Physics II Exam 1 Review

Christopher Lane ${ }^{1}$ Justin Lucas ${ }^{1}$
${ }^{1}$ Department Physics, Clarkson University
${ }^{2}$ Department Mathematics, Clarkson University

February 7, 2012

Outline

(1) Must knows!!
(2) Multiple Choice

- Chapter 21: Electric Charge
- Chapter 22: Electric fields
- Chapter 23: Gauss' Law
(3) Problems
- Problem 1
- Problem 2

Must Knows!!

Constants:

$$
\begin{gathered}
k=\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \\
e=1.692 \times 10^{-19} \mathrm{C}
\end{gathered}
$$

Volumes:
$V_{\text {Sphere }}=\frac{4}{3} \pi r^{3}$
$V_{\text {Cylinder }}=\pi r^{2} h$

Multiple Choice

Chapter 21: Electric Charge

Question 1

The charge on a glass rod that has been rubbed with silk is called positive:
A by arbitrary convention
B so that the proton charge will be positive
C to conform to the conventions adopted for G and m in Newton's law of gravitation
D because like charges repel
E because glass is an insulator

Question 1

The charge on a glass rod that has been rubbed with silk is called positive:
A by arbitrary convention
B so that the proton charge will be positive
C to conform to the conventions adopted for G and m in Newton's law of gravitation
D because like charges repel
E because glass is an insulator
Answer: A

Question 2

A conductor is distinguished from an insulator with the same number of atoms by the number of:

A nearly free atoms
B electrons
C nearly free electrons
D protons
E molecules

Question 2

A conductor is distinguished from an insulator with the same number of atoms by the number of:

A nearly free atoms
B electrons
C nearly free electrons
D protons
E molecules
Answer: C

Question 3

A positively charged metal sphere A is brought into contact with an uncharged metal sphere B. As a result:

A both spheres are positively charged
$B \quad A$ is positively charged and B is neutral
$C A$ is positively charged and B is negatively charged
$D A$ is neutral and B is positively charged
$E A$ is neutral and B is negatively charged

Question 3

A positively charged metal sphere A is brought into contact with an uncharged metal sphere B. As a result:

A both spheres are positively charged
$B \quad A$ is positively charged and B is neutral
$C A$ is positively charged and B is negatively charged
$D A$ is neutral and B is positively charged
$E A$ is neutral and B is negatively charged
Answer: A

Question 4

A small object has charge Q. Charge q is removed from it and placed on a second small object. The two objects are placed 1 m apart. For the force that each object exerts on the other to be a maximum, q should be:

A $2 Q$
B Q
C $\frac{Q}{2}$
D $\frac{Q}{4}$
E 0

Question 4

A small object has charge Q. Charge q is removed from it and placed on a second small object. The two objects are placed 1 m apart. For the force that each object exerts on the other to be a maximum, q should be:

A $2 Q$
B Q
C $\frac{Q}{2}$
D $\frac{Q}{4}$
E 0
Answer: C

Question 5

Two identical conducting spheres A and B carry equal charge. They are separated by a distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere C is first touched to A, then to B, and finally removed. As a result, the electrostatic force between A and B, which was originally F, becomes:
A $\frac{F}{2}$
B $\frac{F}{4}$
C $\frac{3 F}{8}$
D $\frac{F}{16}$
E 0

Question 5

Two identical conducting spheres A and B carry equal charge. They are separated by a distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere C is first touched to A, then to B, and finally removed. As a result, the electrostatic force between A and B, which was originally F, becomes:
A $\frac{F}{2}$
B $\frac{F}{4}$
C $\frac{3 F}{8}$
D $\frac{F}{16}$
E 0
Answer: C

Chapter 22: Electric fields

Question 1

An electric field is most directly related to:
A the momentum of a test charge
B the kinetic energy of a test charge
C the potential energy of a test charge
D the force acting on a test charge
E the charge carried by a test charge

Question 1

An electric field is most directly related to:
A the momentum of a test charge
B the kinetic energy of a test charge
C the potential energy of a test charge
D the force acting on a test charge
E the charge carried by a test charge
Answer: D

Question 2

Experimenter A uses a test charge q_{0} and experimenter B uses a test charge $2 q_{0}$ to measure an electric field produced by stationary charges. A finds a field that is:

A the same in both magnitude and direction as the field found by B
B greater in magnitude than the field found by B
C less in magnitude than the field found by B
D opposite in direction to the field found by B
E either greater or less than the field found by B, depending on the accelerations of the test charges

Question 2

Experimenter A uses a test charge q_{0} and experimenter B uses a test charge $2 q_{0}$ to measure an electric field produced by stationary charges. A finds a field that is:

A the same in both magnitude and direction as the field found by B
B greater in magnitude than the field found by B
C less in magnitude than the field found by B
D opposite in direction to the field found by B
E either greater or less than the field found by B, depending on the accelerations of the test charges
Answer: A

Question 3

Two thin spherical shells, one with radius R and the other with radius $2 R$, surround an isolated charged point particle. The ratio of the number of field lines through the larger sphere to the number through the smaller is:
A 1
B 2
C 4
D $\frac{1}{2}$
E $\frac{1}{4}$

Question 3

Two thin spherical shells, one with radius R and the other with radius $2 R$, surround an isolated charged point particle. The ratio of the number of field lines through the larger sphere to the number through the smaller is:

A 1
B 2
C 4
D $\frac{1}{2}$
E $\frac{1}{4}$
Answer: A

Question 4

The diagram shows the electric eld lines in a region of space containing two small charged spheres (Y and Z). Then:

A Y is negative and Z is positive
B the magnitude of the electric field is the same everywhere
C the electric field is strongest midway between Y and Z
D the electric field is not zero anywhere (except infinitely far from the spheres)
E Y and Z must have the same sign

Question 4

The diagram shows the electric eld lines in a region of space containing two small charged spheres (Y and Z). Then:

A Y is negative and Z is positive
B the magnitude of the electric field is the same everywhere
C the electric field is strongest midway between Y and Z
D the electric field is not zero anywhere (except infinitely far from the spheres)
E Y and Z must have the same sign
Answer: D

Question 5

An isolated charged point particle produces an electric field with magnitude E at a point 2 m away from the charge. A point at which the field magnitude is $\frac{E}{4}$ is:
A 1 m away from the particle
B 0.5 m away from the particle
C 2 m away from the particle
D 4 m away from the particle
E 8 m away from the particle

Question 5

An isolated charged point particle produces an electric field with magnitude E at a point 2 m away from the charge. A point at which the field magnitude is $\frac{E}{4}$ is:
A 1 m away from the particle
B 0.5 m away from the particle
C 2 m away from the particle
D 4 m away from the particle
E 8 m away from the particle Answer: D

Question 6

An electron traveling north enters a region where the electric field is uniform and points north. The electron:

A speeds up
B slows down
C veers east
D veers west
E continues with the same speed in the same direction

Question 6

An electron traveling north enters a region where the electric field is uniform and points north. The electron:

A speeds up
B slows down
C veers east
D veers west
E continues with the same speed in the same direction
Answer: B

Question 7

An electric field exerts a torque on a dipole only if:
A the field is parallel to the dipole moment
B the field is not parallel to the dipole moment
C the field is perpendicular to the dipole moment
D the field is not perpendicular to the dipole moment
E the field is uniform

Question 7

An electric field exerts a torque on a dipole only if:
A the field is parallel to the dipole moment
B the field is not parallel to the dipole moment
C the field is perpendicular to the dipole moment
D the field is not perpendicular to the dipole moment
E the field is uniform
Answer: B

Chapter 23: Gauss' Law

Question 1

A charged point particle is placed at the center of a spherical Gaussian surface. The electric flux Φ_{E} is changed if:

A the sphere is replaced by a cube of the same volume
B the sphere is replaced by a cube of one-tenth the volume
C the point charge is moved off center (but still inside the original sphere)
D the point charge is moved to just outside the sphere
E a second point charge is placed just outside the sphere

Question 1

A charged point particle is placed at the center of a spherical Gaussian surface. The electric flux Φ_{E} is changed if:

A the sphere is replaced by a cube of the same volume
B the sphere is replaced by a cube of one-tenth the volume
C the point charge is moved off center (but still inside the original sphere)
D the point charge is moved to just outside the sphere
E a second point charge is placed just outside the sphere
Answer: D

Question 2

The outer surface of the cardboard center of a paper towel roll:
A is a possible Gaussian surface
B cannot be a Gaussian surface because it encloses no charge
C cannot be a Gaussian surface since it is an insulator
D cannot be a Gaussian surface because it is not a closed surface
E none of the above

Question 2

The outer surface of the cardboard center of a paper towel roll:
A is a possible Gaussian surface
B cannot be a Gaussian surface because it encloses no charge
C cannot be a Gaussian surface since it is an insulator
D cannot be a Gaussian surface because it is not a closed surface
E none of the above
Answer: D

Question 3

A point particle with charge q is placed inside the cube but not at its center. The electric flux through any one side of the cube:

A is zero
B is $\frac{q}{\varepsilon_{0}}$
C is $\frac{q}{4 \varepsilon_{0}}$
D is $\frac{q}{6 \varepsilon_{0}}$
E cannot be computed using Gauss law

Question 3

A point particle with charge q is placed inside the cube but not at its center. The electric flux through any one side of the cube:

A is zero
B is $\frac{q}{\varepsilon_{0}}$
C is $\frac{q}{4 \varepsilon_{0}}$
D is $\frac{q}{6 \varepsilon_{0}}$
E cannot be computed using Gauss law
Answer: E

Question 4

A conducting sphere of radius 0.01 m has a charge of $1.0 \times 10^{-9} \mathrm{C}$ deposited on it. The magnitude of the electric field in $\frac{N}{C}$ just inside the surface of the sphere is:

A 0
B 450
C 900
D 4500
E 90,000

Question 4

A conducting sphere of radius 0.01 m has a charge of $1.0 \times 10^{-9} \mathrm{C}$ deposited on it. The magnitude of the electric field in $\frac{N}{C}$ just inside the surface of the sphere is:

A 0
B 450
C 900
D 4500
E 90, 000
Answer: A

Question 5

Charge is distributed uniformly along a long straight wire. The electric field 2 cm from the wire is $20 \frac{\mathrm{~N}}{\mathrm{C}}$. The electric field 4 cm from the wire is:
A $120 \frac{\mathrm{~N}}{\mathrm{C}}$
B $80 \frac{\mathrm{~N}}{\mathrm{C}}$
C $40 \frac{\mathrm{~N}}{\mathrm{C}}$
D $10 \frac{\mathrm{~N}}{\mathrm{C}}$
E $5 \frac{\mathrm{~N}}{\mathrm{C}}$

Question 5

Charge is distributed uniformly along a long straight wire. The electric field 2 cm from the wire is $20 \frac{\mathrm{~N}}{\mathrm{C}}$. The electric field 4 cm from the wire is:
A $120 \frac{\mathrm{~N}}{\mathrm{C}}$
B $80 \frac{\mathrm{~N}}{\mathrm{C}}$
C $40 \frac{\mathrm{~N}}{\mathrm{C}}$
D $10 \frac{\mathrm{~N}}{\mathrm{C}}$
E $5 \frac{\mathrm{~N}}{\mathrm{C}}$
Answer: D

Question 6

Positive charge Q is placed on a conducting spherical shell with inner radius R_{1} and outer radius R_{2}. A particle with charge q is placed at the center of the cavity. The magnitude of the electric field at a point in the cavity, a distance r from the center, is:

A zero
B $\frac{Q}{4 \pi \varepsilon_{0} R_{1}^{2}}$
C $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$
D $\frac{q+Q}{4 \pi \varepsilon_{0} r^{2}}$
$\mathrm{E} \frac{q+Q}{4 \pi \varepsilon_{0}\left(R_{1}^{2}-r^{2}\right)}$

Question 6

Positive charge Q is placed on a conducting spherical shell with inner radius R_{1} and outer radius R_{2}. A particle with charge q is placed at the center of the cavity. The magnitude of the electric field at a point in the cavity, a distance r from the center, is:

A zero
B $\frac{Q}{4 \pi \varepsilon_{0} R_{1}^{2}}$
C $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$
D $\frac{q+Q}{4 \pi \varepsilon_{0} r^{2}}$
$\mathrm{E} \frac{q+Q}{4 \pi \varepsilon_{0}\left(R_{1}^{2}-r^{2}\right)}$
Answer: C

Question 7

Positive charge Q is placed on a conducting spherical shell with inner radius R_{1} and outer radius R_{2}. A point charge q is placed at the center of the cavity. The magnitude of the electric field at a point outside the shell, a distance r from the center, is:
A zero
B $\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
C $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$
D $\frac{q+Q}{4 \pi \varepsilon_{0} r^{2}}$
$\mathrm{E} \frac{q+Q}{4 \pi \varepsilon_{0}\left(R_{1}^{2}-r^{2}\right)}$

Question 7

Positive charge Q is placed on a conducting spherical shell with inner radius R_{1} and outer radius R_{2}. A point charge q is placed at the center of the cavity. The magnitude of the electric field at a point outside the shell, a distance r from the center, is:
A zero
B $\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
C $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$
D $\frac{q+Q}{4 \pi \varepsilon_{0} r^{2}}$
$\mathrm{E} \frac{q+Q}{4 \pi \varepsilon_{0}\left(R_{1}^{2}-r^{2}\right)}$
Answer: D

Problems

Problem 1

Problem 2

Consider a nonconducting solid of positive charge surrounded by a thin nonconducting spherical thick shell of charge. The solid sphere has radius a and a uniform volume charge density $+\rho$, while the spherical shell has an inner radius b and an outer radius c and an uniform charge density $-\rho$. The spheres are concentric.

Use Gauss' Law to find an expression for the magnitude of the electric filed.
A E_{l} in region $r<a$
B $E_{\text {II }}$ in region $a<r<b$
C $E_{\text {III }}$ in region $b<r<c$
D For $r>c E=0$, find $\frac{\rho_{1}}{\rho_{2}}$
E plot the magnitude of E. label the magnitude at $r=0, a, b, c$.

