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Chapter 1

Optical Interferometry

Experiment objectives: Assemble and align Michelson and Fabry-Perot interferometers,
calibrate them using a laser of known wavelength, and then use them characterize the bright
yellow emission line in sodium (Na).

Introduction

Optical interferometers are the instruments that rely on interference of two or more su-
perimposed reflections of the input laser beam. These are one of the most common optical
tools, and are used for precision measurements, surface diagnostics, astrophysics, seismology,
quantum information, etc. There are many configurations of optical interferometers, and in
this lab you will become familiar with two of the more common setups.

The Michelson interferometer, shown in Fig. 1.1, is based on the interference of two
beams: the initial light is split into two arms on a beam splitter, and then these resulting
beams are reflected and recombined on the same beamsplitter again. The difference in optical
paths in the two arms leads to a changing relative phase of two beams, so when overlapped
the two light fields will interfere constructively or destructively. Such an interferometer
was first used by Michelson and Morley in 1887 to determine that electromagnetic waves
propagate in vacuum, giving the first strong evidence against the theory of a luminiferous
aether (a fictitious medium for light wave propagation) and providing insight into the true
nature of electromagnetic radiation. Michelson interferometers are widely used in many
areas of physics and engineering. At the end of this writeup we describe LIGO, the world’s
largest Michelson interferometer, designed to measure the gravitational waves and thus test
general relativity.

Figure 1.1 shows the traditional setting for a Michelson interferometer. A beamsplitter (a
glass plate which is partially silver-coated on the front surface and angled at 45 degrees) splits
the laser beam into two parts of equal amplitude. One beam (that was initially transmitted
by the beamsplitter) travels to a fixed mirror M1 and back again. One-half of this amplitude
is then reflected from the partially-silvered surface and directed at 90 degrees toward the
observer (you will use a viewing screen). At the same time the second beam (reflected by
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Figure 1.1: A Michelson Interferometer setup.

the beamsplitter) travels at 90 degrees toward mirror M2 and back. Since this beam never
travels through the glass beamsplitter plate, its optical path length is shorter than for the
first beam. To compensate for that, it passes twice through a clear glass plate called the
compensator plate, that has the same thickness. At the beamsplitter one-half of this light is
transmitted to an observer, overlapping with the first beam, and the total amplitude of the
light at the screen is a combination of amplitude of the two beams:

Etotal = E1 + E2 =
1

2
E0 +

1

2
E0 cos(k∆l) (1.1)

Here k∆l is a phase shift (“optical delay”) between the two wavefronts caused by the differ-
ence in optical path lengths for the two beams ∆l , k = 2πn/λ is the wave number, λ is the
wavelength of light in vacuum, and n is the refractive index of the optical medium (in our
case - air).

Mirror M2 is mounted on a precision traveling platform. Imagine that we adjust its
position (by turning the micrometer screw) such that the distance traversed on both arms is
exactly identical. Because the thickness of the compensator plate and the beamsplitter are
the same, both wavefronts pass through the same amount of glass and air, so the path length
of the light beams in both interferometer arms will be exactly the same. Therefore, the two
fields will arrive in phase to the observer, and their amplitudes will add up constructively,
producing a bright spot on the viewing screen. If now you turn the micrometer to offset the
length of one arm by a half of light wavelength, ∆l = λ/2, they will acquire a relative phase
of π, and total destructive interference will occur:

E1 + E2 = 0 or E1 = −E2.
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It is easy to see that constructive interference happens when the difference between path
lengths in the two interferometer arms is equal to the integer number of wavelengths ∆l =
mλ, and destructive interference corresponds to a half-integer number of wavelengths ∆l =
(m+1/2)λ (here m is an integer number). Since the wavelength of light is small (600−700 nm
for a red laser), Michelson interferometers are able to measure distance variation with very
good precision.

In Fabry-Perot configuration the input light field bounces between two closely spaced
partially reflecting surfaces, creating a large number of reflections. Interference of these mul-
tiple beams produces sharp spikes in the transmission for certain light frequencies. Thanks to
the large number of interfering rays, this type of interferometer has extremely high resolution,
much better than a Michelson interferometer. For that reason Fabry-Perot interferometers
are widely used in telecommunications, lasers and spectroscopy to control and measure the
wavelengths of light. In this experiment we will take advantage of the high spectral reso-
lution of the Fabry-Perot interferometer to resolve two very closely-spaces emission lines in
Na spectra by observing changes in overlapping interference fringes from the two lines.

Figure 1.2: Sequence of Reflection and Transmission for a ray arriving at the treated inner
surfaces P1&P2.

A Fabry-Perot interferometer consists of two parallel glass plates, flat to better than 1/4
of an optical wavelength λ, and coated on the inner surfaces with a partially transmitting
metallic layer. Such two-mirror arrangement is normally called an optical cavity. The light
in a cavity by definition bounces back and forth many times before escaping; the idea of such
a cavity is crucial for the construction of a laser. Any light transmitted through such cavity
is a product of interference between beams transmitted at each bounce as diagrammed in
Figure 1.2. When the incident ray arrives at interface point A, a fraction t is transmitted
and the remaining fraction r is reflected, such that t + r = 1 ( this assumes no light is lost
inside the cavity). The same thing happens at each of the points A,B,C,D,E, F,G,H . . .,
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splitting the initial ray into parallel rays AB,CD,EF,GH, etc. Between adjacent ray pairs,
say AB and CD, there is a path difference of :

δ = BC + CK (1.2)

where BK is normal to CD. In a development similar to that used for the Michelson
interferometer, you can show that:

δ = 2d cos θ (1.3)

If this path difference produces constructive interference, then δ is some integer multiple of
λ, namely,

mλ = 2d cos θ (1.4)

This applies equally to ray pairs CD and EF,EF and GH, etc, so that all parallel rays
to the right of P2 will constructively interfere with one another when brought together.

Issues of intensity of fringes & contrast between fringes and dark background are ad-
dressed in Melissinos, Experiments in Modern Physics, pp.309-312.

Laser Safety

Never look directly at the laser beam! Align the laser so that it is not at eye level.
Even a weak laser beam can be dangerous for your eyes.

Alignment of Michelson interferometer

Equipment needed: Pasco precision interferometry kit, a laser, Na lamp, adjustable-height
platform (or a few magazines or books).

To simplify the alignment of a Michelson interferometer, it is convenient to work with
diverging optical beams. In this case an interference pattern will look like a set of concentric
bright and dark circles, since the components of the diverging beam travel at slightly different
angles, and therefore acquire different phase, as illustrated in Figure 1.3. Suppose that the
actual path length difference between two arms is d. Then the path length difference for two
off-axis rays arriving at the observer is ∆l = a+ b where a = d/ cos θ and b = a cos 2θ:

∆l =
d

cos θ
+

d

cos θ
cos 2θ (1.5)

Recalling that cos 2θ = 2(cos θ)2 − 1, we obtain ∆l = 2d cos θ. The two rays interfere
constructively for any angle θc for which ∆l = 2d cos θ = mλ (m=integer); at the same time,
two beams traveling at the angle θd interfere destructively when ∆l = 2d cos θ = (m+ 1/2)λ
(m=integer). Because of the symmetry about the normal direction to the mirrors, this will
mean that interference ( bright and dark fringes) appears in a circular shape. If the fringes
are not circular, it means simply that the mirrors are not parallel, and additional alignment
of the interferometer is required.
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Figure 1.3: Explanation of circular fringes. Notice that to simplify the figure we have
“unfold” the interferometer by neglecting the reflections on the beamsplitter.

When the path length difference ∆l is varied by moving one of the mirrors using the
micrometer, the fringes appear to “move”. As the micrometer is turned, the condition for
constructive and destructive interference is alternately satisfied at any given angle. If we fix
our eyes on one particular spot and count, for example, how many bright fringes pass that
spot as we move mirror M2 by a known distance, we can determine the wavelength of light
in the media using the condition for constructive interference, ∆l = 2d cos θ = mλ.

For simplicity, we might concentrate on the center of the fringe bull’s eye at θ = 0. The
equation above for constructive interference then reduces to 2∆l = mλ (m = integer). If X1

is the initial position of the mirror M2 (as measured on the micrometer) and X2 is the final
position after a number of fringes δm has been counted, we have 2(X2−X1) = λ∆m. Then
the laser wavelength, λ, is then given as:

λ = 2(X2 −X1)/∆m. (1.6)

Set up the interferometer as shown in Figure 1.1 using components from the PASCO
interferometry kit. The mirrors M1,2 are, correspondingly, a movable and an adjustable
mirror from the kit. Align the interferometer with a laser beam. Adjust the beam so that it
is impinging on the beamsplitter and on the viewing screen. Try to make the beams to hit
near the center of all the optics, including both mirrors, the compensator plate and beam
splitter. The interferometer has leveling legs which can be adjusted. Align the beams such
that they overlap on the viewing screen, and so that the reflected beam is directed back into
the laser. This can be tricky to get right the first time. Be patient, make small changes,
think about what you are doing, and get some help from the instructor and TA.

Once the interferometer is aligned, insert a convex lens (f = 18 mm works well) after
the laser to spread out the beam (ideally the laser beam should be pass through the center
of the lens to preserve alignment). Adjust the adjustable mirror slightly until you see the
interference fringes in the screen. Continue to make small adjustments until you see a clear
bull’s eye circular pattern. A word of caution: sometimes dust on a mirror or imperfections
on optical surfaces may produce similar intensity patterns. True interference disappears if
you block one arm of the interferometer. Try it!
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Note: before starting the measurements, make sure you understand how to read the
micrometer properly!

(a) Reading = 211 µm (b) Reading = 345 µm (c) Reading = 166 µm

Figure 1.4: Micrometer readings. The coarse division equals to 100 µm, and smallest division
on the rotary dial is 1 µm (same as 1 micron). The final measurements is the sum of two.

Wavelength measurements using Michelson interferom-

eter

Calibration of the interferometer

Record the initial reading on the micrometer. Focus on the central fringe and begin turning
the micrometer. You will see that the fringes move. For example, the central spot will
change from bright to dark to bright again, that is counted as one fringe. A good method:
pick out a reference line on the screen and then softly count fringes as they pass the point.
Count a total of about ∆m = 50 fringes and record the new reading on the micrometer.

Each lab partner should make at least two independent measurements, starting from
different initial positions of the micrometer. For each trial, approximately 50 fringes should
be accurately counted and tabulated with the initial X1 and final X2 micrometer settings.
Do this at least five times (e.g., 5×50 fringes). Consider moving the mirror both forward and
backward. Make sure that the difference X2−X1 is consistent between all the measurements.
Calculate the average value of the micrometer readings < X2 −X1 >.

Experimental tips

1. Avoid touching the face of the front-surface mirrors, the beamsplitter, and any other
optical elements!

2. The person turning the micrometer should also do the counting of fringes. It can be
easier to count them in bunches of 5 or 10 (i.e. 100 fringes = 10 bunches of 10 fringes).

3. Use a reference point or line and count fringes as they pass.
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4. Before the initial position X1 is read make sure that the micrometer has engaged the
drive screw (There can be a problem with “backlash”). Just turn it randomly before
counting.

5. Avoid hitting the table which can cause a sudden jump in the number of fringes.

Measurement of the Na lamp wavelength

A calibrated Michelson interferometer can be used as a wavemeter to determine the wave-
length of different light sources. In this experiment you will use it to measure the wavelength
of strong yellow sodium fluorescent light, produced by the discharge lamp.1

Without changing the alignment of the interferometer (i.e. without touching any mir-
rors), remove the focusing lens and carefully place the interferometer assembly on top of
an adjustable-height platform such that it is at the same level as the output of the lamp.
Since the light power in this case is much weaker than for a laser, you won’t be able to use
the viewing screen. You will have to observe the interference looking directly to the output
beam - unlike laser radiation, the spontaneous emission of a discharge is not dangerous2.
However, your eyes will get tired quickly! Placing a diffuser plate in front of the lamp will
make the observations easier. Since the interferometer is already aligned, you should see the
interference picture. Make small adjustments to the adjustable mirror to make sure you see
the center of the bull’s eye.

Repeat the same measurements as in the previous part by moving the mirror and counting
the number of fringes. Each lab partner should make at least two independent measurements,
recording initial and final position of the micrometer, and you should do at least five trials.
Calculate the wavelength of the Na light for each trial. Then calculate the average value and
its experimental uncertainty. Compare with the expected value of 589 nm.

In reality, the Na discharge lamp produces a doublet - two spectral lines that are very
close to each other: 589 nm and 589.59 nm. Do you think your Michelson interferometer can
resolve this small difference? Hint: the answer is no - we will use a Fabry-Perot interferometer
for that task.

Alignment of the Fabry-Perot interferometer

Disassemble the Michelson Interferometer, and assemble the Fabry-Perot interferometer as
shown in Figure 1.5. First, place the viewing screen behind the two partially-reflecting
mirrors (P1 and P2), and adjust the mirrors such that the multiple reflections on the screen

1Actually, sodium might be a better calibration source than a HeNe laser, since it has well known lines,
whereas a HeNe can lase at different wavelengths. Perhaps an even better calibration source might be a line
from the Hydrogen Balmer series, which can be calculated from the Standard Model.

2In the “old days” beams in high energy physics were aligned using a similar technique. An experimenter
would close his eyes and then put his head in a collimated particle beam. Cerenkov radiation caused by
particles traversing the experimenter’s eyeball is visible as a blue glow or flashes. This is dangerous but
various people claim to have done it... when a radiation safety officer isn’t around.
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Figure 1.5: The Fabry-Perot Interferometer. For initial alignment the laser and the convex
lens are used instead of the Na lamp.

overlap. Then place a convex lens after the laser to spread out the beam, and make small
adjustments until you see the concentric circles. Is there any difference between the thickness
of the bright lines for the two different interferometers? Why?

Loosen the screw that mounts the movable mirror and change the distance between the
mirrors. Realign the interferometer again, and comment on the difference in the interference
picture. Can you explain it?

Align the interferometer one more time such that the distance between the two mirrors
is 1.0− 1.5 mm, but make sure the mirrors do not touch!

Sodium doublet measurements

1. Turn off the laser, remove the viewing screen and the lens, and place the interferometer
on the adjustable-height platform, or alternatively place the Na lamp on its side and
plan to adjust it’s height with books or magazines. With the diffuser sheet in front of
the lamp, check that you see the interference fringes when you look directly at the lamp
through the interferometer. If necessary, adjust the knobs on the adjustable mirror to
get the best fringe pattern.

2. Because the Na emission consists of two lights at two close wavelengths, the interference
picture consists of two sets of rings, one corresponding to fringes of λ1, the other to those
for λ2. Move the mirror back and forth (by rotating the micrometer) to identify two
sets of rings. Notice that they move at slightly different rates (due to the wavelength
difference).

3. Seek the START condition illustrated in Fig.(1.6), such that all bright fringes are evenly
spaced. Note that alternate fringes may be of somewhat different intensities. Practice
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going through the fringe conditions as shown in Fig.(1.6) by turning the micrometer
and viewing the relative movement of fringes. Do not be surprised if you have to move
the micrometer quite a bit to return to the original condition again.

4. Turn the micrometer close to zero reading, and then find a place on the micrometer
(d1) where you have the “START” condition for fringes shown in Fig.(1.6). Now
advance the micrometer rapidly while viewing the fringe pattern ( NO COUNTING
OF FRINGES IS REQUIRED ). Note how the fringes of one intensity are moving to
overtake those of the other intensity (in the manner of Fig.(1.6)). Keep turning until
the “STOP” pattern is achieved (the same condition you started with). Record the
micrometer reading as d2.

5. Each lab partner should repeat this measurement at least one time, and each group
should have at least three independent measurements.

6. Make sure to tabulate all the data taken by your group.

We chose the “START” condition (the equally spaced two sets of rings) such that for the
given distance between the two mirrors, d1, the bright fringes of λ1 occur at the points of
destructive interference for λ2. Thus, the bull’s eye center (θ = 0) we can write this down
as:

2d1 = m1λ1 =

(
m1 + n+

1

2

)
λ2 (1.7)

Here the integer n accounts for the fact that λ1 > λ2, and the 1/2 for the condition
of destructive interference for λ2 at the center. The “STOP” condition corresponds to the
similar situation, but the net action of advancing by many fringes has been to increment the
fringe count of λ2 by one more than that of λ1:

2d2 = m2λ1 =

(
m2 + n+

3

2

)
λ2 (1.8)

Try to estimate your uncertainty in identifying the START and STOP positions by
turning the micrometer back and forth, identifying the points at which you can begin to see
doublet, rather than equally spaced, lines. The variance from multiple measurements should
agree, at least approximately, with this estimate.

Subtracting the two interference equations, and solving for the distance traveled by the
mirror d2 − d1 we obtain:

2(d2 − d1) =
λ1λ2

(λ1 − λ2)
(1.9)

Solving this for ∆λ = λ1 − λ2, and accepting as valid the approximation that λ1λ2 ≈ λ2

(where λ is the average of λ1 and λ2 ≈ 589.26 nm), we obtain:
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∆λ ≈ λ2

2(d2 − d1)
(1.10)

Use this equation and your experimental measurements to calculate average value of Na
doublet splitting and its standard deviation. Compare your result with the established value
of ∆λNa = 0.598 nm.

Figure 1.6: The sequence of fringe patterns encountered in the course of the measurements.
Note false colors: in your experiment the background is black, and both sets of rings are
bright yellow.

12



Detection of Gravitational Waves

A Michelson interferometer can help to test the theory of relativity! Gravity waves,
predicted by the theory of relativity, are ripples in the fabric of space and time produced by
violent events in the distant universe, such as the collision of two black holes. Gravitational
waves are emitted by accelerating masses much as electromagnetic waves are produced by
accelerating charges, and often travel to Earth. The only indirect evidence for these waves
has been in the observation of the rotation of a binary pulsar (for which the 1993 Nobel
Prize was awarded). Laser Interferometry Gravitational-wave Observatory (LIGO) sets the

Figure 1.7: For more details see http://www.ligo.caltech.edu/

ambitious goal of the direct detection of a gravitational wave. The measuring tool in this
project is a giant Michelson interferometer. Two mirrors hang 2.5 mi apart, forming one
“arm” of the interferometer, and two more mirrors make a second arm perpendicular to the
first. Laser light enters the arms through a beam splitter located at the corner of the L,
dividing the light between the arms. The light is allowed to bounce between the mirrors
repeatedly before it returns to the beam splitter. If the two arms have identical lengths,
then interference between the light beams returning to the beam splitter will direct all of
the light back toward the laser. But if there is any difference between the lengths of the two
arms, some light will travel to where it can be recorded by a photodetector.

The space-time ripples cause the distance measured by a light beam to change as the
gravitational wave passes by. These changes are minute: just 10−16 centimeters, or one-
hundred-millionth the diameter of a hydrogen atom over the 2.5 mile length of the arm. Yet,
they are enough to change the amount of light falling on the photodetector, which produces
a signal defining how the light falling on changes over time. LlGO requires at least two
widely separated detectors, operated in unison, to rule out false signals and confirm that a
gravitational wave has passed through the earth. Three interferometers were built for LlGO
– two near Richland, Washington, and the other near Baton Rouge, Louisiana.
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Chapter 2

Measurement of Charge-to-Mass
(e/m) Ratio for the Electron

Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by
studying the electron trajectories in a uniform magnetic field.

History

J.J. Thomson first measured the charge-to-mass ratio of the fundamental particle of charge
in a cathode ray tube in 1897. A cathode ray tube basically consists of two metallic plates
in a glass tube which has been evacuated and filled with a very small amount of background
gas. One plate is heated (by passing a current through it) and “particles” boil off of the
cathode and accelerate towards the other plate which is held at a positive potential. The
gas in between the plates inelastically scatters the electrons, emitting light which shows the
path of the particles. The charge-to-mass (e/m) ratio of the particles can be measured by
observing their motion in an applied magnetic field. Thomson repeated his measurement of
e/m many times with different metals for cathodes and also different gases. Having reached
the same value for e/m every time, it was concluded that a fundamental particle having a
negative charge e and a mass 2000 times less than the lightest atom existed in all atoms.
Thomson named these particles “corpuscles” but we now know them as electrons. In this
lab you will essentially repeat Thomson’s experiment and measure e/m for electrons.

Theory

The apparatus shown in Figure 2.1 consists of a glass tube that houses a small electron
gun. This gun has a cathode filament from which electrons can be thermionically released
(boiled off), and a nearby anode which can be set to a potential which is positive relative
to the cathode. Electrons boiled off the cathode are accelerated to the anode, where most
are collected. The anode contains a slit, however, which lets a fraction of the electrons into
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the larger volume of the glass tube. Some of these electrons scatter inelastically with the
background gas, thereby emitting tracer light to define the path of the electrons.

Figure 2.1: The schematic for the e/m apparatus.

To establish the uniform magnetic field a pair of circular Helmholtz coils are wound and
the tube centered in the volume of the coils (see Appendix). The tube is oriented so that
the beam which exits the electron gun is traveling perpendicular to the Helmholtz field. We
would like the field to be uniform, i.e., the same, over the orbit of the deflected electrons to
the level of 1% if possible.

An electron released thermionically at the cathode has on the order of 1 eV of kinetic
energy. This electron “falls” through the positive anode potential Va , gaining a kinetic
energy of:

1

2
mv2 = eVa (2.1)

The magnetic field of the Helmholtz coils is perpendicular to this velocity, and produces a
magnetic force which is transverse to both v and B: F = ev ×B. This centripetal force
makes an electron move along the circular trajectory; the radius of this trajectory r can be
found from Newton’s Second Law:

m

(
v2

r

)
= evB (2.2)

From this equation we obtain the expression for the charge-to-mass ratio of the electron,
expressed through the experimental parameters:

e

m
=

v

rB
(2.3)

We shall calculate magnetic field B using the Biot-Savart law for the two current loops
of the Helmholtz coils (see Appendix):

B =
8√
125

µ0NIhc
a

. (2.4)
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Here N is the number of turns of wire that form each loop, Ihc is the current (which is the
same in both loops), a is the radius of the loops (in meters), and the magnetic permeability
constant is µ0 = 4π10−7T m/A).

Noting from Eq.(2.1) that the velocity is determined by the potential Va as v =
√

2eVa/m,
and using Eq.(2.4) for the magnetic field B, we get:

e

m
= 2

Va
r2

1

B2
= 2

Va
r2

[
125

64

(
a

µ0NIhc

)2
]

(2.5)

The accepted value for the charge-to-mass ratio of the electron is e/m = 1.7588196 · 1011

C/kg.

Experimental Procedure

Equipment needed: Pasco e/m apparatus (SE-9638), Pasco High Voltage Power supply
(for the accelerating voltage and the filament heater), GW power supply (for the Helmholtz
coils), two digital multimeters.

Figure 2.2: (a) e/m tube; (b) electron gun.

Pasco SE-9638 Unit:

The e/m tube (see Fig. 2.2a) is filled with helium at a pressure of 10−2 mm Hg, and contains
an electron gun and deflection plates. The electron beam leaves a visible trail in the tube,
because some of the electrons collide with helium atoms, which are excited and then radiate
visible light. The electron gun is shown in Fig. 2.2b. The heater heats the cathode, which
emits electrons. The electrons are accelerated by a potential applied between the cathode
and the anode. The grid is held positive with respect to the cathode and negative with
respect to the anode. It helps to focus the electron beam.

The Helmholtz coils of the e/m apparatus have a radius and separation of a = 15 cm.
Each coil has N = 130 turns. The magnetic field (B) produced by the coils is proportional
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to the current through the coils (Ihc) times 7.80 · 10−4 Tesla/Ampere [B(tesla) = (7.80 ·
10−4)Ihc]. A mirrored scale is attached to the back of the rear Helmholtz coil. It is illuminated
automatically when the heater of the electron gun is powered. By lining the electron beam up
with its image in the mirrored scale, you can measure the radius of the beam path without
parallax error. The cloth hood can be placed over the top of the e/m apparatus so the
experiment can be performed in a lighted room.

Safety

You will be working with high voltage. Make all connections when power is off. Turn
power off before changing/removing connections. Make sure that there are no loose or open
contacts.

Set up

The wiring diagram for the apparatus is shown in Fig. 2.3. Important: Do not turn any
equipment until an instructor has checked your wiring.

Figure 2.3: Connections for e/m Experiment.

Acceptable power supplies settings:

Electron Gun/filament Heater 6 V AC. Do not go to 7 V!

Electrodes 150 to 300 V DC

Helmholtz Coils 6− 9 V DC.
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Warning: The voltage for a filament heater should never exceed 6.3 VAC. Higher values
can burn out filament.
The Helmholtz current should NOT exceed 2 amps. To avoid accidental overshoot run the
power supply at a “low” setting in a constant current mode and ask the TA or instructor
how to set the current limit properly.

Data acquisition

1. Slowly turn the current adjust knob for the Helmholtz coils clockwise. Watch the
ammeter and take care that the current is less than 2 A.

2. Wait several minutes for the cathode to heat up. When it does, you will see the electron
beam emerge from the electron gun. Its trajectory will be curved by the magnetic field.

3. Rotate the tube slightly if you see any spiraling of the beam. Check that the electron
beam is parallel to the Helmholtz coils. If it is not, turn the tube until it is. Don’t
take it out of its socket. As you rotate the tube, the socket will turn.

4. Measurement procedure for the radius of the electron beam r:
For each measurement record:

Accelerating voltage Va

Current through the Helmholtz coils Ihc

Look through the tube at the electron beam. To avoid parallax errors, move your
head to align one side the electron beam ring with its reflection that you can see on
the mirrored scale. Measure the radius of the beam as you see it, then repeat the
measurement on the other side, then average the results. Each lab partner should
repeat this measurement, and estimate the uncertainty. Do this silently and tabulate
results. After each set of measurements (e.g., many values of Ihc at one value of Va)
compare your results. This sort of procedure helps reduce group-think, can get at some
sources of systematic errors, and is a way of implementing experimental skepticism.

5. Repeat the radius measurements for at least 4 values of Va and for each Va for 5-6
different values of the magnetic field.

Improving measurement accuracy

1. The greatest source of error in this experiment is the velocity of the electrons. First,
the non-uniformity of the accelerating field caused by the hole in the anode causes
the velocity of the electrons to be slightly less than their theoretical value. Second,
collisions with the helium atoms in the tube further rob the electrons of their veloc-
ity. Since the equation for e/m is proportional to 1/r2, and r is proportional to v,
experimental values for e/m will be greatly affected by these two effects.
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2. To minimize the error due to this lost electron velocity, measure radius to the outside
of the beam path.

3. To minimize the relative effect of collisions, keep the accelerating voltage as high as
possible. (Above 250 V for best results.) Note, however, that if the voltage is too high,
the radius measurement will be distorted by the curvature of the glass at the edge of
the tube. Our best results were made with radii of less than 5 cm.

4. Your experimental values will be higher than theoretical, due to the fact that both
major sources of error cause the radius to be measured as smaller than it should be.

Calculations and Analysis:

1. Calculate e/m for each of the readings using Eq. 2.5. NOTE: Use MKS units for
calculations.

2. For each of the four Va settings calculate the mean < e/m >, the standard deviation
σ and the standard error in the mean σm. Are these means consistent with one
another sufficiently that you can combine them ? [Put quantitatively, are they within
2σ of each other ?]

3. Calculate the grand mean for all e/m readings, its standard deviation σ and the
standard error in the grand mean σm.

4. Specify how this grand mean compares to the accepted value, i.e., how many σm’s is
it from the accepted value ?

5. Finally, plot the data in the following way which should, ( according to Eq. 2.5), reveal
a linear relationship: plot Va on the abscissa [x-axis] versus r2B2/2 on the ordinate
[y-axis]. The uncertainty in r2B2/2 should come from the standard deviation of the
different measurements made by your group at the fixed Va. The optimal slope of this
configuration of data should be < m/e >. Determine the slope from your plot and
its error by doing a linear fit. What is the value of the intercept? What should you
expect it to be?

6. Comment on which procedure gives a better value of < e/m > (averaging or linear
plot).

Appendix: Helmholtz coils

The term Helmholtz coils refers to a device for producing a region of nearly uniform magnetic
field. It is named in honor of the German physicist Hermann von Helmholtz. A Helmholtz
pair consists of two identical coils with electrical current running in the same direction that
are placed symmetrically along a common axis, and separated by a distance equal to the
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radius of the coil a. The magnetic field in the central region may be calculated using the
Biot-Savart law:

B0 =
µ0Ia

2

(a2 + (a/2)2)3/2
, (2.6)

where µ0 is the magnetic permeability constant, I is the total electric current in each coil, a
is the radius of the coils, and the separation between the coils is equal to a.

This configuration provides very uniform magnetic field along the common axis of the
pair, as shown in Fig. 2.4. The correction to the constant value given by Eq.(2.6) is propor-
tional to (x/a)4 where x is the distance from the center of the pair. However, this is true
only in the case of precise alignment of the pair: the coils must be parallel to each other!
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Figure 2.4: Dependence of the magnetic field produced by a Helmholtz coil pair B of the
distance from the center (on-axis) x/a. The magnetic field is normalized to the value B0 in
the center.
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Chapter 3

Electron Diffraction

Experiment objectives: observe diffraction of the beam of electrons on a graphitized
carbon target and calculate the intra-atomic spacings in the graphite.

History

A primary tenet of quantum mechanics is the wavelike properties of matter. In 1924, graduate
student Louis de Broglie suggested in his dissertation that since light has both particle-like
and wave-like properties, perhaps all matter might also have wave-like properties. He postu-
lated that the wavelength of objects was given by λ = h/p, where h is Planck’s constant and
p = mv is the momentum. This was quite a revolutionary idea, since there was no evidence
at the time that matter behaved like waves. In 1927, however, Clinton Davisson and Lester
Germer discovered experimental proof of the wave-like properties of matter — particularly
electrons. This discovery was quite by mistake: while studying electron reflection from a
nickel target, they inadvertently crystallized their target, while heating it, and discovered
that the scattered electron intensity as a function of scattering angle showed maxima and
minima. That is, electrons were “diffracting” from the crystal planes much like light diffracts
from a grating, leading to constructive and destructive interference. Not only was this dis-
covery important for the foundation of quantum mechanics (Davisson and Germer won the
Nobel Prize for their discovery), but electron diffraction is an extremely important tool used
to study new materials. In this lab you will study electron diffraction from a graphite target,
measuring the spacing between the carbon atoms.

Theory

Consider planes of atoms in a crystal as shown in Fig. 3.1 separated by distance d. Electron
“waves” reflect from each of these planes. Since the electron is wave-like, the combination
of the reflections from each interface produces to an interference pattern. This is completely
analogous to light interference, arising, for example, from different path lengths in the Fabry-
Perot or Michelson interferometers. The de Broglie wavelength for the electron is given by
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Figure 3.1: Electron Diffraction from atomic layers in a crystal.

λ = h/p, where p can be calculated by knowing the energy of the electrons when they leave
the “electron gun”:

p2

2m
= eVa, (3.1)

where Va is the accelerating potential. The condition for constructive interference is that the
path length difference for the two waves shown in Fig. 3.1 be a multiple of a wavelength.
This leads to Bragg’s Law:

nλ = 2d sin θ (3.2)

where n = 1, 2, . . . is integer. In this experiment, only the first order diffraction n = 1 is
observed. Therefore, the intra-atomic distance in a crystal can be calculated by measuring
the angle of electron diffraction and their wavelength (i.e. their momentum):

d =
λ

2 sin θ
=

1

2 sin θ

h√
2emeVa

(3.3)

where h is Planck’s constant, e is the electronic charge, me is the electron’s mass, and Va is
the accelerating voltage.

Experimental Procedure

Equipment needed: Electron diffraction apparatus and power supply, tape, ruler.

22



Safety

You will be working with high voltage. The power supply will be connected for you, but
inspect the apparatus when you arrive before turning the power on. If any wires are
unplugged, ask an instructor to reconnect them. Also, before turning the power on, identify
the high voltage contacts on the electron diffraction tube, make sure these connections are
well-protected and cannot be touched by accident while taking measurements.

Figure 3.2: Electron Diffraction Apparatus.

Setup

The diagram of the apparatus is given in Fig.3.2. An electron gun (consisting of a heated
filament to boil electrons off a cathode and an anode to accelerate them, similar to the e/m
experiment) “shoots” electrons at a carbon (graphite) target.

The electrons diffract from the carbon target and the resulting interference pattern is
viewed on a phosphorus screen.

The graphitized carbon is not completely crystalline but consists of crystal sheets in
random orientations. Therefore, the constructive interference patterns will be seen as bright
circular rings. For the carbon target, two rings (an outer and inner, corresponding to different
crystal planes) will be seen, corresponding to two spacings between atoms in the graphite
arrangement (see Fig. 3.3).
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Figure 3.3: Spacing of carbon atoms. Here subscripts 10 and 11 correspond to the crystal-
lographic directions in the graphite crystal.

Data acquisition

Acceptable power supply settings:
Filament Voltage VF 6.3 V ac/dc (8.0 V max.)
Anode Voltage VA 1500 - 5000 V dc
Anode Current IA 0.15 mA at 4000 V ( 0.20 mA max.)

1. Switch on the heater and wait one minute for the oxide cathode to achieve thermal
stability.

2. Slowly increase Va until you observe two rings appear around the direct beam. Slowly
change the voltage and determine the highest achievable accelerating voltage, and the
lowest voltage when the rings are visible.

3. Measure the diffraction angle θ for both inner and outer rings for 5-10 voltages from
that range, using the same masking tape (see procedure below). Each lab partner
should repeat these measurements (using an individual length of the masking tape).

4. Calculate the average value of θ from the individual measurements for each voltage Va.
Calculate the uncertainties for each θ.

Measurement procedure for the diffraction angle θ

To determine the crystalline structure of the target, one needs to carefully measure the
diffraction angle θ. It is easy to see (for example, from Fig. 3.1 ) that the diffraction angle
θ is 1/2 of the angle between the beam incident on the target and the diffracted beam to a
ring, hence the 2θ appearing in Fig. 3.4. You are going to determine the diffraction angle θ
for a given accelerated voltage from the approximate geometrical ratio

L sin 2θ = R sinφ, (3.4)
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Figure 3.4: Geometry of the experiment.

where the distance between the target and the screen L = 0.130 m is controlled during the
production process to have an accuracy better than 2%. Note, this means that the electron
tubes are not quite spherical.

The ratio between the arc length and the distance between the target and the radius of
the curvature of the screen R = 0.066 m gives the angle φ in radian: φ = s/2R. To measure
φ carefully place a piece of masking tape on the tube so that it crosses the ring along the
diameter. Mark the position of the ring for each accelerating voltage, and then remove the
masking tape and measure the arc length s corresponding to each ring. You can also make
these markings by using the thin paper on which cash register receipts are printed.

Data analysis

Use the graphical method to find the average values for the distances between the atomic
planes in the graphite crystal d11 (outer ring) and d10 (inner ring). To determine the combi-
nation of the experimental parameters that is proportional to d, one needs to substitute the
expression for the electron’s velocity Eq.(3.1) into the diffraction condition given by Eq.(3.2):

2d sin θ = λ =
h√

2mee

1√
Va

(3.5)

Make a plot of 1/
√
Va versus sin θ for the inner and outer rings (both curves can be on

the same graph). Fit the linear dependence and measure the slope for both lines. From the
values of the slopes find the distances between atomic layers dinner and douter.

Compare your measurements to the accepted values: dinner = d10 = .213 nm and douter =
d11 = 0.123 nm.
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Looking with Electrons

The resolution of ordinary optical microscopes is limited (the diffraction limit) by the wave-
length of light (≈ 400 nm). This means that we cannot resolve anything smaller than this
by looking at it with light (even if we had no limitation on our optical instruments). Since
the electron wavelength is only a couple of angstroms (10−10 m), with electrons as your
“light source” you can resolve features to the angstrom scale. This is why “scanning electron
microscopes” (SEMs) are used to look at very small features. The SEM is very similar to an
optical microscope, except that “light” in SEMs is electrons and the lenses used are made
of magnetic fields, not glass.
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Chapter 4

Blackbody Radiation

Experiment objectives: explore radiation from objects at certain temperatures, commonly
known as “blackbody radiation”; make measurements testing the Stefan-Boltzmann law in
high- and low-temperature ranges; measure the inverse-square law for thermal radiation.

Theory

A familiar observation to us is that dark-colored objects absorb more thermal radiation
(from the sun, for example) than light-colored objects. You may have also observed that a
good absorber of radiation is also a good emitter (like dark-colored seats in an automobile).
Although we observe thermal radiation (“heat”) mostly through our sense of touch, the
range of energies at which the radiation is emitted can span the visible spectrum (thus we
speak of high-temperature objects being “red hot” or “white hot”). For temperatures below
about 600◦C, however, the radiation is emitted in the infrared, and we cannot see it with
our eyes, although there are special detectors (like the one you will use in this lab) that can
measure it.

An object which absorbs all radiation incident on it is known as an “ideal blackbody”. In
1879 Josef Stefan found an empirical relationship between the power per unit area radiated
by a blackbody and the temperature, which Ludwig Boltzmann derived theoretically a few
years later. This relationship is the Stefan-Boltzmann law:

S = σT 4 (4.1)

where S is the radiated power per unit area (W/m2), T is the temperature (in Kelvins), and
σ = 5.6703× 10−8W/m2K4 is the Stefan’s constant.

Most hot, opaque objects can be approximated as blackbody emitters, but the most ideal
blackbody is a closed volume (a cavity) with a very small hole in it. Any radiation entering
the cavity is absorbed by the walls, and then is re-emitted out. Physicists first tried to
calculate the spectral distribution of the radiation emitted from the ideal blackbody using
classical thermodynamics. This method involved finding the number of modes of oscillation
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of the electromagnetic field in the cavity, with the energy per mode of oscillation given by
kT . The classical theory gives the Rayleigh-Jeans law:

u(λ, T ) =
8πkT

λ4

where u(λ)(J/m4) is the spectral radiance (energy radiated per unit area at a single wave-
length or frequency), and λ is the wavelength of radiation. This law agrees with the exper-
iment for radiation at long wavelengths (infrared), but predicts that u(λ) should increase
infinitely at short wavelengths. This is not observed experimentally (Thank heaven, or we
would all be constantly bathed in ultraviolet light-a true ultraviolet catastrophe!). It was
known that the wavelength distribution peaked at a specific temperature as described by
Wien’s law:

λmaxT = 2.898× 10−3m ·K
and went to zero for short wavelengths.

The breakthrough came when Planck assumed that the energy of the oscillation modes
can only take on discrete values rather than a continuous distribution of values, as in classical
physics. With this assumption, Planck’s law was derived:

u(λ, T ) =
8πhcλ−5

ehc/λkT − 1

where c is the speed of light and h = 6.626076 × 10−34J · s is the Planck’s constant. This
proved to be the correct description.

Sometimes physicists have to have crazy ideas!
“The problem of radiation-thermodynamics was solved by Max Planck, who was a 100 per-
cent classical physicist (for which he cannot be blamed). It was he who originated what
is now known as modern physics. At the turn of the century, at the December 14, 1900
meeting of the German Physical Society, Planck presented his ideas on the subject, which
were so unusual and so grotesque that he himself could hardly believe them, even though
they caused intense excitement in the audience and the entire world of physics.”
From George Gamow, “Thirty Years that Shook Physics, The Story of Quantum Physics”,
Dover Publications, New York, 1966.

Safety

The Stefan lamp and thermal cube will get very hot - be careful!!!

Thermal radiation rates from different surfaces

Equipment needed: Pasco Radiation sensor, Pasco Thermal Radiation Cube, two multi-
meters, window glass.

Before starting actual experiment take some time to have fun with the thermal radiation
sensor. Can you detect your lab partner? What about people across the room? Point the
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sensor in different directions and see what objects affect the readings. These exercises are
fun, but you will also gain important intuition about various factors which may
affect the accuracy of the measurements!

How does the radiation sensor work?

Imagine a metal wire connected to a cold reservoir at one end and a hot reservoir at the
other. Heat will flow between the ends of the wire, carried by the electrons in the conductor,
which will tend to diffuse from the hot end to the cold end. Vibrations in the conductor’s
atomic lattice can also aid this process. This diffusion causes a potential difference between
the two ends of the wire. The size of the potential difference depends on the temperature
gradient and on details of the conductive material, but is typically in the few 10s of µV/K.
A thermocouple, shown on the left, consists of two different conductive materials joined
together at one end and connected to a voltmeter at the other end. The potential is, of
course, the same on either side of the joint, but the difference in material properties causes
∆V = V1 − V2 6= 0. This ∆V is measured by the voltmeter and is proportional to ∆T .
Your radiation sensor is a thermopile, simply a “pile” of thermocouples connected in series,
as shown at the right. This is done to make the potential difference generated by the
temperature gradient easier to detect.

1. Connect the two multimeters and position the sensor as shown in Fig. 4.1. The multi-
meter attached to the cube should be set to read resistance while the one attached to
the infrared radiation sensor will monitor the potential (in the millivolt range). Make
sure the shutter on the sensor is pushed all the way open!

2. Before turning on the cube, measure the resistance of the thermistor at room tem-
perature, and obtain the room temperature from the instructor. You will need this
information for the data analysis.
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Figure 4.1: Thermal radiation setup

3. Turn on the thermal radiation cube and set the power to “high”. When the ohmmeter
reading decreases to 40 kΩ (5-20 minutes) set power switch to “8”. (If the cube has
been preheated, immediately set the switch to “8”.)

Important: when using the thermal radiation sensor, make each reading quickly to
keep the sensor from heating up. Use both sheets of white isolating foam (with the
silvered surface facing the lamp) to block the sensor between measurements.
Sensor calibration: To obtain the radiation sensor readings for radiated power
per unit area S in the correct units (W/m2), you need to use the voltage-to-power
conversion factor 22 mV/mW , and the area of the sensor 2mm× 2mm:

S[W/m2] =
S[mV ]

22[mV/mW ]
· 10−3 · 1

4 · 10−6[m2]

4. When the cube has reached thermal equilibrium the ohmmeter will be fluctuating
around a constant value. Record the resistance of the thermistor in the cube and
determine the approximate value of the temperature using the data table in Fig 4.2.
Use the radiation sensor to measure the radiation emitted from the four surfaces of the
cube. Place the sensor so that the posts on its end are in contact with the cube surface
(this ensures that the distance of the measurement is the same for all surfaces) and
record the sensor reading. Each lab partner should make an independent measurement.

5. Place the radiation sensor approximately 5 cm from the black surface of the radiation
cube and record its reading. Place a piece of glass between the sensor and the cube.
Record again. Does window glass effectively block thermal radiation? Try observing
the effects of other objects, recording the sensor reading as you go.

Use your data to address the following questions in your lab report:

1. Is it true that good absorbers of radiation are good emitters?
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Figure 4.2: Resistance vs. temperature for the thermal radiation cube

2. Is the emission from the black and white surface similar?

3. Do objects at the same temperature emit different amounts of radiation?

4. Does glass effectively block thermal radiation? Comment on the other objects that
you tried.

Tests of the Stefan-Boltzmann Law

High temperature regime

Equipment needed: Radiation sensor, 3 multimeters, Stefan-Boltzmann Lamp, Power
supply.

1. Before turning on the lamp, measure the resistance of the filament of the Stefan-
Boltzmann lamp at room temperature. Record the room temperature, visible on the
wall thermostat and on the bench mounted thermometers in the room.

2. Connect a multimeter as voltmeter to the output of the power supply. Important:
make sure it is in the voltmeter mode. Compare voltage readings provided by the
power supply and the multimeter. Which one is the correct one? Think about your
measurement uncertainties.
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Figure 4.3: Lamp connection for high-temperature Stefan-Boltzmann setup

3. Set up the equipment as shown in Fig. 4.3. VERY IMPORTANT: make all connections
to the lamp when the power is off. Turn the power off before changing/removing
connections. The voltmeter should be directly connected to the binding posts of the
Stefan-Boltzmann lamp. In this case the multimeter voltmeter has direct access to the
voltage drop across the bulb, while the power supply voltmeter reads an extra voltage
due to finite resistance of the current meter. Compare readings on the multimeter and
the power supply current meters. Which one is the correct one? Think about your
measurement uncertainties.

4. Place the thermal sensor at the same height as the filament, with the front face of
the sensor approximately 6 cm away from the filament (this distance will be fixed
throughout the measurement). Make sure no other objects are viewed by the sensor
other than the lamp.

5. Turn on the lamp power supply. Set the voltage, V , in steps of one volt from 1-12
volts. At each V , record the ammeter (current) reading from the lamp and the voltage
from the radiation sensor. Calculate the resistance of the lamp using Ohm’s Law and
determine the temperature T of the lamp from the table shown in Fig. 4.4. You can
use a table to record your data similar to the sample table 4.1.

In the lab report plot the reading from the radiation sensor (convert to W/m2) versus
T 4. According to the Stefan-Boltzmann Law, the data should fall along a straight line. Do
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Figure 4.4: Table of tungsten’s resistance as a function of temperature.

Data(± error) Calculations
V ((volts) I(amps) Rad(mV ) R(ohms) T (K) T 4(K4)
1.00
. . .

Table 4.1: Sample table for experimental data recording

a fit and report the value of the slope that you obtain. How does it compare to the accepted
value of Stefan’s constant?

Don’t be alarmed if the value of slope is way off from Stefan’s constant. The Stefan-
Boltzmann Law, as stated in Eq.(4.1), is only true for ideal black bodies. For other objects,
a more general law is: S = AσT 4, where A is the absorptivity. A = 1 for a perfect blackbody.
A < 1 means the object does not absorb (or emit) all the radiation incident on it (this object
only radiates a fraction of the radiation of a true blackbody). The material lampblack has
A = 0.95 while tungsten wire has A = 0.032 (at 30◦C) to 0.35 (at 3300◦C). Comparing
your value of slope to Stefan’s constant, and assuming that the Stefan-Boltzmann Law is
still valid, what do you obtain for A? Is it consistent with tungsten? What else could be
affecting this measurement?

Test of the inverse-square law

Equipment needed: Radiation sensor, Stefan-Boltzmann lamp, multimeter, power supply,
meter stick. A point source of radiation emits that radiation according to an inverse square
law: that is, the intensity of the radiation in (W/m2) is proportional to the inverse square
of the distance from that source. You will determine if this is true for a lamp.

1. Set up the equipment as shown in Fig. 4.5. Tape the meter stick to the table. Place
the Stefan-Boltzmann lamp at one end, and the radiation sensor in direct line on the
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Figure 4.5: Inverse square law setup

other side. The zero-point of the meter stick should align with the lamp filament (or,
should it?). Adjust the height of the radiation sensor so it is equal to the height of
the lamp. Align the system so that when you slide the sensor along the meter stick
the sensor still aligns with the axis of the lamp. Connect the multimeter (reading
millivolts) to the sensor and the lamp to the power supply.

2. With the lamp off, slide the sensor along the meter stick. Record the reading of
the voltmeter at 10 cm intervals. Average these values to determine the ambient
level of thermal radiation. You will need to subtract this average value from your
measurements with the lamp on.

3. Turn on the power supply to the lamp. Set the voltage to approximately 10 V. Do
not exceed 13 V! Adjust the distance between the sensor and lamp from 2.5-100
cm and record the sensor reading. Before the actual experiment think carefully
about at what distances you want to take the measurements. Is taking
them at constant intervals the optimal approach? At what distances would
you expect the sensor reading change more rapidly?

4. Make a plot of the corrected radiation measured from the lamp versus the inverse
square of the distance from the lamp to the sensor (1/x2) and do a linear fit to the
data. How good is the fit? Is this data linear over the entire range of distances?
Comment on any discrepancies. What is the uncertainty on the slope? What intercept
do you expect? Comment on these values and their uncertainties.

5. Does radiation from the lamp follow the inverse square law? Can the lamp be consid-
ered a point source? If not, how could this affect your measurements?
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Chapter 5

Photoelectric Effect

Experiment objectives: measure the ratio of Planck’s constant to the electron charge h/e
using the photoelectric effect.

History

The photoelectric effect and its understanding was an important step in the development of
quantum mechanics. You probably know that Max Planck was the first to postulate that
light was made up of discrete packages of energy. At that time it was a proposed hypothetical
light property that allowed for the proper description of black body radiation. Several years
after Planck made this suggestion, Albert Einstein refined the idea to explain the strange
features of electrons which are emitted from metal surfaces after absorbing energy from light.
Later he received a Nobel prize for this work.

Theory

Consider an apparatus as outlined in Figure 5.1 (it is the apparatus which Heinrich Hertz
used to inadvertently discover the “photoelectric effect”). Light of a frequency ν strikes a
cathode, causing electrons to be emitted with velocity v. A positive voltage applied between
the anode and the cathode can accelerate emitted electrons towards the positive anode,
producing an electrical current in the circuit. A reverse bias potential applied between the
anode and cathode will slow down the electrons, and even stop them from reaching the anode
by matching their kinetic energy. This is the way to carefully measure the kinetic energies
of the photoelectrons.

KEmax = (
1

2
mv2)max = eV0 (5.1)

where KEmax is the maximum kinetic energy, m and e are the mass and the charge of
an electron, and V0 is a potential required to stop the electrons (known as the stopping
potential).
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Figure 5.1: A simplified schematic of the photoelectric apparatus.

From the point of view of the wave theory of light, the energy carried by the light wave
is proportional to its intensity and independent of light frequency. Thus, it was logical
to expect that stronger light should increase the energy of photoelectrons. However, the
experiments of Philipp Lenard in 1900 showed something different: although the maximum
current increased with light intensity, the stopping potential V0 was independent of light
intensity. This meant that increasing the rate of energy falling onto the cathode does not
increase the maximum energy of the electrons. This was quite a surprising result from the
classical point of view.

This “controversy” was elegantly resolved five years later by Albert Einstein, who pos-
tulated that light arrived in discrete quanta known as “photons”, and each photon led to
an emission of a single electron. The energy of each photon is determined by the frequency
of light - hν. Thus the energy of an emitted photoelectron (and therefore the value of the
stopping potential V0) is determined by the frequency of an individual incident photon:

eV0 =
1

2
mv2 = hν − φ =

hc

λ
− φ (5.2)

where φ is known as the “work function” - the amount of energy needed to free the electron
from the cathode. The value of the work energy is a property of the cathode material. Also,
it is now clear why the intensity of light does not affect the stopping potential: more intense
light has higher photon flux and thus increases the number of emitted photoelectrons, but
the energy of each electron is determined only by the energy of a single photon, and that
depends only on light frequency ν.

36



Figure 5.2: The Pasco photoelectric effect setup.

Where do all those electrons come from?
At Jefferson Lab in nearby Newport News, high-energy electrons (GeV range) are aimed
at targets to probe the fundamental properties of quarks. But where do all those electrons
come from? From the photoelectric effect, of course! A laser beam is aimed at a cathode
consisting of a material like copper or GaAs. The frequency of the laser is such that electrons
will be emitted from the cathode. In this way, high current electron beams are produced.
One benefit of using a laser and the photoelectric effect is that if the laser is “pulsed” in
time, the electron beam will be also (this allows synchronized timing in the experiments).
Also, the polarization of the laser can be manipulated to allow for the emission of electrons
with particular spin. See: www.jlab.org

Procedure

Equipment needed: Pasco photoelectric apparatus, Hg lamp, digital voltmeter. The Pasco
apparatus contains a circuit which automatically determines the stopping potential, which
you measure off of a voltmeter, so there is no need to adjust the stopping potential yourself or
measure the current (lucky you!). Read the brief description of its operation in the appendix.

Set up the equipment as shown in Fig. 5.2. First, place a lens/grating assembly in front
of the Mercury lamp, and observe a dispersed spectrum on a sheet of paper, as shown in
Fig. 5.3. Identify spectral lines in both the first and the second diffraction orders on both
sides. Keep in mind that the color “assignment” is fairly relative, and make sure you find
all lines mentioned in the table in Fig. 5.3. Often the first/second order lines on one side
are brighter than on the other - check your apparatus and determine what orders you will
be using in your experiment.
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After that, install the h/e apparatus and focus the light from the mercury vapor light
source onto the slot in the white reflective mask on the h/e apparatus. Tilt the light shield
of the apparatus out of the way to reveal the white photodiode mask inside the apparatus.
Slide the Lens/Grating assembly forward and back on its support rods until you achieve
the sharpest image of the aperture centered on the hole in the photodiode mask. Secure the
Lens/Grating by tightening the thumbscrew. Align the system by rotating the h/e apparatus
on its support base so that the same color light that falls on the opening of the light screen
falls on the window in the photodiode mask, with no overlap of color from other spectral
lines. Return the light shield to its closed position.

Check the polarity of the leads from your digital voltmeter (DVM), and connect them to
the OUTPUT terminals on the h/e apparatus.

Experimental procedure

Part A: The dependence of the stopping potential on

the intensity of light

1. Adjust the h/e apparatus so that one of the blue first order spectral lines falls upon
the opening of the mask of the photodiode.

2. Press the instrument discharge button, release it, and observe how much time1 is
required to achieve a stable voltage.

3. It’s important to check our data early on to make sure we are not off in crazyland. This
procedure is technically known as “sanity checking”. According to equation Eq. 5.2 the
frequency (or, better, wavelength) of light can be found from the measured voltage with
knowledge of the work function φ. Unfortunately, we don’t know the work function.
You’ll measure it in the second part of the lab.

• For now, switch to violet color and measure the stopping potential for this color.

• compute hc using ∆V0 between the two measurements and values of light wave-
length for these two cases. Does your data agree with the accepted value? For this
computation, it might be helpful to realize that eV0 is the electron charge times
the voltage. If you measured V0 = 1 V then eV0 = 1 “electron-volt” or “eV”. This
is why electron-volt units are useful. Also, hc = 1240 nm eV.

4. Go back to the original spectral line.

5. Place the variable transmission filter in front of the white reflective mask (and over the
colored filter, if one is used) so that the light passes through the section marked 100%
and reaches the photodiode. Record the DVM voltage reading and time to recharge
after the discharge button has been pressed and released.

1Use the stopwatch feature of your cell phone. You don’t need a precise measurement.
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6. Do the above measurements for all sections of the variable transmission filter.

Figure 5.3: The mercury lamp visible diffraction spectrum.

Part B: The dependence of the stopping potential on

the frequency of light

1. You can easily see the five brightest colors in the mercury light spectrum. Adjust the
h/e apparatus so that the 1st order yellow colored band falls upon the opening of the
mask of the photodiode. Take a quick measurement with the lights on and no yellow
filter and record the DVM voltage. Do the same for the green line and one of the blue
ones.

2. Repeat the measurements with the lights out and record them (this will require coor-
dinating with other groups and the instructor). Are the two sets of measurements the
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same? Form a hypothesis for why or why not.

3. Now, with the lights on, repeat the yellow and green measurements with the yellow
and green filters attached to the h/e detector. What do you see now? Can you explain
it? (Hint: hold one of the filters close to the diffraction grating and look at the screen).

4. Repeat the process for each color using the second order lines. Be sure to use the green
and yellow filters when you are using the green and yellow spectral lines.

Analysis

Classical vs. Quantum model of light

1. Describe the effect that passing different amounts of the same colored light through
the Variable Transmission Filter has on the stopping potential and thus the maximum
energy of the photoelectrons, as well as the charging time after pressing the discharge
button.

2. Describe the effect that different colors of light had on the stopping potential and thus
the maximum energy of the photoelectrons.

3. Defend whether this experiment supports a classical wave or a quantum model of light
based on your lab results.

Read the theory of the detector operation in the Appendix, and explain why there is a slight
drop in the measured stopping potential as the light intensity is reduced.
NOTE: While the impedance of the unity gain amplifier is very high (1013 Ω), it is not
infinite and some charge leaks off.

The relationship between Energy, Wavelength and Fre-

quency

1. Use the table in Fig. 5.3 to find the exact frequencies and wavelengths of the spectral
lines you used and plot the measured stopping potential values versus light frequency
for measurements of the first and second order lines (can be on same graph).

2. Fit the plots according to eV0 = hν − φ, extracting values for slopes and intercepts.
Find the average value for slope and its uncertainty. From the slope, determine h
counting e = 1.6 · 10−19 C. Do your measured values agree with the accepted value of
h = 6.62606957(29)× 10−34J·s within experimental uncertainty?

3. From the intercepts, find the average value and uncertainty of the work function φ.
Look up some values of work functions for typical metals. Is it likely that the detector
material is a simple metal?
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Appendix: Operation principle of the stopping potential

detector

The schematic of the apparatus used to measure the stopping potential is shown in Fig. 5.4.
Monochromatic light falls on the cathode plate of a vacuum photodiode tube that has a
low work function φ. Photoelectrons ejected from the cathode collect on the anode. The
photodiode tube and its associated electronics have a small capacitance which becomes
charged by the photoelectric current. When the potential on this capacitance reaches the
stopping potential of the photoelectrons, the current decreases to zero, and the anode-to-
cathode voltage stabilizes. This final voltage between the anode and cathode is therefore the
stopping potential of the photoelectrons.

Figure 5.4: The electronic schematic diagram of the h/e apparatus.

To let you measure the stopping potential, the anode is connected to a built-in differential
amplifier with an ultrahigh input impedance (> 1013 Ω), and the output from this amplifier
is connected to the output jacks on the front panel of the apparatus. This high impedance,
unity gain (Vout/Vin = 1) amplifier lets you measure the stopping potential with a digital
voltmeter.

Due to the ultra high input impedance, once the capacitor has been charged from the
photodiode current, it takes a long time to discharge this potential through some leakage.
Therefore a shorting switch labeled “PUSH TO Zero” enables the user to quickly bleed off
the charge.
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Sample data tables:

Color %Transmission Stopping Potential Approx. Charge Time

100

80

60

40

20

Color %Transmission Stopping Potential Approx. Charge Time

100

80

60

40

20

1st Order Color λ (nm) ν (1014Hz) Stopping Potential (V)

Yellow

Green

Blue

Violet

Ultraviolet

2nd Order Color λ (nm) ν (1014Hz) Stopping Potential (V)

Yellow

Green

Blue

Violet

Ultraviolet
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Chapter 6

Single and Double-Slit Interference,
One Photon at a Time

Experiment objectives: Study wave-particle duality for photons by measuring interference
patterns in the Young double-slit experiment using a conventional light source (laser) and a
single-photon source (strongly attenuated lamp).

History

There is a rich historical background behind the experiment you are about to perform. Isaac
Newton first separated white light into its colors, and, in the 1680’s, hypothesized that light
was composed of ‘corpuscles’, supposed to possess some properties of particles. This view
reigned until the 1800’s, when Thomas Young first performed the two-slit experiment now
known by his name. In this experiment he discovered a property of destructive interference,
which seemed impossible to explain in terms of corpuscles, but was very naturally explained
in terms of waves. His experiment not only suggested that such ‘light waves’ existed; it
also provided a result that could be used to determine the wavelength of light, measured in
familiar units. Light waves became even more acceptable with dynamical theories of light,
such as Fresnel’s and Maxwell’s, in the 19th century, until it seemed that the wave theory
of light was incontrovertible.

And yet the discovery of the photoelectric effect, and its explanation in terms of light
quanta by Einstein, threw the matter into dispute again. The explanations of blackbody
radiation, of the photoelectric effect, and of the Compton effect seemed to point to the
existence of ‘photons’, quanta of light that possessed definite and indivisible amounts of
energy and momentum. These are very satisfactory explanations so far as they go, but they
throw into question the destructive-interference explanation of Young’s experiment. Does
light have a dual nature, of waves and of particles? And if experiments force us to suppose
that it does, how does the light know when to behave according to each of its natures?

It is the purpose of this experimental apparatus to make the phenomenon of light in-
terference as concrete as possible, and to give you the hands-on familiarity that will allow
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Figure 6.1: “Light is a Particle / Light is a Wave” oscillation ambigram (from For the Love
of Line and Pattern, p. 30).

you to confront wave-particle duality in a precise and definite way. When you have finished,
you might not fully understand the mechanism of duality – Feynman asserts that nobody
really does – but you will certainly have direct experience with the actual phenomena that
motivates all this discussion.

Experimental setup

Equipment needed: Teachspin “Two-slit interference” apparatus, oscilloscope, digital mul-
timeter, counter.

Important: before plugging anything in or turning anything on, confirm that the shut-
ter (which protects the amazingly sensitive single-photon detector) is closed. Locate the
detector box at the right end of the apparatus, and find the rod which projects out of the top
of its interface with the long assembly. Be sure that this rod is pushed all the way down: take
this opportunity to try pulling it vertically upward by about 2 cm, but then ensure that it’s
returned to its fully down position. Also take this occasion to confirm, on the detector box,
that the toggle switch in the HIGH-VOLTAGE section is turned off, and that the 10-turn
dial near it is set to 0.00, fully counter-clockwise.

To inspect the inside of the apparatus, open the cover by turning the four latches that
hold it closed. The details of the experimental apparatus are shown in Fig. 6.2. Take time
to locate all the important components of the experiment:

• Two distinct light sources at the left end: one a red laser and the other a green-filtered
light bulb. A toggle switch on the front panel of the light source control box switches
power from one source to the other.

• Various slit holders along the length of the long box: one to hold a two-slit mask, one
for the slit blocker, and one for a detector slit. Make sure you locate the slits (they may
be installed already) and two micrometer drives, which allow you to make mechanical
adjustments to the two-slit apparatus. Make sure you figure out how to read the
micrometer dials! On the barrel there are two scales with division of 1 mm, shifted
with respect to each other by 0.5 mm; every fifth mark is labeled with an integer 0,
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laser

lamp

photodetector

PMT

double-slit holder
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laser/light bulb switch

light bulb intensity control

Light source control box

photodetector output

PMT outputs

Figure 6.2: The double-slit interference apparatus.
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5, 10 and so on: these are at 5-mm spacing. The complete revolution of the drum is
0.5 mm, and the smallest division on the rotary scale is 0.01 mm.

• Two distinct light detectors at the right-hand end of the apparatus: a photodiode
and a photomultiplier tube (PMT for short). The photodiode is used with the much
brighter laser light; it’s mounted on the light shutter in such a way that it’s in position
to use when the shutter is closed (pushed down). The photomultiplier tube is an
extremely sensitive detector able to detect individual photons (with energy of the
order of 10−19 J), and it is used with the much dimmer light-bulb source. Too much
light can easily damage it, so the PMT is safe to use only when the cover of the
apparatus is in place, and only when the light bulb is in use. It is exposed to
light only when the shutter is in its up position.

Experimental procedure

The experiment consists of three steps:

1. You will first observe two-slit interference directly by observing the intensity distribu-
tion of a laser beam on a viewing screen.

2. Using the photodiode you will accurately measure the intensity distribution after single-
and two-slit interference patterns, which can be compared to predictions of wave the-
ories of light.
These two steps recreate Young’s original experiment.

3. Then, using a very weak light source, you will record the two-slit interference pattern
one photon at a time. While this measurement will introduce you to single-photon
detection technology, it will also show you that however two-slit interference is to be
explained, it must be explained in terms that can apply to single photons.

Visual observation of a single- and two-slit interference

For this mode of operation, you will be working with the cover of the apparatus open. Switch
the red diode laser on using the switch in the light source control panel, and move the laser
to the center of its magnetic pedestal so that the red beam goes all the way to the detector
slit. The diode laser manufacturer asserts that its output wavelength is 670 ± 5 nm, and
its output power is about 5 mW. As long as you don’t allow the full beam to fall
directly into your eye, it presents no safety hazard. Place a double-slit mask on the
holder in the center of the apparatus, and then put your viewing card just after the mask to
observe the two ribbons of light, just a third of a millimeter apart, which emerge from the two
slits. Move your viewing card along the beam path to see the interference pattern forming.
By the time your viewing card reaches the right-hand end of the apparatus, you’ll see that
the two overlapping ribbons of light combine to form a pattern of illumination displaying
the celebrated “fringes” named after Thomas Young.
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Position a viewing card at the far-right end of the apparatus so you can refer to it for a
view of the fringes. Now it is the time to master the control of the slit-blocker. By adjusting
the multi-turn micrometer screw, make sure you find and record the ranges of micrometer
reading where you observe the following five situations:

1. both slits are blocked;

2. light emerges only from one of the two slits;

3. both slits are open;

4. light emerges only from the other slit;

5. the light from both slits is blocked.

It is essential that you are confident enough in your ability to read, and to set, these five
positions and that you are able to do so even when the box cover is closed. In your lab book
describe what you see at the viewing card at the far-right end of the apparatus for each of
the five settings.

One slit is open: According to the wave theory of light, the intensity distribution
of light on the screen after passing a single-slit is described by Fraunhofer diffraction (see
Fig. 6.4 and the derivations in the Appendix):

I(x) = I0

(sin(πa
λ
x
`
))2

(πa
λ
x
`
)2

, (6.1)

where I is the measured intensity in the point x in the screen, I0 is the intensity in the
brightest maximum, a is the width of the slit, and ` is the distance between the slit and the
screen (don’t forget to measure and record this distance in the lab journal! )

In your apparatus move the slit blocker to let the light go through only one slit and
inspect the light pattern in the viewing screen. Does it look like the intensity distribution
you expect from the wave theory? Take a minute to discuss how this picture would change
if the slit was much wider or much narrower.

Two slits are open: Now move the slit blocker to the position that opens both slits
to observe Young’s two-slit interference fringes. Again, compare what you see on the screen
with the interference picture predicted by wave theory:
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, (6.2)

where an additional parameter d is the distance between the centers of the two slits. Discuss
how this picture would change if you were to vary the width or the separation of the two
slits or the wavelength of the laser. Make a note of your predictions in the lab book.
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Quantitative characterization of interference patterns using laser
light

At this stage you will use a photodiode to measure the intensity distribution of the inter-
ference pattern by varying the position of the detector slit. You will continue using the red
laser. While you may conduct these measurements with the box cover open, room light will
inevitably add some varying background to your signals, so it is a good idea to dim the room
lights or (even better!) to close up the cover of the apparatus. For convenience, have the
slit-blocker set to that previously determined setting which allows light from both slits to
emerge and interfere.

The shutter of the detector box will still be in its closed, or down, position: this blocks
any light from reaching the PMT, and correctly positions a 1-cm2 photodiode, which acts
just like a solar cell in actively generating electric current when it’s illuminated. The output
current is proportional to total power illuminating the detector area, so it is important to
use a narrow slit to allow only a selected part of the interference pattern to be measured.
Make sure that a detector slit mask (with a single narrow slit) on a movable slit holder at
the right-hand side of the apparatus is in place. By adjusting the micrometer screw of the
detector slit, you can move the slit over the interference pattern, eventually mapping out
its intensity distribution quantitatively. For now, ensure that the detector slit is located
somewhere near the middle of the two-slit interference pattern, and have the slit-blocker set
to the setting which allows light from both slits to emerge and interfere.

The electric current from the photodiode, proportional to the light intensity, is conducted
by a thin coaxial cable to the INPUT BNC connector of the photodiode-amplifier section of
the detector box, and converted to voltage signal at the OUTPUT BNC connector adjacent
to it. Connect to this output a digital multimeter set to 2 or 20-Volt sensitivity; you should
see a stable positive reading. Turn off the laser first to record the “zero offset” - the reading
of the multimeter with no light. You will need to subtract this reading from all of the other
readings you make with this photodiode, amplifier, and voltmeter combination.

Turn your laser source back on, and watch the photodiode’s voltage-output signal as
you vary the setting of the detector-slit micrometer. If all is well, you will see a systematic
variation of the signal as you scan over the interference pattern. Check that the maximum
signal you see is about 3-8 Volts; if it is much less than this, the apparatus is out of alignment,
and insufficient light is reaching the detector.

Initial tests of the wave theory of light: If we assume that the light beam is a
stream of particles, we would naively expect that closing one of two identical slits should
reduce the measured intensity of light at any point on the screen by half, while the wave
theory predicts much more dramatic variations in the different points in the screen. Which
theory provides a more accurate description of what you see?

• Find the highest of the maxima — this is the “central fringe” or the “zeroth-order
fringe” that the theory predicts — and record the photodiode reading. Then adjust
the position of the slit-blocker to let the light to pass through only one of the slits, and
measure the change in the photodiode signal.
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• To see another and even more dramatic manifestation of the wave nature of light, set
the slit-blocker again to permit light from both slits to pass along the apparatus, and
now place the detector slit at either of the minima immediately adjacent to the central
maximum; take some care to find the very bottom of this minimum. Record what
happens when you use the slit-blocker to block the light from one, or the other, of the
two slits.

• Check your experimental results against the theoretical predictions using Eqs. (6.1)
and (6.2). Do your observations confirm or contradict wave theory?

Once you have performed these spot-checks, and have understood the motivation for them
and the obtained results, you are ready to conduct systematic measurements of intensity
distribution (the photodiode voltage-output signal) as a function of detector slit position.
You will make such measurements in two slit-blocker positions: when both slits are
open, and when only one slit is open. You will need to take enough data points to
reproduce the intensity distribution in each case. Taking points systematically every 0.05 or
0.1 mm on the tick lines will produce a very high quality dataset. One person should turn
the dial and the other should record readings directly to paper or a spreadsheet (if you do
this, print it out and tape into your logbook). Estimate your uncertainties from the dial
and the voltmeter. Cycle through multiple maxima and minima on both sides of the central
maximum. It is a good idea to plot the data points immediately along with the data taking
– nothing beats an emerging graph for teaching you what is going on, and your graph will be
pretty impressive. Note: due to large number of points you don’t need to include the tables
with these measurements in the lab report – the plotted distributions should be sufficient. Be
clear on your uncertainties though.

Slit separation calculations: Once you have enough data points for each graph to
clearly see the interference pattern, use your data to extract the information about the
distance between the two slits d. To do that, find the positions of consecutive interference
maxima or minima, and calculate average d using Eq. 6.2. Estimate the uncertainty in these
parameters due to laser wavelength uncertainty. Check if your measured values are within
experimental uncertainty from the manufacturer’s specs: the center-to-center slit separation
is 0.353 mm (or 0.406 or 0.457 mm, depending on which two-slit mask you have installed).

Fit your data with Eqs. (6.1) and (6.2). You will need to add these functions using “Add
new function” option. Note that in this case you will have to provide a list of initial guesses
for all the fitting parameters. A few tips:

• Make sure that units of all your measured values are self-consistent - the program will
go crazy trying to combine measurements in meters and micrometers together!

• Try to plot your function for guesstimated values before doing a fit with it. This
catches many silly errors.

• You will have to fit for a term to account for the overall normalization and also for the
fact that the maximum is not set at x = 0. In other words, substitute x → x − x0.
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Estimate both of these (for the normalization, look at what happens when x−x0 = 0)
but include them as free parameters in the fit.

• You need to add a parameter to account for the non-zero background you observed
when the laser was off.

• Include the minimal number of parameters. If I have parameters a and b but they
always appear as ab in my function, then I am much better off including a term c = ab
when doing the fit. Otherwise the fit is underconstrained. Adjusting a up has the same
effect as adjusting b down so it’s impossible to converge on unique values for a and b.
Fitting algorithms really dislike this situation.

• If the program has problems fitting all the parameters, first hold the values of the
parameters you know fairly well (such as the light wavelength, maximum peak intensity,
background, etc.). Once you determine the approximate values for all other parameters,
you can release the fixed ones, and let the program adjust everything to make the fit
better.

Single-photon interference

Before you start the measurements you have to convince yourself that the rate of photons
emitted by the weak filtered light bulb is low enough to have, on average, less than one
photon detected in the apparatus at any time. Roughly estimate the number of photons per
second arriving to the detector. First, calculate the number of photons emitted by the light
bulb in a 10 nm spectral window of the green filter (between 541 and 551 nm), if it runs
at 6V and 0.2A. Note that only 5% of its electric energy turns into light, and this optical
energy is evenly distributed in the spectral range between 500 nm and 1500 nm. These
photons are emitted in all directions, but all of them are absorbed inside the box except
for those passing through two slits with area approximately 0.1× 10 mm2. Next, assuming
that the beam of photons passing through the slits diffracts over a 1 cm2 area by the time it
reaches the detector slit, estimate the rate of photons reaching the detector. Finally, adjust
the detected photon rate by taking into account that for PMT only 4% of photons produce
output electric pulse at the output. That’s the rate of events you expect. Now estimate the
time it takes a photon to travel through the apparatus, and estimate the average number of
detectable photons inside at a given moment of time. You may do these calculations before
or after the lab period, but make sure to include them in the lab report.

Now you need to change the apparatus to use the light bulb. Open the cover and slide
the laser source to the side (do not remove the laser from the stand). Now set the 3-position
toggle switch to the BULB position and dial the bulb adjustment up from 0 until you see the
bulb light up. (The flashlight bulb you’re using will live longest if you minimize the time you
spend with it dialed above 6 on its scale, and if you toggle its power switch only when the dial
is set to low values). If the apparatus has been aligned, the bulb should now be in position
to send light through the apparatus. Check that the green filter-holding structure is in place:
the light-bulb should look green, since the green filter blocks nearly all the light emerging
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from the bulb, passing only wavelengths in the range 541 to 551 nm. The filtered light bulb
is very dim, and you probably will not be able to see much light at the double-slit position
even with room light turned off completely. No matter; plenty of green-light photons will
still be reaching the double-slit structure – in fact, you should now dim the bulb even more,
by setting its intensity control down to about 3 on its dial.

Now close and lock the cover - you are ready to start counting photons. But first a
WARNING: a photomultiplier tube is so sensitive a device that it should not be exposed
even to moderate levels of light when turned off, and must not be exposed to anything but
the dimmest of lights when turned on. In this context, ordinary room light is intolerably
bright even to a PMT turned off, and light as dim as moonlight is much too bright for a
PMT turned on.

Direct observation of photomultiplier pulses You will use a digital oscilloscope for
first examination of the PMT output pulses, and a digital counter for counting the photon
events. Set the oscilloscope level to about 50 mV/division vertically, and 250 - 500 ns/division
horizontally, and set it to trigger on positive-going pulses or edges of perhaps > 20 mV
height. Now find the PHOTOMULTIPLIER OUTPUT of the detector box, and connect it
via a BNC cable to the vertical input of the oscilloscope. Keeping the shutter closed, set
the HIGH-VOLTAGE 10-turn dial to 0.00, and turn on the HIGH-VOLTAGE toggle switch.
Start to increase the voltage while watching the scope display. If you see some sinusoidal
modulation of a few mV amplitude, and of about 200 kHz frequency, in the baseline of the
PMT signal, this is normal. If you see a continuing high rate (> 10 kHz) of pulses from the
PMT, this is not normal, and you should turn down, or off, the bias level and start fresh –
you may have a malfunction, or a light leak. Somewhere around a setting of 4 or 5 turns of
the dial, you should get occasional positive-going pulses on the scope, occurring at a modest
rate of 1 − 10 per second. If you see this low rate of pulses, you have discovered the “dark
rate” of the PMT, its output pulse rate even in the total absence of light. You also now have
the PMT ready to look at photons from your two-slit apparatus, so finally you may open
the shutter. The oscilloscope should now show a much greater rate of pulses, perhaps of
order 103 per second, and that rate should vary systematically with the setting of the bulb
intensity. You may find a small device called Cricket in your table. It allows you to “hear”
the individual photon arrivals - ask your instructor to show you how it works.

To count the pulses using a counter you will use another PMT output – the OUTPUT
TTL – that generates a single pulse, of fixed height and duration, each time the analog pulse
exceeds an adjustable threshold. To adjust the TTL settings display the OUTPUT TTL on
the second oscilloscope channel and set it for 2 V/div vertically. By simultaneously watching
both analog and TTL-level pulses on the display, you should be able to find a discriminator
setting, low on the dial, for which the scope shows one TTL pulse for each of, and for only,
those analog pulses which reach (say) a +50 -mV level. If your analog pulses are mostly
not this high, you can raise the PMT bias by half a turn (50 Volts) to gain more electron
multiplication. If your TTL pulses come much more frequently than the analog pulses, set
the discriminator dial lower on its scale.

Now send the TTL pulses to a counter, arranged to display successive readings of the
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number of TTL pulses that occur in successive 1-second time intervals. To confirm that this
is true, record a series of “dark counts” obtained with the light bulb dialed all the way down
to 0 on its scale. Now choose a setting that gives an adequate photon count rate (about
103/second) and use the slit-blocker, according to your previously obtained settings, to block
the light from both slits. This should reduce the count rate to a background rate, probably
somewhat higher than the dark rate. Next, open up both slits, and try moving the detector
slit to see if you can see interference fringes in the photon count rate. You will need to pick
a detector-slit location, wait for a second or more, then read the photon count in one or
more 1-second intervals before trying a new detector-slit location. If you can see maxima
and minima, you are ready to take data. Finally, park the slit near the central maximum
and choose the PMT bias at around 5 turns of the dial and the bulb intensity setting to
yield some convenient count rate (103 − 104 events/second) at the central maximum.

Single-photon detection of the interference pattern. Most likely the experimental
results in the previous section have demonstrated good agreement with the wave description
of light. However, the PMT detects individual photons, so one can expect that now one has
to describe the light beam as a stream of particles, and the wave theory is not valid anymore.
To check this assumption, you will repeat the measurements and take the same sort of data
as in the previous section, except now characterizing the light intensity as photon count rate.

• Like previously, slowly change the position of the detection slit and record the average
count rate in each point. Start with the two-slit interference. Plot the data and confirm
that you see interference fringes.

• Repeat the measurement with one slit blocked and make the plot.

• Use the spacing of the interference maxima to check that the light source has a dif-
ferent wavelength than the red laser light you used previously. Using the previously
determined value of the slit separation d, calculate the wavelength of the light, and
check that it is consistent with the green filter specs (541− 551 nm).

The plots of your experimental data are clear evidence of particle-wave duality for pho-
tons. You’ve made contact with the central question of quantum mechanics: how can light,
which so clearly propagates as a wave that we can measure its wavelength, also be detected
as individual photon events? Or alternatively, how can individual photons in flight through
this apparatus nevertheless ‘know’ whether one, or both, slits are open, in the sense of giving
photon arrival rates which decrease when a second slit is opened? Discuss these issues in
your lab report.

Two-Slit interference with atoms1

According to quantum mechanics, the wave-particle duality must be applied not only to light,
but to any “real” particles as well. That means that under the right circumstance, atoms

1Special thanks to Prof. Seth Aubin for providing the materials for this section
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should behave as waves with wavelength λatom = h/
√

2mE = h/p (often called de Broglie
wavelength), where h is Planck’s constant, m is the mass of the particle, and E and p are
respectively the kinetic energy and the momentum of the particle. In general, wave effects
with “massive” particles are much harder to observe compare to massless photons, since their
wavelengths are much shorter. Nevertheless, it is possible, especially now when scientists
have mastered the tools to produce ultra-cold atomic samples at nanoKelvin temperatures.
As the energy of a cooled atom decreases, its de Broglie wavelength becomes larger, and the
atom behaves more and more like waves. For example, in several experiments, researchers
used a Bose-Einstein condensate (BEC) – the atomic equivalent of a laser – to demonstrate
the atomic equivalent of the Young’s double-slit experiment. As shown in Fig. 6.3(a), an
original BEC sits in single-well trapping potential, which is slowly deformed into a double-
well trapping potential thus producing two phase-coherent atom wave sources. When the
trapping potential is turned off, the two BECs expand and interfere where they overlap, just
as in the original Young’s double-slit experiment.
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Figure 6.3: Atom interferometry version of Young’s double-slit experiment: (a) schematic
and (b) experimentally measured interference pattern in an 87Rb Bose-Einstein condensate.

Fig. 6.3(b) shows the resulting interference pattern for a 87Rb BEC. Atom interferometry
is an area of active research, since atoms hold promise to significantly improve interferometric
resolution due their much shorter de Broglie wavelength compared to optical photons. In fact,
the present most accurate measurements of accelerations, rotations, and gravity gradients are
based on atomic interference.
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Appendix: Fraunhofer Diffraction at a Single Slit and

Two-Slit interference

Diffraction at a Single Slit We will use a Fraunhofer diffraction model to calculate the inten-
sity distribution resulting from light passing a single-slit of width a, as shown in Fig. 6.4(a).
We will assume that the screen is far away from the slit, so that the light beams passed
through different parts of the slit are nearly parallel. To calculate the total intensity on the
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Figure 6.4: (a) Single slit diffraction pattern formation. (b) Two-slit interference pattern
formation. (c) Examples of the intensity distributions on a viewing screen after passing one
slit (black), two infinitely small slits (red), two slits of finite width (blue).

screen we need to sum the contributions from different parts of the slit, taking into account
phase difference acquired by light waves that traveled different distance to the screen. If
this phase difference is large enough we will see an interference pattern. Let’s break the
total height of the slit by very large number of point-like radiators with length dx each and
positioned at the height x above the center of the slit (see Fig. 6.4(a)). Since it is more con-
venient to work with complex numbers, we will assume that the original incident wave is a
real part of E(z, t) = E0e

ikz−i2πνt, where k = 2π/λ is the wave number. Then the amplitude
of each point radiator on a slit is [a real part of] dE(z, t) = E0e

ikz−i2πνtdx. A beam emitted
by a radiator at the height x above the center of the slit must travel an extra distance x sin θ
to reach the plane of the screen, acquiring an additional phase factor. Then we may write a
contribution at the point P from a point radiator dx as the real part of:

dEP (z, t, x) = E0e
ikz−i2πνteikx sin θdx. (6.3)

To find the overall amplitude at that point we need to add up the contributions from all
point sources along the slit:

EP =

∫ a/2

−a/2
dE(z, t) = E0e

ikz−i2πνt
∫ a/2

−a/2
eikx sin θdx = AP × E0e

ikz−i2πνt. (6.4)
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Here AP is the relative amplitude of the electromagnetic field at the point P :

AP =
1

ik sin θ
·
(
eik

a
2

sin θ − e−ik
a
2

sin θ
)
∝

sin(πD
λ

sin θ)
πD
λ

sin θ
(6.5)

The intensity is proportional to the square of the amplitude and thus

IP ∝
(sin(πa

λ
sin θ))2

(πa
λ

sin θ)2
(6.6)

The minima of the intensity (“dark fringes”) occur at the zeros of the argument of the
sin function: πD

λ
sin θ = mπ, while the maxima (“bright fringes”) almost exactly match

πD
λ

sin θ = (m+ 1
2
)π for m = 0,±1,±2, · · · .

Let us now consider the case of the interference pattern from two identical slits separated
by the distance d, as shown in Fig. 6.4(b). We will assume that the size of the slits is much
smaller than the distance between them, so that the effect of Fraunhofer diffraction on each
individual slit is negligible. Then going through the similar steps the resulting intensity
distribution on the screen is given by familiar Young formula:

I(θ) =
∣∣E0e

ikd/2 sin θ + E0e
−ikd/2 sin θ

∣∣2 = 4I0 cos2

(
πh

λ
sin θ

)
, (6.7)

where k = 2π/λ, I0 = |E0|2, and the angle θ is measured with respect to the normal to the
plane containing the slits.

If we now include the Fraunhofer diffraction on each slit as we did before, we arrive to
the total intensity distribution for two-slit interference pattern:

I(θ) ∝ cos2

(
πd

λ
sin θ

)[
sin(πa

λ
sin θ)

πa
λ

sin θ

]2

. (6.8)

The examples of the light intensity distributions for all three situations are shown in
Fig. 6.4(c). Note that the intensity distributions derived here are functions of the angle θ
between the normal to the plane containing the slits and the direction to the point on the
screen. To connect these equations to Eqs. (6.1) and(6.2) we assume that sin θ ' tan θ = x/`
where x is the distance to the point P on the screen, and ` is the distance from the two slit
plane to the screen.
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Chapter 7

Faraday Rotation

Experiment objectives: Observe the Faraday Effect, the rotation of a light wave’s po-
larization vector in a material with a magnetic field directed along the wave’s direction.
Determine the relationship between the magnetic field and the rotation by measuring the
so-called Verdet constant of the material. Become acquainted with some new tools: an
oscilloscope, a function generator and an amplifier, and a new technique: phase-locking.

Introduction

The term polarization refers to the direction of the electrical field in a light wave. Generally,
light is not polarized when created (e.g., by atomic deexcitations) but can be made so by
passing it through a medium that transmits electric fields oriented in one direction and
absorbs all others. Imagine we create a beam of light traveling in the z direction. We then
polarize it in the x direction (E = x̂E0 cos(kz − ωt)) by passing it through a polarizer and
then pass it through a second polarizer, with a transmission axis oriented at an angle θ with
respect to the x axis. If we detect the light beam after the second polarizer, the intensity is

I = I0 cos2 θ (7.1)

In 1845, Michael Faraday discovered that he could create polarized light and then rotate
the direction of the polarization using a magnetic field. The field, created in our laboratory
by a solenoid, points in the direction of the light beam. The Faraday effect is caused by a
combination of factors:

1. We can describe the polarization vector in terms of right- and left-handed components.
In this description, the electric field of the right-handed component rotates clockwise
around the z axis as the wave travels. The left-handed component rotates counter-
clockwise.

2. At the particle level, the right and left hand components correspond to photons with
angular momentum h̄ = h/2π directed parallel (right) or anti-parallel (left) to the z
axis.
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3. When an atom is placed in a magnetic field, single atomic energy levels may divide
into multiple levels, each with slightly different energies. This is called the Zeeman
effect and qualitatively it occurs because the moving atomic electrons may be thought
of as a current J which interacts with the external magnetic field B.

4. The atomic current J contains components with different angular momenta, and those
components interact differently with right and left handed photons.

5. The macroscopic effect is that a material in a magnetic field can have a different index of
refraction n for left and right handed light. Since the phase velocity of light c′ depends
on n as c′ = c/n, the relative phase between the left and right handed components
changes as the light travels a distance L through the material.

6. That phase change causes a rotation in the polarization vector.

The polarization vector rotates in proportion to the length of the material, the magnitude
of the magnetic field, and a material dependent constant CV called the Verdet constant:

φ = CVBL (7.2)

Typically CV depends on the wavelength of the light and has a value of a few rad/T ·m.
For the solenoid we’ll use in this lab, the field at the center is B = 11.1 mT/A, and our
material, a special sort of glass, is 10 cm long. For a current of 0.1 A, we expect a rotation
of a few×10−4 radians. This is a pretty small angle and it will require a special technique
to detect.

We are going to take the polarized laser light and direct it through the glass rod, which is
inserted into the center of the solenoid. The beam will then pass through a second polarizer
with the transmission axis at an angle θ with respect to the initial polarization of the laser.
The intensity of the transmitted light will then depend on the sum of the angle θ and the
additional rotation φ caused by the magnetic field:

I = I0 cos2(θ + φ) (7.3)

= I0
1 + cos(2θ + 2φ)

2
(7.4)

=
I0

2
+
I0

2
[cos 2θ cos 2φ− sin 2θ sin 2φ] (7.5)

≈ I0

[
1 + cos 2θ

2
− φ sin 2θ

]
(φ2 � 1) (7.6)

= I0

[
1 + cos 2θ

2
− CVLB sin 2θ

]
(7.7)

We’ll see the Faraday effect by observing changes in the intensity of light as we vary the
magnetic field. But, there is a problem. The term involving φ is much smaller than the other
terms and it can easily be buried in noise from a photo-detector. We’ll use an experimental
technique, called phase-locking, to get around the problem. We will then relate the changes
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in the intensity to changes in the angle φ using a special calibration dataset. Since we know
the corresponding changes in B we can use Eq. 7.2 to extract CV .

The phase-locking technique works in the following way. We’ll vary the magnetic field
periodically with time as a sine wave, and then observe the signal from the photodiode as a
function of time. The signal will look like a large constant with a small wobble on it, along
with some random noise with a similar magnitude to the wobble. However, we can subtract
off the non time-varying portion of the signal, using a high pass filter. Then, since we know
the period and phase of the magnetic field, we can time our observations to be exactly in
sync with the magnetic field, and use this to average out the noise. What’s left over is the
wobble in I, essentially the CVLB sin 2θ term. Knowing B,L and θ, we can determine CV .

Experimental Setup

The setup consists of:

• A solenoid to produce the magnetic field.

• A glass rod inside the solenoid. You’ll measure CV of this material.

• A polarized HeNe laser, to shine light through the field.

• A second polarizer, the “analyzer”, to define the angle θ.

• A photodiode to detect the laser light after the coil and the analyzer.

• A function generator and amplifier to supply current to the solenoid.

• A digital multimeter (DMM) to measure the solenoid current.

• A digital oscilloscope to read out the photodiode.

The experimental setup is shown in Fig. 7.1.

Experimental Procedure

Preliminaries

Laser & photodiode setup The amplifier includes the laser power supply on the back.
Plug the laser in, being careful to match colors between the cable and the
power supply’s connectors. Align the laser so it travels down the center of the
solenoid, through the glass rod, and into the center of the photodiode. Set the pho-
todiode load resistor to 1 kΩ. Plug the photodiode into a DMM and measure DC
voltage.
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Figure 7.1: The experimental setup.

Calibration: intensity vs. θ We want to understand how the angle between the polar-
ization vector of the laser light and the polarizer direction affects the intensity. Vary
the angle of the analyzing polarizer and use a white screen (e.g., piece of paper) to
observe how the intensity of the transmitted light changes. Find the angles that give
you maximum and minimum transmission. Then, use the DMM to measure the pho-
todiode output as a function of θ, going between the maximum and minimum in 5◦

steps. Tabulate this data. Graph it. What functional form should it have? Does it?

Function Generator Setup Plug the function generator output and its trigger (a.k.a. pulse)
output into different channels on the scope. Trigger the scope on the trigger/pulse out-
put from the function generator and look at the function generator signal. Modify the
function generator to provide a 200 Hz sine wave with an amplitude of about 1 V. There
is no more need to touch dials on the function generator.

Amplifier setup Now, plug the output of the function generator into the amplifier. Use
a coaxial↔double-prong connector to feed the amplifier output into the scope, still
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triggering on the generator. Vary the amplifier dial setting and observe the change in
the output. At some point, the output will become clipped, as the amplifier reaches
its power output. Record this dial setting, and the amplitude of the sine wave, just as
the clipping sets in. This is the maximum useful output from the amplifier. Turn the
dial all the way off, and hook the amplifier up to the solenoid, with the DMM in series
to measure AC current. Go back to the maximum setting and measure the current
flowing through the solenoid. This is the maximum useful current. You now have a
time varying magnetic field in the solenoid and you can control its magnitude with the
amplifier.

Measuring Faraday Rotation

Choice of θ You need to pick an angle θ, which may seem arbitrary. There is a best choice.
Examine Eq. 7.7. Pick θ and be sure to tighten the thumbscrew.

Faraday rotation Plug the photodiode output into the scope, set the scope so its channel
is DC coupled, and make sure that the “probe” setting is at 1x. Turn the amplifier dial
about halfway to the maximum setting you found. Observe the photodiode trace on the
scope, perhaps changing the volts/div setting so you can see the trace more clearly.
What is the voltage? Record it. The changing magnetic field should be causing a
change in the polarization angle of the laser light, which should cause a wobble to the
photodiode signal. Can you see any wobble?

AC coupling The wobble is riding atop a large constant (DC) signal. The scope can remove
the DC signal by “AC coupling” the photodiode channel. This essentially directs the
scope input through a high pass filter. Do this, and then set the photodiode channel to
the 2 mV setting. You should now see a wobble. Vary the amplifier dial’s setting and
notice how the amplitude of the wobble changes. You are seeing the Faraday effect.

Remove the noise The signal is noisy, but now we’ll really benefit from knowing the wave-
form that the function generator is producing. Because we trigger the scope on the
function generator, the maxima and minima will, neglecting random noise, occur at
the same point on the scope screen (and in its memory bank). The scope has a feature
that allows you to average multiple triggers. Doing this mitigates the noise, since at
each point on the trace we are taking a mean, and the uncertainty in a mean decreases
as we increase the number of measurements N as 1/

√
N . Turn on the averaging feature

by going to the “Acquire” menu. Observe how the averaged trace becomes more stable
as you increase the number of traces being averaged. The larger the better, but ∼100
traces should be enough.

Take measurements You should now systematically measure the amplitude of the wobble
as a function of the current in the solenoid. There should be a linear relationship,
which can be fit to extract CV . Take about 10 measurements, evenly separated between
the smallest current for which there is a measurable wobble, and the maximum you
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found earlier. In each case, you want to start acquisition (Run/Stop on the scope),
let the averaged signal converge onto a nice sine wave, stop acquisition and measure
the amplitude of the signal using the scope’s cursors. One measurement is shown in
Fig. 7.2. Record the negative and positive amplitudes Vlow and Vhigh (±640µV in
Fig. 7.2) and the peak to peak voltage ∆V (1.28 mV), along with the current in the
coil – Icoil . Estimate the uncertainty in your measurements.

Figure 7.2: An example scope trace. The yellow curve is the output of the photodiode,
AC coupled and averaged over 128 traces. The blue curve is the trigger output from the
function generator and is being used to trigger the scope readout so that it’s in phase with
the changing magnetic field. The maximum and minimum amplitudes of the photodiode
signal are measured with the scope’s cursors.
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Data Analysis

A variation in the angle φ is related to a variation in the magnetic field B according to:

∆φ = CVL∆B (7.8)

We want to use this equation to extract CV . Both φ and B vary with time as sine waves.
We’ll take ∆φ and ∆B to be the amplitude of those waves (half the peak to peak). We
didn’t directly measure either quantity, but we can compute them. For ∆B it’s easy: ∆B =
11.1 mT/A×

√
2Icoil, where the

√
2 accounts for the fact that DMMs measure the root-mean-

squared (RMS) value of an AC signal, not the peak value.
Figuring out ∆φ is a little more difficult. We need to use our calibration dataset, which

relates the photodiode signal to the angle between the laser polarization and the analyzer’s
orientation. From that dataset, you can estimate dV/dθ at the value of θ you are using in
your experiment. Of course a change in the polarization of the laser, ∆φ is equivalent to
holding the laser polarization constant and changing the angle of the analyzer by −∆θ. So,
we can calculate:

∆φ =

[
dV

dθ

]−1
∆V

2
(7.9)

The factor of two is because we defined ∆V as the peak to peak voltage.
Compute CV for a few points, along with the uncertainty. Complete the analysis by

fitting ∆φ vs. ∆B to a straight line and then use Eq. 7.8 to extract CV and its uncertainty.
Do you see a nice linear relationship? What should the intercept be? Is it what you expect?
Are there any outlier points, particularly at the ends of your curve? You could do the same
analysis using Vlow or Vhigh... does doing so yield the same answer for CV ?
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Chapter 8

Atomic Spectroscopy

Experiment objectives: test a diffraction grating-based spectrometer, study the energy
spectrum of atomic hydrogen (H) and a hydrogen-like atomic sodium (Na), determine values
of quantum defects of low angular momentum states of Na, and measure fine splitting using
Na yellow doublet.

History

The observation of discrete lines in the emission spectra of atomic gases gives insight into
the quantum nature of atoms. Classical electrodynamics cannot explain the existence of
these discrete lines, whose energies (or wavelengths) are given by characteristic values for
specific atoms. These emission lines are so fundamental that they are used to identify
atomic elements in objects, such as in identifying the constituents of stars in our universe.
When Niels Bohr postulated that electrons can exist only in orbits of discrete energies, the
explanation for the discrete atomic lines became clear. In this laboratory you will measure
the wavelengths of the discrete emission lines from two elements - hydrogen and sodium - to
determine the energy levels in the hydrogen-like atoms.

Hydrogen Spectrum

The hydrogen atom is the simplest atom: it consists of a single proton and a single electron.
Since it is so simple, it is possible to calculate the energy spectrum of the electron bound
states - in fact you will do that in your Quantum Mechanics course. From these calculations
it follows that the electron energy is quantized, and these energies are given by the expression:

En = − 2π2mee
4

(4πε0)2h2n2
= −hcRy

1

n2
(8.1)

where n is the principal quantum number of the atomic level, and

Ry =
2πmee

4

(4πε0)2ch3
(8.2)
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is a fundamental physical constant called the Rydberg constant (here me is the electron
mass). Numerically, Ry = 1.0974× 105cm−1 and hcRy = 13.605eV .

Because of the allowed energies of an electron in a hydrogen atom, the electron can change
its state only by making a transition (“jump”) from one state of energy E1 to another state
of lower energy E2 by emitting a photon of energy hν = E1−E2 that carries away the excess
energy. Thus, by exciting atoms into high-energy states using a discharge and then measuring
the frequencies of emission one can figure out the energy separation between various energy
levels. Since it is more convenient to use a wavelength of light λ rather than its frequency
ν, and using the standard connection between the wavelength and the frequency hν = hc/λ,
we can write the wavelength of a photon emitted by electron jumping between the initial
state n1 and the final state n2 as follows:

1

λ12

=
2π2mee

4

(4πε0)2ch3

[
1

n2
2

− 1

n2
1

]
= Ry

[
1

n2
2

− 1

n2
1

]
(8.3)

Fig. 8.1 shows the energy levels of hydrogen, and indicates a large number of observed
transitions, grouped into series with the common electron final state. Emitted photon fre-
quencies span the spectrum from the UV (UltraViolet) to the IR (InfraRed). Among all the
series, only the Balmer series, corresponding to n2 = 2, has its transitions in the visible part
of the spectrum. Moreover, from all the possible transitions, we will be able to observe and
measure only the following four lines: n1 = 6→ 2, 5→ 2, 4→ 2, and 3→ 2.

Sodium spectrum

Sodium (Na) belongs to the chemical group of alkali metals [together with lithium (Li),
potassium (K), rubidium (Rb), cesium (Cs) and Francium (Fr)]. All these elements consist
of a closed electron shell with one extra unbound electron. Not surprisingly, the energy level
structure for this free electron is very similar to that of hydrogen. For example, a Na atom
has 11 electrons, and its electronic configuration is 1s22s22p63s. Ten closed-shell electrons
effectively screen the nuclear charge number (Z = 11) to an effective charge Z∗ ≈ 1, so that
the 3s valence electron experiences the electric field potential similar to that of a hydrogen
atom, given by the Eq. 8.1.

However, there is an important variation of the energy spectrum of alkali metals, which
is related to the electron angular momentum l. In hydrogen the energy levels with same
principle quantum number n but different electron angular momentum l = 0, 1, · · · (n − 1)
are degenerate. For Na and others the levels with different values of l are shifted with
respect to each other. This is mainly due to the interaction of the unpaired electrons with
the electrons of the closed shells. For example, the orbits of the electron with large angular
momentum values l are far above the closed shell, and thus their energies are basically the
same as for the hydrogen atom. An electron with smaller l spends more time closer to the
nucleus, and “feels” stronger bounding electrostatic potential. As a result the corresponding
energy levels are pulled down compared to those of hydrogen, and the states with the same
principle number n but different angular momenta l are split (i.e. have different energies).
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Figure 8.1: Spectrum of Hydrogen. The numbers on the left show the energies of the
hydrogen levels with different principle quantum numbers n in eV . The wavelength of the
emitted photon in Å is shown next to each electron transition.
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To take into account the modification of the atomic spectra while still using the same
basic equations used for hydrogen, it is convenient to introduce a small correction ∆l to the
principle quantum number n to take into account the level shifts. This correction is often
called a quantum defect, and its value depends on the angular momentum l, and does not
vary much between states with different principle quantum numbers n but same l1:

Enl = − hcRy

(n−∆l)2
(8.4)

In particular, the energies of two states with the lowest angular momentum (s and p)
are noticeably affected by the more complicated electron structure of Na, while the energy
levels of the states with the higher values of angular momentum (d, f) are identical to the
hydrogen energy spectrum.

The spectrum of Na is shown in Fig. 8.2. One can immediately see that there are many
more optical transitions because of the lifted degeneracy of energy states with different
angular momenta. However, not all electronic transitions are allowed: since the angular
momentum of a photon is 1, then the electron angular momentum cannot change by more
than one while emitting one spontaneous photon. Thus, it is important to remember the
following selection rule for atomic transitions:

∆l = ±1. (8.5)

According to that rule, only transitions between two “adjacent” series are possible: for
example p → s or d → p are allowed, while s → s or s → d are forbidden. The strongest
allowed optical transitions are shown in Fig. 8.3. Note that each level for given n and l
is split into two because of the fine structure splitting. This splitting is due to the effect
of electron spin and its coupling with the angular momentum. Proper treatment of spin
requires knowledge of quantum electrodynamics and solving the Dirac equation; for now
spin can be treated as an additional quantum number associated with any particle. The
spin of electron is 1/2, and it may be oriented either along or against the non-zero electron’s
angular momentum. Because of the weak coupling between the angular momentum and
spin, these two possible orientations result in small differences in energy for corresponding
electron states.

1The accepted notation for different electron angular momentum states is historical, and originates from
the days when the proper quantum mechanical description for atomic spectra had not been developed yet.
Back then spectroscopists had categorized atomic spectral lines corresponding to their appearance: for
example any spectral lines from electron transitions from s-orbital (l = 0) always appeared Sharp on a
photographic film, while those with initial electron states of d-orbital ( l = 2) always appeared Diffuse. Also
spectral lines of Principle series (initial state is p-orbital, l = 1) reproduced the hydrogen spectrum most
accurately (even though at shifted frequencies), while the Fundamental (initial electron state is f -orbital,
l = 3) series matched the absolute energies of the hydrogen most precisely. The orbitals with higher values
of the angular momentum are denoted in an alphabetic order (g, h, etc.)
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Figure 8.2: Energy spectrum of Na. The energy states of H are shown in far right for
comparison.
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Figure 8.3: Transitions for Na. The wavelengths of selected transitions are shown in Å. Note
that p state is now shown in two columns, one referred to as P1/2 and the other as P3/2. The
small difference between their energy levels is the “fine structure”.

68



Figure 8.4: Gaertner-Peck Spectrometer

Experimental setup

Equipment needed: Gaertner-Peck optical spectrometer, hydrogen discharge lamp, sodium
discharge lamp.

Fig. 8.4 gives a top view of the Gaertner-Peck optical spectrometer used in this lab.
The spectrometer consists of two tubes. One tube holds a vertical collimator slit of variable
width, and should be directed toward a discharge lamp. The light from the discharge lamp
passes through the collimator slit and then gets dispersed on the diffraction grating mounted
in the mounting pedestal in the middle of the apparatus. The other tube holds the telescope
that allows you to magnify the image of the collimator slit to get a more accurate reading
on the rotating table. This tube can be rotated around the central point, so that you will
be able to align and measure the wavelength of all visible spectral lines of the lamp in all
orders of diffraction grating.

It is likely that you will find a spectrometer at nearly aligned condition at the beginning
on the lab. Nevertheless, take time making sure that all elements are in order to insure good
quality of your data.

Telescope Alignment: Start by adjusting the telescope eyepiece in or out to bring the
crosshairs into sharp focus. Next aim the telescope out the window to view a distant object
such as leaves in a tree. If the distant object is not in focus, you will have to adjust the
position of the telescope tube - ask your instructor for directions.
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Collimator Conditions: Swing the telescope to view the collimator which is accepting
light from the hydrogen discharge tube through a vertical slit of variable width. The slit
opening should be set to about 5-10 times the crosshair width to permit sufficient light to
see the faint violet line and to be able to see the crosshairs. If the bright column of light is
not in sharp focus, you should align the position of the telescope tube again (with the help
of the instructor).

Diffraction Grating Conditions: In this experiment you will be using a diffraction grating
that has 600 lines per mm. A brief summary of diffraction grating operation is given in the
Appendix of this manual. If the grating is not already in place, put it back on the baseclamp
and fix it there. The table plate that holds the grating can be rotated, so try to orient the
grating surface to be maximally perpendicular to the collimator axis. However, the accurate
measurement of angles does not require the perfect grating alignment. Instead, for each
spectral line in each diffraction order you will be measuring the angles on the left (θl) and on
the right (θr), and use both of the measurements to figure out the optical wavelength using
the following equation:

mλ =
d

2
(sin θr + sin θl), (8.6)

where m is the diffraction order, and d is the distance between the lines in the grating.

Then, with the hydrogen tube ON and in place at the collimator slit, swing the rotating
telescope slowly through 90 degrees both on the left & right sides of the forward direction.
You should observe diffraction maxima for most spectral wavelength, λ, in 1st, 2nd, and 3rd
order. If these lines seem to climb uphill or drop downhill the grating has to be adjusted in
its baseclamp to bring them all to the same elevation.

Also, turn on the sodium lamp as soon as you arrive, since it requires 10-15 minutes to
warm up and show clear Na spectrum.

Experimental studies of Hydrogen Balmer series

Figure 8.5: Hydrogen visible spectrum

Swing the rotating telescope slowly and determine which spectral lines from Balmer series
you observe. You should be able to see three bright lines - Blue, Green and Red - in the first
(m=1) and second (m=2) diffraction orders on both left & right sides. In the third order
(m=3) only the Blue, & Green lines are visible, and you will not see the Red.

One more line of the Balmer series is in the visible range - Violet, but its intensity is much
lower than for the other three line. However, you will be able to find it in the first order
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if you look carefully with the collimator slit open a little wider. You should see spectrum
resembling one shown in Fig. 8.5.

After locating all the lines, measure the angles at which each line occurs. The spectrome-
ter reading for each line should be measured at least twice by different lab partners to avoid
systematic errors. Don’t forget: for every line you need to measure the angles to the right
and to the left!

You should be able to determine the angle with accuracy of 1 minute, but you should
know how to read angles with high precision in the spectrometer: first use the bottom scale
to get the rough angle reading within a half of the degree. Then use the upper scale for
more accurate reading in minutes. To get this reading find a tick mark of the upper scale
that aligns perfectly with some tick mark of the bottom scale - this is your minute reading.
Total angle is the sum of two readings.

To measure the frequency precisely, center the crosshairs on the line as accurately as
possible. Choose the width of lines by turning the collimator slit adjustment screw. If the
slit is too wide, it is hard to judge the center of the line accurately; if the slit is too narrow,
then not enough light is available to see the crosshairs. For Violet the intensity is noticeably
less than for the other three lines, so you may not see it. However, even if you find it, a little
assistance is usually required in order to locate the crosshairs at this line. We suggest that
a low intensity flashlight be aimed toward the Telescope input, and switched ON and OFF
repeatedly to reveal the location of the vertical crosshair relative to the faint Violet line.

Data analysis for Hydrogen Data

Calculate the wavelength λ for each line observed in all orders, calculate the average wave-
length value and uncertainty for each line, and then identify the initial and final electron
states principle numbers (n1 and n2) for each line using Fig. 8.1.

Make a plot of 1/λ vs 1/n2
1 where n1 = the principal quantum number of the electron’s

initial state. Put all λ values you measure above on this plot. Your data points should
form a straight line. From Equation (8.3) determine the physical meaning of both slope and
intercept, and compare the data from the fit to the expected values for each of them. The
slope should be the Rydberg constant for hydrogen, Ry. The intercept is Ry/(n2)2. From
this, determine the value for the principal quantum number n2. Compare to the accepted
value in the Balmer series.

Experimental studies of Sodium Spectrum

Switch to Sodium lamp and make sure the lamp warms up for approximately 5-10 minutes
before starting the measurements.

Double check that you see a sharp spectrum in the spectrometer (adjust the width of the
collimator slit if necessary). In the beginning it will be very useful for each lab partner to
quickly scan the spectrometer telescope through all first-order lines, and then discuss which
lines you see correspond with which transitions in Table 8.1 and Fig. 8.3. Keep in mind that
the color names are symbolic rather than descriptive!
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Color Line1(Å) Line2(Å)
Red 6154.3 6160.7
Yellow 5890.0 5895.9
Green 5682.7 5688.2

5149.1 5153.6
4978.6 4982.9

Blue 4748.0 4751.9
4664.9 4668.6

Blue-Violet 4494.3 4497.7

Table 8.1: Wavelength of the visible sodium lines.

After that, carefully measure the left and right angles for as many spectral lines in the first
and second orders as possible. The spectrometer reading for each line should be measured
at least twice by different lab partners to avoid systematic errors.

Determine the wavelengths of all measured Na spectral lines using Eq. 8.6. Compare
these measured mean wavelengths to the accepted values given in Fig. 8.3 and in the table 8.1.
Identify at least seven of the lines with a particular transition, e.g. λ = 4494.3Å corresponds
to 8d→ 3p transition.

Line1 and Line2 correspond to transitions to two fine-splitted 3p states P1/2 and P3/2.
These two transition frequencies are very close to each other, and to resolve them with the
spectrometer the width of the slit should be very narrow. However, you may not be able to
see some weaker lines then. In this case you should open the slit wider to let more light in
when searching for a line. If you can see a spectral line but cannot resolve the doublet, record
the reading for the center of the spectrometer line, and use the average of two wavelengths
given above.

Measurements of the fine structure splitting. Once you measured all visible spec-
tral lines, go back to some bright line (yellow should work well), and close the collimator slit
such that you can barely see any light going through. In this case you should be able to see
the splitting of the line because of the fine structure splitting of states P1/2 and P3/2 . For
the Na D doublet the splitting between two lines ∆λ = λ3/2 − λ1/2.

Measure the splitting between two lines in the first and the second orders. Which one
works better? Discuss this issue in your lab report. Compare to the accepted value: ∆λ =
5.9 Å. Compare this approach to the use of the Fabry-Perot interferometer.

Data analysis for Sodium

Calculation of a quantum defect for n = 3, p state.

Once you identified all of your measured spectral lines, choose only those that correspond
to optical transitions from any d to n = 3, p states. Since the energy states of d series follows
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the hydrogen spectra almost exactly, the wavelength of emitted light λ is given by:

hc

λ
= End − E3p = −hcRy

n2
d

+
hcRy

(3−∆p)2
, (8.7)

or
1

λ
=

Ry

(3−∆p)2
− Ry

n2
d

, (8.8)

where nd is the principle number of the initial d state. Verify this expression by plotting 1/λ
versus 1/n2

d for the nd= 4,5, and 6. From the slope of this curve determine the value of the
Rydberg constant Ry. The value of the intercept in this case is Ry

(3−∆p)2
, so use it to find the

quantum defect ∆p.
Compare the results of your calculations for the quantum defect with the accepted value

∆p = 0.86.

Appendix: Operation of a diffraction grating-based op-

tical spectrometer

A diffraction grating is a common optical element, which consists of a pattern with many
equidistant slits or grooves. Interference of multiple beams passing through the slits (or
reflecting off the grooves) produces sharp intensity maxima in the output intensity distri-
bution, which can be used to separate different spectral components on the incoming light.
In this sense the name “diffraction grating” is somewhat misleading, since we are used to
talking about diffraction with regard to the modification of light intensity distribution to
the finite size of a single aperture.

To describe the properties of a light wave after passing through the grating, let us first
consider the case of 2 identical slits separated by the distance h, as shown in Fig. 8.6a. We
will assume that the size of the slits is much smaller than the distance between them, so that
the effect of Fraunhofer diffraction on each individual slit is negligible. Then the resulting
intensity distribution on the screen is given by the familiar Young formula:

I(θ) =
∣∣E0 + E0e

ikh sin θ
∣∣2 = 4I0 cos2

(
πh

λ
sin θ

)
, (8.9)

where k = 2π/λ, I0 = |E0|2, and the angle θ is measured with respect to the normal to the
plane containing the slits.

Interference on N equidistant slits illuminated by a plane wave (Fig. 8.6b) produces much
sharper maxima. To find light intensity on a screen, the contributions from all N slits must
be summarized taking into account their acquired phase difference, so that the optical field
intensity distribution becomes:

I(θ) =
∣∣E0 + E0e

ikh sin θ + E0e
2ikh sin θ + · · ·+ E0e

(N−1)ikh sin θ
∣∣2 = I0

[
sin
(
N πh

λ
sin θ

)
sin
(
πh
λ

sin θ
) ]2

.

(8.10)
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Figure 8.6: Intensity Pattern for Fraunhofer Diffraction

Here we again neglect the diffraction from each individual slit, assuming that the size of the
slit is much smaller than the separation h between the slits.

The intensity distributions from a diffraction grating with illuminated N = 2, 5 and 10
slits are shown in Fig. 8.6c. The tallest (principle) maxima occur when the denominator
of Eq.( 8.10) becomes zero: h sin θ = ±mλ where m = 1, 2, 3, . . . is the diffraction order.
The heights of the principle maxima are Imax = N2I0, and their widths are ∆θ = 2λ/(Nh).
Notice that the more slits are illuminated, the narrower diffraction peaks are, and the better
the resolution of the system is:

∆λ

λ
=

∆θ

θ
' 1

Nm
(8.11)

For that reason in any spectroscopic equipment a light beam is usually expanded to cover
the maximum surface of a diffraction grating.

Diffraction Grating Equation when the Incident Rays are not Nor-
mal

Up to now, we assumed that the incident optical wavefront is normal to the pane of a grating.
Let’s now consider more general case when the angle of incidence θi of the incoming wave is
different from the normal to the grating, as shown in Fig. 8.7(a). Rather than calculating
the whole intensity distribution, we will determine the positions of principle maxima. The
path length difference between two rays 1 and 2 passing through the consequential slits is
a+ b, where:

a = h sin θi; b = h sin θR (8.12)
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Figure 8.7: Diagram of the light beams diffracted to the right (a) and to the left (b).

Constructive interference occurs for order m when a+ b = mλ, or:

h sin θi + h sin θR = mλ (8.13)

Now consider the case shown in Fig. 8.7(b). The path length between two beams is now
b− a where b = h sin θL. Combining both cases we have:

h sin θL − h sin θi = mλ (8.14)

h sin θR + h sin θi = mλ

Adding these equations and dividing the result by 2 yields the following expression connecting
the right and left diffraction angles:

mλ =
h

2
(sin θL + sin θR) (8.15)
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Chapter 9

Superconductivity

Experiment objectives: study the behavior of a high temperature superconducting ma-
terial Yttrium-Barium-Copper-Oxide (YBCO, YBa2Cu3O7) in magnetic field, measure the
critical temperature for a phase transition in a superconductor.

History

Solids can be roughly divided into four classes, according to the way they conduct electricity.
They are: Metals, Semiconductors, Insulators and Superconductors. The behavior of these
types of materials is explained by quantum mechanics. Basically, when atoms form a solid,
the atomic levels of the electrons combine to form bands. That is, over a finite range of
energies there are states available to electrons. Since only one electron can occupy a given
state, as described by the Pauli Exclusion Principle, electrons will fill these states up to
some maximum: the Fermi Energy, Ef . A solid is a metal if it has an energy band that
is not full. The electrons are then free to move about, making a metal a good conductor
of electricity. If the solid has a band that is completely full, with an energy gap to the
next band, that solid will not conduct electricity very well, making it an insulator. A
semiconductor is between a metal and insulator: while it has a full band (the valence band),
the next band (the conduction band) is close enough in energy, and so the electrons can easily
reach it. Superconductors are in a class by themselves. They can be metals or insulators
at room temperature. Below a certain temperature, called the critical temperature, the
electrons “pair” together (in Cooper pairs) and travel through the solid without resistance.
Current in a superconductor below the critical temperature will travel indefinitely without
dissipation.

Superconductivity was discovered in 1911 by H. Onnes. He discovered that simple met-
als (Pb, Nb) superconduct when placed in liquid helium (4 K). This was an important
discovery, but the real excitement came in 1986 when Swiss scientists discovered that cer-
tain ceramics would superconduct at 35 K. Several groups later discovered materials that
would superconduct at temperatures up to 125 K. These materials are called high temper-
ature superconductors (HTS). Their discovery was a breakthrough, because it meant that
these superconductors will work in liquid nitrogen (at 77 K), which is relatively cheap and
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abundant.

A fascinating fact about superconductors: they will carry a current nearly indefinitely,
without resistance. Superconductors have a critical temperature, above which they lose their
superconducting properties.

Another striking demonstration of superconductivity is the Meissner effect. Magnetic
fields cannot penetrate superconducting surfaces; instead a superconductor attempts to expel
all magnetic field lines. It is fairly simple to intuitively understand the Meissner effect if you
imagine a perfect conductor of electricity. If a superconductor placed in a magnetic field,
Faraday’s Law says an induced current that opposes the field would be set up. But unlike in
an ordinary metal, this induced current does not dissipate in a perfect conductor. So, this
induced current would always be present to produce a field which opposes the external field.
In addition, microscopic dipole moments are induced in the superconductor that oppose
the applied field. This induced field repels the source of the applied magnetic field, and
will consequently repel the magnet associated with this field. Thus, a superconductor will
levitate a magnet placed upon it (this is known as magnetic levitation).

Safety

• Wear glasses when pouring liquid nitrogen. Do not get it on your skin or in your eyes!

• Do not touch anything that has been immersed in liquid nitrogen until the item warms
up to the room temperature. Use the provided tweezers to remove and place items in
the liquid nitrogen.

• Do not touch the superconductor: it contains poisonous materials!

• Beware of the current leads: they are carrying a lethal current!

Experimental procedure

Equipment needed: YBCO disk, tweezers, thermal insulating container, small magnet.

Magnetic Levitation (the Meissner effect)

1. Place one of the small magnets (provided) on top of the superconducting disk at room
temperature. Record the behavior of the magnet.

2. Using the tweezers, place the superconducting disk in the thermal insulating container.
Attach the thermocouple leads (see diagram) to a multimeter reading on the mV scale.
Slowly pour liquid nitrogen over the disk, filling the container as much as you can. The
nitrogen will boil, and then settle down. When the multimeter reads about 6.4 mV,
you are at liquid nitrogen temperature (77 K).
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Figure 9.1: The superconducting disk with leads.

3. After the disk is completely covered by the liquid nitrogen, use the tweezers to pick
up the provided magnet and attempt to balance it on top of the superconductor disk.
Record what you observe.

4. Try demonstrating a frictionless magnetic bearing : if you carefully set the magnet
rotating, you will observe that the magnet continues to rotate for a long time. Also,
try moving the magnet across the superconductor. Do you feel any resistance? If you
feel resistance, why is this?

5. Using tweezers, take the disk (with the magnet on it) out of the nitrogen and place it
beside the container, allowing it to warm. Watch the thermocouple reading carefully,
and take a reading when the magnet fails to levitate any longer. This is a rough
estimate of the critical temperature. Make sure you record it!

6. Repeat the experiment by starting with the magnet on top of the superconductor disk
and observe if the magnet starts levitating when the disk’s temperature falls below
critical.

Measuring resistance and critical temperature

We will measure the resistance by a four probe method, as a function of temperature.
Using four probes (two for current and two for voltage) eliminates the contribution of resis-
tance due to the contacts, and is good to use for samples with small resistances. Connect a
voltmeter (with 0.01 mV resolution) to the yellow wires. Connect a current source through
an ammeter to the black wires. Place a current of about 0.2 Amps (200 mA) through the
black leads. Note: DO NOT EXCEED 0.5 AMP!!!! At room temperature, you should
be reading a non-zero voltage reading.

1. With the voltage, current and thermocouple leads attached, carefully place the disk
in the container. Pour liquid nitrogen into the container. Wait until the temperature
reaches 77 K.
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2. With tweezers, take the disk out of nitrogen and place it outside of the container.
Start quickly recording the current, voltage and thermocouple readings as
the disk warms up. When superconducting, the disk should have V=0 (R=0). At
a critical temperature, you will see a voltage (resistance) appear.

3. Repeat this measurement several times to acquire a significant number of data points
near the critical temperature (6.4-4.5 mV). Make a plot of resistance versus tempera-
ture, and make an estimate of the critical temperature based on this plot.
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