
Physics , Condensed Matter
Homework 

Due Tuesday, th November 

Jacob Lewis Bourjaily

Problem 1: Phonon Spectrum of a Diatomic One-Dimensional Crystal
Consider a one-dimensional, diatomic crystal composed of atoms of mass M1 and M2, respectively.

We may suppose that the interaction between nearest neighbours is a simple harmonic spring with a
universal spring constant K.

a. We are to determine the full phonon spectrum of this system and sketch the dispersions ω(q).
Let a denote the lattice spacing of the Bravais lattice, and let us label the displacement

functions u1 and u2 for the atoms with mass M1 and M2, respectively. Then the
harmonic contribution to the potential is given by

Uh =
K

2

∑
n

{(
u1(na)− u2(na)

)2

+
(
u2(na)− u1((n + 1)a)

)2
}

. (1.a.1)

This immediately implies the following equations of motion:

M1ü1(na) = − ∂Uh

∂u1(na)
= −K

{
2u1(na)− u2(na)− u2((n− 1)a)

}
; (1.a.2)

M2ü2(na) = − ∂Uh

∂u2(na)
= −K

{
2u2(na)− u1(na)− u1((n + 1)a)

}
. (1.a.3)

We seek phonon solutions to these equations of motion, which have the structure of
plane waves:

u1(na) = αei(kna−ωt) and u2(na) = βei(kna−ωt). (1.a.4)

Inserting these test functions into the equations of motion and simplifying a bit, we
find the following (independent of n),

M1ω
2α = 2Kα−K

(
1 + e−ika

)
β; (1.a.5)

M2ω
2β = 2Kβ −K

(
1 + eika

)
α. (1.a.6)

This is of course equivalent to the eigenvalue equation(
M1ω

2 − 2K K
(
1 + e−ika

)
K

(
1 + eika

)
M2ω

2 − 2K

)(
α
β

)
= 0, (1.a.7)

which only has a solution if the determinant of the operator vanishes. Writing out
the determinant and solving the quadratic equation for ω2, we find that this implies

ω2 = K
(M1 + M2)

M1M2
± 1

2

{
4K2 (M1 + M2)2

M2
1 M2

2

− 8
K2

M1M2
(1− cos(ka))

}1/2

,

= K
M1 + M2

M1M2
±K

M1 + M2

M1M2

{
1− 2

M1M2

(M1 + M2)2
(1− cos(ka))

}1/2

;

∴ ω2 =
K

µ

{
1±

√
1− 4

µ

(M1 + M2)
sin2

(
ka

2

)}
, (1.a.8)

where we have introduced the reduced mass: µ ≡ M1M2
M1+M2

.
This phonon dispersion relation is plotted in Figure 1.
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Figure 1. The phonon dispersion for a diatomic, one-dimensional crystal. The lower
band is represents acoustic mode and the upper band represents optical mode.

b. We are to describe the atomic motion associated with optical and acoustic phonons near the
centre and edge of the first Brillouin zone.

Near the centre of the Brillouin zone k ¿ π/a, so we may expand sin(ka/2) ≈ (ka/2) +
O((ka/2)3). Also Taylor expanding the square-root in equation (1.a.8), we obtain

ω2 =
K

µ

{
1±

(
1− µ

2(M1 + M2)
(ka)2 − . . .

)}
; (1.b.9)

which implies

ω =





√
K

2(M1+M2)
(ka) +O(ka)2 acoustic√

2K(M1+M2)
M1M2

+O(ka)2 optical
. (1.b.10)

If we plug this back into the eigenvalue equation (1.a.7), we find for the acoustic mode,

β

α
=

K(2 + ika +O(ka)2)

2K2
(
2− (ka)2

2 +O(ka)4
)

(
2K − K

2
M2(ka)2

M1 + M2
+O(ka)4

)
,

= 1 +O(ak).

Therefore, the acoustic mode is that for which the two types of atoms are oscillating
in phase:

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿�Similarly, looking at the expansion for the optical phonons, we find

β

α
=

K(2− ika +O(ka)2)

2K2
(
2− (ka)2

2 +O(ka)4
)

(
2K − 2K

M1 + M2

M2
+O(ka)4

)
,

= −M1

M2
+O(ak).

This implies that the optical phonons near low crystal momentum (modulo the re-
ciprocal lattice) are excitations where the two types of atoms oscillate in opposite
phase:

À ¿ À ¿ À ¿ À ¿ À ¿�Let us now return to equation (1.a.8), only this time keeping track of M1 and M2. Near
the edge of the Brillouin zone, k = π/a − δ, we may expand sin2(π/2 − δa/2) =
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1− (δa)2/4 +O(δa)4. Using this, we have

ω2 =
K(M1 + M2)

M1M2

{
1±

√
1− 4

M1M2

(M1 + M2)2
sin2

(
π

2
− δa

2

)}
,

=
K(M1 + M2)

M1M2

{
1±

√
1− 4

M1M2

(M1 + M2)2
+

M1M2

(M1 + M2)2
(δa)2 +O(δa)4

}
,

=
K(M1 + M2)

M1M2

{
1±

√
(M1 −M2)2

(M1 + M2)2
+

M1M2

(M1 + M2)2
(δa)2 +O(δa)4

}
,

=
K(M1 + M2)

M1M2

{
1± |M1 −M2|

M1 + M2

√
1 +

M1M2

(M1 −M2)2
(δa)2 +O(δa)4

}
.

Now, without loss of generality we may suppose that M1 > M2, in which case this
reduces to

ω =





√
K
M1

+O(ka)2 acoustic√
K
M2

+O(ka)2 optical
. (1.b.11)

Notice that in this case, the matrix in equation (1.a.7) becomes diagonal, so there is no
constraint on β/α. Rather, modes with momenta near the edge of the first Brillouin
zone correspond to bulk-modes of lattice of M1 atoms and the lattice of M2 atoms
oscillating independently of each-other.

c. We are to consider the concrete example of a one-dimensional NaCl lattice, for which it is
observed that the highest energy optical phonon is 30 meV. We are to determine the spring constant K
in reasonable atomic-physics units, and determine the minimum energy that an incoming neutron must
posses to excite all phonons at all crystal momenta.

From our work above we know that the highest energy phonon in the spectrum occurs at
zero-crystal momentum, in the optical band1. This was derived explicitly in equation
(1.b.10). Therefore, we know that

Ephmax
= ~ωmax = ~

√
2K(M1 + M2)

M1M2
=⇒ K =

E2
phmax

M1M2

~22(M1 + M2)
. (1.c.12)

Using the fact that ωmax~ = 30 meV, and plugging in real numbers (with units!), we
see that this gives

∴ K = 1.5 eV A
◦−2

. (1.c.13)

When considering a neutron inelastic scattering process, there are two constraints that
must be satisfied: first, the difference between the initial and final neutron momenta
must be a reciprocal lattice vector; and second, the phonon energy must equal the
difference between the initial and final neutron energies. Specifically, these are2

pi − pf = n~
2π

a
and Eph =

(p2
i − p2

f )
2mn

. (1.c.14)

We can combine these two equations by noting (p2
i − p2

f ) = (pi + pf )(pi − pf ) =
(pi + pf )n~2π

a to arrive at the suggestive pair of equations

pi − pf = n
h

a
and pi + pf =

2Ephmna

nh
; (1.c.15)

∴ pi =
α

n
+ βn where α =

Ephmna

h
and β =

h

2a
. (1.c.16)

We must find the n for which pi is minimized for the maximum phonon energy of 30 meV.
Numerically, β is about an order of magnitude larger than α, so this happens when
n is small; in fact, it is minimized at n = 3, which gives Eneutron = 30.51 meV.

1It may not be obvious that the global maximum occurs at zero crystal momentum in the optical band—for the
one-dimensional crystal under consideration—but it turns out to be so.

2The lattice spacing for NaCl crystals is known to be a = 5.64 A
◦
.
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Problem 2: Bound States of Phonons Near an Impurity (One-Dimension)
Consider a one-dimensional crystal composed almost entirely of atoms with mass M , but with one

impurity atom of mass M ′. We may approximate the interactions as nearest-neighbour harmonic po-
tentials with a (universal) spring constant K. We are asked to explore the localized phonon modes that
can possibly arise in this situation.

a. Let us determine the range of M ′ for which localized phonon modes exist.
Our intuition from Quantum Mechanics strongly hints that localized modes exist only if

M ′ < M : this is because the potential energy should be lower there, giving rise to a
potential well in which phonons could be entrapped. Alternatively, when M ′ = M ,
we know there are no localized modes because the situation is identical to a one-
dimensional crystal; but when M ′ < M wave amplitudes are locally piqued at M ′

so we expect localized modes. Enough intuition, let us show that our intuition isn’t
misguided.

The initial set-up is sufficiently similar to the previous problem (and sufficiently canon-
ical) that we may appear brief. Given the Hooke’s law harmonic potential, we can
immediately write down the equations of motion for the system:

Müna = −K
(
2una − u(n+1)a − u(n−1)a

)
∀ n 6= 0 and M ′ü0 = −K

(
2u0 − ua − u−a

)
. (2.a.1)

Because we are interested in phonon modes which are localized at n = 0, we will try
the following test functions

un>0 = e−λanei(kan−ωt) ≡ ũn>0e
−iωt and un<0 = eλanei(kan−iωt) ≡ ũn<0e

−iωt, (2.a.2)

where λ > 0; we will use our equations of motion (2.a.1) to determine ũ0.
Inserting our test functions into the equations of motion, we find that virtually all of the

system of equations collapses in redundancy, leaving us with

n ≥ 2 Mω2 = K
(
2− e−λaeika − eλae−ika

)
; (2.a.3)

n = 1 Mω2 = K
(
2− e−λaeika − ũ0e

λae−ika
)
; (2.a.4)

n = 0 M ′ω2 = K
(
2ũ0 − e−λaeika − e−λae−ika

)
; (2.a.5)

n = −1 Mω2 = K
(
2− e−λae−ika − ũ0e

λaeika
)
; (2.a.6)

n ≤ −2 Mω2 = K
(
2− e−λae−ika − eλaeika

)
. (2.a.7)

Subtracting equation (2.a.7) from equation (2.a.3) we see that

e−λa
(
e−ika − eika

)
+ eλa

(
eika − e−ika

)
= 4i sin(ka) sinh(λa) = 0.

This implies that either λ = 0—which would run contrary to our analysis: we are
interested in the case when λ > 0—or that ka = mπ for some m ∈ Z. Actually,
we have no need to keep this level of generality: it is e±ika that appears throughout
our equations of motion, and this leaves only two possibilities: ei2π = e−i2π = 1
or eiπ = e−iπ = −1; labelling these possibilities as ±, respectively, equation (2.a.3)
becomes

Mω2 = 2K
(
1∓ cosh(λa)

)
. (2.a.8)

Now, cosh(λa) > 1 if λ > 1. Because this would lead to negative ω2 for the ‘−’ case
above—corresponding to ka = 2mπ—we must exclude this as a possibility, leaving
only eika = e−ika = −1. Which allows us to conclude3

∴ ω = 2

√
K

M
cosh

(
λa

2

)
. (2.a.9)

Inserting our expression for ω2 into equation (2.a.4) we see that

2(1 + cosh(λa)) = 2 + e−λa + ũ0e
λa;

=⇒ e−λa + eλa = e−λa + ũ0e
λa,

3We made use of the hyperbolic identity 1 + cosh(ξ) = 2 cosh2(ξ/2).
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which of course implies that ũ0 = 1. It is not hard to see that the only independent
equation left for us to consider is (2.a.5). Let us see what this equation implies about
M ′/M .

M ′ω2 = K
(
2 + e−λa + e−λa

)
,

=⇒ 4K
M ′

M
cosh2

(
λa

2

)
= 2K

(
1 + e−λa

)
,

=⇒ M ′

M
=

1 + e−λa

2 cosh2
(

λa
2

) ,

= e−λa/2 2 cosh
(

λa
2

)

2 cosh2
(

λa
2

) ,

∴ M ′

M
=

e−λa/2

cosh
(

λa
2

) . (2.a.10)

Now, because the expression on the right hand side of (2.a.10) is strongly bounded
above by 1—and is equal to one iff λ = 0—we may conclude that localized phonon
modes exist only if

M ′

M
< 1. (2.a.11)

‘óπερ ’έδει πoι�ησαι

b. We are to give explicit solutions for the frequency and displacement patterns of this localized mode
and describe what happens as M ′ → M .

Perhaps the first thing we should do is revisit equation (2.a.10) and give λ as a function
of η ≡ M ′

M . A little bit of manipulation shows that

η =
2

eλa + 1
, (2.b.12)

which of course implies that

eλa =
2− η

η
=

2M −M ′

M ′ . (2.b.13)

This equation allows us to tidy up much of our previous work. For example, equation
(2.a.9) can be combined with (2.a.10) using our work above,

∴ ω = 2

√
KM

M ′ (2M −M ′)
. (2.b.14)

We can put everything together and now give all the functions un at once:

una =
(

M ′

2M −M ′

)|n|
ei(kan−ωt). (2.b.15)

Now, looking at these plane waves (2.b.15) and the dispersion relation (2.b.14), we see
that when M ′ → M the ‘suppression’ term in (2.b.15) becomes 1, and the dispersion
relation matches onto the solution for normal phonons in one-dimension—i.e. there
are no localized modes when M ′ = M .
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Problem 3: Wigner Crystals in Various Dimensions
At low temperatures and densities, electrons in an ideal semiconductor ‘crystallize’ into what is

known as a Wigner crystal. This can be modelled as a crystal of electrons in a uniform background
of stationary, neutralizing positive charges, where only the electrons are able to move. The long-range
Coulomb repulsion between the electrons can affect the long-wavelength longitudinal acoustic phonons.
We are to determine the parametric low-q behaviour of this mode (called a ‘plasmon’) in one-, two-, and
three-dimensional Wigner crystals.

In order to determine the dispersion of plasmons, we will use the harmonic approxima-
tion for the Coulomb interaction potential4; for dimensions higher than one, we will
have need to recall recall some elementary multi-dimensional calculus—namely, the
generalization of Taylor’s theorem to higher dimensions,

f(~r − ~a) = f(~r) + ~a · ~∇f(~r) +
1
2

(
~a · ~∇

)
f(~r) + . . . , (3.a.1)

for any scalar function f(~r). Because the scalar function we are interested in is
radial, it will be helpful to recall the expression for the gradient in polar and spherical
coordinates in two- and three-dimensions respectively.

In one-dimension the situation is rather more elementary—there are at least no angles
to worry us. Let us suppose that at zero temperature, the electrons are spaced a
distance 1 apart (in appropriate units)5—so that the electrons are located at r = n
for n ∈ Z. Then the equilibrium Coulomb-potential energy at the point r = 0 is
simply

ϕeq(0) = −e2
∑

r 6=0

1
|r| = −2e2

N∑
r>0

1
r
. (3.a.2)

It is this potential that we will Taylor-expand for the plasmon perturbations.
Now, let us label the displacement from equilibrium of electron n from the point r as

un. Then the actual potential energy at the site of the electron labeled 0—which is
now located at u0—is given by

ϕ(u0) = −e2
∑

r 6=0

{
1
|r| − (ur − u0)

1
r2

+
1
2
(ur − u0)2

1
|r|3 − . . .

}
. (3.a.3)

Assuming that the values ur = 0 are equilibrium, then the first term in (3.a.3) is a
constant and the second term vanishes. It is the third term—the ‘harmonic’ term—
that we are interested in:

ϕh(u0) = −e2

2

∞∑
r=1

1
r3

{
(ur − u0)

2 + (u−r − u0)
2
}

. (3.a.4)

The equations of motion are relatively simple; for u0, they give

mü0 = −∂ϕh(u0)
∂u0

= e

∞∑
r=1

1
r3

{
2u0 − (ur + u−r)

}
. (3.a.5)

We are looking for plasmon solutions. These are

ur = ei(kr−ωt)

where q is the momentum. Putting this into the equations of motion, we have

m

e2
ω2 = 2

∞∑
r=1

1
r3

(1− cos(kr)) =⇒ ω2 ∝
∞∑

r=1

1
r3

sin2

(
kr

2

)
. (3.a.6)

4This is actually a bit more subtle than it may seem at first: the leading order Coulomb interaction potential is a
‘strong’ effect. By taking the harmonic approximation, we are implicitly assuming that the leading Coulomb term (which
is highly divergent in all dimensions—at least for infinite crystals) is completely neutralized by the positive charges; or,
put another way, we ignore the machinery by which the electron system finds itself in an equilibrium distribution. Then,
only the electron Coulomb interaction energy is considered as the sub-leading part of the potential. We will find that this
is fine in each dimension under consideration—because it will dominate ω ∼ cq in the limit of q → 0—but this was by no
means obvious.

5Because we are only interested in the parametric q-dependence of ω, there is no reason to bother about units.
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In the limit where k → 0, this sum is well-approximated as an integral,

ω2 ∼
∫ ∞

1

dr
sin2

(
kr
2

)

r3
. (3.a.7)

Now, there are two obvious regions of interest: first, if r . 2/k, then sin2(kr/2) can
be well-approximated by its leading Taylor expansion. When r À 2/k, the integrand
is rapidly oscillating and can be well-approximated by the average value of sin2(x)
which is 1

2 . That is

ω2 ∼
∫ 2/k

1

dr
1
r3

sin2

(
kr

2

)
+

∫ ∞

2/k

dr
1
r3

sin2

(
kr

2

)
, (3.a.8)

∼
∫ 2/k

1

dr
k2

4r
+

∫ ∞

2/k

dr
1

2r3
, (3.a.9)

=
1
4
k2 log

(
2
k

)
− 1

16
k2. (3.a.10)

Now, the leading term (divergently) dominates as k → 0 (and the other terms will
not dominate other ω ∼ ck phonons anyway), so we see that in one-dimension,
Wigner-crystal plasmons have a low-momentum dispersion

∴ ω ∼
k→0

k
√
− log(k). (3.a.11)

‘óπερ ’έδει πoι�ησαι

To generalize the work above requires keeping track of coordinate systems, indices, &tc.
In two dimensions, we would like to use polar coordinates for the potential (because
the Coulomb potential is radial), but label the points by their Cartesian coordi-
nates. Specifically, let us denote the equilibrium locations of the electrons as In
two-dimensions, we will use polar coordinates (ρ, θ) to expand the potential. Doing
this, we find that6

ϕh(u~0) =− e2

2

∞∑
rx,ry=1

1
ρ3

{(
urx+ry − u~0

)2

ρ
+

(
urx−ry − u~0

)2

ρ
+

(
u−rx+ry − u~0

)2

ρ
+

(
u−rx−ry − u~0

)2

ρ

}

− e2

2

∞∑
rx=1

1
r3
x

{(
urx+0ŷ − u~0

)2

x
+

(
u−rx+0ŷ − u~0

)2

x

}
− e2

2

∞∑
ry=1

1
r3
y

{(
u0x̂+ry − u~0

)2

y
+

(
u0x̂−ry − u~0

)2

y

}
,

(3.b.1)

where ρ = (r2
x + r2

y)1/2. The last two terms in this expression grow only linearly
with N , the number of electrons in one direction, whereas the first term grows like
N2; i.e. both terms in the second line of equation (3.b.1) are of measure zero in
two-dimensions7. Therefore, it is consistent to simply ignore these contributions
when taking the large-N -limit—when we will replace the sums in equation (3.b.1) by
integrals over the plane.

As before, we are interested in plasmons which are longitudinal plane-waves,

~urx+ry = x̂ei(krx−ωt), (3.b.2)

where we have used the longitudinality of the wave, ~k = kx̂. Inserting this test
function into equation (3.b.1) we obtain the equations of motion

mω2 = 4e2
∞∑

rx,ry=1

1
ρ3

{
1− cos (krx)

}
→ 8e2

∫ π/2

0

dθ

∫ ∞

1

dρ

ρ2
sin2

(
krx

2

)
. (3.b.3)

6The displacement functions u are of course vector quantities. The subscript ‘ρ’ appearing in the expression is to indicate

that it is only the ρ-component of the vector-difference that is considered. This comes about because ~a · ~∇ = aρ
∂
∂r

+ aθ
ρ

∂
∂θ

and the second term’s contribution vanishes when acting on a radial function.
7This could be a point of confusion—if it were not for the fact that the sums along the x- and y-axes gavie no contribution

(are of measure zero in two-dimensions) then we would of course find the one-dimensional result for this one-dimensional
subsystem of the crystal. It can be checked explicitly that this term is subleading in N—but the skeptical reader should
also bear in mind that k is bounded below by 1/N .
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Noting that rx = ρ sin θ in polar coordinates and approximating sin2(x) by its Taylor
expansion for small argument and by its average (which is 1/2) for large argument,
we see that parametrically,

ω2 ∼
∫ π/2

0

dθ

∫ ∞

1

dρ

ρ2
sin2

(
kρ cos θ

2

)
,

∼
∫ π/2

0

dθ

{∫ 2/(k cos θ)

1

dρ k2 cos2(θ) +
1
2

∫ ∞

2/(k cos θ)

dρ
1
ρ2

}
,

∝
∫ π/2

0

dθ
{
3k cos θ − k2 cos2 θ

}
,

= 3k − π

4
k2.

The linear term obviously dominates in the limit of k → 0, in which we are interested.
Therefore, we see that in two-dimensions the plasmon dispersion is parameterically
given by

∴ ω ∼
k→0

√
k. (3.b.4)

‘óπερ ’έδει πoι�ησαι

Lastly, let us turn out attention to the case in three-dimesnions. Like in the two-
dimensional case, we must be mindful of coordinates. We will again chose to label
the equilibrium positions8 by their Cartesian coordinates ~r = rxx̂ + ry ŷ + rz ẑ, but
we will express the potential in spherical coordinates (ρ, θ, ϕ). In the limit of large
N , the leading contribution to the potential at u~0

9

ϕ(u~0) = −e2

2

N∑
rx,ry,rz=1

1
ρ3

{(
urx+ry+rz − u~0

)2 +
(
urx+ry−rz − u~0

)2 +
(
urx−ry+rz − u~0

)2 +
(
u−rx+ry+rz − u~0

)2

+
(
urx−ry−rz − u~0

)2 +
(
u−rx+ry−rz − u~0

)2 +
(
u−rx−ry+rz − u~0

)2 +
(
u−rx−ry−rz − u~0

)2
}

.

(3.c.1)

The cpontributions that we are ignoring here are those from electrons in the planes
normal to each of the coordinate axes. As argued before, these contribute nothing—
‘are regions of measure zero’—in three-dimensions.

Taking a longitudinal plasmon aligned in the z-direction as our test function,

~urx+ry+rz = ẑei(krz−ωt) where ~k = kẑ, (3.c.2)

we find the equations of motion to be

mω2 = 8e2
N∑

rx,ry,rz=1

1
ρ3

{
1− cos (krz)

}
→ 16e2

∫ π/2

0

dϕ

∫ N

1

dρ

∫ 1

0

d cos θ
1
ρ

sin2

(
kρ cos θ

2

)
. (3.c.3)

Notice that we’ve chosen to keep the range of the ρ integration explicit. This will
come in handy later. Now, instead of doing the ρ integration first, notice that that
we can exactly evaluate the angular integrals and greatly simplify the situation.

8We assume here, as before, a cubical lattice. This assumption is probably not accurate physically, but there are reasons
to suspect that the parametric dispersions for small crystal momentum should be independent of the type of lattice.

9As before, the displacement u~r is obviously a vectorial quantity. However, for the sake of convenience—and using the
foresight that we will consider plane waves for which u~r only has a component in the radial-direction—we will not write
the vector label over u~r. Lastly, the ‘ρ’ subscripts that appeared in equation (3.b.1) will be implicit in the expressions to
follow.
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Specifically,

ω2 =
16e2

m

∫ π/2

0

dϕ

∫ N

1

dρ

∫ 1

0

d cos θ
1
ρ

sin2

(
kρ cos θ

2

)
,

=
8πe2

m

∫ N

1

dρ

∫ kρ/2

0

dξ
2

kρ2
sin2 (ξ) ,

=
8πe2

m

∫ N

1

dρ
1

kρ2

(
ξ − sin(ξ) cos(ξ)

)∣∣∣
kρ/2

0
,

=
4πe2

m

∫ N

1

dρ
1

kρ2

(
kρ− sin(kρ)

)
,

=
4πe2

m

∫ Nk

k

dα

α2

(
α− sin(α)

)
;

Here, attention to detail has paid off: the minimum (non-vanishing) crystal momen-
tum is k = 1/N so that in the limit of low crystal momentum and infinite Wigner
crystal, kN → 1. This means that for the entire range of integration, α ≤ 1 and we
can effectively approximate the integrand by Taylor-expanding sin(α). This gives

ω2 =
2πe2

3m

∫ 1

k

dα
(
α− α3

20
+

α5

840
− . . .

)
,

=
4πe2

m

( ∞∑
n=1

(−1)n+1

(2n + 1)!
1− k2n

2n

)
,

Having come this far, we would have really like to have a closed-form expression for
the constant part, but we haven’t found one. To better than one part in a thousand,
the constant term is

ω2 ≈ 983πe2

7·33 ·24m
+ k2 πe2

3m
+O(k4). (3.c.4)

To an accuracy of about 2%, the constant term is just e2

m . At any rate, the important
point is that as k → 0, ω → constant. That is

∴ ω ∼
k→0

e√
m

. (3.c.5)

‘óπερ ’έδει πoι�ησαι


