Physics A

Advanced GCE 7883

Mark Scheme for the Units

January 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCE Physics A (7883)
 Advanced Subsidiary GCE Physics (3883)

MARK SCHEMES FOR THE UNITS

Component Page
2821 Forces and Motion 1
2822 Electrons and Photons 8
2823/01 Wave Properties / Experimental Skills 1 Written Paper 13
2823/03 Wave Properties / Experimental Skills 1 Practical Examination 16
2824 Forces, Fields and Energy 22
2825/01 Cosmology 26
2825/02 Health Physics 30
2825/03 Materials 33
2825/04 Nuclear and Particle Physics 36
2825/05 Telecommunications 43
2825 Common Question 49
2826/01 Unifying Concepts in Physics 50
2826/03 Experimental Skills 2 Practical Examination 53
Grade Thresholds 58

2821 Forces and Motion

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
x = incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
on = contradiction (in cases where candidates contradict themselves in the same response)
$\mathrm{f}=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

w w w.Xtr emePaper s.net

Mark Scheme Page 4 of 6	Unit Code 2821	Session JANUARY	$\begin{array}{\|l\|} \hline \text { Year } \\ 2008 \end{array}$	Version FINAL
Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit \(\overline{=}=\) (underlining) key words which must be used to gain credit ecf = error carried forward```			
Question	Expected			Marks
4 (a)	$\begin{aligned} & \mathrm{T}_{1} \cos 50=\mathrm{T}_{2} \cos 40 / T_{2}=392 \sin 40 / T_{1}=392 \sin 50 \\ & \mathrm{~T}_{1}{ }^{2}+\mathrm{T}_{2}^{2}=(392)^{2} / T_{1} \sin 50+T_{2} \sin 40=392 / \text { correct vector } \\ & \text { triangle drawn and labelled / scale given for triangle } \\ & \mathrm{T}_{1}=300(\mathrm{~N}) \\ & \mathrm{T}_{2}=252(\mathrm{~N}) \end{aligned}$ Method cannot be used as system not in equilibrium Upward forces are greater than the downward forces / resultant force is not zero / cannot form a closed triangle OR Stretching the ropes more gives greater upward force (than downward)			C2 A1 A1 B1 B1 Total: 6

w w w.Xtr emePaper s.net

2822 Electrons and Photons

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit ___ (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument```

1
(a) Correct symbols for the cell (not battery), resistor and thermistor B1 Correctly drawn circuit B1
(b)(i) $V=I R \quad / \quad V=0.005 \times 120$ C1
potential difference $=0.60(\mathrm{~V})$
(Allow 1 sf) A1
(b)(ii) $V=1.4-0.6(=0.8 \mathrm{~V})$
(Possible ecf)
C1
$R=\frac{0.8}{0.005}$
resistance $=160(\Omega)$
[Allow 1 mark for total resistance calculation: $R=1.4 / 0.005=280(\Omega)$]
(c) The resistance of the thermistor increases / the current decreases B1

Hence, the p.d across the resistor decreases.

2
(a) All I-V graphs identified correctly B1
(b)(i) The resistance / R remains constant \quad B1
$I \propto V /$ Graph has a constant slope / gradient / Obeys Ohm's law B1
(b)(ii) R is infinite / large when: $I=0 /$ no conduction / 'reverse' direction / 'up to a
point' / negative $V /$ negatively biased
R is small / decreases / low(er) when: I is not zero / there is conduction / 'positive' direction
/ 'beyond a point' / positive V / positively biased
B1
(No credit for 'conducts in one direction only')
(b)(iii)The resistance increases as \underline{I} (or \underline{V}) increases

B1
The temperature increases (as / increases) / more electrons collisions (with the vibrating atoms / ions)

QWC
The answer must involve physics, which attempts to answer the question.

Structure and organisation -

Award this mark if the whole answer is well structured.

Spelling and Grammar mark -

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.

3

(a) Same unit / measured in volts / (both defined as) energy per (unit) charge / (both to do with) transfer of energy
(b) 1 J (of energy transfer) per coulomb (of charge) (Allow $1 \mathrm{~V}=1 \mathrm{JC}^{-1}$)
(c)(i) It is the energy transferred by a 1 kW device working for 1 hour
(c)(ii) $1 \mathrm{kWh}=1000 \times 3600$
$1 \mathrm{kWh}=3.6 \times 10^{6}(\mathrm{~J})$
(d)(i) $P=\frac{V^{2}}{R} \quad /$

$$
P=I^{2} R \quad / I=1.5(\mathrm{~A})
$$

$4.5=\frac{V^{2}}{2.0}$
potential difference $=3.0(\mathrm{~V})$
$V=1.5 \times 2.0 \quad / \quad 4.5=1.5 \times V$
C1
(Allow R in range 1.8Ω to 2.2Ω. This gives p.d. in the range 2.85 V to 3.15 V)
(d)(ii) The supply has internal resistance

There is also a p.d. across the internal resistance / 'lost volts' / energy wasted within the supply or internal resistance

4

(a) Correct arrow(s) between the north and south poles
(b) $\quad F=B I L$

C1
current $=\frac{1.5}{8.0}=0.1875(\mathrm{~A}) \quad$ (Allow 0.19 A)
$F=1.2 \times 10^{-2} \times 0.1875 \times 24$
C1
force $=0.054$
(Current of 0.19 A gives $0.055(\mathrm{~N})$)
unit: $\mathrm{N} /$ newton / TAm
(c) The resistance of the wire increases by a factor of four (because $R \propto \frac{1}{A}$)/ the current decreases by a factor of four
Hence, the force decreases by a factor of four B1
(Allow 1 mark for: Resistance is larger / current smaller and force smaller)
[Total: 7]

5

(a) The current is (directly) proportional to the p.d. / voltage
as long as the temperature remains constant (Allow 'physical conditions')
B1
(b) Only 'energy' is circled
(c)(i) $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
$\frac{1}{R_{(t)}}=\frac{1+2}{2 R}$
$R_{(t)}=\frac{2 R}{3} \quad$ resistance $=0.67 R$
(c)(ii) current $==\frac{3 E}{2 R} \quad / \quad$ current $=\frac{1.5 E}{R} \quad / \quad$ current $=\frac{E}{2 / 3 R} \quad$ (Possible ecf) B1
(d)(i) $Q=I t$

C1
$Q=0.48 \times 150$
charge $=72$ (C)
(d)(ii) number $\left(=\frac{72}{1.6 \times 10^{-19}}\right)=4.5 \times 10^{20} \quad$ (Possible ecf)
(d)(iii)current $=0.32(\mathrm{~A})$
(d)(iv) total resistance of 18Ω and 36Ω in parallel $=12 \Omega$
total resistance of circuit $=12+12=(24 \Omega)$
$E=0.48 \times 24$
e.m.f. $=11.52(\mathrm{~V}) \approx 12(\mathrm{~V})$

Or
$\begin{array}{ll}V_{12}=0.48 \times 12(=5.76) \quad / V_{18}=18 \times 0.32(=5.76) \quad / V_{36}=36 \times 0.16(=5.76) & \text { C1 } \\ E=5.76+5.76 & \text { A1 } \\ \text { e.m.f }=11.52(\mathrm{~V}) \approx 12(\mathrm{~V}) & \end{array}$
[Total: 12]

6

(a) Any one from:

Travel through vacuum / 'free space'
Travel at the speed of light $/ \mathrm{c} / 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (in vacuum)
They are all transverse waves / can be polarised
Consist of oscillating electric / magnetic fields
Consist of photons
(b) gamma rays, visible light, infrared and microwaves
(c)(i) The minimum energy required to remove an electron (from the metal surface)
(c)(ii) Potassium (has the lowest threshold frequency)
$\phi=h f_{(o)}$ with some explanation / $f_{(o)} \propto \phi \quad /$ threshold frequency is (directly) proportional to work function (energy)
(c)(iii)1. Any three from the statements 1 to 4:

1. Photon mentioned
2. A single photon interacts with a single electron

B1
3. Energy is conserved between photon-electron interaction (wtte)
4. Electron is released when photon energy > / = work function (energy) / frequency $>/=$ threshold frequency
5. Electrons have a range of KE because some electrons are 'tightly held'/ are 'deep below the surface' / electrons make collisions with atoms / ions
(c)(iii)2. $h f$ or $\frac{h c}{\lambda}=\phi+K E_{(\max)} / f=9.38 \times 10^{14}(\mathrm{~Hz}) /(h f=) 6.22 \times 10^{-19}(\mathrm{~J})$

$$
\begin{align*}
\phi= & 1.6 \times 10^{-19} \times 3.7\left(=5.92 \times 10^{-19}\right) \tag{C1}\\
& K E_{(\max)}=\left(\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{3.2 \times 10^{-7}}\right)-5.92 \times 10^{-19}
\end{align*}
$$

maximum kinetic energy $=3.0 \times 10^{-20}(\mathrm{~J})$
(c)(iii)3. $\lambda=\frac{h}{m v} \quad$, $\lambda=\frac{h}{p}$
$\mathrm{KE}=\frac{1}{2} m v^{2}$
$v=\sqrt{\left(2 \times 3.0 \times 10^{-20}\right) / 9.11 \times 10^{-31}}\left(=2.57 \times 10^{5}\right)$
$\lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 2.57 \times 10^{5}}$
$\lambda=2.8 \times 10^{-9}(\mathrm{~m})$

2823/01 Wave Properties / Experimental Skills 1 Written Paper

1(a) (i) speed of light (in air/vacuum) / speed (of light) in mediumB1 [1]accept c/v but reject c_{i} / c_{r} and speed of incident ray/speed ofrefracted ray\}
(ii) sini/sinr \{do not allow $n_{1} \sin i=n_{2} \sin r$ etc\}B1 [1]
(b) (i) evidence of knowledge that ${ }_{\mathrm{g}} n_{\mathrm{a}}=1 / 1.46(=0.685)$ C1correct substitution into $n=\sin i / \sin r$: e.g. $\sin r=1.46 \times \sin 40 \quad$ C1

$$
\Rightarrow r=69.8^{\circ}(\text { or } 70)
$$

$$
\left\{\text { If } n=1.46 \text { is used, leading to } r=26.1^{\circ} \text { allow } 1 \text { mar }\right\}
$$

A1
(ii) Use of $n=1 / \operatorname{sinC}$: e.g. $\operatorname{sinC}=1 / 1.46-$ C1
$C=\sin ^{-1}(1 / 1.46) \quad$ OR $\sin C=0.685$ or $C=43.2$ (hence $C=43^{\circ}$) A1 [2]
(iii) (Ray will be totally internally) reflected B1B1 [1](c) (i) 1. speed of light in core $=3 \times 10^{8} / 1.46=2.05 \times 10^{8} \mathrm{~m} / \mathrm{s}$
2. speed of light in cladding $=3 \times 10^{8} / 1.40=\mathbf{2 . 1 4 \times 1 0 ^ { 8 }} \mathbf{~ m} / \mathrm{s}$ B1\{if calculations are correct but 2.1 is quoted for either or both givemaximum of 1 mark\}
(ii) Critical angle (much) BIGGER (for core/cladding) M1
change in speed (much) smallerOR /difference in RI smaller (WTTE)A1\{allow first mark for new value of C correctly calculated as 73.3° \}(iii) only rays nearly parallel with axis of optic fibre will undergoTIR (WTTE)B1\{allow "more light escapes" OR "less light is internally reflected"\}less multipath dispersion/smearing OR all rays arrive at thesame time (WTTE)B1\{do not allow "better quality"(WTTE) OR cladding protects core \}QUESTION TOTAL = 14

2(a) ALL correct 3 marks - minus 1 for each error - stopping at ZERO

Definition	Symbol
number of cycles produced per unit time	F
maximum displacement	A
minimum distance between points on the wave moving in phase.	λ
distance travelled by the wave per unit time	V
Time taken for a complete one wave cycle	T

(b) (i) period $=1 / f=1 / 125=0.008 \mathrm{~s}$ \{allow 8 ms , but 8 scores zero\}

B1
(ii) smooth \& consistent wave drawn (judged by eye) (ANY SHAPE!) B1 \{i.e consistent amplitude and period and must start at origin\} amplitude correctly shown: 3 mm above AND 3 mm below time axis B1 correct period shown on graph \{allow ecf from (i)\} B1
(iii) correct phase difference shown (: e.g. $x=3$ (or -3) when $t=0$) B1 same shape, amplitude and period as original wave B1 \{generously judged by eye\}
\{If graphs are not labelled assume graph A is the one through the origin\}
(iv) correct substitution into $v=f \lambda$: e.g. $340=125 \lambda \quad \mathrm{C} 1$
$\lambda=340 / 125=2.72 \mathrm{~m} \quad \mathrm{~A} 1$

3(a) transverse waves: vibrations 90° to wave direction (WTTE) AND longitudinal waves: vibrations parallel to wave direction (WTTE)
(b) similarity: anything valid: e.g. both have wavelength/frequency/vibrations B1 difference: anything valid: e.g. B1
no transfer of energy in standing waves
standing waves have nodes (\&/or antinodes)
neighbouring pts vibrate in phase in standing waves but have a phase diff. in progressive
(c) (i) node = point of no movement/zero displacement (allow amplitude) B1
(ii) antinode = point of maximum movement/max displacement B1

$$
\text { \{for diagrams with no words maximum of } 1 \text { mark\} }
$$ \{for diagrams with no words maximum of 1 mark\}

> (amplitude) \{for diagrams with no wo (d) wavelength $=4 \times 0.12=0.48 \mathrm{~m}$
(e) (labelled) diagram of valid arrangement: i.e for longitudinal waves
wave source stated: e.g. tuning fork/loud-speaker/oscillator/hand moving slinky-
explanation of how the standing wave is formed: e.g.
waves leaving wave sources interfere/superpose with reflected waves B1
\{allow this mark for correct procedure used to produce longitudinal the standing wave\}
node (N) AND antinodes (A) shown in correct positions and labelled anywhere
\{all ecf from cand's defns in (c)\}
\{answers in terms of transfer waves may score a max of 3 marks\}
QUESTION TOTAL = 12

QUESTION TOTAL = 8
Question totals $=14+11+12+8=45$
2823/03 Wave Properties / Experimental Skills 1 Practical Examination

Planning Exercise - Skill P

A1 Diagram of workable circuit. 1i.e. diode, ammeter and power supply
A2 Correct procedure 1
(i.e. measure temperature and measure current, change temperature andmeasure new current - allow graph or table). Method must be workable.
A3 Diode is correctly connected with the correct symbol. 1
B1 Workable method of achieving low temperatures e.g.freezer not fridge. 1
B2 Workable method of achieving high temperatures e.g.oven, sand/fluid+named heat source
B3 Wait for temperature to stabilise 1
C1 Safety precautions: e.g.Use gloves to handle equipment in freezer/oven. 1
C2 Keep potential difference constant 1
C3 Use of milliammeter 1
D12/3 Any further relevant detail. Examples of creditworthy points might be; $\max 3$

1. Use of uninsulated/teflon coated wires inside hot area as plastic melts
2. Use of thermocouple or justified use of mercury thermometer/valid thermometer
3. Calculation of range of ammeter /calculation of value for protective resistor
4. Use of protective /current limiting resistor
5. Detail of measuring devices outside the method of changing temperature
6. Method of keeping V constant across the diode
7. Evidence of preliminary investigation in the laboratory
8. Stated value of Boiling Point for liquid used
R1/2 Evidence of the sources of the researched material 2/1/0
Two or more (vague) references or one detailed reference score one mark. Two or more detailed independent references scores two marks. Detailed references should have page numbers or be internet pages.
Q Quality of written communication 2/1/0
This is for the organisation and sentence construction. Accounts that are rambling, or where the material is not presented in a logical order will not score these marks. Do not award both of these marks if the word count exceeds 750 words.

Question 1

(b) Values of R and $1 / I$.

2/1/0
One mark for R.
One mark for $1 / I$.
(c) Justification of significant figures in R.

2/1/0
Expect to see sf in R is the same or one more than sf in I and V.
No. of sf in R is the same or one more than sf in raw data/I / $\mathrm{V} /$ /meter readings scores 1 mark
Do not credit answers in terms of decimal places or related to graph plotting.
(d) Measurements

2/1/0
Write the number of readings as a ringed total next to the table of results.
Six distinct sets of values for I and V scores 2 marks. Five sets scores 1 mark
Minor help from Supervisor then -1 .
Major help (equipment set up for the candidate) then -2 .
No trend (i.e. random scatter of plots) then -2 .
(d) Column headings in the table

One mark for I and \vee headings correct.
One mark for $1 / I$ and R headings correct. Ignore units in the body of the table.
(d) Consistency of raw readings

One mark for I which must be to the same number of d.p.
One mark for V which must be to the same number of d.p.
(e) Axes - One mark for each correct axis.

Sensible scales must be used. Awkward scales (e.g. 3:10, 6:10, 7:10) are not allowed.
The scales must be labelled with the quantities plotted. Ignore units.
Do not allow more than three large squares without a scale value.
Plotted points must occupy at least half the graph grid in both x and y directions (i.e. 4 x 6 large squares). If false origin, indicate with "FO"
(e) Plotting of points

Count the number of plots and write as a ringed number on the graph grid.
All observations must be plotted. Check a suspect plot. Tick if correct otherwise indicate the correct position.
If the plot is accurate \leq half a small square, then two marks awarded.
One mark if the plot is out by > half a small square and < than one small square.
(e) Line of best fit

Judge by scatter of points about the line.
There must be a fair scatter of points either side of the line of best fit.
Allow line through five trend plots for full credit (if done well).
Do not allow a line through a curved trend.
Quality of results
Judge by scatter of points about the line of best fit.
Six good trend plots on the graph grid needed for mark to be scored.
(f)(i) Gradient

The hypotenuse of the Δ must be \geq half the length of the drawn line. 1 mark.
Read-offs must be accurate to half a small square and ratio correct. 1 mark.
www.Xtr emePaper s.net
(f)(ii) $\quad y$-intercept

Expect the value to be read from the y-axis to an accuracy of half a small square.
Or correct substitution from point on line into $y=m x+c$.
(g) \quad Sensible emf - allow range 3.0 V to 7.0 V , compare to S_{v}

Help from Supervisor then -1.
(h) (i) Candidate's gradient value equated with $E-V_{D}$ (can be implied from working)

Value of V_{D} found using the gradient value
Sig Figs of V_{D} : allow 2 or 3 only
Unit of V_{D}.
(h) (ii) Candidate's y-intercept equated with $-P$ (can be implied from working).

Value of P within the range of $200-240$ using intercept
Sig Figs of P : allow 2 or 3 only.
3/2/1/0
(h) (iii) Calculation of percentage difference/ use of 10% of 220 and appropriate conclusion1/0 Expect to see difference/220 $\times 100$

28 marks available. Write the mark as a ringed total at the bottom of page 7.

Question 2

(b) (ii) Value of F correct 1
(c) $\Delta x=0.1-0.5 \mathrm{~cm} \quad 1$
percentage uncertainty ratio correct. 1
percentage uncertainty x2 1
Note: $\Delta x / x^{2} \times 100$ scores first mark only if Δx is in range.
(d) New value of R smaller than (b)(ii) 1
(e) Inverse proportionality ideas

Method to prove or disprove inverse proportionality
(e.g. determines k values or similar)

1
Appropriate conclusion based on a comparison of k values or similar.
Vague answers will not score this second mark.
No method loses both these marks
(f) Evaluation of procedure

Relevant points must be underlined and ticked with the appropriate marking letter.

	Problem	Solution
A	Difficulty in measuring $x /$ Parallax	Use vernier callipers/clamped ruler/marker on top magnet/eye level
B	Magnets wobble/not vertical	Measure x at different places and take average
C	Large percentage error in measuring x	Increase separation distance/linked to use of stronger magnets
D	Magnets not directly above one another	Use (vertical rules as) guide/straight edge/use a plumb line
E	Magnetic retort stand may affect reading	Use non magnetic retort stand
F	Two readings are not enough to verify the relation(between F and $x)$	Take many readings of a range of F and x and plot a graph relating F and x^{2}

One mark for each box to a maximum of 7 .
No credit for simple 'repeats',
Quality of written communication (i.e. spelling, sentence construction, grammar)
Capital letters at the beginning of sentences, full stops at the end scores one mark
Correct spelling scores one mark. Allow max two errors.

Results

Question 1

I / mA	V / V	$1 / \mathrm{I}^{\prime} \mathrm{A}^{-1}$	R / Ω
9.2	2.04	109	222
6.1	2.74	164	449
4.5	3.10	222	689
12.3	1.35	81.3	110
13.8	1.01	72.5	73.2
7.3	2.46	137	337
11.0	1.62	90.9	147

Plotting a graph of R against 1/I produces:
Gradient $=4.11$
y-intercept $=-225$
$E=4.73 \mathrm{~V}$
gradient $=\left(E-V_{D}\right)$
$V_{D}=4.78-4.11=0.67 \mathrm{~V}$
y-intercept $=-r$
$r=225 \Omega$

Weight of magnet: 0.53 N
$R=0.68 \mathrm{~N}$
$x=2.1 \mathrm{~cm}$
$F=0.15 \mathrm{~N}$
$x^{2}=4.41 \mathrm{~cm}^{2}$
$k=F x^{2}=0.66$
$R=0.60 \mathrm{~N}$
$x=3.3 \mathrm{~cm}$
$F=0.07 \mathrm{~N}$
$x^{2}=10.9 \mathrm{~cm}^{2}$
$k=F x^{2}=0.76$

Since k is not constant F is not inversely proportional to x^{2}

Summary of shorthand notation which may be used in annotating scripts:

SFP Significant figure penalty
ECF Error carried forward
AE Arithmetical error
POT Power of ten error
NV Not valid
NR Not relevant
GAP Insufficient scale markings on an axis
NBL Not best line
FO False origin
NGE Not good enough
BOD Benefit of the doubt
R Point repeated (no further credit)
NA Not allowed
SV Supervisor's value
SR Supervisor's report
OOR Candidate's value is out of range
CON contradictory physics not to be credited
$\checkmark \Delta \quad$ Used to show that the size of a triangle is appropriate (gradient calculation)
$\checkmark_{\text {A1 }} \quad$ Used to show the type of mark awarded for a particular piece of work
\checkmark c Used to show that the raw readings are consistent
$\checkmark_{d} \quad$ Used to show that the raw readings have correct spacing
\checkmark SF Used to show calculated quantities have been given to an appropriate number of significant figures
$\wedge \quad$ Piece of work missing (one mark penalty)
$\wedge \quad$ Several pieces of work missing (more than one mark penalty)
$\leftrightarrow \quad$ Scale can be doubled in the x-direction
$\downarrow \quad$ Scale can be doubled in the y-direction

2824 Forces, Fields and Energy

Mark Scheme
 Page 1 of 3

Abbreviations, annotations and conventions used in the Mark Scheme

Unit Code 2824
/ ; = separates marking points
() = words which are not essential to gain credit
ecf = error carried forward
AW = alternative wording

2825/01 Cosmology

Cosmology 2825/01 Mark Scheme Final Jan 2008
1 a(i) Any 4 from
Reference to Sun in centre/planets orbit Sun 1
References to phases of Venus/ diagram 1
Explanation of crescent shape 1
(Apparent) change in size of Venus 1
Explains apparent size change/ distance changes 1 4
(ii) Any 2 from
Mountains/craters on Moon 1
(Planets) are not perfectly spherical 1
Moons orbiting Jupiter 1
Earth is not at the centre of all orbits 1
Stellar parallax not observed 1
Stars much more distant 1
Sunspots 1
Sun not a perfectly smooth sphere 14
Total 8
2 (a) Gravity attractive force 1
Gravity acts on masses 1
Finite Universe has contractive force/ will collapse 1 3
(b) Any 2 from:
Equal areas swept out in equal times 1
maximum speed at closest approach 1
minimum speed at furthest point 12 max
reason:
kinetic energy converted to potential energy/ variation offorce with distance/ conservation of angular momentum13
(c)(i) star's gravitational field strength stronger for A 1
star's grav. field strength provides centripetal force 1
(ii) at least one arrow drawn along line $A B$ 1
arrows same length and in opposite directions 1
(iii) A accelerates/ B decelerates (ora) 1
reference to perturbations in planetary orbits 1
additional perturbation for Uranus/Saturn/ Jupiter 17

3
(a) the luminosity/brightness of a star as seen from Earth
(b)(i) $0.07 ; 0.05$
(ii) graph: all 4 points plotted correctly graph: best straight line drawn, ignoring origin
(iii) k gradient of graph
$\mathrm{k}=7 \times 10^{-3}$
units of k : $W \mathrm{~m}^{-2} \mathrm{pc}^{2}$
(c)(i) $\log I=-2 \log (d)-2.2$
(ii) correct substitution of log $/$
eg $m=-2.5[-2 \lg (d)-2.2]+a$ $m=5 \lg (d)+(5.5+a)$
calculation of new constant $/ b=5.5+a$
12
(d) $\begin{aligned} & m \\ M & -M=5 \log (d / 10) \\ M & =6.39\end{aligned}$
1
12

Total 14

4

(a) Any 5 from

x axis: temperature 1
x axis: temperature increases right to left 1
y axis: luminosity/ absolute magnitude 1
y axis: luminosity increases from bottom to top 1
$\begin{array}{ll}\text { red giants } & 1\end{array}$
main sequence indicated 1
white dwarf 1
line showing evolution of main sequence star through red giants finishing at white dwarfs

15
(b)(i) mass converted into energy/ $E=\mathrm{mc}^{2} \quad 1$
(ii) energy in joules $=26 \times 10^{6} \times 1.6 \times 10^{-19}=4.16 \times 10^{-12} \mathrm{~J} \quad 1$
fusion frequency $=3.9 \times 10^{26} / 4.16 \times 10^{-12}=9.38 \times 10^{37} \mathrm{~s}^{-1} \quad 1 \quad 1 \quad 2$
Total 8

5 (a) Any 6 from

$$
\text { light from galaxies is red shifted } 1
$$

speed of recession proportional to distance 1
universe is expanding 1
cosmic microwave background radiation(CMBR) 1
peak at 2.7 K 1
uniform intensity in all directions/ very small ripple 1
ratio of helium to hydrogen 1
higher than can be accounted for by stellar fusion alone 1
created during initial high temperatures
(b)(i) $\mathrm{H}=1 / \mathrm{t}$16
Conversion process (alternative conversions allowed) 11Correct answer ($215 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$)($\mathrm{H}=7 \times 10^{-18} \mathrm{~s}^{-1}$ scores 2 max.)
(ii) minimum time so H is a maximum 1
(iii).
velocity from red shift data/ distance from Cepheid variable ref. to change of acceleration with increasing size of Universe 13
Total 13
6
(a) speed of light constant 1
in all inertial reference frames12
(b)(i) $3 \times 10^{8} \mathrm{~ms}^{-1} /$ accept c 1
(ii) $3 \times 10^{8} / 2 \times \pi \times 15 \times 10^{3}$ 1
\max frequency $=3.18 \times 10^{3} \mathrm{~s}^{-1}$ 12
(iii) ref to increase in rest mass/ increase in energy 1
when speed nears c 1
or
centripetal force 1
would exceed inter-particular force of attraction 1
(c) any 5 from
spacecraft with glass sides, moving in straight line 1
spacecraft accelerates 1
light beam moves across craft 1
light beam curved 1
principle of equivalence stated 1
light beam crossing gravitational field lines is deflected 15
(d) change in apparent position of star when light grazes Sun 1experimental evidence for GTR12

7
(a) Situation; 2 observers, clocks, relative motion and time interval defined

Interval measured
Improper observer measures longer time because longer path.

1
Speed of light constant 1

Other detail
1
(b)(i) $t=2 \pi 900 / 0.94 c$
(ii) fraction remaining $=0.25$
(iii) $\sqrt{ }\left(1-v^{2} / c^{2}\right)=0.34 / \quad \mathrm{Y}=2.93$
$\mathrm{t}=\mathrm{t}_{\mathrm{o}} / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right) \quad / \quad \mathrm{t}=\mathrm{y} \mathrm{t}_{\mathrm{o}}$
$t=5.88 \times 10^{-5} \mathrm{~s} \quad$ ecf from b.i.
1
$\begin{array}{lr}\text { (iv) ref. to time dilation } & 1 \\ \begin{array}{ll}\text { 'clocks' / time of stationary particles same rate as lab./ } \\ \text { half life shorter } & 1\end{array}\end{array}$
Total 12

8 (a) gravitational fields/gravity and acceleration
1
produce the same effect / cannot be distinguished
1
(b)(i) spacecraft is accelerating (ora)

1
clock in spacecraft runs faster (ora) 1
(ii) Moon: smaller gravitational field (ora)

1
Clock in spacecraft runs slower (ora)
1
Total 6

2825/02 Health Physics

1(a) (i) (sum of) clockwise moments = (sum of) anticlockwise moments
$b \sin 30 \times 3$ (1) $=80 \times 34+(12 \times 15)$
$b=1116 N$
(ii) $\mathrm{MA}=$ load $/$ effort

$$
\begin{equation*}
=0.072 \tag{1}
\end{equation*}
$$

(b) (i) explanation e.g. perpendicular distance of b to pivot F decreases
so b must increase
(ii) effort increases and load is unchanged so MA decreases

2(a) (i) rays meet before retina
rays refract at both the cornea and lens
(ii) out of focus / blurred
(b) (i) concave / diverging
(ii) near point will be further away
corrective lens diverges the light more / has a negative power ...
... (so) lowers combined power / eye was previously too powerful / refracted the light too much ...
... (so) now not enough power to focus at $\mathrm{N} /$ light can't be refracted enough (to meet on the retina) / as v is constant, $1 / \mathrm{u}$ must be less.
(c) (i) $1 / u+1 / v=1 / f$

$$
\begin{align*}
& 1 / 0.60+1 / 0.019=1 / f=p \tag{1}\\
& p=54.3 D \tag{1}
\end{align*}
$$

(ii) $\mathrm{p}=\frac{1}{\infty}+\frac{1}{0.019}=\frac{1}{f}=p$

$$
\begin{equation*}
\mathrm{p}=52.6 \mathrm{D} \tag{1}
\end{equation*}
$$

(iii) $-54.3+52.6$
$=-1.7 \mathrm{D}$

3 for first 3 marks either labelled diagram or in words
audible frequency range of $20-20000 \mathrm{~Hz}$
most sensitive at $2-3 \mathrm{kHz}$
$10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$ is the lowest detectable intensity
any 5 from
max. sensitivity related to resonance in the auditory canal
at frequencies either side, minimum detectable intensity rises / sounds have to be at a greater intensity to be perceived at the same loudness / meaning of line drawn on graph made clear
any one physical cause of hearing problem, e.g. ear drum insufficiently elastic, wax in ear
any one possible consequence of hearing problem, e.g. narrower range of frequencies / higher threshold intensity
problems can be age-related
background noise so higher threshold intensity / difficult to hear quiet sounds
exposure to loud noise over long periods can damage hearing
discomfort at $120 \mathrm{~dB}\left(1 \mathrm{Wm}^{-2}\right) /$ Pain at $140 \mathrm{~dB} 100 \mathrm{~W} \mathrm{~m}^{-2}$
for a sound source at a greater distance, the intensity is less so the loudness is reduced
to max. 8

4(a) (i) $t=s / v$
$=2.5 \times 10^{-2} / 4.0 \times 10^{3}=6.26 \times 10^{-6} \mathrm{~s}$
$6.25 \times 10^{-6} / 2.0 \times 10^{-6}=3.125 \mathrm{~cm}$
$3.125 \times 2=6.25 \mathrm{~cm}$
(ii) correct peak position i.e. $>6 \mathrm{~cm}$ from first peak and $<6.5 \mathrm{~cm}$
3.125 cm position or just $>3 \mathrm{~cm}$
(b) e.g. scanning foetus owtte (not baby)
safer as no ionising radiation
scanning joints / ligaments
quicker / instant image / cheaper
5(a) (i) $f=140 \mathrm{~J} \mathrm{C}^{-1} \quad(+/-20)$
D=fxX /
$=140 \times 3.5 \times 10^{-4}$
$=4.9 \times 10^{-2}$
Gy or Jkg^{-1}
(ii) e.g. (30 to 40) $30 / 150=0.20$
(b) bone absorbs low-energy photons more than high-energy ones / more with photoelectric effect than with Compton scattering
bone and soft tissue absorb high-energy photons at similar rates
a valid conclusion from one of these, eg with high-energy photons you would need a greater exposure (to absorb the necessary amount in bone) / with highenergy photons soft tissue would be affected just as much as bone

any 6 from

energy deposited $=$ no. of photons absorbed x photon energy
X-rays cause ionisation ...
... which can affect DNA
... which kills cells
... which can cause cancers / mutations / burns
cells are more vulnerable when dividing
cancerous cells divide (more) rapidly (than healthy cells) ...
... so are preferentially targeted
healthy cells recover more quickly
6(a) (i) $\mathrm{I}=\mathrm{P} / \mathrm{A}$

$$
\begin{equation*}
=5.0 / \pi\left(0.125 \times 10^{-3}\right)^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=1.02 \times 10^{8} \tag{1}
\end{equation*}
$$

unit: Wm^{-2}
(ii) reference to eye lens so additional focusing
(b) (i) $\mathrm{E}=\mathrm{hc} / \lambda$

$$
\begin{align*}
& =6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 515 \times 10^{-9} \tag{1}\\
& =3.86 \times 10^{-19} \mathrm{~J} \tag{1}
\end{align*}
$$

(ii) total power $=5.0 \mathrm{~W}$
so power of each type of photon beam is 2.5 W
$2.5 / 3.86 \times 10^{-19}$
$=6.5 \times 10^{18}$
assumption: e.g. zero absorption by filter of green light
(iii) (birth marks are red and) red light is reflected at red surfaces
so less red light absorbed
or alternative argument with green light
(c) any three e.g.
(laser light boils water content of cell so) surgery is sterile
focusing is very fine / much finer than a scalpel
seals blood vessels as it cuts so less blood
so vision is easier during incision
any relevant to a max. of 3 .

2825/03 Materials

1(a) (i) Example of single-crystal structure: e.g. quartz, diamond, silicon;
(ii) Example of polycrystalline structure: e.g. metal or example, alloy or example; (1)
(iii) e.g.Polycrystalline structures contain grain boundaries.
(b) (i) Metallic glass is amorphous;
(ii) All directions of magnetisation are equally possible / Atomic dipoles can align in any direction / easy to reverse magnetism;
Magnetic saturation is easily achieved;
Material has high resistivity / conductivity.
(c) One correct (1); Both correct (2); Both correct but reversed (1).
[At least 3 Xs required in each figure. Only 2 Xs maximum 2. One \mathbf{X} maximum 1.]
(d) No of atoms in $1 \mathrm{~kg}=1 / 1.50 \times 10^{-26}=6.667 \times 10^{25}$

Volume of atom $=(4 \pi / 3) \times\left(1.13 \times 10^{-10}\right)^{3}=6.044 \times 10^{-30} \mathrm{~m}^{3}$
Space occupied by atoms in $1 \mathrm{~kg}=\frac{6.667 \times 10^{25} \times 6.044 \times 10^{-30}}{0.74}$

$$
\begin{equation*}
=5.445 \times 10^{-4} \mathrm{~m}^{3} \tag{1}
\end{equation*}
$$

Density $=1 / 5.445 \times 10^{-4}=1840 \mathrm{~kg} \mathrm{~m}^{-3}$
[Total: 12]

2(a) (i) Separation $=2.8 \times 10^{-10} \mathrm{~m}$
(ii) Maximum attractive force $=8.5 \times 10^{-10} \mathrm{~N}$
(b) For small changes in separation from equilibrium separation graph is a straight line;(1) so extension (or compression) of wire is proportional to stretching (or compressing) force, (complying with Hooke's law).
(c) (i) Radius of atom $=1 / 2$ equilibrium separation $=1.4 \times 10^{-10} \mathrm{~m}$ (e.c.f.)

Cross-section of atom $=\pi\left(1.4 \times 10^{-10}\right)^{2}=6.16 \times 10^{-20} \mathrm{~m}^{2}$

$$
\begin{equation*}
\mathrm{OR}=\left(2.8 \times 10^{-10}\right)^{2}=7.84 \times 10^{-20} \mathrm{~m}^{2} \tag{1}
\end{equation*}
$$

No of atoms in cross-section $=1.8 \times 10^{-7} / 6.16 \times 10^{-20}\left(=2.9 \times 10^{12}\right)$

$$
\mathrm{OR}=1.8 \times 10^{-7} / 7.84 \times 10^{-20}\left(=2.3 \times 10^{12}\right)
$$

(ii) Force to break wire $=2.9 / 2.3 \times 10^{-12} \times 8.5 \times 10^{-10}=2500 / 2000 \mathrm{~N}$ (e.c.f)

3(a) (i) $\mathrm{R}=\mathrm{V} / \mathrm{I}=6.0 / 0.0063=950 \Omega$
(ii) $\sigma=L / R A$

$$
\begin{equation*}
\left.=0.012 /\left(950 \times 7.5 \times 10^{-6}\right) \quad \text { (Allow e.c.f. }\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=1.68 \Omega^{-1} \mathrm{~m}^{-1} \tag{1}
\end{equation*}
$$

[Allow (1) If resistivity calculated correctly.
(b) $\quad v=I / n A e$
$\mathrm{v}_{\mathrm{Cu}} / \mathrm{v}_{\mathrm{Ge}}=(\mathrm{nA})_{\mathrm{Ge}} /(\mathrm{nA})_{\mathrm{Cu}}$
$=4.3 \times 10^{21} \times 7.5 /\left(7.8 \times 10^{28} \times 0.8\right)=5.2 \times 10^{-7}$
(c) In copper increased temperature has no effect on number of electrons / charge carriers in the conduction band;
Increased (lattice) vibrations of copper atoms inhibit electron flow (to a small extent;(1)
Minimal / negligible change in resistance of copper wire;
(1) $\max [2]$

In germanium increased temperature gives more energy to electrons in the valence band;
so more electrons are promoted to the conduction band;
and more holes are left in the valence band;
More conduction electrons / charge carriers in the germanium allow more current
flow (so resistance of the germanium reduced).
(1) $\max [3]$
[Total: 12]
4(a) The temperature at which the resistance / resistivity of a material falls (suddenly) to zero (or wtte).
(b) (i) $I=1 \times 2.1 /\left(1.3 \times 10^{-6} \times 15000\right)=(108 \mathrm{~A})$
(ii) Copper wire must be very thick to carry 110 A without excessive heating; 15000 turns of very thick wire would occupy a huge space.
(1)
(1) [2]

The copper wire solenoid would generate large quantities of heat;
(1) requiring complicated cooling systems / so could not be operated continuously.
(1) $[2]$
(iii) 1 The resistance of the copper is very high compared with the resistance of the superconducting alloy.

2 The temperature of the alloy may rise (by accident) above the transition temperature;
The copper could then act (temporarily) as a conductor until the power is switched off.
Copper conducts excess heat away (from niobium-titanium filaments).
[Total: 9]

5(a) (i) A spinning electron / electron orbiting a nucleus produces a magnetic field;
An atom produces a magnetic field if the resultant fields of all its electrons is not zero.
(ii) A magnetic domain is a region (in a ferromagnetic material) in which all the atomic magnets / dipoles are aligned.
(b) Fig 5.2 to show that domains in the direction of B have grown;
(1)

Domains not in the direction of B have shrunk.
(1) [2]
(c) (i) One curve of correct shape;
(1)

Two curves with correct relative remanences.and coercivities.
Curves correctly labelled.
(1) [3]
(ii) 1 Hard iron retains more magnetism when magnetising field switched off;

Relevant reference to graphs;
(1) [2]

2 Soft iron requires smaller reverse field to reduce magnetism to zero; Relevant reference to graphs;
(1) [2]
[Total:12]

6(a) $E=h c / \lambda$
$\lambda=h c / E=6.6 \times 10^{-34} \times 3.0 \times 10^{8} / 1.3 \times 10^{-19}=1.52 \times 10^{-6} \mathrm{~m}$
(1)
(1) [2]
(b) Laser radiates more power;
(1)

Laser beam is narrower;
(1)

Laser beam is parallel, LED beam is diverging;
so a more powerful beam can be directed into a glass fibre;
Lasers switch much faster than an LED;
so can transmit more information per second;
Laser radiation has a smaller range of frequencies than an LED radiation;
so having a smaller range of speeds in a fibre;
and producing less distortion of a signal.

2825/04 Nuclear and Particle Physics

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
x = incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con $=$ contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

w w w . Xtr emePaper s.net

www.Xtr emePaper s.net

4(a)	${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H}$ ¢ ${ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$	1	[1]
(b)	$\left.\begin{array}{l} \text { reactants mass: } \begin{array}{rl} & 2.0141+3.0160=5.0301 \mathrm{u} \\ \text { products mass: } & 4.0026+1.0086=5.0112 \mathrm{u} \end{array} \\ \text { so mass defect } \end{array} \quad \begin{array}{rl} & =0.0301-5.0112=0.0189 \mathrm{u} \\ & =0.0189 \times 1.66 \times 10^{-27} \mathrm{~kg}\left(=3.14 \times 10^{-29} \mathrm{~kg}\right) \end{array} \quad \begin{array}{rl} \text { energy } & =m c^{2} \\ & =3.14 \times 10^{-29} \times\left(3.00 \times 10^{8}\right)^{2}=2.82 \times 10^{-12} \mathrm{~J} \quad \text { ans. } \end{array}\right\} \begin{array}{r} \text { or } E=0.0189 \times 932(=17.6 \mathrm{MeV})=2.82 \times 10^{-12} \mathrm{~J} \end{array}$	1 1 1 1	[4]
(c)	$\text { mean neutron k.e. }=\frac{80}{100} \times 2.83 \times 10^{-12}=2.26 \times 10^{-12} \mathrm{~J}$	1	[1]
(d)	neutron has smaller ($1 / 4 \times$) mass than ${ }_{2}^{4} \mathrm{He}$; because of conservation of mtm . it has larger $(4 \times)$ speed than ${ }_{2}^{4} \mathrm{He}$; k.e. $=1 / 2 m v^{2}$ or k.e. proportional to v^{2}; deduces that faster moving neutron carries more energy (than ${ }_{2}^{4} \mathrm{He}$); because k.e. proportional to v^{2}, this outweighs greater mass of ${ }_{2}^{4} \mathrm{He}$; remaining energy absorbed by / becomes k.e. of ${ }_{2}^{4} \mathrm{He}$ nucleus;	3 1	[4]
(e)	(surround reactor with) 'lithium blanket'; either lithium nucleus absorbs a neutron or gives nuclear equation: $\text { or }{ }_{3}^{6} \mathrm{Li}+{ }_{0}^{7} \mathrm{Li}+{ }_{0}^{1} \mathrm{n} \quad{ }_{2}^{4} \mathrm{He}+{ }_{1}^{4} \mathrm{He}+{ }_{1}^{3} \mathrm{H},{ }_{1}^{3} \mathrm{H}+{ }_{0}^{1} \mathrm{n} ;$ helium / tritium / product nuclei collide with other lithium nuclei / atoms so energy becomes randomised / energy becomes heat / temperature of lithium rises:	1 1	

2825/05 Telecommunications

Mark Scheme	Unit Code 2825	Session January	Year 2008	Version
Question 1				

(a) High Frequency (or Short wave)

from	3 MHz		
to	30 MHz	(1)	(deduct 1 mark if Hz omitted)

(b) (i) Ionosphere drawn and labelled

Multiple reflections shown between Earth's surface and ionosphere
(ii) HF radio waves reflect from ionosphere back to Earth from where they make multiple reflections in travelling around the Earth
(c) Drawing of dipole aerial (1)

Typical frequency
So typical wavelength
$\mathrm{f}=10 \mathrm{MHz}$
$\lambda=c / f$
$=\quad 3 \times 10^{8} / 10 \times 10^{6}$
$=30 \mathrm{~m}$

Hence dipole length
$=\lambda / 2=15 \mathrm{~m}$
(1)

Mark Scheme	Unit Code 2825	Session January	$\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$	Version
Question 2				Marks

(a) Open copper wires have a huge attenuation so signals do not travel very far before amplification is necessary

Open copper wires radiate into space as an aerial So serious crosstalk occurs in other wires

Open copper wires suffer from serious interference/noise
Because they are simply an aerial picking up signals in their vicinity
Open copper wires have a limited bandwidth over long distances Which limits their information carrying ability
(any one point plus qualification) (1) (1)
(b) Glass is an extremely common substance and is thus cheaper than copper

Optic fibre cables are much thinner and lighter So are easier for technicians to handle

Optic fibre has a much lower attenuation
So allows much longer uninterrupted transmission
Optic fibre has a much higher bandwidth
So has a much greater information carrying ability
Optic fibres are immune to electromagnetic interference
So can be used in noisy environments
Optic fibres do not radiate energy
So there is no crosstalk between adjacent fibres
Optic fibres are very secure
Because they cannot be tapped
Optic fibres are ideal channels for time-division multiplexing
Which uses digital signals in the form of light pulses

Mark Scheme	Unit Code 2825	Session January	Year 2008	Version
Question 3				

(a) (i) Peak output voltage $=2 \mathrm{~cm} \times 2 \mathrm{~V} \mathrm{~cm}^{-1}=4 \mathrm{~V}$
(ii) Peak input voltage $=1 \mathrm{~cm} \times 0.05 \mathrm{~V} \mathrm{~cm}^{-1}=0.05 \mathrm{~V}$
(iii) voltage gain $=4 / 0.05$
(1)
$=80 \quad$ (ignore -ve sign)
(iv) frequency of signal $=1 / 4 \times 5 \times 10^{-3}$
$=50 \mathrm{~Hz}$
(b) The amplifier is inverting because the output is 180° out of phase with the input (or the output is in anti phase with the input or wtte)
(c) $\mathrm{Op}-\mathrm{amp}$ and OV line symbol correctly drawn

Non-inverting input correctly connected to 0 V line (1) Input resistor correctly connected to inverting input

Feedback resistor correctly connected
Ratio of resistors R_{f} / R_{1} equals gain of 80
(1)
(1)

Input and output labelled and resistor values quoted in range 100Ω to $10 \mathrm{M} \Omega$

Mark Scheme	Unit Code 2825	Session January	Year 2008	Version
Question 4			Marks	

(a) (i) AttenuationThe gradual loss in energy / power along a transmission path
caused by electrical resistance / heat losses
radiation losses from cable
(ii) Noise Any unwanted energy added (at random) to signal
(iii) Noise power in a transmission path is more or less constant

If signal is transmitted too far attenuation causes signal power to fall below noise In which case the signal can not (normally) be recovered
(b) Each amplification of 42 dB must just compensate for the 5.6 dB loss every km .

Thus $L=42 / 5.6=7.5 \mathrm{~km}$
(c) (i) Total attenuation $=4 \times 8.5 \times 5.6=190.4 \mathrm{~dB}$
(ii) Total amplification $=4 \times 42=168 \mathrm{~dB}$
(iii) Overall power loss $=190.4-168=22.4 \mathrm{~dB}$

Thus final power output $\mathrm{P}_{\text {out }}$ is given by

$$
\begin{align*}
-22.4 & =10 \log \mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }}=10 \log \mathrm{P}_{\text {out }} / 86 \tag{1}\\
\mathrm{P}_{\text {out }} & =86 \times 10^{-2.24} \\
& =0.495 \mathrm{~W} \tag{1}
\end{align*}
$$

(iv) The power input $P_{\text {in }}$ to the final amplifier is given by

$$
\begin{align*}
42 & =10 \log 0.495 / P_{\text {in }} \tag{1}\\
\mathrm{P}_{\text {in }} & =0.495 \times 10^{-4.2} \\
& =3.12 \times 10^{-5} \mathrm{~W}
\end{align*}
$$

Signal-to-noise ratio $=10 \log 3.12 \times 10^{-5} \mathrm{~W} / 31.2 \mu \mathrm{~W}$ $=0 \mathrm{~dB}$
(d) Such a ratio would make it very difficult to extract meaning from the signal

Mark Scheme	Unit Code 2825	Session January	Year 2008	Version
Question 5	Marks			

Polar orbiting satellites
Diagram drawn showing low Earth orbit over poles with poles marked
Height of orbit is usually a few hundred kilometres
Satellite is moving very fast and completes an orbit in about 90 minutes
It repeatedly passes over one pole and then the other in any orbit
The Earth spins slowly underneath satellite
So every point on Earth is visible for a brief period repeatedly
These satellites are ideal for remote sensing
Military reconnaissance
Meteorology
Oceanography
Cartography
Geological prospecting
(1) (1) (1) (1) (1)

Geostationary satellites
Diagram drawn huge orbit around equator with equator marked
Height of orbit is many thousands of kilometres (36000 km)
Satellite is moving at less than half the speed of polar and completes an orbit in 24 hours
It rotates in synchronism with Earth so appears stationary from any point on Earth
Thus satellite always sees same face of Earth
These satellites are ideal for
Weather monitoring
Microwave links for telephone and Internet traffic
Broadcasting high bandwidth signals over large area
Thus one transmitter on one carrier frequency does the work of thousands of Earth transmitters
(1) (1) (1) (1) (1) (1)

Mark Scheme	Unit Code 2825	Session January	Year 2008	Version
Question 6	Marks			

(a) (i) Any drawing of roughly constant high frequency with amplitude slowly wobbling
(ii) A high frequency carrier
has its amplitude controlled
by the value of a lower frequency information signal
(b) (i) Any drawing of high frequency wobbling at a roughly constant amplitude
(ii) A high frequency carrier has its frequency controlled by the value of a lower frequency information signal
(c) Any noise picked up on AM cannot easily be removed
Information resides in amplitude of AM signal so noise adds to this and pollutes it
Hence AM is inherently noisy on reception
But AM occupies a relatively low bandwidth
So makes more economic use of frequency space
FM contains no information in the amplitude of the carrier
So any noise picked up can be removed (by limiter) in the receiver
Hence FM results in a very clear signal
But FM occupies a relatively large bandwidth (at least for wideband FM)
So can only reasonably be used where there is already a large channel bandwidth
FM has potentially a greater dynamic range than AM
(1) (1) (1)
(1)

2825 Common Question

(a) (i) Energy provided =) Power \times time / Pt / $250 \times 1.7 \times 10^{4}\left(=4.25 \times 10^{6} \mathrm{~J}\right)$

Period of rest $=4.25 \times 10^{6} / 75=5.67 \times 10^{4} \mathrm{~s}=15.7 / 16 \mathrm{hr}$
(ii) Heat / energy is lost (to the surroundings / from the body); at the same rate as it is produced by conversion of energy from food / or wtte.
(b) (i) (Potential energy gained =) mgh / 70 $\times 9.81 \times 800$
$=5.49 / 5.5 \times 10^{5} \mathrm{~J}$
(ii) mass of carbohydrate used to provide $\Delta \mathrm{E}_{\mathrm{p}}=5.5 \times 10^{5} / 1.7 \times 10^{4}=32.3 / 32 \mathrm{~g}$ [If 20% efficiency value used at this stage to give $161 / 160 \mathrm{~g}$ allow 1 mark for (ii) and forward credit 1 mark as first mark in (iii)
(iii) mass used to produce heat due to 20% efficiency $=4 \times 32.3=129.2 \mathrm{~g} / 130 \mathrm{~g}$ use of 20% efficiency value to calculate 161 / 160 g
mass used in maintaining base metabolic rate $=1.5 \times 3600 \times 75 / 1.7 \times 10^{4}$ $=23.8 / 24 \mathrm{~g}$
total mass used $=32.3+129.2+23.8 / 161.5+23.8=185.3 \mathrm{~g} / 190 \mathrm{~g}$ (e.c.f.)
(c) (i) $\mathrm{Q}=\mathrm{mc} \Delta \theta / \Delta \theta=\mathrm{Q} / \mathrm{mc} /$ correct substitution in either expression

In $1 \mathrm{~s}, \Delta \theta=900 / 65 \times 4200=0.0033 \mathrm{~K}$
(1)

OR Use $\Delta \theta / \Delta t=(\Delta \mathrm{Q} / \Delta \mathrm{t}) / \mathrm{mc}(1)=0.0033 \mathrm{~K} \mathrm{~s}^{-1}(1)$
(ii) Comparison of body and external temperatures;

Comment on direction of heat flow.
(1)
(1)
[2]
(iii) Heat to be lost in 2.5 hours $=900 \times 2.5 \times 60 \times 60\left(=8.1 \times 10^{6} \mathrm{~J}\right)$
mass of water evaporated $=8.1 \times 10^{6} / 2.4 \times 10^{6}=3.4 \mathrm{~kg}$
(1)
[2]
(iv) To avoid dehydration / replace fluid loss from body;

Drink a large quantity of water;
(1)
(1)
[2\}
One of each following reason + action but no mark for action alone.
To maximise ability of water vapour to escape from the body surface;
Wear loose clothing.
To allow easy transport of water away from the skin;
(1)

Wear porous clothing.
(1)

To increase rate / amount of evaporation / cooling of body;
Pour water over body during race.
(1)

To provide energy during run;
Eat carbohydrate before / during race.
To minimise heating by Sun / avoid sunburn;
Shield body from direct sunlight.
(1) $\max [2]$

2826/01 Unifying Concepts in Physics

1(a) $N=[k] \mathrm{m} \mathrm{m} \mathrm{s}^{-1}$
each item correct
unit of $\mathrm{k}=\mathrm{N} \mathrm{s} \mathrm{m}^{-2}$ or equivalent e.g. $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
[1]
[1] $\{2\}$
(b) (i) Drag upwards equal and opposite to weight downwards
(ii) \quad drag $=k r v, \quad$ weight $=4 \pi r^{3} \rho g / 3$

$$
\begin{equation*}
\therefore v=\frac{4 \pi \rho g}{3 k} r^{2} \text { hence } v \propto r^{2} \tag{1}
\end{equation*}
$$

(c) $k \times 0.001 \times 8.7=4 \pi \times(0.001)^{3} \times 1000 \times 9.81 / 3$
$k=\frac{4 \pi \times 10^{-3} \times 9.81}{3 \times 8.7}$
$k=4.72 \times 10^{-3}\left(\mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}\right)$
(d)

terminal			
velocity			
$v / \mathrm{m} \mathrm{s}^{-1}$		\quad	curve to zero
:---			
accuracy - not			
a square differe			

drop radius $r / 10^{-3} \mathrm{~m}$
(e) there must be an upward force
therefore air (under cloud) must be rising rising air will give glider lift other relevant point
[1]
[1]
[1]
[1] MAX 3
$\{3\}(14)$
[1]
[1]
(ii) $1.29 \times 10^{14} \times 1.2 \times 10^{3} \times 365 \times 24 \times 3600$
[1]
[0] $\{3\}$
(b) $4.9 \times 10^{24} / 3 \times 10^{20}=1.6(3) \times 10^{4}$
[1] $\{1\}$
(c) (i) panel angled so that sunlight strikes panel at right angles
(ii) e.g. cloudy skies
angle cannot easily be kept at right angles to rays
night time
fog or mist
dirt accumulating on surface 1 mark for each to MAXIMUM 3
[3]
(iii) to provide energy when panel is not being illuminated
[1]
OR to enable it to provide more than 80 W when required
(d) (i) output is $120 \mathrm{~W} \mathrm{~m}^{-2}$ so 80 W from $0.67 \mathrm{~m}^{2}$
(ii) $80 \mathrm{~W} \quad 12 \mathrm{~V} \quad$ maximum power = maximum current $\times \mathrm{V}$
maximum current $=80 / 12=6.7 \mathrm{~A}$
(iii) $1000 \mathrm{~Wh} / 20 \mathrm{~W}=50$ hours
(iv) $£ 500$ would buy 5000 kWh [1]
time $=50 \times 5000=250000$ hours
[1] $\{6\}$
(allow full credit for use of $£ 400$ giving 200000 hours)
(e) e.g. (30 years) is a long time for it to have to work
so unlikely to be economic unless there are special circumstances
allow alternative answers such as 'no greenhouse gases' or 'use where there is no mains supply of electricity'

3(a) (i) a particular type of nucleus
(ii) two atoms with the same number of protons (in their nucleus) but with different numbers of neutrons
(iii) an atom with a different number of electrons from the number of protons [1] \{3\} OR the equivalent in terms of gaining or losing an electron
(b) (i) $1.6 \times 10^{-19} \times 5.4 \times 10^{7}=8.64 \times 10^{-12} \mathrm{~A}$
(ii) use of 1 mol having 6.02×10^{23} atoms 1 mol is 39 gram $\begin{array}{lc}\text { mass }=0.039 / 6.02 \times 10^{23} & =6.48 \times 10^{-26} \mathrm{~kg} \\ \text { OR using } 18 \mathrm{e}+19 \mathrm{p}+20 \mathrm{n} & \text { Allow } 2 / 3 \text { for } 6.48 \times 10^{-23} \mathrm{~kg}\end{array}$
(c) force on particle = Bqv
$=$ mass \times acceleration $=m \times v^{2} / r$
$r=\frac{m v}{B q}=\frac{6.48 \times 10^{-26} \times 5 \times 10^{5}}{0.84 \times 1.6 \times 10^{-19}}$
$=0.24 \mathrm{~m} \quad$ e.c.f from (b) gives 240 m
[1] $\{4\}$
(d) there must be some ions with a larger mass
another isotope of potassium
[1] $\{2\}(13)$

4(a) (i) allow anything in audible range
(ii) ring around $3 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$
(iii) correct calculation (250 Hz and $300 \mathrm{~m} \mathrm{~s}^{-1}$ give 1.2 m)
(b) diffraction as the spreading of a wave
interference caused by superposition
diagram or clear explanation of double slit arrangement
diffraction through slits allows the necessary overlap for interference to occur

5(a) e.g. discharge of a capacitor
radioactive decay
cooling a hot object (in a draught) 2 required 1 mark each
[2] $\{2\}$
absorption of gamma radiation
(b) values taken from the graph are required
e.g. $4.8->2.4$ on y-axis requires $0->2.3$ on x-axis
$2.4->1.2$ is $2.3->4.6$ on x-axis
i.e. constant fraction of fall for equal times give Fig. 5.1(a) the exponential

Fig. 5.1(b) is asymptotic on both axes so cannot be exponential $O R$ is an inverse square law

Fig. 5.1(c) does not fit the half life pattern
For both Fig. 5.1 (b) and Fig. 5.1 (c) the marking can be 1 mark for the idea and one mark for the evidence
(c) (i) for equal intervals (of time) on the x-axis there will be a constant multiplying factor OR could be done by the equation $y=A e^{+k t}$
(ii) e.g. compound interest, biological growth (in early stages) spread of epidemic (in early stages) chain reaction (in early stages)

2826/03 Experimental Skills 2 Practical Examination

Question 1

(a) (i)	Position of Centre of gravity Value for OG; one mark. (this should be between 25 and 35 cm , but check supervisor's notes first).	1
(a) (ii)	Calculation of h . Correct value for $\mathrm{h},=\mathrm{OX}-\mathrm{OG}$; one mark. Allow incorrect s.f.	1
(b) (i)	Period of oscillation. Raw times $>10 \mathrm{~s}$; one mark. Allow 5 osc at $\approx 8 \mathrm{~s}$. as a $B O D$ (Repeats credited in b (ii))	1
(b) (ii)	Readings Write the number of readings as a ringed total by the results table. 6 sets of values of T and h score 2 marks, 5 sets 1 mark, 4 sets score zero. Raw readings for OX and time; one mark. Accept T if no evidence of $n t$. If help is given, then lose one mark. Please indicate when help has been given to a candidate by writing SR at the top of the front page of the candidate's script. Also, please indicate the type of help that has been given by writing a brief comment by the table of results.	3/2/1/0
(b) (ii)	Repeated Readings (not if all repeats are identical)	1
(b) (ii)	Quality Good quality of results (as judged by scatter of points). If no minimum, zero marks	2/1/0
(b) (ii)	Column headings. All columns for must be headed with a quantity and correct unit. There must be some distinguishing mark between the quantity and the unit. Please \checkmark each correct column heading to show that it has been seen.	1
(b) (ii)	Consistency of raw readings in the table of results. Applies to time and distance OX (or h). Time to 1 or 2 d.p. Distance to nearest mm . Allow 3 dp if raw t not given \& $n T$ is in b (i) Values in the table must agree with the unit at the head of the column. One mark for time column; one mark for distance column. Please \checkmark each column checked.	2/1/0
(c) (i)	Axes. Each axis must be labelled with a quantity. Ignore unit. One mark for each axis. Scales much be such that the plotted points occupy at least half the graph grid in both the x and y directions. Do not allow more than 3 large squares between scale markings. Do not allow awkward scales (e.g. 3:10, 6:10, 7:10, 8:10 etc.).	2/1/0

(c) (i)	Plotting of points. Count the number of plots on the grid and write this value by the line and ring it. Do not allow plots in the margin area. The number of plots must correspond with the number of observations. Do not award this mark if the number of plots is less than the number of observations. Check one suspect plot. Circle this plot. Tick if correct. If incorrect then mark the correct position with a small cross and use an arrow to indicate where the plots should have been. Allow errors up to and including half a small square. Do not allow "blobs".	1
(c) (ii)	Curve of best fit. There must be a reasonable balance of points about the curve. This mark can only be awarded if a curve has been drawn through a curved trend. Do not allow thick ($\geq 1 \mathrm{~mm}$) or 'hairy' lines. Allow one stray point.	1
$\begin{aligned} & \text { (c) } \\ & \text { (iii) } \end{aligned}$	Measurement of gradient of tangent. Read-offs must be accurate to half a small square and the ratio must be correct. Please indicate the vertices of the triangle used by labelling with Δ. No marks lost for triangle size. One mark for quality of tangent to curve (Tangent must be of reasonable length i.e. at least 10 cm long.) No tangent loses all three marks. One mark for read-offs and ratio correct. One mark for negative value given for negative gradient.	3/2/1/0
(d)	Values for $T_{\text {min }}$ and h; one mark Use of correct formula; i.e. $\mathrm{g}=8 \mathrm{~T}^{2} \mathrm{~h} / \mathrm{T}^{2}$. One mark (i.e. $g=79.0 \mathrm{~h} / \mathrm{T}^{2}$) Correct calculations, following from correct formula, to be checked (be wary of $g=9.81 \mathrm{~N} / \mathrm{kg}$); one mark (Allow use of cm to give g in $\mathrm{cm} \mathrm{s}^{-2}$) Units for $\mathrm{g}, \mathrm{N} / \mathrm{kg}^{2}$ or $\mathrm{m} \mathrm{s}^{-2}\left(\mathrm{or} \mathrm{cm} \mathrm{s}{ }^{-2}\right)$; one mark Do not allow $\mathrm{N} / \mathrm{kg}^{2}$ or ms^{-2}, if no evidence of cm conversion to m . Significant figures for g , 2 or 3 sf; one mark (any final rounding must be correct).	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
(e)	$\dot{\mathrm{T}^{2}} \mathrm{~h}$ (y-axis) plotted against h^{2} (or $4 \pi^{2} h^{2}$) (x-axis). One mark (NOT T${ }^{2}$ against h). Gradient is $4 \pi^{2} / \mathrm{g}$, hence g . One mark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(f)	Comment on methods for g. Straight line graph more accurate, because all values used; one mark, Because difficult to get an accurate minimum from curve; one mark	2/1/0
	Total	[28]

Question 2 - Lenses. Mark Scheme

2 (b)	Measurement of u_{1} and v_{1}. (If $f=10 \mathrm{~cm}$ and $u=$ about 12 cm , v will be about 60 cm). Allow s.f. errors.	1
2 (c)	Sensible figure for $\Delta \mathrm{v}$, e.g. $\pm 0.5 \mathrm{~cm}$ or $\pm 2 \mathrm{~cm}$, one mark. Correct ratio and x 100 , one mark. No need to check arithmetic	2
2 (d)	Measurements of u_{2} and $v_{2} . u_{2}$ should increase; v_{2} should decrease.	1
2 (e)	One mark for ratio idea, i.e. $u v /(u+v)$ is constant, or calculation of k 's One mark for conclusion that $u v \propto(u+v)$ which follows from the reasoning (only if k values are within 10% of each other). Vague 'uv might be proportional to ($u+v$)' or ' $u v$ is not proportional to ($u+v$)' does not score this second mark. AE loses first mark but second mark allow ecf.	2/1/0
2 (g)	Evaluation of procedure. Relevant points must be underlined and ticked. Some of these might be (in the form of problem followed by solution):	
1	P. 2 sets of u and v not enough.	
2	S. Measure more than 2 sets of u and v, and plot a graph	
3	S. plot a graph of uv against $(u+v)$.	
4	P. One measurement of each pair of values of u and v is not enough	
5	S. Repeat readings should be taken, and averaged.	
6	P. Difficult to measure u and v accurately to centre of lens, or bulb filament.	
7	S. Measure lens (or bulb) thickness, and add t/2 to readings.	
8	S. Use optical bench, with explanation / clamp ruler	
9	P. vis difficult to measure, because of the range within which it is in focus.	
10	S. Take the mid-point of the range.	
11	P/S Parallax error; use set square or mirror.	
A	The stop gives a sharper image, or wtte, (advantage),	
B	The stop increases the depth of field or wtte (advantage), but the image is less bright (disadvantage).	
12	P/S The image has coloured fringes, and these are reduced by the stop. Do not allow brighter bulb, darken windows etc.	
2 (g)	Quality of written communication (SPAG)	2
	Total 16 marks	

www.Xtr emePaper s.net

Planning Exercise Mark Scheme - Sound \& Windows

A1	Labelled diagram showing workable arrangement of apparatus e.g. signal generator (or wtte), speaker, one mark microphone connected to CRO, one mark	2/1/0
A2	Correct procedure. Compare input and output volumes for a certain frequency and air gap. Change frequency and repeat for several different frequencies in audible range, then repeat for different spacings, one mark	2/1/0
A3	Sensible construction of specimen window in laboratory, e.g sensible size, use spacers, or slots in box.	1
B1	Use of time base to measure frequency. i.e. connect to y-plates, select time-base (or time scale), measure period, one mark. Hence frequency $=1 / T$, one mark.	2/1/0
B2	Measurement of sound amplitude, i.e. amplitude of CRO trace, in volts	1
D 1 2 2 3 4 5 5	Any further relevant detail, e.g. Quiet room needed, or sound proof box / best outside to avoid reflections. Sensible choice of air gaps. $5 \mathrm{~mm} \leq$ gap $\leq 5 \mathrm{~cm}$. Vernier or micrometer (internal calipers) to measure air gap. Non-rigid spacers, so that sound is not conducted. Microphone and speaker close to but not touching glass, e.g. sensible distance stated, $\leq 5 \mathrm{~cm}$ Evidence of preliminary work. Expected results presented graphically, labelled axes. (i) Wider gaps give better sound-proofing, (ii) frequency makes little difference). Frequency response of speaker and microphone Difficulties associated with standing waves/resonance	4/3/2/1/0
R	Evidence of research of material i.e. at least two detailed references from different sources have been given (i.e. chapter and/or page numbers must be given). Allow Internet pages to be sourced. Two or more vague references (i.e. no chapter or page references), one mark. One detailed reference scores one mark. One vague reference scores zero.	2/1/0
Q	$\mathbf{2}$ marks are reserved for quality of written communication (organisation). Rambling and poorly presented material cannot score both marks.	2/1/0

Underline and tick each relevant point in the body of the text. The ticks must have a subscript showing which marking point is being awarded (e.g. $\checkmark_{\text {A2 }}$).

Q. 2 Lenses - Results

$u_{1}=12.0 \mathrm{~cm}$ and $\mathrm{v}_{1}=62 \mathrm{~cm} \pm 1 \mathrm{~cm}$
then
$\mathrm{u}_{2}=15.0 \mathrm{~cm}$ and $\mathrm{v}_{2}=30.5 \mathrm{~cm} \pm 0.5 \mathrm{~cm}$
$\mathrm{k}_{1}=\mathrm{u}_{1} \mathrm{v}_{1} /\left(\mathrm{u}_{1}+\mathrm{v}_{1}\right)=10.05(4) \quad \mathrm{k}_{2}=\mathrm{u}_{2} \mathrm{v}_{2} /\left(\mathrm{u}_{2}+\mathrm{v}_{2}\right)=10.05(5)$
within 0.05\%

Grade Thresholds

Advanced GCE Physics A (3883/7883) January 2008 Examination Series

Unit Threshold Marks

Unit		Maximum	A	B	C	D	E	U
2821	Raw	60	42	37	32	27	23	0
	UMS	90	72	63	54	45	36	0
2822	Raw	60	45	40	35	31	27	0
	UMS	90	72	63	54	45	36	0
2823A	Raw	120	97	86	75	65	55	0
	UMS	120	96	84	72	63	54	0
2823B	Raw	120	97	86	75	65	55	0
	UMS	120	96	84	72	63	54	0
2823C	Raw	120	92	83	74	65	56	0
	UMS	120	96	84	72	63	54	0
2824	Raw	90	62	55	48	42	36	0
	UMS	90	72	63	54	45	36	0
2825A	Raw	90	63	57	51	45	40	0
	UMS	90	72	63	54	45	36	0
2825B	Raw	90	65	59	53	48	43	0
	UMS	90	72	63	54	45	36	0
2825C	Raw	90	65	57	50	43	36	0
	UMS	90	72	63	54	45	36	0
2825D	Raw	90	62	55	48	42	36	0
	UMS	90	72	63	54	45	36	0
2825E	Raw	90	64	57	50	44	38	0
	UMS	90	72	63	54	45	36	0
2826A	Raw	120	92	81	70	60	50	0
	UMS	120	96	84	72	63	54	0
2826B	Raw	120	92	81	70	60	50	0
	UMS	120	96	84	72	63	54	0
2826C	Raw	120	89	80	72	64	56	0
	UMS	120	96	84	72	63	54	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 3}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 3}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:
w w w .Xtr emePaper s.net

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 8 3}$	13.2	33.0	56.3	78.9	95.1	100	334
$\mathbf{7 8 8 3}$	12.8	47.4	70.5	87.2	97.4	100	89

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

