Physics-aware and Risk-aware Machine Learning for Power System Operations

Hao Zhu The University of Texas at Austin

(haozhu@utexas.edu)

PSERC Webinar March 29, 2022

Presentation Outline

- A primer on supervised learning
- Three machine learning (ML) examples
 - Topology-aware learning for real-time market
 - Risk-aware learning for DER coordination
 - Scalable learning for grid emergency responses

• Summary

Power of Al

- Unprecedented opportunities offered by diverse sources of data
 - Synchrophasor and IED data
 - Smart meter data
 - Weather data
 - GIS data,

How to harness the power of ML to tackle problem-specific challenges in real-time power system operations?

Mar 15, 2019, 07:37am EDT | 21,849 views

How AI Can And Will Predict Disasters

Naveen Joshi Former Contributor COGNITIVE WORLD Contributor Group ⁽⁾ Al

Al could put a stop to electricity theft and meter misreadings

TECHNOLOGY 23 September 2017

SUSTAINABLE ENERGY

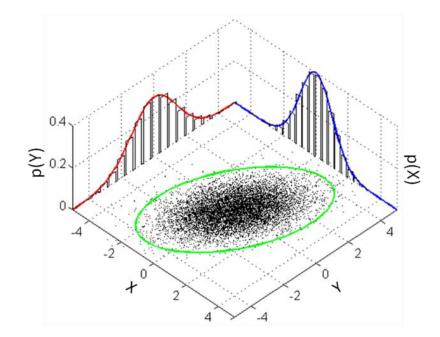
Combining A.I. and human knowledge could transform how power grids work

PUBLISHED FRI, SEP 27 2019+4:55 AM EDT | UPDATED FRI, SEP 27 2019+4:55 AM EDT

A primer on supervised learning

▶ Unknown joint distribution for $(x, y) \in \mathbb{R}^d \times Y$

- Classification: $Y = \{\pm 1\}$ or $Y = \{1, \dots, C\}$
- Regression: $Y = R^b$
- > Given examples, aka, data samples { (x_k, y_k) }
 - x_k : input **feature**
 - *y_k*: output **target/label**
- > Without $y_k =>$ unsupervised or semi-supervised learning
- Samples from dynamical systems => reinforcement learning



Learning problem formulation

Soal: construct a function $f: \mathbb{R}^d \to Y$ to map $x \to y$

- *Predicted* value $\hat{y} = f(x) \in Y$ to be close to y
- Loss function: $l(\hat{y}, y) = l(f(x), y) \ge 0$
- For regression, use L_p norms $l(\hat{y}, y) = ||\hat{y} y||_p$

For classification, cross-entropy loss, hinge loss, etc.

$$f^{\star} = \underset{f \in F}{\operatorname{arg\,min}} \quad \mathbb{E}_{(x,y)} \ l(f(x),y) \quad \stackrel{\text{Sample Mean}}{\longrightarrow} \quad \hat{f} = \underset{f \in F}{\operatorname{arg\,min}} \quad \frac{1}{K} \sum_{k=1}^{K} l(f(x_k), y_k)$$

Excellent generalization (error bounds on $f^{\star} - \hat{f}$) performance?

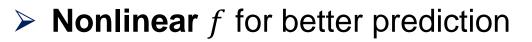
Vidal, Rene, et al. "Mathematics of deep learning." *arXiv preprint arXiv:1712.04741* (2017). Bartlett, Peter L., Andrea Montanari, and Alexander Rakhlin. "Deep learning: a statistical viewpoint." *arXiv preprint arXiv:2103.09177* (2021).

Parameterized models for *f*

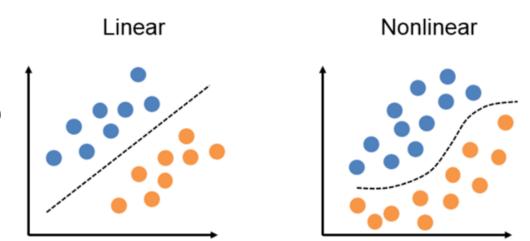
Impossible to search over any function f => parameterization

> Linear $f(x) = w^{\top}x + w_0$ parameterized by $w \in \mathbb{R}^d$ and $w_0 \in \mathbb{R}$

- A simple model structure to use
- Linear regression (LS, LAV)
- Linear classification (logistic regression or SVM)

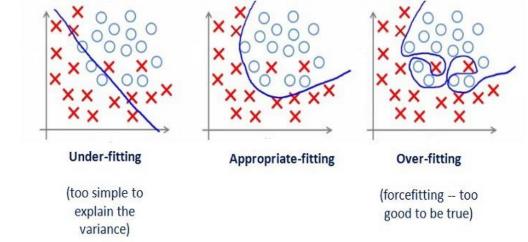


- Polynomials, Gaussian Processes (GPs), etc.
- Kernel learning: $f \in \mathcal{H}$ (Hilbert space for some kernel)
- Neural networks (NN): layers of nonlinear functions.



Regularization

- > Data overfitting (losses $\rightarrow 0$)
 - Features redundant: e.g., both x_i and $-x_i$



- Models too complex: high-order polynomials, deep neural networks
- We can fit any K data samples perfectly using a (K-1)-th order polynomials

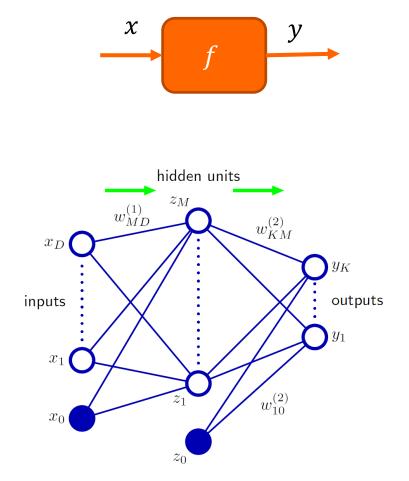
$$\hat{f} = \underset{f \in F}{\operatorname{arg\,min}} \quad \sum_{k=1}^{n} l(f(x_k), y_k) + \lambda \cdot \operatorname{Reg}(f)$$

norm of parameter *w*

- Hyperparameter $\lambda > 0$ balances between data fitting and model complexity
- L_2 norm/Ridge: small values, or smooth using $\sum_i (w_i w_{i-1})^2$
- L₁ norm/Lasso: sparse w (much more zero entries)

Deep (D)NN architecture

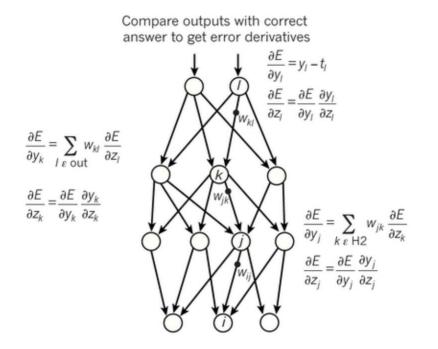
- > Perceptron (single-layer NN): convert $f(x) = w^{\top}x$ to a nonlinear function by $f(x) = \sigma(w^{\top}x)$
 - nonlinear activation $\sigma(\cdot)$: sigmoid, Tanh, ReLU
- NNs: basically multi-layer perceptron (MLP)
 - Layered, feed-forward networks (input x, output y)
 - Hidden layers also called neutrons or units
 - 2-layer NNs can express all continuous functions, while for any nonlinear ones 3 layers are sufficient



Gradient descent (GD) via backpropagation

$$\hat{w} = \underset{w}{\operatorname{arg\,min}} \quad E(w) := Loss(w) + \lambda Reg(w)$$

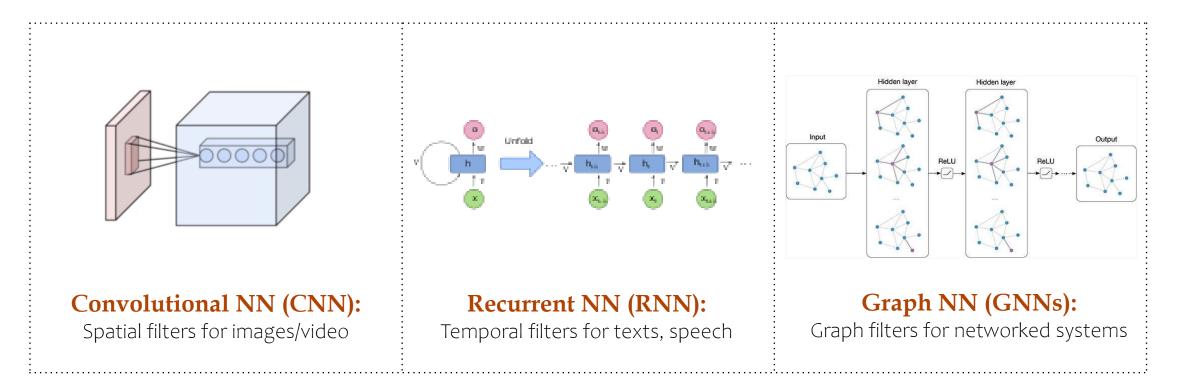
- Nonlinear f => nonconvex opt. problem
- GD-based learning $w \leftarrow w - \alpha \nabla E(w)$
- In practice, local minima may not be a concern [LeCun, 2014]
- Efficient computation of gradient in a backward way using the "chain rule"



Variations of DNN

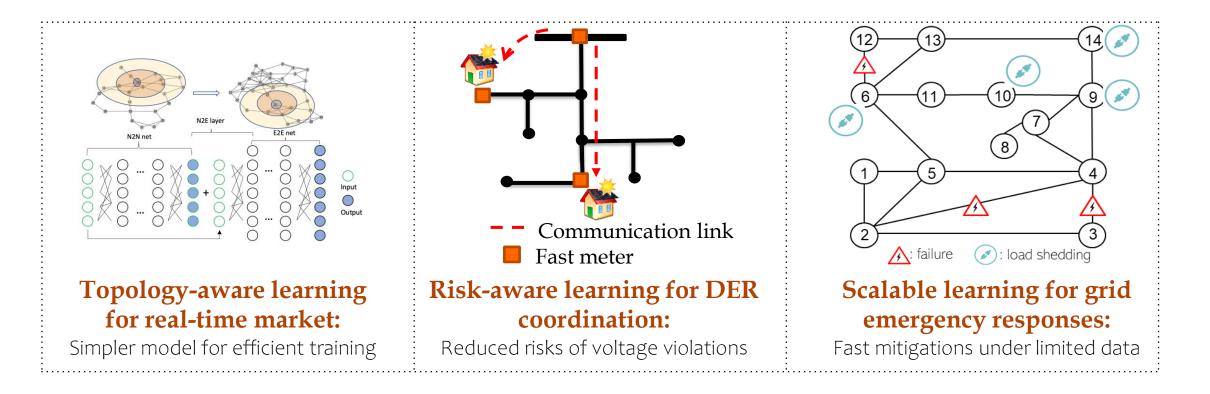
Fully-connected NN (FCNN): weight parameters grow with data size

Idea: reuse the weight parameters, aka, filters!



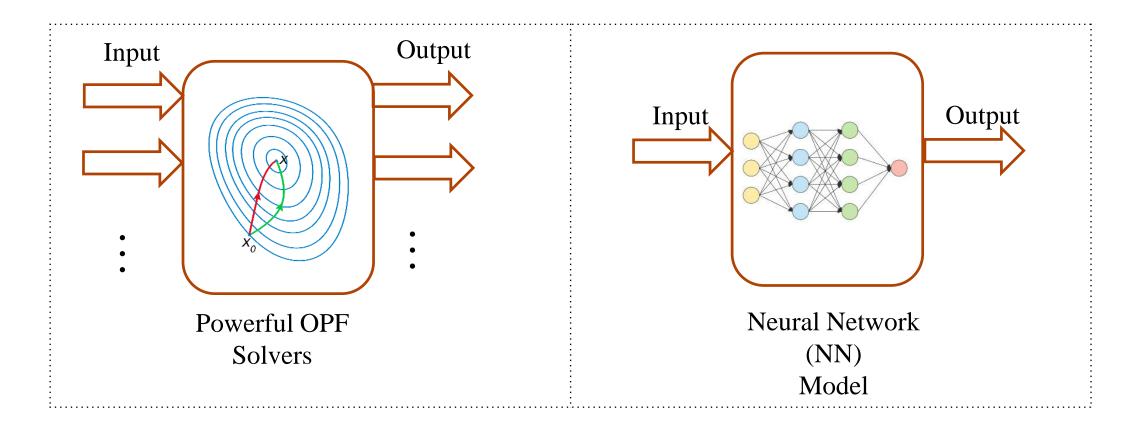
Overview

We visit three problems that use domain knowledge to better design NN models that are physics-informed and risk-aware



PART I: TOPOLOGY-AWARE LEARNING FOR REAL-TIME MARKET

ML for optimal power flow (OPF)



Real-time computation of the OPF solutions by learning the I/O mapping

Existing work and our focus

- Integration of renewable, flexible resources increases the grid variability and motivates real-time, fast OPF via training a neural network (NN)
 - Identifying the active constraints (for dc-OPF) [Misra et al'19][Deka et al'19]
 - Directly mapping the ac-OPF solutions [Guha et al'19]
 - Warm start the search for ac feasible solution [Baker '19] [Zamzam et al'20]
- Address the uncertainty in stochastic OPF [Mezghani et al'20]
- Connect to the duality analysis of convex OPF [Chen et al'20] [Singh et al'20]

Focus: Exploit the grid topology to *reduce the NN model complexity*

OPF for real-time market

- > Power network modeled as a graph $G = (\mathcal{V}, \mathcal{E})$ with *N* nodes
- > ac-OPF for all nodal injections

 $\min_{\mathbf{p},\mathbf{q},\mathbf{v}} \quad \sum_{i=1}^{N} c_i(p_i)$ s.t. $\mathbf{p} + j\mathbf{q} = \operatorname{diag}(\mathbf{v})(\mathbf{Y}\mathbf{v})^*$ $\underline{\mathbf{V}} \leq |\mathbf{v}| \leq \overline{\mathbf{V}}$ $\underline{\mathbf{p}} \leq \mathbf{p} \leq \overline{\mathbf{p}}$ $\underline{\mathbf{q}} \leq \mathbf{q} \leq \overline{\mathbf{q}}$ $\underline{f}_{ij} \leq f_{ij}(\mathbf{v}) \leq \overline{f}_{ij}, \quad \forall (i,j) \in \mathcal{E}$

• Nodal input:

 $\mathbf{x}_i \triangleq [\bar{p}_i, \underline{p}_i, \bar{q}_i, \underline{q}_i, \mathbf{c}_i] \in \mathbb{R}^d$

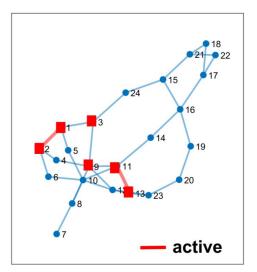
power limits + costs

- Nodal output: optimal p/q ?
- Fully-connected (FC)NN

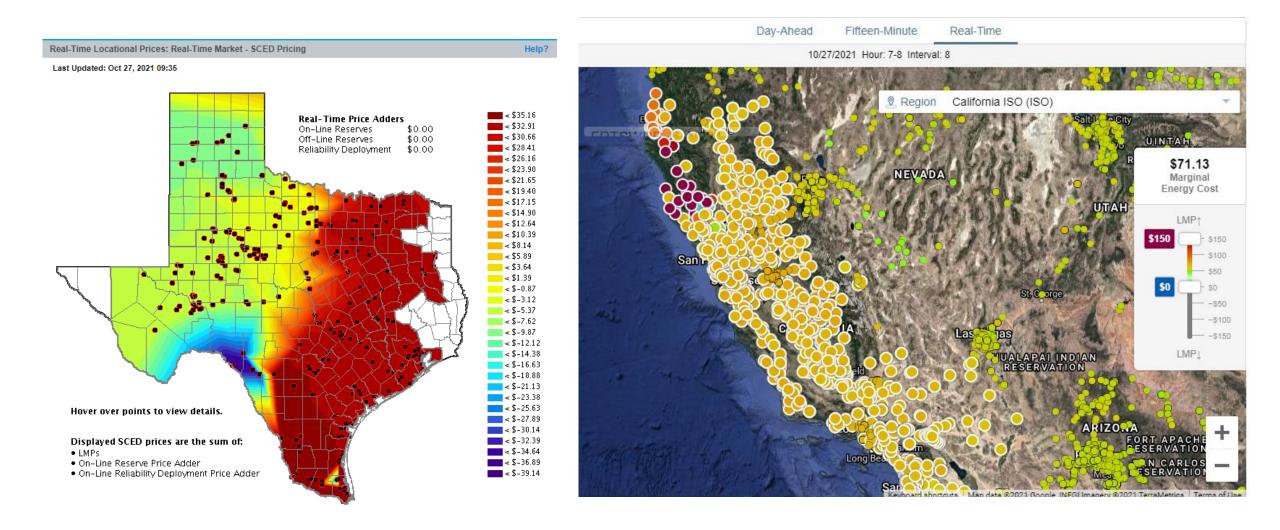
FCNN layer has $\mathcal{O}(N^2)$ parameters!

Topology dependence

- [Owerko et al'20] uses graph learning to predict p/q
- Locational marginal price (LMP) from the dual problem
 - Strongly depends on the graph topology and congested lines
 - ISF (injection shift factor) matrix **S** from graph Laplacian



LMP map with locality



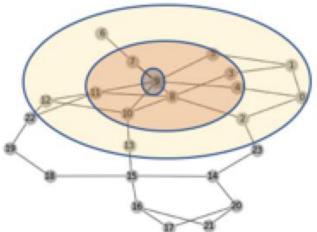
Graph NN (GNN): topology-based filtering

> Input formed by nodal features as rows $\mathbf{X}^0 = \{\mathbf{x}_i\} \in \mathbb{R}^{N imes d}$

- > GNN layer *l* with learnable parameters $\mathbf{X}^{\ell+1} = \sigma \left(\mathbf{W} \mathbf{X}^{\ell} \mathbf{H}^{\ell} + \mathbf{b}^{\ell} \right)$
 - Topology-based graph filter $\mathbf{W} \in \mathbb{R}^{N imes N}$

 $[\mathbf{W}]_{ij} = 0$ if $(i, j) \notin \mathcal{E}$

- Feature filters $\{\mathbf{H}^{\ell}\}$ explore higher-dim. mapping



If lines are sparse $|\mathcal{E}| \sim \mathcal{O}(|\mathcal{V}|)$ and let $D = \max_t \{d_t\}$, then the number of parameters for each GNN layer is $\mathcal{O}(N + D^2)$

Compared to FCNN $O(N^2)$

Hamilton, William L. "Graph representation learning." 2020. https://www.cs.mcgill.ca/~wlh/grl_book/

GNN for predicting LMPs

- LMP prediction [Ji et al'16, Geng et al'16]
- GNN-based LMP can determine the optimal p/f

$$\mathbf{X} \xrightarrow{f(\mathbf{X}; \boldsymbol{\theta})} \hat{\boldsymbol{\pi}} \xrightarrow{\mathrm{dispatch}} \hat{\mathbf{p}}^*(\hat{\boldsymbol{\pi}}) \xrightarrow{\mathbf{S}} \hat{\mathbf{f}}^*(\hat{\boldsymbol{\pi}})$$

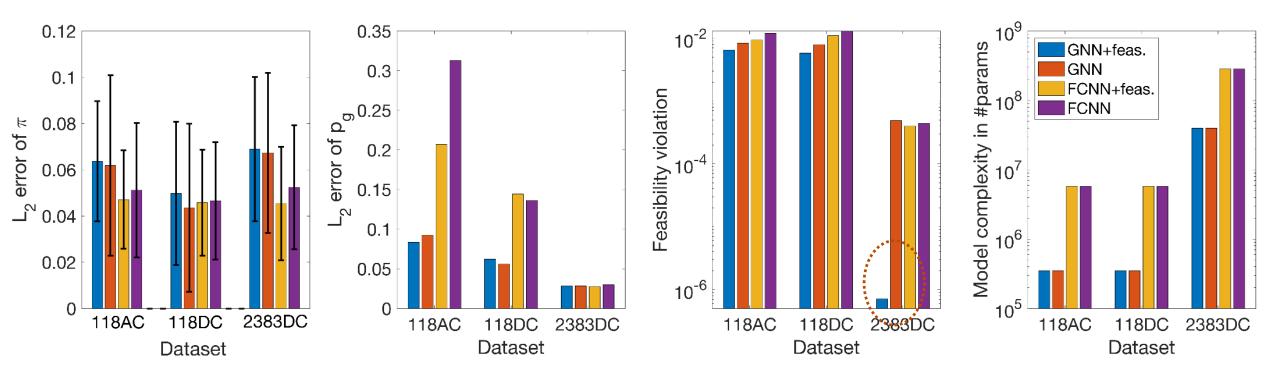
Feasibility-regularization (FR) to reduce line flow violations

$$\mathcal{L}\left(oldsymbol{ heta}
ight) := \|oldsymbol{\pi} - \hat{oldsymbol{\pi}}\|_2^2 + \lambda \left\|\sigma(|\hat{f f}^*(\hat{oldsymbol{\pi}})| - ar{f f})
ight\|_1$$

Liu, Shaohui, Chengyang Wu, and Hao Zhu. "Graph Neural Networks for Learning Real-Time Prices in Electricity Market." *ICML Workshop on Tackling Climate Change with Machine Learning*, 2021. <u>https://arxiv.org/abs/2106.10529</u>

LMP prediction results

- > 118-bus + ac-opf and 2382-bus + dc-opf; GNN/FCNN + feasibility regularization (FR)
- > Metrics: LMP and p_g prediction error; line flow limit violation rate



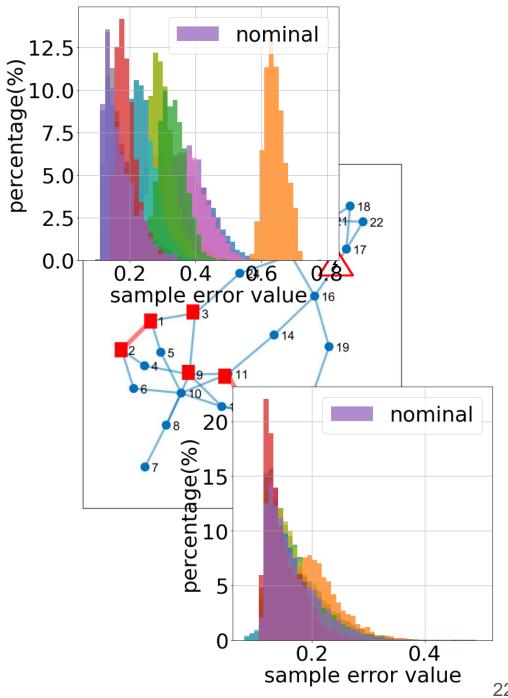
GNN for classifying congested lines

- Classifying the status for the top 10 congested lines with cross-entropy loss
- > Metrics: recall (true positive rate), F1 score
- GNN better in performance scaling for large systems, thanks to reduced complexity

118ac	Recall	F1 score	2383dc	Recall	F1 score
GNN	98.40%	96.10%	GNN	90.00%	81.40%
GNN	98.40%	96.10%	GNN	90.00%	81.40
FCNN	97.70%	94.60%	FCNN	87.30%	78.30%

Topology adaptivity

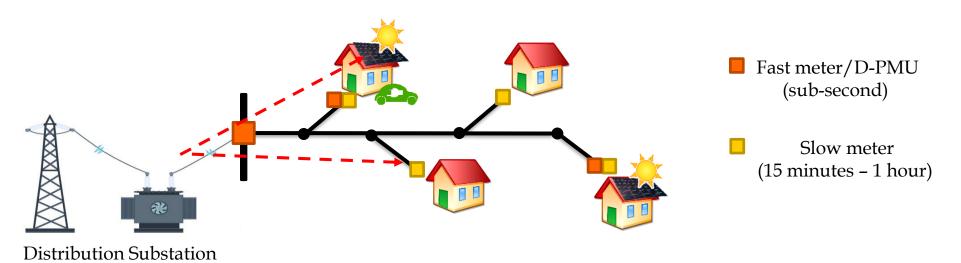
- > In addition to reduced complexity, GNN-based prediction can easily adapt to varying grid topology
- Pre-trained GNN for a nominal topology can warm-start the learning for randomly selected two-line outages
- Re-trained process takes only 3-5 epochs to converge to good prediction
- Currently pursuing to formally analyze this transfer capability



PART II: RISK-AWARE LEARNING FOR VOLTAGE SAFETY IN DISTRIBUTION GRIDS

ML for distributed energy resources (DERs)

- Rising DERs at grid edge motivate scalable & efficient coordination to support the operations of connected distribution grids
 - Lack of frequent, real-time communications
 - Distribution control center or DMS may broadcast messages to the full system



Liu, Hao Jan, Wei Shi, and Hao Zhu. "Hybrid voltage control in distribution networks under limited communication rates." *IEEE Transactions on Smart Grid* 10.3 (2018): 2416-2427. Molzahn, Daniel K., et al. "A survey of distributed optimization and control algorithms for electric power systems." *IEEE Transactions on Smart Grid* 8.6 (2017): 2941-2962.

Existing work and our focus

Scalable DER operations as a special instance of OPF

- Kernel SVM learning [Karagiannopoulos et al'19],[Jalali et al'20]
- DNNs for ac-/dc-OPF [see Part I]
- Reinforcement learning (RL) [Yang et al'20, Wang et al'19]
- > Enforcing network constraints is challenging
 - Heuristic projection or penalizing the violations

Focus: Address the statistical risks to ensure safe operational grid limits

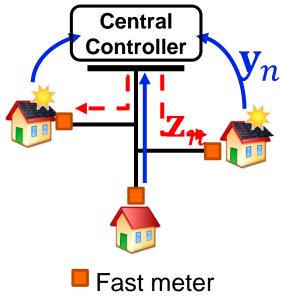
Optimal DER coordination

DERs for voltage regulation and power loss reduction

$$\mathbf{z} = \min_{\mathbf{q} \in \mathcal{Q}} Losses(\mathbf{q})$$

s. to
$$\begin{bmatrix} \mathbf{X}\mathbf{q} + \mathbf{h}(\mathbf{y}) - \overline{\mathbf{v}} \\ -\mathbf{X}\mathbf{q} - \mathbf{h}(\mathbf{v}) + \mathbf{v} \end{bmatrix} \leq \mathbf{0}$$

- : available reactive power
- **X** : network matrix
- y : operating condition
- $\underline{\mathbf{v}}, \, \overline{\mathbf{v}}$: voltage limits



(Multi-phase) linearized dist. flow (LDF) model leads to a convex QP

 \mathcal{Q}

> But a centralized solution requires high communication rates

ML for DER optimization

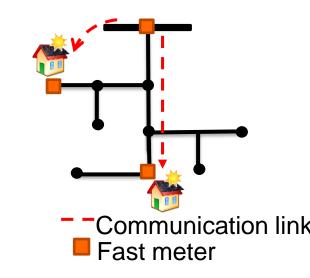
- > Similar to OPF, want to predict $\Phi(\mathbf{y}; \boldsymbol{\varphi}) \rightarrow \mathbf{z}$
- > Learn a scalable NN model, one for each node n

 $\mathbf{y}_n^{\ell+1} = \sigma(\mathbf{W}_n^{\ell}\mathbf{y}_n^{\ell} + \mathbf{b}_n^{\ell})$

• $\boldsymbol{\varphi} = \{ \mathbf{W}_n^\ell, \mathbf{b}_n^\ell \}$: nodal weights to be learned

> Average loss function: mean-square error (MSE)

$$\min_{\boldsymbol{\varphi}} f(\boldsymbol{\varphi}) \coloneqq \frac{1}{K} \sum_{k=1}^{K} \ell\left(\Phi(\mathbf{y}_k; \boldsymbol{\varphi}), \mathbf{z}_k\right) \quad \text{with} \quad \ell\left(\Phi(\mathbf{y}_k; \boldsymbol{\varphi}), \mathbf{z}_k\right) = \left\|\Phi(\mathbf{y}_k; \boldsymbol{\varphi}) - \mathbf{z}_k\right\|_2^2$$



Risk-aware learning

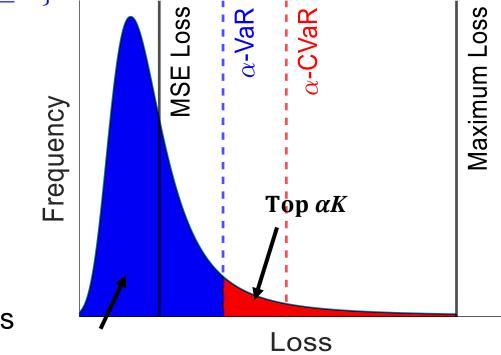
Consider the conditional value-at-risk (CVaR) for predicting z

$$\gamma_{\alpha}(\boldsymbol{\varphi}) := \frac{1}{\alpha K} \sum_{k=1}^{K} \ell(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k}) \times \mathbb{1}\{\ell(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k}) \geq v\}$$

for a given significance level $\alpha \in (0,1)$

$$\min_{\boldsymbol{\varphi}} f(\boldsymbol{\varphi}) + \lambda \gamma_{\boldsymbol{\alpha}}(\boldsymbol{\varphi})$$

- λ : regularization hyperparameter
- CVaR turns out very useful for voltage constraints



Shanny Lin, Shaohui Liu, and Hao Zhu. "Risk-Aware Learning for Scalable Voltage Optimization in Distribution Grids," *Power Systems Computation Conference (PSCC) 2022 (accepted)*, <u>https://arxiv.org/abs/2110.01490</u>

Accelerating CVaR learning

- CVaR loss is known to preserve convexity of loss function
 - But the NN model is typically nonconvex; recent extension [Kalogerias'21]
- > A key computation challenge is learning efficiency with worst-case samples $\gamma_{\alpha}(\boldsymbol{\varphi}) := \frac{1}{\alpha K} \sum_{k=1}^{K} \ell(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k}) \times \mathbb{1}\{\ell(\Phi(\mathbf{y}_{k}; \boldsymbol{\varphi}), \mathbf{z}_{k}) \geq v\}$
 - Modern sampling-based ML tools reduces the accuracy of gradient computation
- We developed a straightforward mini-batch selection algorithm (Alg. 1 later) that only uses those of sufficient risk value for computing gradient

Risk of predicting q decisions

- IEEE 123-bus system with six DER nodes of flexible q output
 - All DERs use limited power information to learn the optimal decision
- Error performance very similar due to the high prediction accuracy
- > Yet, training time accelerated by CVaR and the proposed selection algorithm

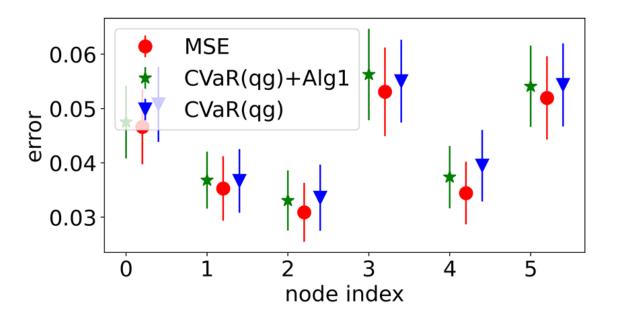


 Table 1: Computation time

Loss obj.	Epoch [s]	Total [s]
MSE	0.52	46.48
$\mathrm{CVaR}(\mathrm{qg})$	1.07	38.70
CVaR(qg) + Alg 1	0.61	35.63

Risk of voltage violation

- Further incorporating the CVaR of voltage prediction
- Reduced max voltage deviation (worst-case) -> higher operational safety
- Computational efficiency improved by the proposed selection algorithm

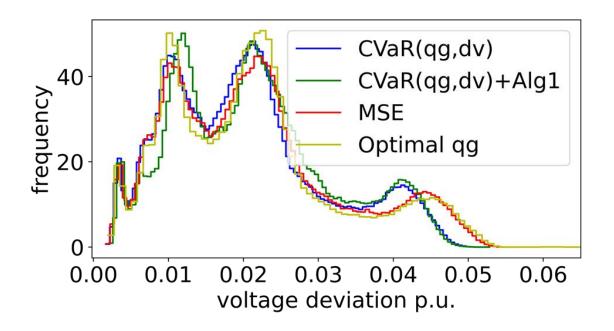


Table 1: Computation time					
Loss obj.	Epoch $[s]$	Total [s]			
MSE	0.54	44.89			
$\mathrm{CVaR}(\mathrm{qg,dv})$	0.77	31.73			
CVaR(qg,dv)+Alg 1	0.51	25.93			

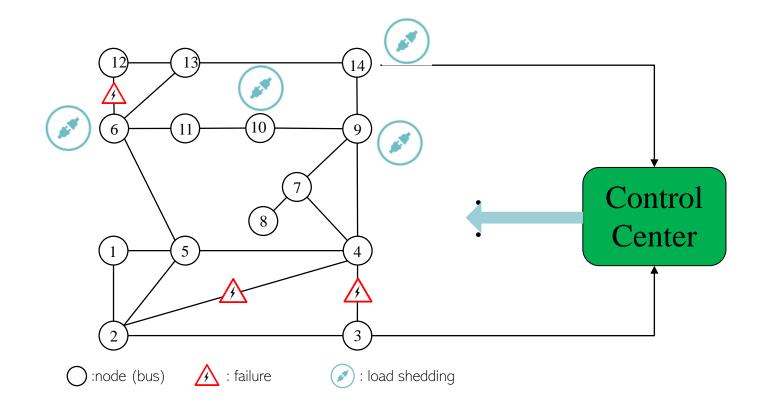
PART III: SCALABLE LEARNING OF EMERGENCY RESPONSES FOR RESILIENCE

Grid emergency responses

- Grid resilience challenged by emerging types of variable energy resources (VERs), and increasingly by extreme weather events
- It imperative to design the grid operations with effective emergency responses
 - Load shedding
 - Topology optimization
 - ..
- How to attain the decisions in a scalable and safe manner?

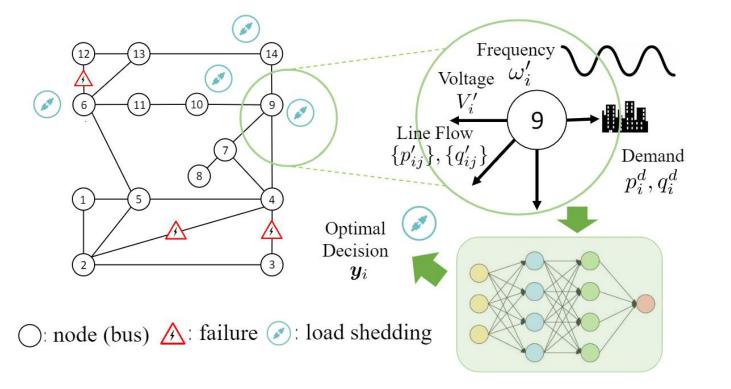
Centralized optimal load shedding (OLS)

- Load shedding determined by control center with system-wide information
- > AC Optimal load shedding (OLS) program cast as a special case of AC-OPF



ML for decentralized load shedding

Each load learns optimal decision rule from a large of historical or synthetic scenarios



Input feature:

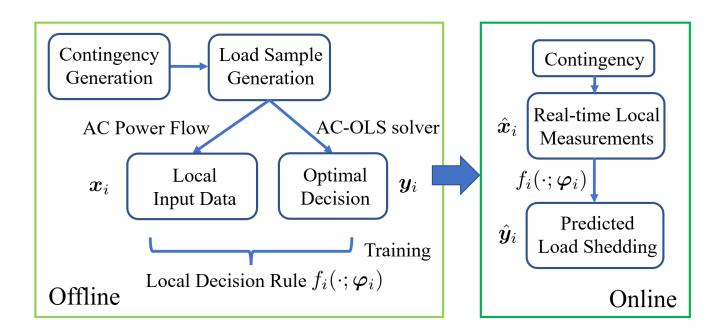
$$\boldsymbol{x}_{i} = \left[p_{i}^{d}, q_{i}^{d}, V_{i}', \{p_{ij}'\}, \{q_{ij}'\}, \omega_{i}'\right]$$

Local shedding solutions:

$$\boldsymbol{y}_i = [p_i^s, q_i^s]$$

Yuqi Zhou, Jeehyun Park, and Hao Zhu, "Scalable Learning for Optimal Load Shedding Under Power Grid Emergency Operations," PES General Meeting (PESGM) 2022 (accepted) <u>https://arxiv.org/abs/2111.11980</u>

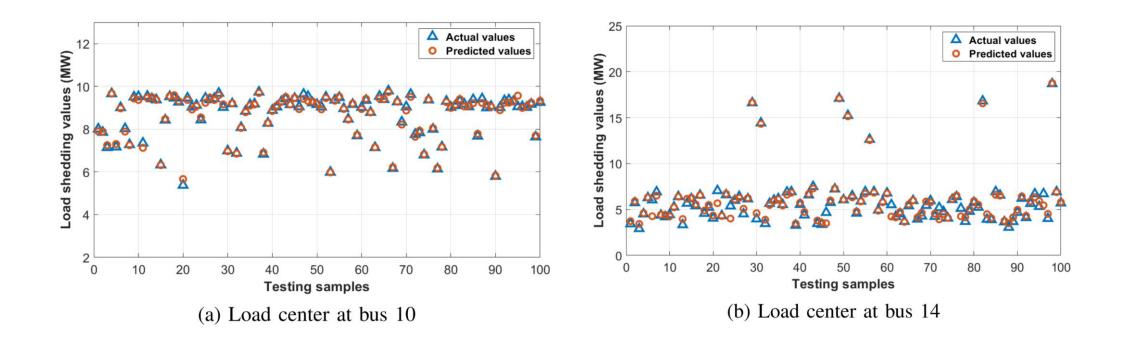
Scalable learning of load shedding



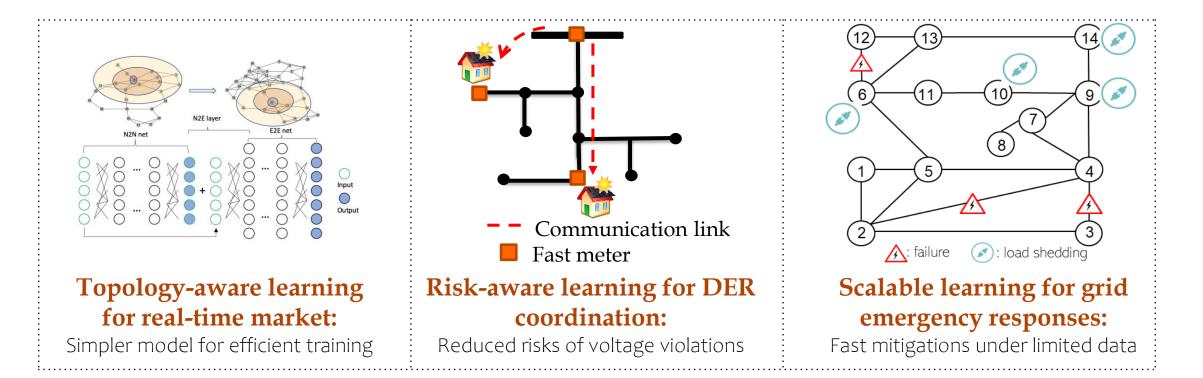
- Offline training is performed for various contingency and load conditions
- Load centers quickly make decisions during online phase in response to contingencies.

Prediction under single line outage

- IEEE 14-bus system; quadratic cost functions
- > All (N 1) contingency scenarios, under different load conditions (1000 samples for each scenario)



Summary



- I: Topology adaptivity and other transfer learning ideas
- > II: Convergence analysis and connections to safe learning
- > III: Generalized emergency responses and risk-awareness

Education resources

- UT grad course "Data Analytics in Power Systems," new slides available <u>https://utexas.app.box.com/v/EE394VDataInPowerSys</u>
- 2020 NSF Workshop on Forging Connections between Machine Learning, Data Science, & Power Systems Research

https://sites.google.com/umn.edu/ml-ds4pes/home

DOE-funded EPRI GEAT with Data

https://grided.epri.com/great_with_data.html

Learning and Optimization for Smarter Electricity Infrastructure

haozhu@utexas.edu http://sites.utexas.edu/haozhu/ @HaoZhu6

Learning for grid resilience Learning for dynamic resources Learning for power electronics based resources

Thank you!



....