vector space T ?pM –

an object which eats a tangent vector and gives a number. A basis for such things is given by the

coordinate differentials dxi, which satisfy dxi(∂xj ) = δij .
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The main job in life of a p-form on M is to be integrated over p-dimensional

submanifolds Xp ⊂M:
∫
Xp
Ap is a coordinate-invariant number. Stokes’ theorem says∫

Xp

dAp−1 =

∫
∂Xp

Ap−1.

So far, the metric has not been involved. The Hodge star operation requires more

structure.

To get some familiarity with the above language let’s think about the caseM = R3

for a moment. Then Ω0(R3) and Ω3(R3) are both spanned by ordinary functions, while

Ω1(R3) and Ω2(R3) are both spanned by vector fields – functions with a single index.

On functions, df = ∂ifdx
i. On 1-forms,

d(fidx
i) = (∂yfz − ∂zfy) dy∧dz+(∂xfy − ∂yfx) dx∧dy+(∂zfx − ∂xfz) dz∧dx =

1

3!
εijk∂ifjεilmdx

l∧dxm.

On 2-forms

d(fxdy ∧ dz + fydz ∧ dx+ fzdx ∧ dy) = ∂ifidx ∧ dy ∧ dz.

So this accounts for all the classic operations of vector calculus:

d(0-form) = gradient, d(1-form) = curl, d(2-form) = divergence.

A classical physics context where one encounters a cohomological question is in

fluid dynamics: given a vector field, say describing the flow of a fluid on some space

X, when is it the gradient of a well-defined function on X? Or in electrostatics on

some space X, an allowed electric field configuration must be the gradient of a scalar

potential on X\ the locations of the charges.

Here are some familiar statements written in the above language. The electro-

magnetic field is a 2-form on spacetime, R4 (I use ijk for spatial indices and µν for

spacetime indices):

F = dA = Eidx
i∧dt+Bxdy∧dz+Bydz∧dx+Bzdx∧dy = Eidx

i∧dt+Bidx
j∧dxkεijk/2.

The dual field strength, in flat spacetime, is

?F = −Bidx
i ∧ dt+ Eidx

j ∧ dxjεijk/2.

Maxwell’s equations (away from charges) are dF = 0, ?dF = 0. The first is the Bianchi

identity, which is automatic if A is well-defined, while the second is the equations of

motion associated with the Maxwell action

S[A] = − 1

2e2

∫
F ∧ ?F = − 1

4e2

∫
dDx
√
gFµνF

µν .

62



Maxwell’s equations say that both F and ?F represent cohomology classes in spacetime

(minus the locations of charges). Consider the simplest possible nontrivial example of

a point charge at rest at the origin of coordinates. The field strength is F = q dr∧dt
r2 =

−qd
(
dt
r

)
, well-defined in M ≡ R4 \ Rt, where we remove the origin at all times.

F is clearly exact and hence represents the trivial class in H2(M). However, using

dr = xidxi/r and e.g. ?dx ∧ dt = dy ∧ dz, we have

?F = q
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

r
.

This is a nontrivial element of H2(M), as you can see by integrating it over the

appropriate Gaussian surface, i.e. the 2-sphere surrounding the particle to get
∫
S2 ?F =

4πq. So we can interpret the charge of the particle as an element of the cohomology

group H2(M).

To include charges more explicitly, we can add a term to the action of the form

e
∮
C
A where C is the worldline of the charges. This is called ‘minimal coupling’ in the

sense that a 1-form really wants to be integrated over a 1-dimensional subspace and

no extra ingredients are required to do it. We could in addition include kinetic terms

for the charges to make them dynamical; these terms involve the metric.

Abelian p-form gauge fields. The usual Maxwell field strength is F2 = dA1. It

is invariant under gauge transformations A1 → A1 + dλ0 since d2 = 0. A large family

of useful generalizations of this is p-form abelian gauge fields:

Fp+1 = dAp, δAp = dλp−1.

Again the field strength is gauge invariant by d2 = 0. An action is

S[A] = − 1

2g2

∫
Fp+1 ∧ ?Fp+1 ∝ −

∫ √
g

(p+ 1)!
Fµ1···µp+1F

µ1···µp+1 .

For p = 0, this is just L = −1
2
(∂φ)2, a massless scalar. The equations of motion are

0 =
δS

δA(x)
∝ d ? F (x).

In flat spacetime of enough dimensions, we can fourier transform and see that this

describes a massless excitation with a spin that depends on p.

The analog of minimal coupling for a p-form gauge field is to a p-dimensional

worldvolume:

∆S = e

∫
Xp

Ap

– this is the worldvolume of a (p− 1)-brane, an object with p− 1 spatial dimensions.
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In spacetime dimensions D = 2 mod 4, it is consistent with the equations of motion

to impose a (anti-)self-duality equation: FD/2 = ± ? FD/2, which gets rid of half the

degrees of freedom. In D = 2 this describes a chiral scalar. In D = 4, this describes only

one circular polarization of the photon. The Maxwell-like action, however, vanishes

when imposing this condition and there is no covariant action principle for such fields.

They also enjoy various gravitational anomalies.

The duality operation dAp = ?dA∨D−p−2 exchanges the Bianchi identity and the

equation of motion. We can learn something by giving a path-integral derivation of

the duality. The partition function (euclidean) is∫
[dA]e

− 1
2g2

∫
dA∧?dA

=

∫
[dAdBdA∨]

(?)
e
− 1

2g2

∫
(F−B)∧?(F−B)+i

∫
B∧dA∨

=

∫
[dA∨]e−

g2

2

∫
dA∨∧?dA∨ .

In the first step, we introduce A∨ as a Lagrange multiplier to impose dB = 0 (and∮
X
B ∈ 2πZ for all 2-cycles X). The middle object has a new redundancy under

(?) A→ A+ Λ, B → B + dΛ (2.14)

for an arbitrary p-form Λ; when dB = 0 (and B has integral periods) this can be used to

set B = 0, giving back the first expression. In the second step, we set A = 0 and do the

gaussian integral over B, producing a nontrivial action for A∨. (The same manipulation

works for other gauge-invariant observables.) Notice that the coupling constant gets

inverted. A simple example of this is p = 0, D = 2 which relates a compact scalar of

radius R = 1
g

to one with radius R – this is called T-duality. The manipulation above

is described in §2.2 here for D = 4, p = 1, and here for D = 2, p = 0.

In some dimensions, there are other terms we can add to the action without any

further ingredients, such as Chern-Simons terms:

SCS[A] ∝
∫
A ∧ F ∧ F · · · .

If the ranks of the forms add up to D this integral makes sense, doesn’t involve the

metric, and is gauge-invariant up to a boundary term. In D = 2 + 1, the CS term∫
A ∧ F is gaussian in A and hence the theory with this term in the action is still

solvable. It is also has fewer derivatives than the Maxwell term and hence is more

relevant in the sense of the renormalization group. We’ll come back to this later in §4.

In the 1-form case, we can study non-abelian gauge fields, which are Lie-algebra-

valued 1-forms (i.e. the coefficients are matrices and so is the gauge parameter λ0):

F2 = dA1 − iA1 ∧ A1 = dA1 − iA2
1, δA1 = dλ0 − iA1λ0 + iλ0A1.

There isn’t a very good generalization of this to p 6= 1.

64

https://arxiv.org/abs/hep-th/9505186
https://arxiv.org/abs/hep-th/9110053


Hodge duality on forms. Let’s uncover the close relation between cohomology

and harmonic forms. First, on a closed manifold, any harmonic form is automatically

closed and coclosed. This is because by integration by parts (ω,4ω) = ||dω ||2 + ||d†ω ||2
is a sum of positive terms which must vanish independently if 4ω = 0. The Hodge

theorem29 says that there is a unique harmonic representative of each cohomology class.

The essential ingredient30 is that any differential form has an orthogonal decomposition

ω = dα + d†β + γ (2.15)

with γ harmonic. (I think I will not prove this statement. It is proved in the refer-

ence in the previous footnote by constructing a Green’s function for 4. It involves

some analysis.) The fact that the decomposition is orthogonal is automatic since

e.g. (dα, d†β) = (d2α, β) = 0.

Now if ω is closed, we have

||d†β ||2 = (d†β, d†β)
orthogonal

= (d†β, ω) = (β, dω) = 0.

Therefore, if ω is closed, it must be of the form ω = dα + γ, and therefore [ω] = [γ],

with γ harmonic. Note that the harmonic representative minimizes the L2 norm,

||η ||2 ≡
∫
η? ∧ ?η > 0 (the norm induced by the inner product on forms) within the

cohomology class.

We conclude that there is an isomorphism between the de Rham cohomology ofM
and the space of harmonic forms onM. You might have thought that the definition of

harmonic forms involves all this extra data involving the metric, but this isomorphism

shows that at least their multiplicity is independent of that extra information.

We can see directly that the supersymmetric groundstates of the NLSM are the

harmonic representatives, since they satisfy QΨ = 0 = Q†Ψ.

Now notice that the Hodge star sends harmonic forms to harmonic forms, since

4? = ?4. Therefore it is an isomorphism on cohomology.

29Some nice clear notes on this subject are this and this.
30Actually, this Hodge decomposition is not necessary to show that there is an isomorphism between

cohomology classes and harmonic forms. First, to see that each cohomology class has a harmonic

representative: since [Q,H] = 0, each cohomology class has a representative by an eigenstate of H.

But as we saw, if H |ψ〉 = E |ψ〉, with E > 0, then K ≡ Q†

2E is a homotopy operator. That is, acting

with the supersymmetry algebra on |ψ〉, if |ψ〉 satisfies Q |ψ〉 = 0, then |ψ〉 = QK |ψ〉 is exact.

Conversely, if H |ψ〉 = 0, so the wavefunction of |ψ〉 is a harmonic form, then 0 = 〈ψ|H |ψ〉 =

||Q |ψ〉 ||2 + ||Q |ψ〉 ||2 and in particular |ψ〉 represents a cohomology class. Furthermore if |ψ〉 6= 0,

then this class is nontrivial, i.e. |ψ〉 is not exact. This is because if |ψ〉 = Q |α〉, then since [H,Q] = 0,

then H |α〉 = 0, too. But this implies Q |α〉 = 0, so that |ψ〉 = Q |α〉 = 0. This argument appears in

this form in this paper.
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On a noncompact space, the Hodge duality is between arbitrary forms and those

of compact support. The idea is just that integration is a pairing between p-forms and

n− p forms

(ω, η) =

∫
M
ω ∧ η

which gives a map on cohomology, which is well-defined if one of the two forms is

compactly-supported:

Hp(M)⊗Hn−p
c (M)→ R.

[End of Lecture 10]

2.3 Supersymmetric QM and Morse theory

Finally we return to approach number two to the groundstates of the supersymmetric

NLSM. Choose a function onM, h(φ), and add a magnetic field term (like we discussed

earlier in the case of a single variable):

∆S = −
∫
dDx

(
1

2
γij∂φih∂φjh+ ∂φi∂φjhψ̄

iψj
)
.

That is: we add a scalar potential V (φ) = 1
2
|~∇h|2 and a mass matrix for the fermions

mij(φ) = ∂φi∂φjh. This term is supersymmetric inD ≤ 3 since it is ∆L =
∫
dθdθ̄h(Φ(t, θ, θ̄)).

This lifts the classical degeneracy, leaving only the critical

points of h as zero-energy classical vacua. (In the example

at right, where I’ve chosen the vertical direction of the em-

bedding space as the function h, there are six such ‘classical

vacua’.) Let’s assume that h has the nice property that it

is critical (∂φih = 0 ∀i) only at isolated points of M, and

at those points ∂φi∂φjh has no zero eigenvalues. This is the

generic situation – if it fails for some h, we can perturb it by

some small thing to fix it. Such a function is called a Morse

function or height function.

Let

{pA, A = 1..k} ≡ {points p in M where ∂φih(p) = 0,∀i = 1..n}

denote the set of classical supersymmetric vacua, the critical points of h. Quantumly

there is tunneling between these vacua, which can lift them in bose-fermi pairs.

Q: Which are bosonic and which are fermionic? The definition of (−1)F is [(−1)F ,OB] =

0, {(−1)F ,OF} = 0. The overall sign is not fixed by this. We can define (−1)F |0〉 = |0〉.

66



To answer the question, consider the following toy model of a single majorana

fermion in D = 2.

S[ψ] =
1

2

∫
d2x

(
ψ̄i/∂ψ −mψ̄ψ

)
.

Here m can have either sign, and (in the basis with γ0 = Y ), ψ =

(
ψ1

ψ2

)
with ψ1,2 = ψ†1,2

real. With periodic boundary conditions in the spatial direction (ψ(x+L) = ψ(x)), we

can define the fermion zero mode operators σ1,2 ≡ 1√
L

∫ L
0
dxψ1,2(x). Upon canonical

quantization, these modes satisfy the algebra

{σa, σb} = 2δab, a, b = 1, 2.

In terms of c = (σ1 + iσ2)/2, c† = (σ1 − iσ2)/2, {c, c†} = 1, this algebra is represented

by two states c |0〉 = 0, c† |0〉 = |1〉. Plugging in the expansion ψa=1,2(x) = σa +∑
n 6=0 e

2πinx
L aan, the hamiltonian on the zero-momentum modes is

H = −imσ1σ2 = mσ3 = −m(−1)F ,

where σ1,2,3 act as the Pauli matrices on this 2-state system. (The nonzero modes in

x have k = n/L and energy
√
k2 +m2 > 0 and are empty in the groundstate for all

m.) We conclude that for m > 0, the groundstate is bosonic, while for m < 0 the

groundstate is fermionic.

The phase diagram for this simple model looks as follows:

The two phases are separated by a quantum phase transition

at m = 0. The assumption that h is a Morse function is

specifically to avoid this critical point.
31

Now consider n such modes of masses m1 · · ·mn. Declare the groundstate with

m1, · · ·mn > 0 to be bosonic. Then

(−1)F |gs〉 = (−1)# of negative mi |gs〉 .

Now consider n such modes with a mass matrix mij, i.e. L 3
∫
mijψ̄iψj. Note

that mij is a symmetric matrix since {ψi, ψj} = 0 or i 6= j. By making an orthogonal

31Note that this simple field theory is a continuum description of the Kitaev chain. In the usual

lattice description of this model, there are two Majorana modes (i.e. one electron mode) on each

site of a chain. The Hamiltonian is H =
∑
i i (γiγ̃i + tγ̃iγi+1) (which is a rewriting of a mean-field

Hamiltonian for a superconductor, roughly H =
∑(

c†c + ∆c†c† + h.c.
)
) and the coupling parameter

m ∼ t − 1. The two phases are distinguished by whether or not there exists a dangling Majorana

mode at the ends of the chain. The model is also closely related to (the fermionic description of) the

transverse field Ising chain. Thanks to Yi-Zhuang You for helpful comments.
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transformation on the ψi and ψ̄i, we can diagonalize mij =
(
Odiag(m1 · · ·mn)OT

)
ij

and we reduce to the previous case.

Now back to the problem of the fluctuations about the critical point pA, where

mA
ij = ∂2h

∂φi∂φj
|pA . Notice that mA

ij is a symmetric matrix. Define

na ≡ # of negative eigenvalues of mA
ij

to be the Morse index of the critical point pA. We conclude that for the NLSM,

tr(−1)F =
∑
A

(−1)nA .

Previously we saw that tr(−1)F = χ(M). We conclude that
∑

A(−1)nA is independent

of the choice of height function h. This is a basic theorem of Morse theory.

We can similarly evaluate the Lefschetz index of a symmetry K of the NLSM if we

choose h to be invariant under the associated isometry k.

At this point we can study lots of examples. In the figure above of the genus-two

surface, we can take the height function to be the vertical coordinate in the picture;

the critical points and their Morse indices are indicated. We get tr(−1)F = 1− 1− 1−
1− 1 + 1 = −2 = 2− 2g. Next, we can takeM = Sn = {xi|

∑n
i=0 x

2
i = 1}, h = x0 and

K : xn → −xn, ψn → −ψn, ψ?n → −ψ?n. On the homework you’ll find

tr(−1)F = 1 + (−1)n, tr(−1)FK = 1− (−1)n.

We conclude that supersymmetry is unbroken in the Sn sigma model for any n. The

example of M = CPN (it is tempting to take the height function to be h = |z0|, but

actually this is not a Morse function; but it can be perturbed to one) gives tr(−1)F =

N + 1. This suggests (correctly) that there are N + 1 groundstates.

Here is a powerful maneuver: Let Q be the supercharge for the NLSM without the

perturbation by h. Given a Morse function h, define a new supercharge

Qt ≡ e−thQe+th .

You can check that

{Qt, Q
†
t} = 2Ht

where Ht is the perturbed hamiltonian. Redoing the analysis above, the exterior deriva-

tive is replaced by the conjugated exterior derivative

dt ≡ e−thde+th.

Since dt and d are related by a similarity transformation, they have the same cohomol-

ogy, independent of t. This means we can work out the cohomology (groundstates of

H) by taking t large.
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Near each critical point of h (minimum of V = 1
2
|~∇h|2), the hamiltonian looks like

Ht '
1

2

∑
i

(
−∂2

φi + t2m2
iφ

2
i + tmi[a

†
i , ai]

)
+O(φ3) =

∑
i

(Hi + tmiKi) +O(φ3),

where mi are the eigenvalues of mij = ∂φi∂φjh|. This approximation gets better and

better as t grows. Here Hi = −∂2
φi + t2m2

iφ
2
i is a harmonic oscillator, Ki = [a†i , ai], and

[Hi, Kj] = 0. By the above argument, this hamiltonian has a unique groundstate with

groundstate energy E0 = t(A+O(1/t)). More precisely, the full spectrum is

E(N,k) = t
∑
i

(|mi|(1 + 2Ni) +miki) , Ni = 0, 1, 2..., ki = 0, 1.

The groundstate requires Ni = 0 and ki = 1 ⇔ mi < 0, in which case E = 0. q-form

states are those with
∑

i ki = q.

We conclude that associated with each critical point pA, there is a unique approxi-

mate groundstate |αA〉 with E = 0, which is a q-form if the Morse index of the critical

point pA is q. Only these states have a chance of being true groundstates of the full

system, since other states have energy which grows with t.

But even these may not be true groundstates: states associated with different crit-

ical points may pair up by non-perturbative effects. This is a proof of a weak form of

the Morse inequalities:

bp ≤ mp ≡ # of critical points of h with Morse index p.

Note that there are definitely examples of Morse functions

which do not saturate this inequality. Consider for exam-

ple, the function h defined at right. It has two extra crit-

ical points, relative to the more minimal Morse function

shown previously for the genus-two surface. These two crit-

ical points indeed have opposite fermion number and we ex-

pect tunneling to left the pair of them to E > 0.

It is possible to prove a stronger form of relation between the critical points of h

and the cohomology. A fancy way to describe it is to define a new chain complex: let

Xp ≡ span{|αp〉 of Morse index p}. There is a coboundary operator δ : Xp → Xp+1

with δ2 = 0, and the cohomology of δ is Hp(M). The idea is that the pairing up

of Bose-Fermi pairs of classical groundstates becomes a pairing up in the sense of

cohomology of δ.

This proceeds by considering the tunneling processes between the critical points.

No amount of perturbation theory will connect the different classical vacua.
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[End of Lecture 11]

Recall that tunneling can be understood in terms of the euclidean path integral.

(See Coleman, Uses of Instantons.) Without fermion fields, a matrix element telling

us about the mixing between perturbative groundstates A and B can be written

〈B| Oe−HT |A〉 =

∫
φ(0)=φA,φ(T )=φB

[dφ]e−Seucl[φ]O[φ] '
∑
φ

e−S[φ]O[φ]det−
1
2

(
δ2S

δφ2

)
.

(2.16)

Here φ are extrema of the euclidean action: instantons.

For the supersymmetric quantum mechanics NLSM, the bosonic part of the eu-

clidean action is

Seucl, B[φ] =
1

2

∫
dτ
(
γij∂τφ

i∂τφ
j + t2γij∂φih∂φjh

)
(2.17)

1

2

∫
dτ
∣∣∂τφi ± tγij∂φjh∣∣2 ∓ t∫ dτ∂τh (2.18)

≥ t|h(τ =∞)− h(τ = −∞)| ≡ t|∆h| (2.19)

(I defined |v|2 ≡ γijv
ivj) with equality only if the first-order equation

0 = ∂τφ
i ± tγij∂φjh (2.20)

is satisfied. This equation describes gradient flow by the height function! We conclude

that the instanton action for an instanton connecting critical points pA and pB is

S[φA→B] = t|h(B)− h(A)|.

Now we must talk about the fermions. Because of supersymmetry, they actually

make things simpler. We replace (2.15) by

〈B| Oe−HT |A〉 =

∫
φ(0)=φA,φ(T )=φB

[dφdψdψ?]e−Seucl[φ,ψ,ψ
?]O[φ, ψ, ψ?] (2.21)

'
∑
φ

e−S[φ]det−
1
2 (B)

∫
[dψdψ?]e

∫
ψ̄FψO[φ, ψ, ψ?] (2.22)

=
∑
φ

e−S[φ]

∫
dη̄O[φ, η̄0] . (2.23)

There are two main points here. First is that the integral over the nonzero modes of the

fermions produces a determinant which cancels the bosonic determinant: this is because

supersymmetry relates the operators B and F governing the quadratic terms so that

given an eigenvector of B with nonzero eigenvalue λ, there is an eigenvalue of F †F with

eigenvalue λ. Second is that there is a fermion zeromode: ψ̄(t) = η̄+
∑

λ>0 ψ̄λ(t)ai. This
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is a collective coordinate of the instanton, related by supersymmetry to the translation

zeromode. There is a translation zeromode because the instanton location sponta-

neously breaks translations in euclidean time. Fermion zeromodes are just grassmann

variables over which we must integrate in the path integral. But recall that the table

of integrals for grassmann variables is
∫
dη̄η̄ = 1,

∫
dη̄ = 0 – we get zero unless we soak

up the fermion zeromode with the choice of operator O.

The claim, then, is that

εAB ≡ 〈B|Qt |A〉

is nonzero only if the critical points pA and pB have Morse indices which differ by 1:

pB − pA = 1, since Qt = ψ̄p+ ... contains a η̄ in its expansion.

[Argyres’ notes] Consider the special case ofM = R,

a single variable and W (x) = gx3 − x. We noticed

earlier that this model spontaneously breaks super-

symmetry because neither |−〉 e−W (x) nor |+〉 e+W (x)

is normalizable at both ends. But classically there

are two degenerate zero-energy vacua, |1, 2〉. These

two states can’t directly mix, since they have differ-

ent fermion number (Morse index).

Yet somehow they must be lifted non-perturbatively. The resolution is that |1〉
mixes with excited states above |2〉. More directly, though, they pair up in the following

sense. Let |0±〉 be the two degenerate E > 0 true groundstates. The final groundstate

energy is

0 < E0 = 〈0+|H |0+〉 =
1

2
〈0+| {Q,Q†} |0+〉 =

1

2
〈0+|QQ† |0+〉 ≥

1

2
| 〈0−|Q† |0+〉︸ ︷︷ ︸

≡ε

|2.

In the third step we assumed WLOG that Q |0+〉 = 0 (so |0−〉 = Q† |0+〉), and in the

last step we inserted a resolution of unity.

ε = 〈0−|Q† |0+〉 ∝ 〈1|0−〉
〈
0−|Q†|0+

〉
〈0+|2〉 (2.24)

= lim
T→∞

e
E0T
~ 〈1| e−H(T/2−t0)Q†e−H(T/2+t0) |2〉 (2.25)

=

∫ x(∞)=x2

x(−∞)=x1

DxDψDψ̄ e−S/~Q†(t0) (2.26)

Here we approximate the state |1, 2〉 by a delta function at the minimum x1,2. Note

that |1〉 only overlaps with |0−〉 (and |2〉 with |0+〉) by fermion number conservation.

The gradient flow equation (2.19) in this case is ẋ = ±W ′(x), and the instanton

action is ∆W = W (x2) −W (x1). Now consider the fluctuations about the instanton
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solution:

S
(
x = x+ δx, ψ = δψ, ψ̄ = δψ̄

)
= ∆W +

1

2

∫
dτ
(
δxBδx+ δψ̄Fδψ

)
with

F = ∂τ +W ′′, B = −∂2
τ +W ′′′W ′ + (W ′′)2 = F †F

where F † ≡ −∂τ + W ′′. You can see that if Bξ = λξ with λ 6= 0, then η ≡ Fξ/
√
λ

satisfies F †η =
√
λξ, Fξ =

√
λη. This seems to imply that

ε
?
= e−∆W/~

(
detF

det
1
2B

Q†(t0) +O(~)

)
= e−∆W/~ (Q†(t0) +O(~)

)
.

There are two problems with this: it depends on the arbitrary time t0, and it is a

grassmann number.

Surprisingly the solutions of these problems are related. The solution is that both

F and B have zeromodes: δx = ẋ has Fδx = (∂τ −W ′′)ẋ = (∂τ −W ′′)W ′ = W ′′W ′ −
W ′′W ′ = 0. B has a zeromode because the instanton breaks translation symmetry;

The zeromode of F is its superpartner. A good way to describe this is in terms of the

superfield configuration of the instanton:

X(t, θ, θ̄) = x(t)− θ̄ηẋ(t).

It satisfies [H,X] 6= 0, [Q†, X] 6= 0 but [Q,X] = 0; so there is a zeromode of δx = δtẋ

(which just shifts the time t1 when the instanton goes from x1 to x2) and of δψ̄ = η̄ẋ,

but there is no δψ zeromode because F †u = (−∂τ −W ′′)u = 0 has no normalizable

solutions.

These zeromodes mean that the saddle point is not isolated, but comes in a family.

We must integrate over these collective coordinates of the instanton:

ε =

∫
dη̄

∫ T/2

−T/2
dt1e

−∆W
(
Q†(t0)|+O(~)

)
(2.27)

e−∆W/~
∫
dη̄

∫
dt1 (η̄ẋ(t1 − t0) (ẋ−W ′) +O(~)) (2.28)

e−∆W/~
(∫ x2

x1

dx(W ′ −W ′) +O(~)

)
(2.29)

e−∆W/~O(~). (2.30)

This has resolved the two problems above. Annoyingly, the first nonzero contribution

comes at one-loop about the instanton. See this paper for the details of the calculation;

it’s a little complicated but there is a simple answer.
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The expression for the fabled coboundary operator is

δ |A〉 =
∑

B,pB=pA+1

e−t(h(B)−h(A))n(A,B) |B〉

where

n(A,B) =
∑

paths of steepest descent from A to B

(±1)

and the sign comes from a comparison of the orientations on TAM and TBM induced

by the associated forms.

So far I’ve had in mind the case where the dimension n of the target manifold is

finite. If we are brave, we can consider infinite dimensional examples. For example,

takeM to be the space of gauge fields on a 3-manifold X, with gauge group G. Then

a 1-form on this space is δAA(x) – the exterior derivative is the field variation, like in

the equations of motion. But the product is the antisymmetric wedge product, so we

can identify this with a fermionic field, ψA(x). (Here A is a Lie algebra index.).

Then we can choose as the height function (actually functional) – and this is why

3d is special – the Chern-Simons functional:

h[A] = SCS[A] =
k

4π

∫
X

tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
.

The Hamiltonian is defined to be H = {Q,Q†}/2, with Q = e−hδeh. The purpose of

h[A] here is that its critical points are flat connections on X, 0 = FA. The analog of

the gradient flow equation between critical points (using the metric ||δA ||2 = −
∫
X
δA∧

?3δA) is

∂tA =
δSCS[A]

δA
= ?3F. (2.31)

Interpreted as an equation for a gauge field on the 3+1d spacetime R × X, this is

the self-dual Yang-Mills equation 0 = F+ ∝ F + ?4F in the gauge where A0 = 0.

Miraculously, it is a covariant equation in 3+1d.

The groundstates of H are representatives of Floer homology, which gives invariants

of the 3-manifold X. Moreover, because of (2.30), the resulting groundstate Hilbert

space can be interpreted as the Hilbert space for Donaldson theory quantized on X.

See here for more.
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2.4 Global information from local information

[Bott and Tu §4] Let me explain a bit more why the name cohomology. A smooth map

f : M → N gives a map on functions f ? : Ω0(N) → Ω0(M) defined by f ?(g) ≡ g ◦ f ,

the pullback. Note the reversal of arrows. More generally, such a map f : M → N

gives a pullback map on forms of arbitrary rank:

f ? : Ωp(N)→ Ωp(M)

which moreover is a chain map on the de Rham complexes – it commutes with the

exterior derivative d: [f ?, d] = 0. In terms of local coordinates yi for N it is

f ?
(
gi1···ipdy

i1 ∧ · · · dyip
)

= gi1···ip ◦ fdfi1 ∧ · · · dfip

where fi ≡ yi ◦ f = f ?(yi) are some (maybe good) coordinates on M . The fact that

this commutes with d follows from the chain rule.

A fancy description of what we’ve just shown is that Ω• is a “contravariant functor

from the category of smooth manifolds (and smooth maps) to the category of commu-

tative differential graded algebras (and homomorphisms)”. The word ‘contravariant’

indicates that the arrows get reversed, and this is the origin of the ‘co’.

Poincaré Lemma. As an application of the pullback, let’s prove a fundamental

result about de Rham cohomology: the cohomology of Rn is the same as that of a

point: Hq(Rn,R) = Rδq,0.

To warm up, consider H•(R). Any element of Ω•(R) is f0(t)+f1(t)dt. This is closed

if f ′0 = 0, i.e. if f0 is constant. The constant function is definitely not d of something so

it generates H0(R) = R. Any 1-form ω = f1(t)dt is closed, since there are no 2-forms.

But g(t) ≡
∫ t

0
f1(t′)dt′ satisfies dg = ω, so all 1-forms are exact and H1(R) = 0.

Now for the general story. Without extra effort, we can prove a more general result:

for any M , H•(M × R) = H•(M). Consider the following maps:

M × R

M

πs

Ω?(M × R)

Ω?(M)

π?s?

Here π(x, t) ≡ x is the projection which forgets about R, and s(x) ≡ (x, 0) is the ‘zero-

section’, just the inclusion of M . From the definitions, π ◦ s = 1, so s? ◦ π? = 1, but

s ◦ π 6= 1 so π? ◦ s? 6= 1 on Ω•. However, π? ◦ s? is indeed the identity on cohomology,

and we conclude that H•(M × R) = H•(M).
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To see this, we construct a homotopy operator K : Ωp(M × R) → Ωp−1(M × R),

which satisfies

1− π? ◦ s? = (−1)q−1 (dK −Kd) . (2.32)

The signs don’t matter, but as in our previous encounters with homotopy operators,

this means that the LHS acts trivially on the cohomology. To construct K note that

any form on M × R is

π?φ0f0(x, t) + π?φ1f1(x, t)dt

for φ0,1 ∈ Ω•(M). K takes this to 0 + π?φ1

∫ t
0
dt′f1(x, t′), and you can check (2.31).

Now suppose we have a space M = U ∪ V divided into two open sets U, V . The

inclusion maps define a sequence:

0← U ∪ V i← U q V
iU
⇔
iV

U ∩ V ← 0 (2.33)

where U q V ≡ {(0, u)|u ∈ U} ∪ {(1, v)|v ∈ V } is the disjoint union. This induces the

following exact sequence, the Mayer-Vietoris sequence, on the de Rham complexes:

0→ Ω•(U ∪ V )
i?→ Ω•(U)⊕ Ω•(V )

i?U−i
?
V→ Ω•(U ∩ V )→ 0. (2.34)

The pullback i? of the inclusion is a restriction map on forms.

Here is the proof that the Mayer-Vietoris sequence is exact: We need to show that

given ω ∈ Ωq(U ∩ V ) we can write it as ω = u − v with u ∈ Ωq(U), v ∈ Ωq(V ). The

key idea is the notion of a partition of unity on M . This is a set of smooth functions

{ρα}α∈I such that

•
∑

α ρα = 1

• every point in M has a neighborhood

where
∑

α ρα is a finite sum of nonzero

terms.

If the index set I is finite the second condition is trivially true. I is some label set. If

we take I to be our labels on open sets, so that the support of ρα is a subset of Uα,

this is called a partition of unity subordinate to the open cover.

For our simple example with two open sets M = U ∪V , ρU + ρV = 1, and any form

is

ω = ρUω + ρV ω = ρUω − (−ρV ω).

Here ρUω ∈ Ωq(V ) since ρU vanishes (and hence is well-defined) on V \U∩V . Similarly

−ρV ω ∈ Ωq(U) and we are done.
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Just as with homology (but with an overall reversal of arrows), an exact sequence

of chain maps on complexes induces a long exact sequence on the cohomology.

Hq+1(U ∪ V ) Hq+1(U)⊕Hq+1(V ) Hq+1(U ∩ V )

Hq(U ∪ V ) Hq(U)⊕Hq(V ) Hq(U ∩ V )

d?

In terms of a partition of unity subordinate to the open cover, an explicit expression

for the connecting homomorphism is

d?[ω] =

{
[−d(ρV ω)] on U

[d(ρUω)] on V
.

which has support on U ∩ V .

This long-exact Mayer-Vietoris sequence is a useful device for computing cohomol-

ogy. Consider the example of the circle covered by two patches:

U VS1

U ∩ V

0 0

ker δ R⊕ R R⊕ R

d?

δ

0

H0 (S1)

H1 (S1)

S1 = U ∪ V U q V
U ∩ V

Here we’ve used the Poincaré lemma32 in the form Hq(ball,R) = Rδq,0 to fill in the right

two columns. This determines the left column: H0(S1) = ker δ and H1(S1) = cokerδ.

The map δ acts by δ(ω, τ) = (τ − ω, τ − ω) which has rank one. Hence we recover

H0(S1,R) ∼= H1(S1,R) ∼= R.

[End of Lecture 12]

32Actually what we figured out above was H•(Rn), not H•(ball). We’ll prove that these are the

same after we discuss the notion of homotopy equivalence.
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2.5 Homology and cohomology

Cohomology with compact support.

First we must introduce the notion of the de Rham complex with compact support:

Ω•c(M) ≡ {forms on M with compact support}.

Its cohomology groups are H•c (M). Consider for example H•c (R). f is closed says

f ′ = 0, but there are no constant functions of compact support on R, so H0
c (R) = 0.

If the support of f is a subset of the interval (a, b) (for some a, b), then∫
R
df =

∫ ∞
−∞

dx
df

dx
=

∫ b

a

dx
df

dx
= f(b)− f(a) = 0.

Moreover, ω is exact, ω = df (for f with compact support) iff ω ∈ Ω1
c(R) integrates to

zero. To see the converse, note that the latter statement means that f(x) =
∫ x
−∞ ω has

compact support. Therefore, H1
c (R) = Ω1

c(R)/ker
(∫ )

= R.

The Poincaré Lemma for compactly supported cohomology says Hq
c (Rn) = δn,qR,

and more generally Hq+1
c (M ×R) ' Hq

c (M) for any M . See Bott & Tu page 39 for the

proof.

There is something funny about compactly supported cohomology: given a map

f : M → N the pullback f ? of ω ∈ Ω•c(N) is not necessarily compactly supported.

Consider for example π : M × R → M – the pullback of a compactly-supported form

on M has support on all of R. So despite appearances Ω•c is not a contravariant functor

from the category of smooth manifolds to that of graded algebras.

But actually there is a simpler and useful way to think of it as a functor: it is a

covariant functor under inclusions of open sets. What I mean is given i : U → M

an inclusion, then i? : Ω•c(U) → Ω•c(M) extends ω ∈ Ω•c(U) by zero to a (manifestly

compactly-supported) form on M . Very simple.

Now the Mayer-Vietoris inclusions (2.32) give the following exact sequence (which

is backwards relative to the Mayer-Vietoris sequence on the ordinary cohomology):

0← Ω•c(U ∪ V )
sum← Ω•c(U)⊕ Ω•c(V )

(−iU?,iV ?)← Ω•c(U ∩ V )← 0 (2.35)

(−iU?ω, iV ?ω) 7→ ω. (2.36)

The arrows are all backwards relative to (2.33). The idea for showing that (2.34) exact

is also simple: Ω•c(U ∪ V ) 3 ω = ρUω + ρV ω. The first term is now an element of

Ω•c(U) and the second term is an element of Ω•c(V ). As usual, this short exact sequence
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implies a long exact sequence on (the compactly-supported) cohomology, and again the

arrows are backwards:

Hq+1
c (U ∪ V ) Hq+1

c (U)⊕Hq+1
c (V ) Hq+1

c (U ∩ V )

Hq
c (U ∪ V ) Hq

c (U)⊕Hq
c (V ) Hq

c (U ∩ V )

d?

Pairings. The wedge product on forms induces a product structure on the de Rham

cohomology. On an oriented compact manifold M , this provides a pairing between k-

forms and (n − k)-forms,
∫
M
ωk ∧ ηn−k, which induces a non-degenerate pairing on

cohomology. (If M is non-compact, the pairing is between cohomology and compactly-

supported cohomology.) A non-degenerate pairing between two vector spaces A and B

is the same as saying that A is isomorphic to the dual space of B:

Hk(M)? ∼= Hn−k
c (M). (2.37)

(See Bott and Tu p. 44 for a proof of non-degeneracy. It uses the five-lemma that you

proved on the homework.)33 This relation (2.36) is yet another thing called Poincaré

duality.

33Let me say a little bit about the argument.

Now we want to show that the pairing Hq(M)⊗Hn−q
c (M)→ R by (ω, η) 7→

∫
M
ω ∧ η is nondegen-

erate, so that η ∈ Hn−q
c (M) gives an element of Hq(M)? (the vector space of homomorphisms from

Hq(M) to R), by ω 7→
∫
M
ω ∧ η ∈ R. To see this, first start with the case where M = U ∪ V as in our

Mayer-Vietoris discussion and show that the following diagram commutes

Hq(U ∪ V ) Hq(U)⊕Hq(V ) Hq(U ∩ V ) Hq+1(U ∪ V )

Hn−q
c (U ∪ V )? Hn−q

c (U)? ⊕Hq
c (V )? Hn−q

c (U ∩ V )? Hn−q−1
c (U ∪ V )?

d?

(d?)
?

differencerestriction

∫
U∪V

∫
U

+
∫
V

∫
U∩V

Notice that taking ? reverses the direction of the arrows, so in the bottom row the rank of the

forms is decreasing. Now two out of three of the vertical maps are isomorphisms by the Poincaré

lemmas. Then the 5-lemma implies that the third one is, too. The extension for general M then

proceeds by an induction on the number of open sets in the open cover. Suppose the Poincaré duality

works for any manifold with a good cover by p or fewer open sets (good cover means the open sets

and their intersections are each homeomorphic to a ball). Then consider M = U0 ∪ U1 · · · ∪ Up.
V ≡ (U0 ∪ · · · ∪Up−1)∩Up has a good cover by p open sets, namely {U0 ∩Up, U1 ∩Up, · · ·Up−1 ∩Up}.
Now by the induction assumption, Poincaré duality holds for U0 ∪ · · · ∪ Up−1 and for U ≡ Up, for V ,
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There is also a nice pairing between p-forms α and p-cycles µ: we can integrate the

p-form over the p-cycle to get a number:

Hp(X)⊗Hp(X) → F

(α, µ) 7→
∫
µ
α

.

(Here F is the ring over which we defined the differential forms, which I’m going to

assume is R from now on.) Since α is closed, the answer depends only on the homology

class [µ] and not on the choice of representative:∫
µ+∂ν

α =

∫
µ

α +

∫
∂ν

α =

∫
µ

α +

∫
ν

dα

by Stokes’ Theorem. Similarly, if we add to α something exact, α→ α+ dβ the result

is unchanged (also by Stokes’ Theorem:
∫
µ
dβ =

∫
∂µ
β = 0), since µ has no boundary.

Finally, on an oriented manifold, we can associate with each closed submanifold

S of dimension k an element [ηS] ∈ Hn−k(M), its Poincaré dual (yes, this name is

overloaded). If i : S →M is the inclusion map, then for all ω ∈ Hk(M)∫
S

i?ω ≡
∫
M

ω ∧ ηS. (2.38)

Here i? : Hk(M) → Hk(S) is the pullback map, which I’ll define momentarily. This

equation defines ηS as an element of Hk(M)? ∼= Hn−k(M). So for each [S] ∈ Hk(M)

we have an [ηS] ∈ Hn−k(M), and we conclude34

Hk(M) ∼= Hn−k(M).

In particular, this shows that the Betti numbers defined by homology and by cohomol-

ogy bn−k(M) = bk(M) = bk(M) = bn−k(M) are the same.

and for U ∩ V , which fit in the diagram above, so it also holds for M by the 5-lemma.

If M is actually compact, then (2.36) still holds and we can drop the c subscript.
34On a noncompact manifold, there is some ambiguity in what we might mean by the form Poincaré

dual to S. This is because
∫
S
· defines a linear function on k-forms on M , and therefore by the version

of Poincaré duality in (2.36) it specifies an element of Hn−k
c (M). This element is not necessarily the

same as ηS defined in (2.37).
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2.6 Cech cohomology

[I highly recommend the great book by Bott and Tu for this and many of our other top-

ics. I believe the book Topology Illustrated by Peter Saveliev also has a nice discussion

of this topic, but I don’t have a copy.]

Suppose you specify a set of relative preferences along some set of axes. Maybe you

prefer high to low, hot to cold, wet to dry. Now suppose there is some space where

each point is labelled by each of these characteristics (height, temperature, dampness).

Is there a preference function on this space that can be maximized to decide where you

want to live?

This is an analog of the question: given a vector field on some space, is there a

function whose gradient it is?

Another realization of the same issue is arbitrage. For exam-

ple, suppose there are three countries arranged in a triangle,

each of which uses a different currency. There are exchange

rates across each of the three pairs of borders. If these rates

are chosen poorly (as in the example at right), an enterpris-

ing person can generate wealth for herself by going around

in a circle (in the correct direction) exchanging currency.

In this exposition, Maldacena uses this example as an analogy to explain gauge

theory. The value one generates by going in a loop is like magnetic flux. The further

point (obscured by my example where baked goods are used as currency, since baked

goods have intrinsic value) is that the value of a given unit of currency is arbitrary,

so currency exchanges are like gauge transformations. The intrinsic value of baked

goods (at least if everyone agreed about it) plays the role of a Higgs field, making it

locally obvious that someone is doing something dumb in the above picture. This local

obviousness is like a mass for the EM field.

This is an alternative cohomology theory which can reproduce the data associated

with manifolds we discussed before but also applies to such more general situations.

The simplest version of the idea is to think about locally constant functions on patches.

Locally constant means that on each connected component of its domain, the function

takes a constant value. Cover the manifold X with open sets Uα. These open sets

intersect in e.g. Uαβ ≡ Uα∩Uβ, and triple-intersections Uαβγ ≡ Uα∩Uβ∩Uγ and so on.

Define Ck to be the vector space of A-valued locally-constant functions on the disjoint
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union of the (k + 1)-overlaps for some abelian group A:

Ck ≡ {locally constant functions,
∐

α0···αk

Uα0···αk → A}.

So an element of C0 just assigns an element of A to each Uα. Then there is an analog

of the boundary map (actually coboundary map, since it goes in the other direction)

which makes this into a chain complex, δ : Ck → Ck+1. It is defined as a difference

of restrictions, just as in the Mayer-Vietoris sequence, as follows. For example, given

f : Uαβ → A on all double-overlaps, this defines a function f : Uαβγ → A on all

triple-overlaps just by restriction. The coboundary map δ : C0 → C1 is

(δf)αβ = fα − fβ.

The idea is that δf checks agreement, i.e. whether or not f can be regarded as a

function on the union. The map for C1 → C2 is:

(δf)αβγ = fαβ + fβγ + fγα = fαβ + fβγ − fαγ.

Note that we define fαγ ≡ −fγα. There is a similar definition for general k, so that

δ2 = 0, and the cohomology of the complex is well-defined, and again is a topological

invariant (actually the same data as above). The definition for general k is

(δf)α1···αk+1
=
∑
i

(−1)ifα1···α̂i···αk+1

where α̂ indicates that α is missing. In this expression, we’ve chosen an (arbitrary)

order for the subsets.

Cech cohomology is very simple to actually calculate in rea-

sonable examples. Consider a cover of a circle by three

patches U0, U1, U2, with overlaps U01, U12, U20. The space of

0-cochains is C0 = {ωα, α = 0, 1, 2|ωα is constant on Uα} =

A3, while the space of 1-cochains is C1 = {ηαβ, α, β =

0, 1, 2|ηαβ is constant on Uαβ} = A3. There are no triple-

overlaps (and because the space is one-dimensional, there

can be no triple-overlaps in any open cover) so C2 = 0.

U0

U1

U2

U12

U20

U01

S1

The coboundary map δ : C0 → C1 acts by (δω)αβ = ωα − ωβ. The Cech complex is

0→ A3 δ→ A3 → 0
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with

δ =

−1 1 0

0 −1 1

1 0 −1

 .

More, explicitly H0(S1) = ker (δ) = {ω0 = ω1 = ω2} = A. And H1(S1) = A3/im(δ) =

A. A 1-cocycle η = (η01, η12, η20) is a coboundary if η01 + η12 + η20 = 0. So a generator

of H1(S1) is of the form (g, 0, 0) where A = 〈g〉.

Not all covers of a manifold will give the same answer. A

good cover is one for which every intersection Uα1···αk is topo-

logically a ball. So the example above is a good cover of the

circle. An example of good cover of the 2-sphere has four

open sets. One is the northern hemisphere. The other three

each cover an enlarged one-third pie-slicing of the southern

hemisphere, as at right.

U0 U1

U2

U01

U20
U12

A good cover ofM is associated with a cell decomposition of

M: associated a 0-cell to each open set, if Uαβ is non-empty,

a 1-cell connects the 0-cells α and η. If Uαβγ is non-empty,

we fill in the face of the triangle αβγ with a 2-cell. Keep

going. There is a close relation between δ and the boundary

map for this cell complex. On the homework you can work

out the Cech homology for the 2-sphere and you will see close

parallels with the homology of the tetrahedron.

[End of Lecture 13]

I apologize that I didn’t explain Cech cohomology by starting with a physical system

that realizes it. An example of a place in physics where Cech cohomology is used to

good effect is this paper by Witten and Bagger, where they show that only certain

non-linear sigma models may be coupled to D = 4,N = 1 supergravity – the target

space must be a Hodge-Kähler manifold.

But actually, consider the following physical system. Take a good open cover of some

manifold. Associate to each intersection of two open sets Uαβ a qubit, span{|σαβ = 0, 1〉}
(or more generally, we attach an element of an abelian group A to each double overlap).

82

https://inspirehep.net/literature/11988


We can regard the basis labels σαβ = −σβα as a 1-cochain in C1(U, A).

Now let H = −
∑

Uα
Aα −

∑
Uαβγ

Bαβγ. Here the operators

A and B are defined in the given basis by

Bαβγ |{σ}〉 = (−1)(δσ)αβγ |{σ}〉

(where recall that (δσ)αβγ = σαβ+σβγ+σγα) is the plaquette

operator associated to the triangle αβγ. A state |{σ}〉 which

satisfies B = 1 means σ is a cocycle.

Aα |{σ}〉 = |{σα0α1 + δα,α0 − δα,α1}α0,α1〉
∣∣{σα0α1 + (δλ(α))α0α1

〉
α0,α1

is the star operator associated with the site α. In the last

expression, λ(α) is a 0-cochain which is only nonzero on the

set Uα. (The signs don’t actually matter because I’m talking

about the special case of A = Z2.) You can see they commute

because of δ2 = 0. This is the same as the toric code on the

cell complex constructed from the open cover.

α
β

γ

α

A nice thing about the idea of Cech cohomology is that we can take the coefficients

to live pretty much anywhere; we’ll use this in the following discussion.

Proof of equivalence of de Rham and Cech cohomology. Theorem: If U

is a good cover of M , then H•dR(M) ∼= H?
∨(U,R), the Cech cohomology with real

coefficients.

Here’s an outline of the proof. First consider the following sequence of inclusions,

as in the discussion of the Mayer-Vietoris sequence for two open sets:

M ←
∐
α

Uα
i0
⇔
i1

∐
α0α1

Uα0α1

∐
α0···α2

Uα0α1α2 · · ·

These maps induce a generalized Mayer-Vietoris sequence on Ω• (of which (2.33) is the

special case with two open sets):

0→ Ω•(M)
r→
⊕
α

Ω•(Uα)
δ→
⊕
αβ

Ω•(Uαβ)
δ→
⊕
αβγ

Ω•(Uαβγ)→ · · ·

For example, the inclusion map iα : Uαβγ → Uβγ leads to the restriction maps

δα : Ω•(Uβγ)→
⊕
α

Ω•(Uαβγ).
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The definition of δ on the collection of all cochains alternates signs (again in some

arbitrary ordering of the open sets): δ ≡
∑

i(−1)iδαi , i.e.

(δω)α0···αp+1 =

p+1∑
i=0

(−1)iωα0···α̂i···αp+1 .

The RHS is a form on the total intersection Uα0···αp+1 . With these signs, δ2 = 0 so

it is a complex. But moreover, it is exact. The idea of the proof is that a partition

of unity subordinate to U, {ρα}, gives a homotopy operator K :
⊕

Ω•(Uα0···αp) →⊕
Ω•(Uα0···αp−1): Given a p-cochain, ω ∈

⊕
Ω•(Uα0···αp), we define (Kω) on Uα0···αp−1

by

(Kω)α0···αp−1 =
∑
α

ραωαα0···αp−1 .

It satisfies Kδ + δK = 1, so if ω is closed, then ω = δ(Kω), it is also exact.

Note the strong similarity between the general Mayer-Vietoris exact sequence and

the Cech complex! The key difference is that the elements in the Cech complex are

locally-constant functions, which are incapable of smoothly going to zero. This means

that there’s no such thing as multiplying them by a partition of unity. So there’s no

homotopy operator in that case.

Now let

Kp,q ≡ Cp(U,Ωq) ≡ ⊕α0···αpΩ
q(Uα0···αp)

denote the space of q-form valued p-cochains for the open cover U. We can think of

this as taking the coefficient group of the cochains to be the space of q-forms! Then

how can we resist considering the following (augmented) double-complex. The rows are
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just the Mayer-Vietoris sequences:

Ω2(M) K02

K00

K12 K22

C1(U,R)

K01 K11 K12

K10 K20

C2(U,R)

Ω1(M)

Ω0(M)

C0(U,R)

p

q

0

0

0

0 0 0

d d d
δδ

δ δ

d d d
δδ

δ δ
0

r

r

r

i i i

δ

δ

δ

δ

The left-most column is the de Rham complex, describing differential geometry of forms

on M . The bottom-most row is the Cech complex, which is purely combinatorial data

about the open cover U of M ; it is attached by the inclusions of the locally-constant

functions on any U into the continuous functions on U . Each of its entries is the

kernel of the bottom-most d operator (constant functions). Inside the box is an unholy

mixture of the two; horizontal maps are all coboundary operators δ, and vertical maps

are all exterior derivatives d.

From any such double complex we can make a new single-complex with coboundary

operator

D ≡ δ + (−1)pd.

This squares to zero because δ and d commute (by construction of δ) and because of

the minus sign (which inserts π-flux through the squares of the double complex):

K02 K12

K01 K11

−d
δ

δ

d

p

Here I appeal to a Lemma: If the rows of the double complex are exact, then the

cohomology of D = δ + (−1)pd is the same as the cohomology of the leftmost column.
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The proof of this is not so bad, but I don’t think I can explain it better than Bott and

Tu did on page 96-97.

So, exactness of the general Mayer-Vietoris sequence says the rows are exact, and

therefore

H•dR(M) ∼= H•D(C?(U,Ω•)).

If furthermore U is a good cover (so that any non-empty intersections are contractible),

then the columns are also exact. This follows from the Poincaré lemma, Hq
dR(ball) =

δq,0R. So we conclude that

H•∨(U,R) ∼= H•D(C?(,Ω•))

also.

This equivalence implies many nice facts about both sides: it shows that the de

Rham cohomology is finite-dimensional if there is a finite cover. It shows that the Cech

cohomology is independent of the choice of good cover, and is just a property of M .

2.7 Local reconstructability of quantum states

One feature of topologically ordered groundstates is that the reduced density matrices

on disks do not determine the global groundstate.

This idea is spiritually very similar to the perspective of Cech cohomology – if there

is nontrivial H1(X), then the data on patches of X can be fit together in more than

one way.

The only minor difference is that in the former case we are talking about density

matrices – these are supposed to be the analogs of cochains. But we can’t just add

density matrices – they don’t live in an abelian group. Rather they live in a convex

set. There is some mathematical theory waiting to be constructed.

While we’re waiting for this theory to be developed (the leading candidate for

the role of the passive voice here is surely Alexei Kitaev), there is a nice quantum

information theoretic way to measure the obstruction to reconstructability of a given

state. It is called the topological entanglement entropy (TEE), and is simply a sum of

von Neumann entropies of subregions:

I(A : C|B) ≡ SAB + SBC − SB − SABC .

There is a quantum information theorem that says (see e.g. the book by Petz): if

I(A : C|B) = 0 then the density matrix ρABC (such a state is called a quantum Markov

state) can be uniquely reconstructed from its marginals ρAB, ρBC .
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Consider the choice of ABC at right. In gapped groundstates

we expect that for each region A, the entropy satisfies an area

law, S(A) = |∂A|Λ − γb0(∂A), where b0(∂A) is the number

of components of the boundary of A. The area-law contribu-

tions cancel out pairwise (notice that the corners cancel too).

All that is left is I(A : C|B) = 2γ ≥ 0. The last inequality

is the statement of strong subadditivity of the von Neumann

entropy.

So the TEE should be regarded as a symptom of the existence of some nontrivial

(appropriate generalization of) cohomology.

There are three more important things to be said about the TEE [Kitaev-Preskill

Levin-Wen]:

1. It is independent of deformations of the regions which preserve the topology of

each part.

2. It is independent of changes of the state that keep the correlation length small

compared to the sizes of the regions.

3. It can be related to the anyon data for the associated topological order. In

particular it is γ = log
∑

a d
2
a, where a runs over all the anyon types and da are

their quantum dimensions.

First note that

−2γ = −I(A : C|B) = − (SAB + SBC − SB − SABC)

can be grouped as (SABC − SBC)−(SAB − SB). The first term is the entropy gained by

closing the top of BC, while the second term is the entropy gained by closing the top

of B. Since these only differ by what’s going on at the bottom, if the entanglement is

all short-ranged, they should be the same (and more the same as the regions get larger

compared to the correlation length). On the other hand, if there is string condensation,

strings can wind around ABC and decrease the first term.

To see the first two statements, let D be the complement of ABC, so that ABCD is

in a pure state. Now suppose we deform the boundary of C a bit so that it absorbs some

of D. The term SAB − SB shouldn’t care about this because it only involves distant

regions. Since ABCD is pure we can write the other term as SABC−SBC = SD−SAD.

Now we expect that ∆SD −∆SAD = 0 – appending A shouldn’t affect the change in

entropy of SD from moving the distant boundary with C.
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A similar argument can be made for the triple-intersections of regions – one of the

regions is always far away and therefore not involved.

Now consider a deformation of the local Hamiltonian whose groundstate we are

talking about (or we could talk about changes in the state itself by acting with local

unitaries). Any change that acts completely within one of the regions doesn’t change

the entropies. To see the effect of a change that happens near a junction, just move

the junction using the previous result, so that the change is now completely within a

region.
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3 Quantum Double Model and Homotopy

[Hatcher, beginning] First some definitions. A homotopy is a family of maps ft : X →
Y, t ∈ I (I is the interval) such that

f :
X × I → Y

(x, t) 7→ ft(x)

is continuous. (In the following everything in sight is assumed to be continuous.) Two

maps f0,1 : X → Y are said to be homotopic if there exists a homotopy ft with the

obvious boundary conditions. In this case we will write f0 ' f1.

An important class of examples is the following. A deformation retraction of X

into A ⊂ X is a homotopy from f0 = id : X → X to f1 = a retraction r : X → X

with r(X) = A and r2 = r like a projector. For example, we can find a deforma-

tion retraction of a disk X to a point A, or an annulus X to a circle A, or a disk

with two holes to ∞ or θ or two circles attached by a line segment, like eyeglasses:

.

There are retractions which are not deformation retractions, such as from X = two

points to X = one point, or from X = annulus to X = one point.

An important definition: X is homotopy equivalent to Y (or X and Y have the

same homotopy type or X ' Y ) if there exist f : X → Y and g : Y → X such that

f ◦ g and g ◦ f are homotopic to the identity map.

For example, if X deformation retracts to A ⊂ X via f : X×I → X with r : X → A

the retraction and i : A→ X the inclusion, then ri = 1, and ir ' 1 by the homotopy

f . Therefore X ' A. So the two-hole disk and ∞ and θ and the eyeglasses are all

homotopy equivalent. Another example is Rn and the n-dimensional open ball.

As the name suggests, homotopy equivalence is an equivalence relation, as you can

check. Deformation retraction is not. X ' Y iff there exists Z which deformation

retracts to X or Y . If X ' a point, then we say X is contractible.

3.1 Notions of ‘same’

There are many possible notions of when two spaces are ‘the same’. They differ by

what structure we care about. For example, if we are interested in spaces with metrics,

we regard two spaces to be equivalent if they are related by an invertible isometry –

a smooth map which preserves the metric. If we are just interested in doing calculus,

two smooth manifolds are equivalent if they are related by an invertible smooth map

(diffeomorphism). If we are only doing topology, continuous maps – homeomorphisms
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are enough.

Homotopy vs homeomorphism. Homotopy equivalence is yet another notion

of equivalence, which depends only on continuity, but is weaker than homeomorphism.

There are manifolds which are homotopy equivalent but not homeomorphic: an exam-

ple of such a pair is the 3d lens spaces L1/7 and L2/7, which can be defined as quotients

of S3 like RP3. Later I plan to talk about a physically-motivated invariant which can

distinguish them, called torsion, with various adjectives in front of it. (Annoyingly,

it is not the same as torsion homology.) A much simpler example is given above35: a

ball and a point are homotopy equivalent by the deformation retraction, but they have

different dimension. The dimension of a manifold is a homeomorphism invariant, but

not a homotopy invariant.

There are still other equivalence relations we might care about. For example, we

could regard two n-manifolds Y0 and Y1 as equivalent if there exists some (n + 1)-

manifold X with ∂X = Y1 − Y0. Such an X is called a bordism between Y0,1, and Y0

is said to be bordant to Y1. A closed manifold is a bordism from the empty manifold

to itself. Not all 0-dimensional manifolds are bordant to each other: the number of

points is conserved mod two, since a 3-string junction is not a manifold. However, a

circle is bordant to any number of circles by a disk or an annulus or a pair of pants.

The existence of the creamy filling of a donut with g handles means that any Riemann

surface is bordant to nothing: bordism equivalence doesn’t even preserve the euler

character. It does preserve it mod two, however, since an unoriented surface is not

the boundary of a 3-manifold. This notion plays an important role in the spacetime

definition of topological field theory. Maybe we’ll come back to that.

[End of Lecture 14]

3.2 Homotopy equivalence and cohomology

[Bott and Tu p. 35] Here we will show that if two manifolds are homotopy equivalent,

then they have the same de Rham cohomology. The proof follows mostly from our

discussion of the Poincaré Lemma, i.e. the isomorphism between H•dR(M) and H•dR(M×
R) around (2.31).

Lemma: Homotopic maps induce the same map on cohomology.

Proof: A homotopy between f0, f1 : M → N is a continuous map

F : M × R→ N with F (x, t) = ft(x) for t = 0, 1.

35Thanks to Meng Zeng for reminding me.
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Let s0,1 : M → M × R be the 0-section and 1-section, st(x) ≡ (x, 1) ∈
M × R. Then ft = F ◦ st so

f ?t = (F ◦ st)? = s?t ◦ F ?. (3.1)

But now recall our earlier discussion: we could have used either s0 or s1

in that discussion, since the choice of origin was completely arbitrary; this

means that either s?0 or s?1 is an inverse of π? on the cohomology, so they

are equal, s?0 = s?1 on H•(N), and therefore (3.1) says f ?0 = f ?1 . �

M × R

NM

Fπs0,1

f0,1

An immediate consequence of this is that if X ' Y then H•dR(X) ' H•dR(Y ). X ' Y

means there exist f : X → Y and g : Y → X with g ◦f ≡ f0 homotopic to 1 = f1. But

this means f ? ◦ g? = 1 on the cohomology of X, and g? ◦ f ? = 1 on the cohomology of

Y so f ? = (g?)−1 is an isomorphism.

In particular, if A is a deformation retract of X, then H•(X) ' H•(A). An example

we’ve used already is that the Poincaré Lemma about H•(Rn) also tells us H•(n-ball)

and H•(point).

As another example, we now know thatH•(annulus ≡ Sn−1×
I) = H•(Sn−1). We can use this, with the Mayer-Vietoris

sequence, to compute H•(Sn) iteratively. Cover Sn with two

patches – US = everything but the north pole, and UN =

everything but the south pole; US ∩UN is an annulus, which

is homotopy equivalent to Sn−1.

There is one minor wrinkle: in using the pullback all over the place above, I’ve

assumed that the maps f and g inducing the homotopy equivalence are smooth. What

if X and Y are only homotopy equivalent via continuous but not smooth maps? This

doesn’t happen: every continuous map f : X → Y is homotopic to a C∞ map. This is

Bott and Tu proposition 17.8.

3.3 Homotopy equivalence and homology

[Hatcher p. 133] Now we wish to show that homotopy-equivalent manifolds also have

the same homology. (This is the argument that leads to the name ‘homotopy opera-

tor’.) This is actually a stronger statement than the previous subsection, since it also

incorporates torsion, which is invisible to the deRham theory.

First, a map f : X → Y induces a map on the chains, f] : Ω•(X) → Ω•(Y ). To

see this, think of a q-cell as a continuous map σq : ∆q → X including the cell into the

manifold (∆q is an ideal q-cell, such as q-simplex or a q-cube, Iq, and this is called the
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characteristic map of the cell). Then

f](σ) = f ◦ σ : ∆q → Y.

Here we are using a particular cell decomposition of Y , which is compatible with

the one induced (from the decomposition of X) by these maps. Since we’ve proved

subdivision invariance of the homology, we lose no generality here36. The induced map

on chains is a chain map: f]∂ = ∂f]. Therefore, there is an induced map on homology

f? : H•(X) → H•(Y ). (That is, H• is a covariant functor from manifolds to abelian

groups.)

Lemma: If f0,1 : X → Y are homotopic, f0 ' f1, then f0? = f1? : H•(X)→ H•(Y ),

the induced maps on homology are the same.

Main result: If f : X → Y is a homotopy equivalence X ' Y , then f? : H•(X) →
H•(Y ) is an isomorphism.

Proof of main result: f is a homotopy equivalence means that there is a map

g : Y → X with f ◦ g ' 1 and g ◦ f ' 1. (fg)? = f?g? and 1? = 1, so f?g? = 1 = g?f?
on homology.

Proof of lemma: Given a homotopy map F : X × I → Y , we can construct a

homotopy operator K : Ωq(X) → Ωq+1(Y ) such that K∂ + ∂K = f0] − f1] on Ωq(X).

This immediately implies that a q-cycle α ∈ Ωq(X) ( ∂α = 0) satisfies

∂(Kα) = (f0] − f1]) (α)

and hence [f0]] = [f1]] ∈ Hq+1(Y ), i.e. f0? = f1?.

So who is K? The idea is just that a cell decomposition of X implies a cell decom-

position of X × I. If we want the cells to be simplices we have to do some annoying

further subdivision to cut it up into triangles. (Nearly all the effort and complication

in Hatcher’s proof of his Theorem 2.10 is devoted to this.) Since we don’t care about

that, we can just define the image of a q-chain σ in the cell decomposition of X

K(σ) = F (σ × I),

a (q + 1)-chain in the (compatible) cell decomposition of Y .

36This irritation can be avoided by using what is called singular homology. The idea there is to

define a complex from all possible continuous maps from simplices into X. This has the drawback

that it’s not obviously finite-dimensional, but can be proved to be equivalent to the cellular homology

we studied before; see Hatcher §2.1 for more.

92



As you can see in the figure at right, it in-

deed satisfies

∂K(σ) = K(∂σ) + f1](σ)− f0](σ).

The first term comes from the ‘vertical’

boundaries along the homotopy, and the

last two terms come from the top and bot-

tom. (If we did subdivide X × I, all the in-

ternal boundaries of K(σ) must be defined

to cancel out.) �

3.4 Morse theory and homotopy equivalence

Since we spent some time learning about Morse theory earlier, I don’t feel bad about

a brief digression here using it to learn about the homotopy type of manifolds.

Suppose h is a Morse function on some smooth manifold

M . Let Ma ≡ h−1 ([−∞, a]). If h−1 ([a, b]) is compact and

contains no critical points of h then Ma 'Mb.

Here’s why: put a metric γij on M . Define the gradient, an operation which makes

a vector field from a scalar field, by

γij∇ifY j ≡
〈
~∇f, ~Y

〉
≡ df(~Y )

(at each point in M) for any vector field Y on M . Let ~X ≡ −~∇h/|| ~∇h || (|| ~Y || ≡√
〈Y, Y 〉). This is a unit vector field, well-defined away from critical points of h (and

in particular on h−1 ([a, b]) under the hypotheses above); it points in the direction of

fastest decrease of h. Flowlines of ~X give a deformation retraction from Mb to Ma. �

Here’s a slightly more ambitious statement: Suppose h−1 ([a, b]) is compact and

contains a single (non-degenerate) critical point of Morse index k. Then Mb 'Ma∪ek.
The RHS is a space obtained by attaching a k-cell to Ma.

Here’s the idea: as in our discussion of the NLSM, there exist coordinates on M

near the critical point p which diagonalize the hessian ∂2h|p, where

h = h(p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n +O(x3).
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Consider the level sets of this function that

lie just above and just below the critical

value h = h(p). At the critical value, the

level set is not a smooth manifold. (The

case n = 2, k = 1 is depicted at right.

In the general case, the level sets near the

critical point are the hyperboloids of rota-

tion obtained by rotating this picture in

both Rk and Rn−k (the negative and pos-

itive eigenspaces of the hessian).) If we

define M− ≡ h−1 (h(p) ≤ ε) ' Mb and

M+ ≡ h−1 (h(p) ≤ ε) ' Ma, we can see

from the picture that we must attach a k-

cell to M− to get M+.

A consequence of the existence of (generic!)

Morse functions is that any compact man-

ifold is homotopy equivalent to a finite cell

complex.

Here are pictures of the cases n = 3 and k = 1, 2 respectively:

In the left picture, the inside of ∂M− is filled to make M−; we attach to this the red

1-cell and obtain a region homotopic to M+ which is the inside of ∂M+. In the right

picture, the outside of ∂M− is filled to make M−; we attach to this the red 2-cell and

obtain a region homotopic to M+ which is the region between the two components of

∂M+.
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We can plot the general case in terms of

u2 ≡
k∑
i=1

x2
i , v2 ≡

n∑
i=k+1

x2
i ,

in terms of which

M± ∼ {−u2 + v2 ≤ ±ε}.

Each point in this picture is a Sk−1 × Sn−k−1.

Near the critical point, the Morse function has

has an approximate SO(k)× SO(n− k) symme-

try.

3.5 Homotopy groups

Let X be a topological space with a base point, p ∈ X, just a point in X that we like

for some reason. The homotopy groups of X are:

πq(X) ≡ homotopy classes of maps : (Iq, ∂Iq)→ (X, p).

Here Iq ≡ I × I × · · · I is the inside of the q-dimensional cube, homotopic to a q-ball,

and its boundary is the unit cube, homotopic to a (q − 1)-sphere. Since all points in

∂Iq map to the same point in X, an equivalent definition would consider maps from

Iq/∂Iq ' Sq taking the north pole to the base point.

For q > 0, πq is a group under the following product operation: Given α, β :

(Iq, ∂Iq) → (X, p) (so that [α], [β] ∈ πq(X)), define [α][β] = [α ? β] where α ? β is the

map

(α ? β)(t1, · · · , tq) =

{
α(2t1, t2, · · · , tq) , 0 ≤ t1 ≤ 1

2

β(2t1 − 1, t2, · · · , tq) , 1
2
≤ t1 ≤ 1

α β

t1

t2

(3.2)

(I draw the picture for q = 2. All the black lines map to the base point.)

If instead we were using maps from Sq, we first

map Sq to two Sqs attached at their north poles

by shrinking the equator to a point, then map the

top sphere by α and the bottom sphere by β.
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[End of Lecture 15]

For q = 0, π0(X) = maps : point → X/ '≡ [point, X] is not in general a group.

Rather π0(X) is the set of path components of X. (For the special case where X = G

is a Lie group, π0(G) = G/G0, where G0 is the component of G containing the identity

element; this is a group.)

Basic facts about homotopy groups:

1. πq(X) is a group. The identity operation is the constant map to the base point.

The inverse is [f−1(t1 · · · tq)] = [f(1− t1, t2, · · · tq)].

The product is associative in the sense that

α∗ (β ∗γ) ' (α∗β)∗γ are homotopy equiv-

alent. Here is the homotopy:

α β γ

1/4 1/2

1/2 3/4

(α ∗ β) ∗ γ

α ∗ (β ∗ γ)

t

s

2. πq(X) is abelian for q > 1. π1(X), called the fundamental group of X, is special

in that it can be non-abelian.

Proof of statement 2:

α β '
α

β
p

p
'

α

β

'
β p

p α
αβ'

α ? β δ

α ? β in the first step is the map in (3.2). Here the definition of the map δ:

δ(t1, · · · , tq) =


α(2t1, 2t2 − 1, · · · , tq) , 0 ≤ t1 ≤ 1

2
, 1

2
≤ t2 ≤ 1

β(2t1 − 1, 2t2, · · · , tq) , 1
2
≤ t1 ≤ 1, 0 ≤ t2 ≤ 1

2

p, otherwise

– the points in the lower left and upper right all map to the base point. �

3. If X ' Y then πq(X) ∼= πq(Y ).

4. πq(X × Y ) = πq(X)× πq(Y ). Even simpler than the Kunneth formula.

Basic fact 4 follows from the fact that any map Iq → X × Y is of the form

(fx, fy) with fx : Iq → X, fy : Iq → Y . And it is a group homomorphism since

(fx, fy) ? (gx, gy) = (fx ? gx, fy ? gy).
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5. Let ΩpX ≡ {continuous maps : (I1, ∂I1)→ (X, p)} ≡ the loop space of X. So the

definition of π1(X, p) is just π0(Ωp(X)). For q > 2 also37, πq−1(ΩpX) = πq(X, p).

The idea is that a representative of πq(X), f : Iq → X can be viewed instead as

a map Iq−1 → ΩX just by picking a slice of Iq.

A corollary of this statement is that π1(ΩX) is always abelian.

6. Like homology, πq is a covariant functor from the category of topological spaces

(and continuous maps) to the category of groups (and group homomorphisms).

To see this, consider a map φ : (X, x0) → (Y, y0). Given a representative of

πq(X), α : (Iq, ∂Iq) → (X, x0), we can use φ to make a representative of πq(Y ),

namely φ ◦ f : (Iq, ∂Iq) → (Y, y0). So we can define an induced map on the

homotopy groups

φ?[α] ≡ [φ ◦ f ].

This is a group homomorphism in the sense that 1? = 1, φ◦(α?β) = (φ◦α)?(φ◦β)

and given also ψ : (Y, y0)→ (Z, z0), we have ψ? ◦ φ? = (ψ ◦ φ)?.

One consequence of this is the obvious-sounding statement (basic fact 3) that

homotopy-equivalent spaces have the same homotopy groups (Hatcher Proposi-

tion 1.18). If f : X → Y and g : Y → X are the relevant maps then the induced

map f? : πq(X, x0)→ πq(X, f(x0)) is an isomorphism with inverse g?.

7. Making the choice of base point explicit, πq(X, p) ∼= πq(X, p
′) (i.e. they are

isomorphic groups) if X is path connected. So we don’t need to make the choice

of base point explicit.

37This is a teleological footnote using ideas we’ll develop below to prove this statement more. Please

ignore it on a first pass. I learned it from Bott and Tu and here. The following sequence (for X path

connected) defines a fiber bundle

ΩX → PX → X (3.3)

called the path fibration where PX ≡ {maps µ : I → X,µ(0) = p} (p is the base point). The first

map is just inclusion (ΩX = {µ ∈ PX|µ(1) = p}), and the second map is the projection π(µ) = µ(1).

The statement that (3.3) is a fiber bundle means the second map in (3.3) satisfies the ‘homotopy

lifting property’ or ‘covering homotopy property’ (this elaborate-seeming statement is explained on

page 198-199 of Bott and Tu; the fact that it holds for π : PX → X is simple when X is path-

connected). This means the short-exact sequence (3.3) induces a long-exact sequence on the homotopy

groups

· · · → πq(ΩX)→ πq(PX)→ πq(X)→ πq−1(ΩX)→ · · ·

And finally PX is contractible because each path can be deformation retracted to the base point,

or as it says in the link above: “the picture is that of sucking spaghetti into one’s mouth”.

So the exactness of the long-exact sequence means πq(X) ∼= πq−1(ΩX).
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About the dependence on the base point (item 7): Suppose

that X is path connected. A path γ from x0 to x1 induces a

map on the loop spaces Ωx0X → Ωx1X by α → γ ? α ? γ−1

(where γ−1 means the path γ traversed backwards).
γ

γ−1

x0 x1

α

This induces a map

γ? : πq−1(Ωx0X, x0)→ πq−1(Ωx1X, x1)

where xt is the constant map to xt. But this is the same as a map

γ? : πq(X, x0)→ πq(X, x1).

This map is an isomorphism, with (γ−1)? = (γ?)
−1.

More explicitly, for [α] ∈ πq(X, x0) define a homotopy

F : Iq+1 = Iq × I → X

as follows. For u ∈ Iq, we want F (u, 0) = α(u) and F (u, t) =

γ(t),∀u ∈ ∂Iq. This defines the map on all but one face of ∂Iq+1.

Now I quote a theorem (‘the box principle of obstruction theory’)

that such an F can be extended to all of Iq+1, and we define

[F (u, 1)] = γ?[α].

x0 x0

x0x0

x1

x1

x1

x1

α

γ
γ

γ

If we take x0 = x1, this defines an action of π1(X, x0) on πq(X, x0) describing the

result of moving the base point around in a non-contractible loop. Its nontriviality

measures something about how much the choice of base point matters. Bott and Tu

Prop. 17.6.1 shows that

πq(X, x0)/π1(X, x0) ∼= [Sq, X]

where the quotient on the LHS is by the action defined above, and the RHS is homotopy

classes of maps from Sq to X without any notion of base point (‘free homotopy’). This

is not a group. The map from the LHS to the RHS is just inclusion of base-point-

preserving maps into the set of all maps.

What’s special about Iq or spheres? It is actually possible to define homotopy

groups of maps from other spaces. But in general the set of homotopy classes of maps

from one space to another is not a group.

Higher homotopy groups are hard to compute. Even for spheres πq(S
n) are not all
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known for large-enough q and n. For small q, n here is the table:

(from here; that page also has a larger table).

Fundamental group. Let’s focus on q = 1, the fundamental group, for a bit.

In this case the product is simpler to understand: a representative of π1(X) is just a

closed path in X starting and ending at the base point. The product of two paths is

just one followed by the other, with the parameter rescaled so that total duration is

still 1.

There is information in πq(X) that is not present in the homology. For example,

π1(X) has more information than H1(X). Here is an example of a space X with trivial

H1(X,Z) (such a space is called ‘acyclic’) but nontrivial π1(X). Take a figure eight

and glue in two 2-cells whose boundaries are a5b−3 and b3(ab)−2 where a and b are the

two loops. The cell complex is then

0→ Z2 M→ Z2 0→ Z→ 0

with

∂2 = M =

(
5 −2

−3 1

)
. Since detM = −1

there is not even any torsion first homology. But

π1(X) =
〈
a, b|a5b−3 = 1, b3(ab)−2 = 1

〉
=
〈
a, b|a5 = b3 = (ab)2

〉
= I? (3.4)

the binary icosahedral group, a double cover of the icosahedral group (the symmetry

group of the icosahedron and dodecahedron) I ∼= A5, also known as the alternating

group on (i.e. the even permutations of) five elements, S5/Z2. Under the surjection

I?→ I a maps to a 2π/5 rotation through center of a pentagon, and b maps to a 2π/3
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rotation through a vertex. The double cover of I arises by the inclusion I ⊂ SO(3),

and is induced by the double cover π : SU(2)→ SO(3).

Why is (3.4) the answer for π1(X)? Well, π1 of a bouquet of circles – q circles

attached at a point (which we take to be the base point) – is the free group on q elements.

Each circle provides a generator, and there are no relations. A bouquet of q circles is a

deformation retract of R2 \ {q points} (or R3 \ {q lines}), ' , so this

is also π1 of the latter spaces.

This free group on ≥ 2 elements is a deeply horrible object. The elements are all

words made of the letters a1, a2 · · · aq and a−1
1 , a−1

2 · · · a−1
q , and the only relation is that

you can cancel an ai and an a−1
i if they are right next to each other. It contains copies

of itself as a subgroup. Ick.

When we glue in a 2-cell we introduce a relation in π1 according to the gluing map;

this gives (3.4).

This example is related to the existence of the Milnor homology sphere M – a

3-manifold with the same homology as a sphere, but different homotopy groups. M

can be defined as S3/I? (with I? the binary icosahedral group as above). Therefore

π1(M) = I ′. There is a lot to say about this space.

General Fact: H1(X,Z) is the abelianization of π1(X), i.e.

H1(X,Z) = π1(X)/[π1(X), π1(X)]

where [G,G] ≡ 〈ghg−1h−1, g, h ∈ G〉 is the commutator subgroup of G, the subgroup

generated by (multiplicative) commutators of elements of G. This is not hard to see:

the whole difference between π1 and H1 is that in the latter we keep track of the order

in which the closed loops are traversed. Modding out by commutators is erasing exactly

this information. [For a more explicit proof, see Hatcher Theorem 2A.1.]

van Kampen Theorem. [Justin Roberts’ knot knotes has a very nice discussion

with a proof sketch] Here is an analog of the Mayer-Vietoris idea for the fundamental

group. Let X = U ∪ V , two open sets, and let W ≡ U ∩ V . Denote π1(Y ) ≡ 〈sY |rY 〉
for Y = U, V,W , so sY is a set of generators of π1(Y ) and rY is a set of relations. Let

iU,V be the inclusion maps of W into U and V . Then

π1(X) =
〈
sU ∪ sV |rU ∪ rV ∪ {iU? (g) = iV? (g)}g∈sW

〉
.

That is: a set of generators of π1(X) is just those of U and those of V . This double-

counts the generators on the overlap. The theorem says that it’s enough to add one

relation for each generator of the fundamental group of the overlap.
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Example 1: Cut a bouquet of two circles (S1∧S1, two circles

attached at a point) into two open sets U and V where each

of U and V removes a single point from one of the circles.

The overlap can be deformed to an X which is contractible.

π1(U) and π1(V ) each have one generator, and there are no

relations, so π1(S1 ∧ S1) is the free group on two elements.

Example 2: Consider a genus-g Riemann surface Σg, de-

scribed as a polygon with 2g sides, with the identifications

given in §1.3. Let U be a disk inside the polygon and V a

little more than its complement. Then U ∩ V is an annulus,

homotopy equivalent to a circle, with π1(S1) = 〈g〉 . The

inclusion of g into U maps it to iU? (g) = 0, since every loop

in U is trivial. The inclusion of g into V is homotopic (in

V ) to
∏g

i=1[ai, bi] with [a, b] ≡ aba−1b−1. We conclude that

π1(Σg) = 〈{ai, bi}gi=1|
∏g

i=1[ai, bi]〉.

Example 3: The answer we found above for π1 of the acyclic space X can also be

obtained by these methods. It is best to do it in two steps, first removing both disks

and then removing just one.

Cellular approximation. Notice that all of these definitions can be applied to

the case where we approximate M by a cell complex. The idea is that any path is

homotopic in M to a sequence of (oriented) 1-cells.38

Let ∆ be a path-connected cell complex, with a base point p ∈ ∆0, a 0-cell. One

way to specify a group is by giving generators and relations: G = 〈{g}|{r}〉 is the

group whose elements are all products of g (and the identity element e) modulo the

relations r = e. To ∆ we can associate the following group:

G∆ ≡

〈
{g`}`∈∆1

∣∣∣∣∣{∏
`∈∂σ

g` = e}σ∈∆2

〉

– a generator for every 1-cell, and a relation for every 2-cell.

There are two ways to describe the relationship between G∆ and π1(∆). The more

direct is just to say that π1 is the following subgroup

π1(∆) ∼= {words in G∆ starting and ending at p} ⊂ G∆.

38For a more precise discussion of the statements here, I commend your attention to Theorem 13.4

on p. 138 of Bott and Tu.

101



The idea is just that the relations∏
`∈∂σ g` = e are exactly the discrete rem-

nants of the homotopy relations. In the fig-

ure at right, the group element

· · · g`1g`2g`3g`4 · · · = g`1g`2g`5 · · ·

as a consequence of the relation imposed by

the 2-cell σ. You can see that these are the

group elements associated with two homo-

topic paths.

Under some further assumptions on the cell complex, there is also the following

“Calculating Theorem” (this is the name given to it by Nash and Sen):

π1(∆) ∼= G∆/GL (3.5)

where L is a contractible 1d subcomplex containing all of the 0-cells. The idea here

is that we set to 1 all the group elements associated to links in L. Then any edge is

equivalent to a path of edges starting from the base point and ending at the base point

by adjoining a path through L. Such an L always exists39, but may be empty. For

example, for the cellulation of Σg by a single 2-cell, 2g 1-cells, and just one 0-cell, p,

we can take L to be empty, since any path starts at the base point by default. If we

subdivide by adding a new 0-cell in the middle of w with an edge going to each vertex

of the polygon, we must choose the new edges to constitute L.

[End of Lecture 16]

Higher homotopy groups and homology. For general q, there is a natural

homomorphism

i :
πq(X) → Hq(X)

[f ] 7→ f?(u)

where u is a generator of Hq(S
q). For better or worse, this map is neither injective nor

surjective.

One more fact about the relation between homotopy groups and homology, however,

is the Hurewicz isomorphism theorem: The first nontrivial homotopy and homology

groups of a path-connected manifold occur in the same dimension q. (q = 0 doesn’t

count.) If q > 1 then they are isomorphic. (In symbols: if q > 1, and πk(X) = 0 for

1 ≤ k < q, then Hq(X) = 0 for 1 ≤ k < q and Hq(X) = πq(X).)

39Let L be the 1d contractible subcomplex containing the most 0-cells. (This always exists for a

finite complex.) If L didn’t contain all the 0-cells, say b ∈ ∆0 \ L0, and the edge 〈ab〉 ∈ ∆1, then

L ∪ 〈ab〉 ∪ {b} is bigger but still contractible.
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Consider the case q = 2. Then the claim is that H2(X)
·

= H1(ΩX) = π1(ΩX)

(since π1(ΩX) = π2(X) is abelian), and therefore H2(X) = π2(X). The first equality,

with the
·

=, follows from H1(X) = 0 but I will not explain it here. There is a general

proof on page 225 of Bott and Tu which uses a spectral sequence and induction from

the above case.

This theorem implies that πq(S
n) = δn,qZ for q ≤ n.

3.6 The quantum double model

[Kitaev, quant-ph/9707021, §4,5] (Yes, the same paper.) This is a good place to pause

with the mathematical development to introduce the quantum double model, the basic

non-abelian generalization of the toric code. Like the ZN>2 toric code, it is defined on

an arbitrary oriented cell complex, ∆. The Hilbert space is

H =
∏

0−cells

RReg

where

RReg ≡ span{|g〉 , g ∈ G}

is the regular representation of a finite group G, which we’ll call the gauge group. To

the edge with opposite orientation we associate |g−1〉.

The Hamiltonian looks just like that of the toric code (up to an additive constant)

H =
∑
v∈∆0

(1− Av) +
∑
w∈∆2

(1−Bp) .

The star and plaquette operators A and B take some explaining, and are defined as

follows, in terms of some useful operators acting on the regular rep. Let

Lg+ ≡
∑
h∈G

|gh〉〈h|, Lg− ≡
∑
h∈G

|hg−1〉〈h|

implement the left and right action of the group (a bit like X), and let

T g+ ≡ |g〉〈g|, T g− ≡ |g−1〉〈g−1|

be projectors onto particular group elements (diagonal in the preferred basis, like Z).

Note that T g− = T g
−1

+ . As you can verify, they satisfy

Lh+T
g
+ = T hg+ Lh+, Lh−T

g
+ = T gh

−1

+ Lh− (3.6)

and similar relations for other combinations of ±. It is sometimes useful to denote

ḡ ≡ g−1 to minimize marks on the page.
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Av =
1

|G|
∑
g∈G

Agv ≡
1

|G|
∑
g∈G

∏
`∈∂†(v)

Lgs(`)(`)

where the s(`) = ± for each link is chosen according to the sign with which v appears

in ∂`.

For example, for the cubic lattice with each edge chosen to

point north or east or up,

Agv = Lg+(1)Lg+(2)Lg+(3)Lg−(4)Lg−(5)Lg−(6).

1
2

3

4

5 6

Bw =
∑

∏|∂w|
i=1 gi=e

∏
`∈∂w

T g`s(`)(`)

where the sign is s(`) = ± according to whether or not the reference orientation of `

agrees with how it appears in ∂p. If ∂w contains k links, the sum is over all collections

of g1 · · · gk whose product (in the order in which they are traversed by ∂w) is the

identity e ∈ G.

For example, on the cubic lattice with the above convention

Bw =
∑

g1g2g3g4=e

T g1
+ (1)T g2

+ (2)T g3
− (3)T g4

− (4).

1

23

4

Both Av and Bw are projectors, so their eigenvalues are 0, 1. In the case when

G is abelian, they are related to the usual star and plaquette operators by40 A →
1
2

(
1 + ATC

)
and B → 1

2

(
1 +BTC

)
.

In summary, the action of the terms in the Hamiltonian

on a group-element-basis state is at right. The Hamilto-

nian involves only the group-average of the Ags and only

Bh=e.

40Actually if I want to say that L is analogous to X and T is analogous to Z, I have reversed our

convention for the TC that the star operators involve Z. My apologies. On a 2d complex, this mishap

can be repaired by simply drawing the pictures on the dual lattice.
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All the Avs and Bws commute. This follows from the rela-

tions (3.6): For example for the star and plaquette sharing

the two links 1, 2, then

AhvBw = · · ·Lh+(1)Lh+(2)
∑

g1g2g3g4=e

T g1
− (1)T g2

+ (2) · · · (3.7)

=
∑

g1g2g3g4=e

T g1h−1

− (1)T hg2
+ (2) · · ·Lh+(1)Lh+(1) (3.8)

=
∑

g′1g
′
2g3g4=e

T
g′1
− (1)T

g′2
+ (2) · · ·Lh+(1)Lh+(1) = BwA

h
v

(3.9)

with g′1 ≡ g1h
−1, g′2 ≡ hg2.

1

2

w

v

If you are interested in messing with the definition of the quantum double model

to try to find other solvable lattice models associated with non-abelian groups, an

important observation is that unlike the toric code where all the ingredients in the

star operators commute, the L’s do not commute: [Lg+, L
h
+] 6= 0 if G is non-abelian.

([Lg+, L
h
−] = 0, however.) This makes it quite a bit harder to generalize this model.

So the groundstates satisfy Bw |Ψ〉 = |Ψ〉 = Av |Ψ〉 for all v, w. You can already

see a connection between these groundstates and π1(∆) via the ‘calculating theorem’,

(3.5): to each edge we associate a group element, but because of the condition Bw = 1,

we keep only those configurations where the product of group elements around each

plaquette is the identity,
∏

`∈∂σ g` = e. One difference is that these group elements are

chosen from G, which comes with its own extra relations.

To understand this space of groundstates better, we’ll develop a little bit more

technology. A question we can address first, though, is the excitations.

Elementary excitations. As in the toric code there are two classes of excitations,

generalizing the e and m particle in the 2d case. The analog of the e particle is a vertex

that fails to satisfy the star condition. This means that rather than satisfying Av |Ψ〉 =

|Ψ〉, a state with such an excitation transforms nontrivially under the individual Agv. In

fact, we can find states with a particle excitation at v that transform as a representation

Ra of G under the action of Agv:

Agv |Ψa
i 〉 = (Da(g))ij

∣∣Ψa
j

〉
(3.10)

where (Da(g))ij are the representation matrices for some representation of G. In par-

ticular

(Da(g))ij (Da(h))jk = (Da(gh))ik . (3.11)

Notice that associated with this particle at v is a whole Hilbert space, a representation

of G, rather than just a single state as in the abelian case.
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To construct the state explicitly, choose a string C ending at the vertex v. (It

has another end, of course, but let’s send it off to infinity and ignore it for simplicity.

The particle at the other end has to transform in the conjugate rep Rā.) We’re going

to make the analog of the string operator
∏

`∈C Z`, that commutes with the toric

code Hamiltonian except at the endpoints v where it fails to commute with the star

operator
∏

`∈∂†(v) X`. To do so it’s useful to think about what is the Z operator. One

way to write it in the ZN case is Z =
∑

g∈ZN D(g)|g〉〈g| where D(g) is a nontrivial

representation of ZN , which is 1 dimensional because ZN is abelian. To generalize this

to an arbitrary group, let

Za
ij ≡

∑
g∈G

(Da(g))ij |g〉〈g|

– the analog of σz is a matrix of operators in transforming in some representation of

G, and there is an analog for each representation. I will take a to label an irrep.

Now instead of just multiplying the string of Zs, we matrix multiply them:

W a(C)i ≡ Za
ij(1)Zjk(2)Zkl(3) · · ·

where 1, 2, 3 label links along the curve C and the repeated indices are summed. In-

cluding the other end of the string, the group representation property (3.11) implies

W a(C)if ≡ Za
ij(1)Zjk(2)Zkl(3) · · ·Zmf (N) (3.12)

=
∑

g1,··· ,gN

(Da (g1g2 · · · gN))if |g1, · · · , gN〉〈g1, · · · , gN | (3.13)

where N is the number of links in the curve C.

To see why the matrix multiplication is a good idea, consider the algebra of W with

the terms in H. It commutes with the plaquettes Bw because it is diagonal in the |g〉
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basis. Now act with Av1 where v1 is a vertex somewhere along the curve C:

Av1W
a(C)if =

1

|G|
∑
h∈G

· · ·L−(n)hLh+(n+ 1) · · ·
∑

gn,gn+1

Da (gngn+1)inin+1
|gn〉〈gn| ⊗ |gn+1〉〈gn+1| · · ·

(3.14)

=
1

|G|
∑
h

· · ·
∑

gn,gn+1

Da (gngn+1)inin+1
|gnh−1〉〈gn| ⊗ |hgn+1〉〈gn+1| · · ·

(3.15)

=
1

|G|
∑
h

· · ·
∑

g̃n≡gnh−1,g̃n+1≡hgn+1

Da (g̃ng̃n+1)inin+1
|g̃n〉〈g̃nh| ⊗ |g̃n+1〉〈h−1g̃n+1| · · ·

(3.16)

= · · ·
∑

g̃n≡gnh−1,g̃n+1≡hgn+1

Da (g̃ng̃n+1)inin+1
|g̃n〉〈g̃n| ⊗ |g̃n+1〉〈g̃n+1| · · ·

1

|G|
∑
h∈G

· · ·Lh+(n)Lh−(n+ 1)

(3.17)

= W a(C)ifAv1 (3.18)

(where the · · · are factors that commute). If we act instead with Av (the vertex at the

end of the curve) we’ll find (3.10). This works in any dimension.

The analog of the m particle is a codimension-two excitation around which the

product of group elements is g1 · · · gN = g 6= e. To insert this flux, we need the analog

of
∏

`⊥Č X`. But we can’t just act with

∏
`⊥Č

Lg+(`)

because that would mess up the plaquette operators. (Acting with Lg+(1)Lg+(2) replaces

ḡ1gbg2ḡa = e with ḡ1ḡgbgg2ḡa 6= e – there’s a gb in the way preventing the g and ḡ from

eating each other.) Instead we must consider

VČ = Lg+(1)
∑
gb

T gb+ (b)L
g−1
b ggb

+ (2)
∑
gd

T gd+ (d)L
(gbgd)−1ggbgd
+ (3) · · · .

This is special to two dimensions. Otherwise there are more plaquettes to worry about

messing up.

In Kitaev’s paper he presents ‘ribbon operators’ which create the general pointlike

excitation in the 2d quantum double model; like the ε particle, these are combinations

of the two things above. Maybe I should mention that the name ‘quantum double

model’ comes from the fact that the general excitation is an irrep of an algebra called

the quantum double (or Drinfeld double) of the group G, which had been studied
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previously. This is the algebra realized by the operators AgsB
h
s acting on a site, s =

(v, w) which means a vertex and a face that it touches.

AgsA
g′

s = Agg
′

s , Bg
sB

g′

s = δgg′B
g
s , AgsB

h
s = Bghḡ

s Ags, (Ags)
† = Aḡs, (Bg

s )
† = Bḡ

s .

This connection between the excitations and the irreps of this thing is special to 2d.

3.7 Fiber bundles and covering maps

Based on our experience with homology and cohomology, you might expect that means

that an ‘exact sequence of spaces’ like

0→ F
i→ E

π→ B → 0 (3.19)

will induce a long exact sequence on their homotopy groups

· · · → πq(F )
i?→ πq(E)

π?→ πq(B)
∂→ πq−1(F )→ · · · → π1(B)

∂→ π0(F )
i?→ π0(E)

π?→ π0(B)→ 0.

(3.20)

In general this is not quite true. But with some extra assumptions on the sequence of

continuous maps (3.19) it is. The extra assumption says that E is a fiber bundle; B

is the base, and F = π−1(b0) is the fiber. I mention this here also because this notion

will play an important role in the interpretation of the quantum double model.

Part of the assumption is that a neighborhood every fiber π−1(U) is homeomorphic

to U × F . Such a map π is called a covering map.

The further condition for E to be a fiber bundle is that for each

open set Uα in a cover of B, the diagram at right commutes. The

vertical map is just forgetting about the fiber.

π−1(Uα) Uα × F

Uα

φ

π

These maps φα : π−1(Uα) → Uα × F are then called local trivializations, analogous to

local coordinates on a manifold. For the pathologists among you: try to come up with

an example of a covering map which does not produce a fiber bundle; I don’t want to

do it.

A section of a fiber bundle is a map s : B → F with π ◦ s = 1.

Transition functions. Now on the double-overlaps Uαβ of an open cover of B, we

have maps

φα ◦ φ−1
β : Uαβ × F → Uαβ × F.

These are called transition functions. They lie in a subgroup of the group of homeo-

morphisms of the fiber F called the structure group of the bundle.

Of course a product manifold, like T 2 = S1×S1, is a fiber bundle, but a trivial one,

where the transition functions can all be chosen to be the identity. (If we were keeping
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track of more information, such as the complex structure on the torus, the boundary

conditions which identify S1 with S1 by a shift gives a nontrivial operation called a

Dehn twist.)

Example: Mobius band. Take B = S1 and

F = I. If we impose boundary conditions that the

orientation of F reverses when we go around the cir-

cle, we get the Mobius band.

Cover B = S1 with two open sets U1,2. They over-

lap in U12 = A ∪ B, with two components. The

nontrivial transition functions are

φ12(x) =

{
1 if x ∈ A
g if x ∈ B

where g is the orientation-reversal of the fiber. B = S1

F = I

A very similar example is obtained by replacing the fiber by S1; this is the Klein

bottle.
Example: Hopf bundle. Take E = the unit quaternions,

or SU(2) ' S3, and F = S1, the unit complex numbers inside

the unit quaternions. Taking S3 ⊂ C2 = {(z0, z1)}, the base

is (
S3 = {|z0|2 + |z1|2 = 1} ⊂ C2

)
/(z0, z1) ∼ eiα(z0, z1)

which is CP1 ' S2. This is just the Bloch sphere of normal-

ized pure states of a qubit, and the projection map is just

forgetting the overall phase of the wavefunction. In stere-

ographic projection S2 ' C ∪ {∞}, the projection map is

π : (z0, z1) → z0/z1, where the range of the map is B ' S2

is the Riemann sphere (complex plane union the point at in-

finity). In polar coordinates (r2
0 + r2

1 = 1 defines the S3) the

projection is π(r0e
iθ0 , r1e

iθ1) = r0
r1
ei(θ0−θ1). Fixed ρ = r0/r1

is a T 2 ⊂ S3 which degenerates at ρ = ±∞ to two linked

circles. A visualization from Wikipedia is at right.

Another way to present the Hopf bundle projection, which arises all the time in

physics is:

π :


C2 → R3

S3 → S2

z 7→ z†~σz
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The top row applies to general z = (z0, z1), and the middle row applies to the subspace

where |z0|2 + |z1|2 = 1. We can make local sections of this bundle by finding the ±1

eigenvectors of n̂ · ~σ.

One reason to care about the Hopf bundle, besides its ubiquity in theoretical physics,

is that it gives relations between homotopy groups of spheres. The exact homotopy

sequence is

· · · πq(S1)→ πq(S
3)→ πq−1(S2)→ πq−1(S1)→ · · · (3.21)

Fact: πq(S
1) = Zδq,1 for q ≥ 1. We conclude from (3.21) that πq(S

3) ∼= πq(S
2) for

q ≥ 3. In particular π3(S2) = Z is generated by the Hopf projection itself.

Universal cover. How do we know the homotopy groups of the circle? One way

is to write S1 = R/Z. Now we appeal to the following

General Fact: if X = C/G and C is simply connected (≡ π(C) = 0) then π1(X) = G.

(If you are not happy with this level of detail, Hatcher has a long section on π1(S1).)

Of intermediate generality between a quotient and a fiber bundle is the existence of

a covering map π : C → X. If C is simply connected, then the space C is called the

universal cover of X. For example, we saw in §1.3 that a Riemann surface Σg of genus

g ≥ 1 can be made by taking a disk and making identifications along its boundary.

Since the disk is simply connected, it is the universal cover of Σg, and

π1(Σg) =
〈
ai, bi|a−1

1 b−1
1 a1b1a

−1
2 b−1

2 a2b2 · · · a−1
g b−1

g agbg = 1
〉

where the one relation comes from the disk filling in the boundary. (By this notation I

mean the group generated by the list of things before the |, modulo the list of relations

after the |.) For g = 1, this says that a and b commute, which they’d better since

π1(T 2) = π1(S1) × π1(S1) = Z × Z is abelian. For g > 1, π1(Σg) is non-abelian. You

can see that its abelianization is Z2g in agreement with our previous result for H1(Σg).

Brief and insufficient words about the connecting homomorphism. [Bott

and Tu p. 209] I said that for fiber bundles there is a long exact sequence on the

homotopy groups, but what is the mysterious map ∂ : πq(B)→ πq−1(F ) in (3.20)?
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The idea is that a map α : Iq → B can be lifted to a

map α̃ : Iq → E, but it does not necessarily end at the

base point of E, since the base point of B can have many

pre-images in E, only one of which is the base point in

E. Regard F = π−1(b0) as the fiber over the base point.

First the case q = 1: the lift of α can be chosen so that

ᾱ(0) is the base point in F . Then ∂[α] = [ᾱ(1)].

For general q, the properties of a fiber bundle guarantee that α can be lifted so that

ᾱ(t1, · · · tq−1, 0) lifts to the constant map to the base point of F . Then its image under

the connecting homomorphism is

∂[α] = [(t1 · · · tq−1) 7→ ᾱ(t1 · · · tq−1, 1)].

α in the same homotopy class have the same image. The keyword is ‘covering homotopy

property’.

One final comment about covering maps: If π : (X̃, x̃0) → (X, x0) is a covering

map, then π? : πq(X̃, x̃0) → πq(X, x0) is an isomorphism for q ≥ 2. The idea is that

every map Sn → X lifts to a map Sn → X̃ for q ≥ 2. This is Hatcher Prop. 4.1 on page

342, and also follows from the ‘covering homotopy property’. In the case of q = 1, the

induced map is merely injective, and embeds π1 of the covering space as a subgroup

of π1(X) (Hatcher Prop. 1.31) – it’s just the subgroup of loops which lift to closed

loops in X̃ (unlike the one α in the figure above). There is therefore a correspondence

between covers of X and subgroups of π1(X).

[End of Lecture 17]

3.8 Vector bundles and connections

Vector bundles. If the fiber F of a fiber bundle is a vector space of dimension r, and

moreover the transition functions act linearly, then E is a vector bundle. That is, the

transition functions of a vector bundle can be regarded as maps

gαβ : Uαβ → GL(r,R)

where r is the rank of the vector bundle. In physics we usually care about cases

where the transition functions live in a compact subgroup; this doesn’t change the

mathematical story much.
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An example is the tangent bundle of a manifold M , where the fiber over a point p

is TpM ' Rn, with n = dimM . The structure group in general is O(n); for an oriented

manifold the transition functions lie in SO(n). The structure group of the tangent

bundle is called the holonomy group of the manifold.

A vector bundle is specified by its transition functions on overlaps Uαβ. For example,

an n-sphere can be covered by just two patches with a single overlap homotopic to Sn−1.

A vector bundle on Sn with structure group G is therefore specified, up to homotopy,

by an element of πq−1(G). (If π0(G) is nontrivial, distinct vector bundles correspond

to elements of πq−1(G)/π0(G).)

If we choose the fibers to be a complex vector space Cn, with transition functions

in GL(n,C) we get a complex vector bundle.

Anything we can do to vector spaces, we can do to the fibers of a vector bundle,

and hence we can make new bundles from old in many ways, such as direct sum, or

quotient by a sub-bundle.

Starting from a given set of transition functions (a principal G-bundle), we can

make various a new vector bundle for each representation D(g) of G, just by replacing

the fibers by the carrier space of the representation, and the transition functions by

gαβ(x)→ D(gαβ(x)); these are called associated bundles.

On triple overlaps, the transition functions satisfy the cocycle

condition

gαβgβγgγα = 1 on Uαβγ. (3.22)

It arises by walking in a contractible loop starting in patch

Uα through Uβ and then Uγ. This is automatic from the

definition as gαβ = φαφ
−1
β .

Another way to make a vector bundle is to start with a collection of gαβ : Uαβ →
GL(n,R) on double-overlaps, satisfying the cocycle condition (3.22). Then define E as

the quotient of the disjoint union
∐

α Uα × Rn by (x, v) ∼ (x, gαβ(x)v) on Uαβ. The

same bundle obtains if we change gαβ by gαβ → fαgαβf
−1
β for some homomorphisms

fα : G → G. So you see that there is a relation between vector bundles and the “1st

Cech cohomology of the open cover with values in G”. Except that we haven’t defined

(and I don’t know how to define) what that is for G non-Abelian! When G is abelian

this is just a true statement.

Connections. Suppose we wanted to attach a vector space Vx over each point x

in spacetime to make a vector bundle. On each vector space we have an action of G,

by Φα(x) 7→ Λαβ(x)Φβ(x), where Φα(x) ∈ Vx (where α, β are some indices on some
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representation of G). Here Φα(x) is a section of the vector bundle in question.

Suppose we would like to do physics in a way which is independent of the choice of

basis for this space, at each point. We would like to be able to compare Φ(x) and Φ(y)

(for example to make kinetic energy terms for a field Φ(x)) in a way that respects these

independent rotations. To do this, we need more structure: we need a connection (or

comparator) Wxy, an object in G which transforms like

Wxy 7→ Λ(x)WxyΛ
−1(y), (3.23)

so that Φ†(x)WxyΦ(y) is invariant. The connection between two pointsWxy may depend

on how we get from x to y. We demand that W (∅) = 1, W (C2 ◦ C1) = W (C2)W (C1)

and W (−C) = W−1(C), where −C is the path C taken in the opposite direction.

All of these definitions work perfectly well (in fact better) if our space is chopped

up into a cell complex. Then we can associate a connection variable W` to each 1-cell;

it transforms as (
W〈ij〉

)
αβ
→ Λαγ(i)

(
W〈ij〉

)
γδ

(
Λ−1

)
αγ

(j). (3.24)

A system with these W s as its degrees of freedom – a group element attached to each

link, modulo the gauge transformations (3.24), is a lattice gauge theory.

For a moment consider the (complicated) case where spacetime is continuous and

G is continuous. Then we can consider the connection between nearby points, and we

can define using W a covariant derivative D

DΦ(x) = lim
∆x→0

∆x−1 (W (x, x+ ∆x)Φ(x+ ∆x)− Φ(x))

and extract from it a gauge field, A, in terms of which WC = Peie
∫
C A, where P

means path-ordering of the exponential. Locally, A is a Lie-algebra-valued one-form.

It transforms under gauge transformations (3.23) as

A→ AΛ = Λ−1 (A− d) Λ. (3.25)

I’ve included a conventional factor of e, the charge of the electron (actually it would

be e
~c if we weren’t working in natural units). Its field strength is a Lie-algebra-valued

two-form Fµν = [Dµ, Dν ], describing the local path dependence of the connection. It

transforms homogeneously: F → Λ−1FΛ.

Consider for a moment the abelian case in three or more spatial dimensions. Two

paths give group elements differing by

WC′ = WCe
ie

∫
C′−C A

Stokes
= WCe

ie
∫
S F (3.26)

113



where ∂S = C − C ′ is a surface. But which surface? Two different choices of S differ

by S ′ − S = ∂V , some 3-volume. The difference in the phase is

eie
∫
S′−S F

Stokes
= eie

∫
V dF .

In order for our operation (3.26) of writing the path-dependence of the phase in terms

of the flux to be well-defined, we must have

eie
∫
V dF = 1 ⇔ e

∫
V

dF ∈ 2πZ.

But dF = ?jm is the magnetic charge current density, so
∫
V
dF = 4πg is the total

magnetic charge in the volume V . This is Dirac quantization: eg = e
∫
V
dF = e

∮
∂V
F =

e4πg ∈ 2πZ.

Example: Dirac (Wu-Yang) monopole = Hopf bundle. Let’s use these

ideas to find a configuration of the electromagnetic field in 3-space with a magnetic

monopole at the origin, i.e. satisfying ~∇ · B = 4πgδ3(x). The LHS of this equation is

the time component of the 1-form ?dF = ?d2A, so A must not be globally well-defined

or else this would vanish. A way out is to cover space with patches. Actually, all the

action happens on the unit sphere surrounding the monopole (that is, R3 \ {0} ' S2),

so let’s just think about that. We cover this two-sphere with two patches UN and

US consisting of everything but the south and north poles respectively. The overlap

deformation retracts to the equator. On UN and US respectively we take the gauge

potential to be41

AN = g(1− cos θ)dϕ, AS = g(−1− cos θ)dϕ = AN − 2gdϕ = AN + ig−1
NSdgNS

where

gNS(θ, ϕ) ≡ ei2gϕ

is a function on UN ∩ US. Notice that F = dAN = dAS = g sin θdθ ∧ dϕ are both

proportional to the volume form on the 2-sphere, consistent with the demand that

magnetic flux is coming out from the origin in a spherically-symmetric way. gNS has

two names here: Mathematically, it is the transition function for a complex vector

bundle of rank one between our two patches on the 2-sphere. Physically it is a function

parameterizing a gauge transformation (3.25) between two choices of gauge for the

vector potential.

What is the structure group G of the vector bundle in question? gNS is single valued

under ϕ ∼= ϕ+ 2π and G = U(1) iff

4πg ∈ 2πZ. (3.27)

41I’m using polar coordinates on the unit sphere where x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.
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This is the Dirac quantization condition. Notice that we didn’t actually say anything

about quantum mechanics. We just demanded that there was some U(1)-valued transi-

tion function connecting the gauge potentials on the two patches. Quantum mechanics

comes in because the phase of the wavefunction of a charged particle transforms under

a gauge transformation by multiplication by the transition function; if this isn’t single-

valued, the wavefunction is not well-defined. This is the physical reason we want the

structure group to be U(1) and not R.

This conclusion leads to flux quantization: A vector bundle with a compact structure

group has quantized fluxes,
∮
S
F
2π
∈ Z, where S is any compact 2d submanifold of B.

In this example, we have∮
S2

F

2π
=

1

2π

(∫
HN

dAN +

∫
HS

dAS
)

Stokes
=

1

2π

∮
equator

(
AN − AS

)
(3.28)

= − 1

2π

∮
equator

ig−1
NSdgNS =

1

2π

∫ 2π

0

2gdϕ = 2g
(3.27)
∈ Z

where HN and HS are the north and south hemispheres, which lie respectively in UN
and US and which have ∂HN/S = ±equator.

Another crucial general conclusion from this relation is that the periods of F (its

integrals over closed cycles) are determined entirely by the transition functions of the

bundle, and not by any of the extra structure of the connection. More generally, for a

line bundle (complex vector bundle of rank one) on a more general manifold with good

open cover U, there will be multiple double-overlaps. This construction

i

2π
d log gαβ ∈ C1(U,Ω1)

instead produces a 1-form valued Cech 1-cocycle, which is both d- and δ-closed. Our

earlier analysis of the Cech-deRham complex shows that this means that there exists a

global closed 2-form with integer periods called the first Chern class of the line bundle.

Another use of these same transition functions is: we can use them to make a bundle

over S2 whose fiber is U(1) ' S1. We already know an example of such a bundle, namely

the Hopf bundle. In fact, that bundle has the same transition functions. One reason

we know this is that the first Chern class uniquely characterizes a line bundle (complex

vector bundle of rank one) over S2 ' CP1. This is because the transition function on

the overlap of the two patches is a map S1 → S1 and π1(S1) = Z, and the Chern class

equals this number.

To see it more explicitly, let’s explicitly build local sections of the Hopf bundle

π : z → z†~σz. Given r̂ ∈ S2 ⊂ R3, let ρ ≡ 1
2

(1 + r̂ · ~σ). Since r̂2 = 1, this is

a pure-state density matrix for a qubit, ρ = |z〉〈z| for some normalized state vector
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|z〉 = z0 |0〉 + z1 |1〉 (i.e. the matrix elements are ραβ = zαz
†
β). This state is just the

eigenstate of r̂ · ~σ with eigenvalue +1. Here’s one expression for its components:

z = sN(θ, ϕ) =

(
cos θ

2

sin θ
2
eiϕ

)
on UN . (3.29)

This expression has the drawback that it is singular at the south pole, θ = π, where ϕ

is not a good coordinate. Another expression is

z = sS(θ, ϕ) =

(
cos θ

2
e−iϕ

sin θ
2

)
on US. (3.30)

This one is singular at the north pole, θ = 0. As ~r varies around the S2 in fact we

cannot give an expression for the components of z which is globally well defined. They

are sections of a non-trivial vector bundle. On the overlap of the two patches, the two

sections are related by

sN = eiϕsS

from which we conclude that the transition functions of the Hopf bundle are indeed

gNS = eiϕ, the same as the minimal-charge (2g = 1) Dirac monopole.

In this language there are a few other nice things to say. From these sections we

can directly build the Dirac monopole connection as follows.

The form

z†dz =
i

2
(dψ − cos θdϕ)

is a nice U(2)-invariant 1-form on the S3 ⊂ C2.

Here ψ is a third coordinate on S3 defined

by (
z0

z1

)
= eiψ/2

(
cos θ

2
eiψ/2

sin θ
2
eiϕ/2

)
. (3.31)

The hopf projection forgets ψ ∈ [0, 4π),

which only appears in the overall phase of z.

The sections sN/S : S2 → S3 embed S2 into

S3. Actually a simple way to write them is

just ψ = ±ϕ, as you can see by comparing

(3.31) with (3.30) and (3.29).

In the figure at right I plot a collection

of Hopf fibers in stereographic projection.

Along each circle, ψ ∈ [0, 4π). The in-

ner torus is fixed θ = π/6 and various

ϕ ∈ [0, 2π); the outer torus is θ = 3π/4.
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42

But then the pullbacks of the sections are maps s
N/S
? : Ω1(S3) → Ω1(UN/S ⊂ S2),

and in fact

sN/S? (z†dz) = AN/S.

This strategy of making a connection from (local) sections works in general.

A nice pedagogical discussion of many simple avatars of the Hopf bundle in physics

is here.

Hopf invariant. There is an insane amount of things to say related to the Hopf

bundle. One that I can’t resist mentioning in anticipation of discussing Chern-Simons

theory is the Hopf invariant. Given a smooth map f : S3 → S2, we can ask about the

pullback of a generator of H2
dR(S2). Since H3

dR(S3) = 0, it must be exact:

f ?α = dω, for some 1-form ω ∈ Ω1(S3).

The Hopf invariant,

H[f ] ≡
∫
S3

ω ∧ dω

is independent of the choice of ω → ω + dλ = ω′, because∫
ω ∧ dω −

∫
ω′ ∧ dω′ =

∫
(ω − ω′) ∧ dω IBP

= 0.

The same construction works for f : S2n−1 → Sn; the resulting invariant is made

from f ?α = dω, ω ∈ Ωn−1(S2n−1) by H[f ] =
∫
S2n−1 ω ∧ dω. For odd n, H[f ] = 0 since∫

ω ∧ dω =
∫

1
2
d (ω ∧ ω) = 0 by Stokes.

Finally, homotopic maps f ' g have the same Hopf invariant H[f ] = H[g]. The

proof is in Bott and Tu around page 227.

The Hopf invariant has a simple interpretation as the linking number between f−1(p)

and f−1(q), any two circles in S3 arising as pre-images of distinct points in S2. For the

Hopf map, this number is H[π] = 1, as you can see in the picture of the fibers above.

42Note that stereographic projection of a point p ∈ Sn ⊂ Rn+1 (so
∑n+1
i=1 p

2
i = 1) maps it to the

point in Rn with coordinates xi = 2pi
1+pn+1

, i = 1..n. So the south pole where pn+1 = −1 goes to ∞,

the north pole goes to 0, and points on the equator go to themselves. The inverse map is

pi =
2xi

1 + x2
, pn+1 =

1− x2

1 + x2
.

These automatically satisfy
∑n+1
i=1 p

2
i = 1. Beware an awful typo on page 133 of Nash and Sen that

cost me several minutes of my life.
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For bundles of larger rank, there are more Chern classes and the story of con-

structing the Chern classes directly from the transition functions is a little bit more

complicated; see the last pages of Bott and Tu. It is easier just to find a connection

and compute its field strengths, trF, trF ∧ F, · · · .

[End of Lecture 18]

I can’t resist mentioning a 4d analog of the above business (3.28), since it came

up earlier. (Warning: the signs and factors in this discussion are not to be trusted.)

We saw above that a G-bundle on Sn is specified by the transition functions on the

equator g : Sn−1 → G. Here’s another way to think about it: S4 is R4 plus the point

at infinity. Let’s put a connection on a G-bundle on R4 for some simple compact Lie

group G and demand that at infinity, F → 0 (so we can include the point at infinity

as a smooth point)43. This requires that A
r→∞→ g−1dg for some map g : S3 → G.

(Such configurations (‘instantons’) are candidates for saddle points of the euclidean

path integral in Yang-Mills theory with gauge group G.) For the case of G = SU(2)

some examples of g are g0(x) = 1 and

g1(x) =
x41 + i~x · ~σ

r

and gν(x) = (g1(x))ν . The map g1 generates π3(SU(2)) = 〈[g1]〉. In fact for any simple

compact Lie group there is an integer family of such maps: π3(G) = Z. One can say

that the map can be deformed to a map whose image lies in an SU(2) subgroup44.

But now consider the following quantity analogous to c1 for the Hopf bundle:∫
R4

trF ∧ F
16π2

=

∫
R4

dCS(A)
Stokes

=

∫
S3

CS(A = g−1dg) =
1

12π2

∫
S3

tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= ν ∈ Z.

(3.32)

Here45 CS(A) = 1
16π2 tr

(
AdA+ 2

3
A ∧ A ∧ A

)
is the Chern-Simons 3-form. In the case

of G = SU(2), the penultimate expression is an integral representation of the winding

43A better way to describe it, which makes contact with the other description of bundles on S4 is

to say that we cut out a ball B4 around the point at infinity; g here is the transition function on the

overlap between the B4 coordinate patch surrounding the origin and the B4 surrounding the point at

infinity, analogous to gNS = x+iy
r for the Dirac/Hopf bundle.

44That π3(G) = Z for any simple Lie group is proved in this paper and in Milnor’s Morse Theory

book. The proof uses Morse theory on ΩG. The Morse function is the length of the path (with respect

to the G-invariant metric), so the critical points are geodesics. The key point is that because of special

properties of a Lie group, the Morse index of all the critical points is even. By the results of §3.4, this

means ΩG has a cell decomposition with only even-dimensional cells, so its odd-dimensional homology

groups vanish and there is no torsion. If G is simply-connected and simple, we can apply the Hurewicz

result to conclude that Z = H2(ΩG,Z) = π2(ΩG) = π3(G). (If G is not simply connected, we can do

this for its universal cover G̃, and then use π3(G̃) = π3(G).)
45Be warned that the numerical prefactors depend a bit on normalization choices, such as the

representation in which we choose to define the trace.
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number of the map S3 → S3 and the last step can be checked by brute force for the

representative maps above. But for arbitrary compact simple G, this integral still

extracts the element of π3(G).

This is another example of the claim that the Chern classes ((3.32), which is called

the instanton number, is c2, the second Chern class, in this case) are determined by the

transition functions. I described the calculation in (3.32) here for a bundle on R4 with

nice boundary conditions at infinity. The same calculation computes the instanton

number of a bundle on S4 with connection AN on the northern patch and on the

southern patch AS = g−1(AN −d)g. As in (3.28), the difference of Chern-Simons forms

(in the previous case, A with dA = F is the Chern-Simons 1-form) again integrates to

the winding number.

For more, see the discussion around page 289 of Coleman’s Aspects of Symmetry.

3.9 The quantum double model and the fundamental group

Now I want to describe a geometric point of view on groundstates of the quantum

double model (in any dimension).

Consider a cell complex ∆ which triangulates some path-connected spaceX. A state

of the quantum double model on the links (1-cells) in the group-element basis (the one

described above) can be regarded as a (discretized) connection on X – it associates to

any path (in ∆) an element of the group G (called the holonomy of the path), obtained

by multiplying the group elements for each link in the path: U(C) =
∏

`∈C g`.

A connection is flat if the holonomy is independent of local deformations of the

path: U(C) = U(C + ∂Σ), where Σ is some 2-surface. This is precisely the condition

that the plaquette operators give the 1 on the state: the flux around every plaquette

equals the identity.

Two connections U(Cx,y) and U ′(Cx,y) (here Cx,y is a path from x to y) are regarded

as equivalent if they are related by a gauge transformation

U ′(Cx,y) = gxU(Cx,y)g
−1
y .

This is the action of the star operators.

Here is an attempt to be more explicit about the action of the star operators on

the connection: A groundstate of quantum double model, is a state of the form

|Ψ〉 =
∑
{g}

Ψ[{g}] |{g}〉
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where |{g}〉 is the state of the links in the group-element basis, i.e. the regular repre-

sentation of G on each link. The plaquette condition Bp |Ψ〉 = |Ψ〉 says Ψ[{g}] = 0 for

any configuration {g} which is not flat. The star condition As |Ψ〉 = |Ψ〉 says that |Ψ〉
is an equal-weight superposition over the orbits of

∏
v A

hv
v , which acts on the link ij

(labelled by its endpoints) by the operator Lhi+ (ij)L
hj
− (ij) (notice that these commute!)

and therefore takes

|{gij}ij〉 7→
∣∣{higijh̄j}ij〉 . (3.33)

This is the action of the gauge transformation on the connection that I wrote before:

U(x, y)→ gxU(x, y)g−1
y .

Groundstates of the quantum double model are averages over the orbits of the star

operators. So groundstates |Ψ〉 of the quantum double model on X correspond to flat

G-connections on X modulo gauge equivalence.

This is just some geometric language describing the groundstates. Possibly slightly

more useful is the following further fact: flat connections onX are in 1-1 correspondence

with representations of π1(X) in G, i.e. group homomorphisms from π1(X) to G.

In one direction, a flat connection directly gives a map π1(X)→ G, since for each

loop in X, it associates a group element. Flatness means the group element is the same

for any loop in the same homotopy class. The group law of loops is just composition

so it is preserved by the map. Hence this is a group homomorphism.

In the other direction, given a representation ρ : π1(X) → G, it is clear how to

associate to each loop an element of G. Less obvious is how to associate a group

element to an open curve to make a connection. We do this in two steps. First, we

make a flat G-bundle – this means a vector bundle whose transition functions in G are

constants on the double-overlaps. Second, we use the fact that a flat G-bundle admits

a flat connection. To show this second statement, given a flat atlas {Uα, φα} (φα are

the local trivializations), on each Uα we define a flat connection by declaring that φα
is parallel, Dµφα = 0, that is

A(α)
µ = −∂µφα

φα
.

Because gαβ are constant, 0 = ∂µgαβ, these definitions agree on the double-overlaps.

(In fact the converse is also true: a vector bundle with a flat connection admits a flat

atlas, obtained by parallel transporting a basis of the fiber above an arbitrary point.)

To do the first step: Regard the universal cover X̃ → X as a principal π1(X)-bundle

over X. There exists a cover of X such that the (constant) transition functions gαβ
generate π1(X). Then the bundle we want is the associated bundle with transition

functions ρ(gαβ). Or more explicitly, if V is the carrier space of the rep of π1(X), then

the bundle is X̃ × V/π1(X) → X with the identification f(γx) = ρ(γ)f(x) ∈ V for
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γ ∈ π1(X). Here I’m using the fact that a point in X̃ can be labelled by (x, γ), a point

in X and an element of π1(X) to specify which sheet of the cover it lives on.

To be more precise, flat connections modulo gauge equivalence correspond to rep-

resentations of π1(X) in G modulo overall conjugation in G, since W (Cxx) for a

closed loop still transforms under gauge transformations at the site x W (Cxx) →
gxW (Cxx)g

−1
x . Here x is the base point. �

Now let’s consider two examples: 1)X1 = Σg, a Riemann

surface of genus g,

2) X2 = Bg, the genus g handlebody, e.g. the region of

3-space whose boundary is Σg in the picture at right.

Flat connections on Bg are a subset of those on Σg,

namely the one where the holonomy around the con-

tractible cycles bi (the ones filled in by the creamy filling

of the pastry) is equal to the identity. Using the corre-

spondence above, this is because the contractible curves

bi generate a subgroup of π1(Σg) and the representations

of π1(Bg) are those of π1(Σg) which are trivial on this

subgroup. In the quantum double on Bg, this is enforced

by the fact that in Bg the curves bi are the boundaries

of a collection of plaquettes w.

So just as the groundstates of the toric code on X encode the homology groups of

X, the groundstates of the quantum double model on X encode the fundamental group

of X. In the case of the toric code, this insight allowed us to use physics to understand

various things about homology groups (in particular: subdivision invariance, behavior

under change of coefficients, and the notion of relative homology). Here are a few

comments about the analogous questions for the fundamental group. I will not be

nearly as explicit as in the homology case, partly because I haven’t figured it all out.

Subdivision invariance and entanglement renormalization. Something not

a priori obvious from the ‘calculating theorem’ is that the result for π1 is independent

of retriangulations of the complex. As in the case of the toric code and homology,

we can give a satisfying physics proof of this fact using entanglement renormalization.

The analogs of the control-X unitaries are the controlled left- and right-multiplication:

CL12 ≡
∑
g∈G

T g+(1)Lg+(2), CR12 ≡
∑
g∈G

T g+(1)Lg−(2).

Analogous to the rules for conjugating products of Pauli operators by CX like CX (X ⊗ 1)CX =

X ⊗ X, the operators participating in the quantum double Hamiltonian satisfy rules
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such as

CL12 (Lg+(1)⊗ 1(2))CL−1
12 = Lg+(1)⊗ Lg+(2).

Here is a detailed description, written by Jin-Long Huang (note that he draws the

pictures on the dual lattice). Unlike the abelian case, the order of operations matters

here, and not all combinations lead to something pretty. Also unlike the abelian case,

here the operation only gives a statement about the groundstates, not about the full

Hamiltonian.

Relation to homology. We might expect that one could derive the relation that

H1 is the abelianization of π1 by a higgsing, analogous to our discussion of change of

coefficients in homology. In the language of the quantum double model, this could be

accomplished by perturbing the hamiltonian so that e excitations in certain represen-

tations R proliferate. We’d like to choose R to transform trivially under an abelian

subgroup of G. (Alternatively (1) include some matter degrees of freedom living on

the 0-cells, and transforming in the representation R of G, and at the same time (2)

modify the star term to also generate the transformation of the matter field, and (3)

perturb the Hamiltonian so that the matter fields condense.) Let me know if you see

how to push this through.

Relative homotopy. It is also possible define a notion of relative homotopy. Given

Y ⊂ X a closed subspace containing the base point p, the relative homotopy group is

πq(X, Y, p) ≡ πq−1 (paths from p to Y )

or slightly more explicitly

πq(X, Y, p) = {α : (Iq, ∂Iq)→ (X, p or Y )}/ ' . (3.34)

What I mean by this is: all of the faces of ∂Iq get mapped to the base point as usual,

except for the bottom face of ∂Iq, which gets mapped anywhere into Y . By the ‘bottom

face’ of ∂Iq I mean {t1 = 0}. So α|t1=0 : (Iq−1, ∂Iq−1)→ (Y, p). The product is defined

as usual for q > 1, but π1(X, Y ) is not a group.

The inclusion map i : Y → X induces a map i? : πk(Y, p) → πk(X, p) as usual.

Noting that πk(X, p) = πk(X, p, p), we also have a map

j? : πk(X, p) = πk(X, p, p)→ πk(X, Y, p).

Finally, we can define

∂? :
πk(X, Y, p) → πk−1(Y, p)

α 7→ α|bottom face
.

This produces a long exact sequence on homotopy:

· · · → πk(Y, p)
i?→ πk(X, p)

j?→ πk(X, Y, p)
∂?→ πk−1(Y, p)

i?→ · · · .
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Nash and Sen (page 117) use this sequence to show πq(S
n) = 0 for q < n. I must

admit, though, that I do not understand what they mean by B ⊃ Sn.

We can expect that there is a relation between π1(X, Y, p) and groundstates of the

quantum double perturbed into a trivial phase in the region Y , or alternatively with

gapped boundary conditions on Y . I have not verified it in detail. Here are some

papers about gapped boundaries of the quantum double model.
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4 Topological gauge theories and knot invariants

4.1 Topological field theory

One perspective on a D-dimensional topological field theory is the following: it is a

machine which first of all associates to a closed D-manifold a number (the partition

function). This was simple. Then, roughly, to a closed (D−1)-manifold Σ it associates

a Hilbert space HΣ. I’ll explain this next. For k > 0, to a closed (D− 1− k)-manifold

it associates a k-category. That’s all I’m going to say about that46.

The way to think about the second statement is just through the path integral:

The path integral on a D-manifold with boundary ∂M = Σ produces a state |ΨM〉 in

the Hilbert space HΣ. More precisely47, the path integral with boundary conditions φ

for the fields produces the wavefunction 〈φ|ΨM〉.

Path integrals are wonderful tools but are difficult to define precisely. One way to

avoid having to define them is to extract from them axioms that we’d like the resulting

machine to satisfy. The axioms look ugly but each one is extremely simple and obvious:

• H∅ = C.

46OK I can’t resist. The association involving higher codimension objects is sometimes called an

extended TQFT.

One way to think about it is that we associate codimension two loci with

boundary-condition-changing operators. The objects of the category

are the possible boundary conditions {A,B, · · · } and the morphisms

between them are operators on the boundary OAB across which the

boundary conditions change, like disorder operators.

For example, in D = 3, these boundaries between regions of given boundary conditions are one-

dimensional. There can be more than one morphism between two given objects. In that case we can

imagine a codimension 3 defect across which we go from one BC-changing operator to another. And

so on. (You can learn more here.)
47Actually you can already see that we are in trouble with the second statement above: not every

(D−1) manifold arises as the boundary of a smooth D-manifold, as you saw for CP2n on the homework.

So maybe the right statement is that the TFT associates a Hilbert space to (D − 1) manifolds which

are bordant to nothing. So a better statement of the definition is that a D-dimensional TFT specifies

a functor from a category of D-dimensional bordisms (perhaps with some structure like orientation or

spin structure) to some other C-linear category, such as the category of vector spaces. (In a category of

D-dimensional bordisms, the objects are closed (D−1)-manifolds, and the morphisms are D-manifolds

with boundary connecting them.) For more on this, see e.g. G. Moore, Some Remarks on Topological

Field Theory.
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• H−Σ = H?
Σ

• HΣ1
∐

Σ2 = HΣ1 ⊗HΣ2

From the last two it follows that if ∂M = (−Σ1)
∐

Σ2, a disjoint union of two

components, then Z(M) ∈ H?
Σ1
⊗HΣ2 = Hom(HΣ1 ,HΣ2), a linear operator from HΣ1

to HΣ2 .

• If ∂M1 = (−Σ1)
∐

Σ2 and ∂M2 = (−Σ2)
∐

Σ3 and N = M1 ∪Σ2 M2, that is,

N is obtained by gluing M2 to M1 along the boundary Σ2, then the resulting

operators satisfy the composition law:

Z(N) = Z(M2) ◦ Z(M1) : HΣ1 → HΣ3 .

This is just the analog of the rule for the time-

evolution operator U(t1, t3) = U(t1, t2)U(t2, t3).

So far we’d like these properties to hold for any quantum field theory. This next

axiom is where the adjective ‘topological’ comes in:

• Z(X × I) = 1 on HX . By the previous axiom, this object is an element of

H?
X ⊗HX = Hom(HX ,HX), a linear operator on HX .

By the usual logic of path integrals, it is the time-evolution

operator. This says that the time-evolution operator is triv-

ial, i.e. the Hamiltonian is zero.

Path integrals on S1 × X. Consider again Z(I × X) ∈ H?
X ⊗ HX , the time

evolution operator. Now glue X1 to X0 to make S1 ×X. The last axiom above gives

Z(S1 ×X) = trHX1 = dimHX . (4.1)

A slight generalization is the following. Suppose we have a diffeomorphism K : X → X.

Then we can consider gluing X1 to X0 after doing the operation K. This space S1×KX
is called the ‘mapping cylinder’ of K and we have

Z(S1 ×K X) = trHXK̂

where K̂ is the representation of K on HX .

[End of Lecture 19]
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4.2 Chern-Simons theory

[Witten] I’m going to try to explain this in such a way that you can see that any (2+1)-

dimensional gapped phase of matter with non-abelian anyons can produce 3-manifold

invariants and knot invariants. In the interest of time, I’m going to avoid to the extent

possible discussion of conformal field theory.

What do I mean by knot invariants? A knot is an embedding of the circle in some

3-manifold, say R3 or S3. Given a knot, we’d like to know if we can untie it without

cutting it or passing it through itself (this is called isotopy), and given two knots we’d

like to know if they can be isotoped to each other. Much like phases of matter, it

would be easiest to decide this if we could associate with each knot some topological

quantity, invariant under isotopy. It will be fruitful to consider simultaneously links,

embeddings of multiple, possibly linked circles in the 3-manifold, to which the same

questions apply.

One nice such invariant is the Jones polynomial. Its original definition was actually

already in terms of a statistical mechanics model associated with a projection into

the plane of the knot in question. The Jones polynomial is shown to be an isotopy

invariant by showing that it is preserved by a few basic (Riedemeister) moves on the

projection which generate all isotopies. Here is a fully 3-dimensional description of the

Jones polynomial as a physical observable of a topological gauge theory.

Suppose given a smooth, closed, oriented 3-manifold M and a knot K embedded

in it. Let E be the trivial G-bundle with base M , where G is a simple compact Lie

group (like SU(N)). So E = M × CN . And on E we’ll consider a connection, i.e. a

Lie-algebra-valued one-form Ai =
∑dimG

A=1 AAi T
A (an N × N matrix of 1-forms in the

example), i = 1..3 a spatial index. Under an infinitesimal gauge transformation,

Ai 7→ Ai −Diλ, Diλ ≡ ∂iλ+ [Ai, λ]. (4.2)

The field strength is Fij ≡ [Di, Dj] = ∂iAj − ∂jAi + [Ai, Aj].

A is going to be our dynamical variable. So far in this class, we’ve mostly been

talking about Hamiltonian descriptions of physical system, but here we’re going to

start with a path integral approach. The basic object required to do that is an action:

SCS[A] ≡ k

4π

∫
M

tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
=

k

8π

∫
M

d3xεijktr

(
Ai

(
∂jAk − ∂kAj +

2

3
[Aj, Ak]

))
.

A few comments about this choice of action:

• Unlike the Maxwell action, we can write it down without saying anything about

a metric on M .
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• It also has fewer derivatives than the Maxwell action, and so is more important

for slowly-varying fields. If we add them both, the Chern-Simons term will win

at low energies.

• The choice of orientation of M is required to define the integral of the 3-form.

This breaks parity symmetry. A parity transformation takes the level k to −k.

• The main point in life of this functional is that the equations of motion are

0 =
δSCS[A]

δA
∝ F

– they say that A is a flat connection. This equation is very different from the

Maxwell equations. Here there are no propagating degrees of freedom; this is

not a surprise since in order to propagate they need to know how far they are

propagating, a metric. If we added the Maxwell action, we would find that the

excitations are massive and become more and more massive as the coefficient

in front of the Maxwell term decreases. Chern-Simons theory is a theory of

groundstates, a topological field theory.

• In particular, the theory is scale-invariant; k is a dimensionless coupling.

• The Chern-Simons term is invariant under the infinitesimal gauge transformation

(4.2) if ∂M = ∅.

But as we saw earlier, a better expression for the gauge transformation, which

incorporates global information, is A 7→ Ag ≡ g−1Ag− g−1dg, where g : M → G.

Consider for a moment putting our theory on M = S3. Such maps g : S3 → G

are classified up to homotopy by π3(G) = Z. The variation of SCS under a gauge

transformation in the homotopy class labelled by the integer ν is determined by

SCS[Ag] = SCS[A] + 2πkν

where

ν =
1

12π

∫
M

tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
∈ Z

is the winding number we discussed above in (3.32). The sum over connections

is weighted by eiSCS[A]; in order that eiSCS[Ag ] !
= eiSCS[A] we must have k ∈ Z, the

level is an integer.

This means that, although this is an interacting field theory, the coupling constant

k cannot change a little bit under renormalization and so cannot change at all.

Note that k →∞ is weak coupling, where the action becomes quadratic (after a

rescaling of A).
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What are the observables of this theory? There are no (gauge-invariant) local

operators. There are only Wilson loops

WR(C) ≡ trRPe
i
∮
C A.

Here R is a choice of representation of G whose generators appear in A =
∑

AA
ATA.

And C is a knot. Since there’s no way to measure distances, isotopic knots give the

same operator. But trying to move a segment of C through some other one will change

the operator, since, as usual in quantum field theory, putting things on top of each

other is dangerous. So we are going to think about the complex numbers

Z(M ; {Cr, Rr}r) ≡
∫

[dA] eiSCS[A]

n∏
r=1

WRr(Cr) (4.3)

where Cr ∩ Cr′ = ∅.

The abelian case. If G is abelian, say U(1), the action is gaussian S[a] =
k

8π

∫
εijkai∂jak and we can just do the integral (4.3).

Z(S3, {Cr, nr}) =

∫
[da]eiS

∏
r

einr
∮
Cr

a =

∫
[da]eiS+i

∫
ja with jµ(x) ≡

∑
r

nr

∮
Cr

dxµδ3(x− xr(s))

= N exp i

∫
x

∫
y

jxD
−1
xy jy

= N exp
i

2k

∑
rs

nrns

∮
Cr

dxi
∮
Cs

dyjεijk
(x− y)k

|x− y|3
. (4.4)

For r 6= s, and assuming Cr ∩ Cs = ∅, the integral is

`(Cr, Cs) =
1

4π

∮
Cr

dxi
∮
Cs

dyjεijk
(x− y)k

|x− y|3
∈ Z, (4.5)

Gauss’ formula for the linking number of the two curves. It is the same quantity

appearing in the Hopf invariant48

48This linking number comes in many guises. What’s being computed directly in (4.5) is the degree

(multiplicity of the preimage of a point) of the map

L :
Cr × Cs ' T 2 → S2

(x, y) 7→ x−y
|x−y|

.

It is also the same as ∫
ωr ∧ ηs = # (Dr ∪ Cs)

where ηr,s = dωr,s are compactly-supported Poincaré duals (2-forms) of Cr,s, which are exact on S3;

ωr,s are then the Poincaré duals of disks Dr,s bounding Cr,s. As in the discussion of the Hopf invariant,

these expressions are independent of choices of representatives.
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To define the terms with r = s, the self-linking requires a little more

input, called a framing of the knot. This is a tiny vector at each point

on the curve C, not tangent to C. The idea is that we displace C

slightly along this direction to make a new curve C ′ and define

`(Cr, Cr) ≡ `(Cr, C
′
r). (4.6)

This is point-splitting regularization of the integral (4.5).

The regularized linking number (4.6) depends on the number of times the framing

vector winds around as it goes around C. Twisting the framing t times changes `rr

by t, which changes the answer for (4.4) by Z → Ze2πit
n2
r
k . On S3 there is a sort

of canonical framing: just choose t for each curve so that `(C,C) = 0. But this is

a physical ambiguity: the Wilson line describes the propagation of a particle with

fractional spin, an anyon. (In this abelian Chern-Simons theory, its spin is 1/k). In

addition to its path through spacetime, to fully determine the amplitude it accrues, we

must also specify the number of rotations t it undergoes during its trajectory.

The idea for how we are going to compute (4.3) in the non-abelian case is by

chopping up M into manageable parts.

First let’s define the (purely topological) notion of connected

sum: take two d-manifolds M1,M2 and cut out a d-ball from

each one. Each one then has a component of its boundary

homeomorphic to S2. Glue these two boundaries together so

that there is no boundary any more to get their connected

sum M1#M2. The picture at right is the d-dimensional case.

First claim: suppressing the dependence on the knots, which

I just assume don’t go near the cut-out regions,

Z(M)Z(S3) = Z(M1)Z(M2), or
Z(M)

Z(S3)
=
Z(M1)

Z(S3)

Z(M2)

Z(S3)
.

(4.7)

Notice that this is consistent with the fact that (from the

definition) M1#S3 = M1, S3 is the identity for this product

operation.

To see why (4.7) is true, let’s think about the partition function associated with M1

with the ball cut out. According to the axioms of TFT, this produces a state in the

Hilbert space associated with S2, |M1〉 ∈ HS2 . And similarly, the path integral on M2

with the ball cut out (with the opposite orientation) produces 〈M2| ∈ H?
S2 . Therefore

Z(M) = 〈M2|M1〉. Similarly we can regard M = S3 as the connected sum of two balls
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BL and BR, and Z(S3) = 〈BL|BR〉.

But now here comes the point: this system has a unique groundstate on S2 – HS2

is one-dimensional. I’ll explain this unsurprising49 statement more in a bit but for now

let’s exploit the consequences.

In a one-dimensional vector space, any two vectors are linearly dependent and we

have the identity

〈M2|M1〉 〈BL|BR〉 = 〈M2|BR〉 〈BL|M1〉 (4.8)

which is (4.7). Since there could have been Wilson loops all over away from the cut,

we have the factorization formula for unlinked (so that we avoid cutting them) knots

(in any reps)

Z(S3;C1 · · ·Cs)
Z(S3)

=
s∏
r=1

Z(S3;Cr)

Z(S3)
. (4.9)

A useful shorthand for this formula is

〈C1 · · ·Cs〉 =
s∏
r=1

〈Cr〉 . (4.10)

Now let’s focus on a knot C+ in S3. Zoom in on

a region around a single crossing (i.e. what would

be a crossing in a particular plane projection of the

knot). Cut out a small 3-ball MR containing the two

strands involved. The boundary of this ball is a S2\
four punctures where the two Wilson lines enter and

exit, labelled by representations R,R,R?, R? of G.
The path integral on the ball MR produces a state

∣∣M+
R

〉
∈ HS2\RRR?R? . The path inte-

gral on its complementML in S3 produces a state 〈ML| ∈ H?
S2\RRR?R? and Z(S3;C+, R) =〈

ML|M+
R

〉
.

Now let me pull out one more fact from our future canonical analysis, which is that

for R = the fundamental (N -dimensional) representation of SU(N), this Hilbert space

is two-dimensional.

This fact has a very dramatic consequence. Consider the following three ways of

49The toric code and quantum double models all had a unique groundstate on S2.
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filling in the connections between the punctures:

Each of these produces a vector in HS2\RRR?R? . But in a two-dimensional vector space,

any three vectors enjoy a linear relation: α
∣∣M+

R

〉
+β |M0

R〉+γ
∣∣M−

R

〉
= 0. Now consider

gluing back in the rest of the path integral, which means taking the overlap with 〈χ|:

α
〈
χ|Ψ+

〉
+ β

〈
χ|Ψ0

〉
+ γ

〈
χ|Ψ−

〉
= 0

or αZ(S3;C+, R) + βZ(S3;C0, R) + γZ(S3;C−, R) = 0 (4.11)

or α + β + γ = 0.

This is called a Skein relation. With a particular choice of α, β, γ, such a relation can

be used to determine the Jones polynomial (and its many generalizations) for any knot

or link. It determines the invariant for all knots (and links) in S3 by induction on the

number of crossing p in a plane projection. Suppose we know Z for all knots with

≤ p − 1 crossings. If β were zero, we could untie any knot by repeatedly using the

relation Z+
?
= − γ

α
Z−. β 6= 0, but the coefficient of β involves a knot with one fewer

crossing.

The simplest way to fill in the rest of the knot is:

0 = α

〈 〉
+ β

〈 〉
+ γ

〈 〉
(4.12)

αZ(C) + βZ(C2) + γZ(C) (4.13)

from which we learn Z(C2) = −α+γ
β
Z(C). Using also (4.9) in the form 〈C2〉 = 〈C〉2

we have

〈C〉 = −α + γ

β
.

Now it behooves us to determine α, β, γ in terms of the defining parameters N, k of

Chern-Simons theory. Before we do that, let me explain about the Hilbert spaces HΣ.
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Canonical picture. Consider the case M = R× Σg, a closed Riemann surface of

genus g, perhaps punctured by a collection of Wilson loops stretched along the ‘time’

direction. On this space, it’s a good idea to consider A0 = 0 gauge, since the 0 direction

is special anyway. In this gauge, the action takes the quadratic (!) form

S =
k

8π

∫
Σg

∫
dtεijtrAi

d

dt
Aj + sources

(the extra terms come from the Wilson lines). This just says that Ax and Ay are

canonically conjugate variables, and H = 0. The non-linearities are not completely

forgotten, though, because we must still impose the Gauss law constraint

0 =
δS

δAA0
=

k

4π
εijF

A
ij −

s∑
r=1

δ2(x− pr)TAr , (4.14)

that is, away from the Wilson loop insertions, the connection on Σg is flat. Here TAr
is Lie algebra generator in the representation Rr made from some degrees of freedom,

localized at the puncture r, whose associated Hilbert space is the carrier space of Rr.

We conclude that the phase space is the moduli space of flat G connections on Σg\
the punctures (with some prescribed boundary conditions at the punctures) modulo

gauge transformations. Without punctures, this has dimension (2g − 2) dimG <∞.

Note the contrast with the quantum double model, where the groundstates them-

selves were labelled by flat G connections. This is a sense in which Chern-Simons

theory is like a square root of the quantum double model.

We saw previously that a G-bundle on S2 is specified by its transition functions on

the equator in π1(G). So as long as G is simply-connected (π1(SU(N)) = 0) there is a

unique state in HS2 .

To understand what happens with punctures, consider the semiclassical limit k →
∞. Then a naive guess is that the Hilbert space on S2 \ r points is H ?

= ⊗rRr ≡ H0,

just the representation space. This is almost right, except consider the holonomy of

the gauge field around a tiny contractible circle: 0 =
∮
C0
A. But on the sphere, this

tiny contour surrounds everything else. Comparing to the Gauss law (4.14) we see that

the total charge on S2 must vanish. That is, the Rr must fuse, somehow, to the singlet

representation of G. So in fact:

H = the G-invariant subspace of H0.

For k <∞ the only difference is that the allowed irreps Rr are restricted to a subset

of all the irreps of G (they are called the “integrable reps of the affine Lie algebra at

level k”).
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With this information, we see

HS2 = C. HS2\Ra =

{
C, Ra = R1

0 else
. HS2\{Ra,Rb} = CδRa,R?b ≡ Cδab̄. HS2\{Ra,Rb,Rc} = V 1

abc

(4.15)

the fusion space where the three reps fuse to the singlet, Ra⊗Rb⊗Rc = V 1
abc⊗R1⊕· · ·

of dimension dimV 1
abc ≡ Nabc. Finally, since ⊗ = ⊕ , we have

( ⊗ )⊗ ( ⊗ ) = ( ⊕ )⊗
(
⊕

)
=
(
⊗
)
⊕ ( ⊗ )⊕ non-singlets

has a two-dimensional singlet subspace as claimed above.

Notice, by the way, that any 2d topological state with an anyon type a satisfying

a ⊗ a ⊗ ā ⊗ ā is two-dimensional would lead to the same conclusions as above, i.e. a

Skein relation (with different values of α, β, γ). For example, the quantum double

model with gauge group SL(2, IF3) (two-by-two matrices with elements in the field of

three elements of determinant one) has three 2-dimensional reps with this property.

Braiding. The three vectors
∣∣M±,0

R

〉
are related in a very simple way: To get M0

R

from M+
R , just interchange the two outgoing punctures by a clockwise rotation on the

surface of the sphere. Crucially, during this process, the strands of the Wilson loops

inside the ball never touch. To get from M−
R from M0

R just do the same thing again.

If we call B the action of this operation on HS2\RRR̄R̄, we have∣∣M0
R

〉
= B

∣∣M+
R

〉
,
∣∣M−

R

〉
= B2

∣∣M+
R

〉
.

That is,

This braiding operator B is a unitary operator on a two-dimensional Hilbert space, so

its characteristic equation takes the form

B2 − yB + z = 0, with y = trB, z = detB. (4.16)

Acting (4.16) on |Ψ+〉, we can rewrite the Skein relation (4.11) as

z
∣∣M+

R

〉
− y

∣∣M0
R

〉
+
∣∣M−

R

〉
= 0. (4.17)
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The eigenvalues of the braiding matrixB (determining z, y and hence α, βγ) are part

of the anyon data. For the SU(N)k model (which I will not explain), and accounting

for the framing ambiguity in defining the Wilson lines, this leads to

−qN/2Z+ + (q
1
2 − q−

1
2 )Z0 + q−N/2Z− = 0, q ≡ e

2πi
N+k

and we conclude from (4.10) that for the unknot in S3,

〈C〉 =
qN/2 − q−N/2

q
1
2 − q− 1

2

.

A few physics checks: reflection positivity of the Chern-Simons theory requires 〈C〉 ≥ 0.

In the weak-coupling k →∞ limit, we can ignore quantum fluctuations and the classical

solution is just A = 0, and we get 〈C〉 = tr1 = N . A less apparent check is that 〈C〉 = 0

for qN = 1, i.e. k = 0. In this case there are no integrable representations.

Dehn surgery on 3-manifolds. Consider a curve C ⊂ M (which may or may

not host a Wilson line). Thicken C to a tubular neighborhood MR of C, a solid torus,

B2 × S1. Cut out MR from M . Its boundary is ∂MR = T 2. So we’re going to think

about HT 2 . Before we do, let’s introduce a purely mathematical operation. If we glue

back MR to ML (the rest of M) we just get M back. But consider for a moment a

basis of the first homology of ∂MR = T 2. It is generated by two 1-cycles a, b. Let’s

say that in MR, a is the contractible one. The torus enjoys an SL(2,Z) worth of large

diffeomorphisms which act upon the first homology as(
n

m

)
7→ K

(
n

m

)
≡
(
a b

c d

)(
n

m

)
, ad− bc = 1.

If we act with such a transformation before we glue back ML, we get a different 3-

manifold M̃ .
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For example, S3 = ML ∪T 2 MR. Here both ML and

MR are solid tori, B2 × S1. I tried to draw them at

right. In ML a is contractible. In MR, however, it is the

other cycle b which is contractible. By the van Kampen

theorem (thicken the overlap between ML and MR to

a torus shell), therefore, all the homotopy classes are

destroyed by this gluing. If, however, before gluing ML

to MR we act with the SL(2,Z) transformation K = S ≡(
0 1

−1 0

)
which exchanges a and b, then it is a which is

contractible in both patches, and we get

M̃ =

B2 glued to B2︸ ︷︷ ︸
=S2

× S1 = S2 × S1.

In fact, every 3-manifold can be obtained from S3 (or from S2× S1) by a sequence

of such operations.

Therefore, if Z(M) = 〈ML|MR〉 then Z(M̃) = 〈ML| K̂ |MR〉 where K̂ is the repre-

sentation of the modular transformation K on HT 2 .

Now back to Chern-Simons theory. Here is a basis for HT 2 due to Erik Verlinde:
Let |va〉 be the state given by the path integral on the solid

torus with a Wilson loop in the representation Ra running

around the center of the non-contractible cycle. So the state

|v0〉 with the singlet rep is the state |MR〉 defined above if

there is no Wilson line.

Here a = 1..t runs over the allowed ‘integrable’ irreps of G (t depends on the level

k). In this basis,

K̂ |va〉 = Ka
b |vb〉 .

Now, given M ⊃ C, a knot and an irrep Ra of G, cut out a tubular neighborhood

MR of C, a solid torus. We have Z(M,C) = 〈ML|vRa〉 and

Z(M̃, C) = 〈ML| K̂ |vRa〉 =
∑
b

Ka
b 〈ML|vRb〉 .

For example, if R = R0 is the trivial rep, then

Z(M̃, C) =
∑
b

K0
b 〈ML|vRb〉 =

∑
b

K0
bZ(M,Rb).
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Now apply (4.1) to S1 × S2 with marked points in irreps {Ra}:

Z(S2 × S1, {Ra}) = dimHS2\{Ra}.

In particular, from (4.15) we have

Z(S2 × S1) = 1. Z(S2 × S1, Ra) = δa,0. Z(S2 × S1, {Ra, Rb}) = δab̄. (4.18)

Z(S2 × S1, {Ra, Rb, Rc}) = Nabc. Z(S2 × S1, ) = 2 . (4.19)

50

Now take M̃ = S3 and M = S2 × S1 (so K = S is the element of SL(2,Z) involved

in the surgery). Then

Z(S3) =
∑
b

S0
b Z(S2 × S1, Rb)︸ ︷︷ ︸

=δb,0

= S0
0

where I wrote Sa
b for the matrix elements of the ‘S-matrix’ – the matrix representation

of the S transformation on HT 2 . Similarly,

Z(S3, Ra) =
∑
b

Sa
b Z(S2 × S1, Rb)︸ ︷︷ ︸

=δb,0

= Sa
0 = 〈Ca〉Z(S3)

from which we conclude

〈Ca〉 =
Sa

0

S0
0
.

For the case of G = SU(2)k, the allowed irreps are spin a/2 for a = 0...k and the

S-matrix is

Sab ≡ Sa
cδcb̄ =

√
2

k + 2
sin

π(a+ 1)(b+ 1)

k + 2
, a, b = 0...k.

Finally, without introducing any more ideas (I think that’s enough for now), we

can derive the Verlinde formula determining the fusion coefficients Nabc in terms of the

S-matrix.

[End of Lecture 20]

Consider two Wilson loops with irreps Ra and Rb which are

linked unknots. First notice that by doing surgery on a solid

torus thickening Ra,

Z(S3, Ra linking Rb) =
∑
c

Sa
cZ(S2×S1, {Rc, Rb}) = Sa

cδb,c̄ ≡ Sab.

(4.20)

50Side remark: Note that any knot SC that lies in MR is a satellite knot of C. The state created

by a Wilson loop along SC has an expansion in the above basis of HT 2 , |SC〉 =
∑
a αa |va〉 with some

coefficients αa that are universal numbers independent of ML.
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And do the same thing for Ra linking Rb and Rc which are

not linked with each other:

Z(S3, Ra linking Rb, Rc) =
∑
d

Sa
dZ(S2×S1, {Rb, Rc, Rd}) =

∑
d

Sa
dNbcd.

(4.21)

We can derive another relation by cutting out a ball contain-

ing Rb but not Rc. HS2\{Rb,R?b} is one-dimensional, so we can

apply the same logic as we used in deriving (4.8) to conclude

that the LHS of (4.21) satisfies

Z(S3, Ra linking Rb, Rc) =
1

Z(S3, Ra)
Z(S3, Ra linking Rb)Z(S3, Ra linking Rc)

(4.20)
=

SabSac
Sa0

.

(4.22)

Comparing (4.22) and (4.21), we find∑
d

Sa
dNbcd =

SabSac
Sa0

(4.23)

Multiplying the BHS of (4.23) by (S−1)d
a and summing over a we conclude

Nbcd =
∑
a

SabSac (S−1)d
a

Sa0

which is the Verlinde formula. (4.23) can be interpreted as the statement that the

S-matrix diagonalizes the fusion rules: Regard (Na)b
c ≡ N c

ab ≡ Nabdδ
cd̄ as a collection

of matrices. These matrices all commute (because the fusion product in irreps is

commutative: a⊗ b = b⊗ a; this also means Nabc is completely symmetric) and so can

be simultaneously diagonalized. (4.23) is the eigenvalue equation:

(Nb)c
dSad =

(
Sab
Sa0

)
Sac is (Nb)c

dvd = λvc with vd ≡ Sad, λ ≡
(
Sab
Sa0

)
.

4.3 Links to the future

Given more time, the next topic would have been topological gauge theories defined

on cell decompositions of spacetime in a subdivision-invariant way.

A warmup example for this is 2d Yang-Mills theory, as described in §2.3 of this

paper. This is not quite a topological field theory, in that physics depends on areas

(a small subset of the metric data), but all the rest of the structure of the axioms is
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realized. This discussion also goes through for a finite gauge group, where it really is

a TQFT.

Then in any dimension, Dijkgraaf and Witten define a generalization of lattice gauge

theory which includes a twisting by a group cocycle. One reason this is an important

example is that models related to them by a process called ‘ungauging’ produce solvable

representatives of a large class of Symmetry Protected Topological phases, as described

by Chen, Gu and Wen (especially §6, 7).
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