DOCUMENT RESJME

TITLE
INSTITUTION
SPONS AGENCY PUB DATE NOTE.

EDRS PRICE DESCRIPTORS

IDENTIFIERS

Project Solo: Newsletter Number Eight. Pittsburgh Univ.. Pa. Dept. of Computer science. National Science Foundation. Washington. D.C. 8 Jan 71
280.: See also ED 053 〔66

MP-\$0.65 HC-\$3.29

* Computer Proyrams; *Computer Science Education: Physics; *Programing: *Scuतnat Developed Materials *Project Solo

ABSTRACT
In the Project Solo classification scheme for interactive computing Category IV encompasses those activities where the student taies the role of lesson designer. Similar programs written by a teacher or fellow stident are frequently the starting point for such a would-be author. The transition from the role of student to that of student-author is described and illustrated with examples of student-authored programs. Two printed modules from the physics curriculum are also included--MRS (Meter Rilogram Second) and Newton (N:-wtonian Laws)--to show how they may be used as a springboar? for student-authored programs. (JY)

AN EXPERiMENT IN REGIONAL CONPUTWG FOR SECONDARY SCHOOL SYSTEMS

University of Pittsburgh - Department of Computer Science - Pittsburgith pennsylvania 15213

Newsletter No. 8
January 6, 1971

CATEGORY IV Programs in Science

Category IV in the Project Solo classification scheme for interactive computing encompasses those activities where the student takes on the role of lesson designer, usually as the author of a Category I (egg. drill and practice or tutorial) or a Category II (egg. simulation) program. Since the student is on his own when functioning as an author (Solo mode), there can, strictly speaking, be no curriculum module to guide him. However, the example of similar programs written by a teacher or fellow students is frequently the starting point for such a would-be author.

To illustrate this transition from the role of student-taker of Category I or II programs to student-author, we are attaching excerpts from a paper that represents the joint efforts of Mr. Mike Shore and Mr. Dave McMiilin, both of Taylor-Allderdice High School. By showing the examples of student-authorec programs in the context of the total curriculum plans for the subjects, it will be clearer that other modes of computing are also intended.

It should be noted that the examples came from "first-time" students as far as computer usage goes. There will undoubtedly be changes in the kinds of things students elect to do as we move into the years where students bring better programming skills to these subjects as a result of their contact with the freshman computer science course we are now planning.

We are also including two printed modules from physics (MKS and Newton). The Newton module is primarily intended as a Category III unit, but the prograin suggested at the end (the aircraft landing analysis) comes close enough to a simulation that the author is really in category IV. The difference is this: a student who writes a program to solve problems for his own use is in Category III; a student who writes programs where the promary intention is that they be used to illuminate others is in Category IV.

EXCERPTS FROM THE SHORE AND MCMILLIN PAPERS DESCRIBING THE USE OF COMPUTERS IN PHYSICS AND CHEMIST'RY
"...Our goal is to give students and teachers an additional tool for the investigation and discovery of structures which are not communicated well with present methodology..."

Terminology

"...In our present work we call a collection of educational materials which focus on a single topic, and which require use of an interactive computer terminal, a module.

Topics fit into a bigger scheme, which is either a full year's work or a particular portion of the subject. The curriculum material for a topic is called a module rather than a "unit" because it can often fit into more than one such scheme. For example, the module which studies the path of a bouncing billiard ball fits physical chemistry (kinetic theory of gases), mathematics and physics (application of vectors), and computer science (simulation).

The module can include instructions, explanations, diagrams, illustrations, flow charts, maps, bibliographies, and technical hints to teacher or student. However, we always assume that the topic of interest has already been treated in the classroom or textbook. Modules are classified in one of four categories, defined as follows:

Category I - This category contains what some workers have called "drili and practice CAI", "tutorial CAI", or "teacherdirected CAI". The written material of the module usually just gives directions about "calling up" a program which presents information to the student, asks him questions, branches as a function of his response, and repeats this cycle.

Category II - The modules of the second category invcive what is sometimes called "learner-directed CAI". General constraints on subject matter and information access are presented to the student who then decides how to use that information and what conclusions to draw. The student is still interacting with a master program written by someone else. Simulation, gaming, and structured information retrieval are included : n this category.

Category III - This category is the "hands-on computing" category. The written material of the module presents proilems which the student is required to solve by formulating an algorithm, and writing and debugging a program based on that algorithm.

Category IV - Modules in the fourth category require that the student create a system which can be used by his peers and teachers. The development by a student of a simulation (Category II) program is an exampie of an activity of this kind..."
"...A list of major topics in high school chemistry and physics was developed, attempting to choose topics which were independent of the text which might be used in any particular school..."
"...The following have been chosen as the first 10 chemistry topics to receive attention:

1. Introduction to NEWBASIC
2. Metric System
3. Gas Laws
4. Stoichiometry-1 (Weight-Weight, Weight-volume, ança Volume-Volume)
5. Pariodic Table
6. Stoichiometry-2 (Concentration)
7. Chemical Kinetics
8. pH
9. Equilibrium
10. Review Quiz..."
"...The following physics topics have been chosen to receive attention:
11. Introduction to NEWBASIC
12. Metric System
13. Vectors
14. Newton's Law of Motion
15. Circular Motion
16. Kepler's Law
17. Optics
18. Wave Motion
19. Mechanical Energy
20. Conservation of Momentum
21. Conservation of Mass-Energy
22. Static Electricity

Topics which have been postponed for later consideration are:

1. Kirchoff's Laws
2. Kinetic Theory - Heat
3. Electricity and Magnetism
4. Particle Physics
5. Electronics..."
"... One might ask whet will happen now that many of the modules are written? Does this rule out student creativity in program design? The answer is "No", since each module concludes with a requirement that the student modify the existing program or write a similar one (Category IV)..."
"...The chemistry modules prepared during the year 1970 are:
6. Introduction to NEWBASIC - A primer prepared by staff members in the project office. It employs a group of example programs with an opportunity for the student to copy and modify these programs. (A CAI tutorial for NBS is in preparation-T.D.)
7. Metric System - A module which drills the student in the use of all measurements within the metric system as well as conversions between the English and Metric Systems. It moves gradually from Category J. type questions to Category III type problems requiring simple program solutions, and ends in category IV where the student is required to write a similar program.
8. Gas Laws - A module which employs both Cateogy I and III. It begins with questions and problems on Boyle's Law, then moves to Charles' Law, and concludes with a complicated problem requiring programs that utilize a combination of the two Laws. Again the student is asked to write a similar program upon completion of the module.
9. Stoichiometry-1 (Weight-Weight, Weight-Volume, and VolumeVolume) - A module designed to give the student a review of this subject area and the interrelatedness of the three types of problems involved. It preserts the student with a story situation. In order to progress through the plet he must solve the chemical problems presented. This is chiefly Category I and III again, with the student asked to program a similar situation as is described in Category IV.
10. Stoichiometry-2 (Concentration) - A story module similar to Stoichiometry l using a character called Super Chemist dealing with the three areas of concentration -- Normality, Molarity, and Molality.
11. Review Quiz - A module designed by the students which randomly generates and grades problems and questions covering the entire course. This was done in order to prepare for College Boards and final exams.

For all six modules listed above, we have several versions written by different students which can be used interchangeably. The other four modules on the list are in various stages of completion..."
"...The physics modules prepared during the year 1970 are:

1. Introduction to NEWBASIC - A primer prepared by staff members in the project office. It employs a group of example programs with an opportunity for the student to copy and modify these programs. (See note above on a computer based NBS tutorial in prep.).
2. Metric System - A series of programs which lead the student from Categories I and II to Categories III and IV.

This program includes: the use of scientific notation, significant figures and standards of measurement in the MKS system.
3. Vectors - A module in which Category II is employed for an introduction. The student then has to apply trigonometric formulae to calculate resultant vectors, working in Category III. Students have been inspired to write programs which will find the resultant of N vectors in two and three dimensions with a choice of Cartesian and spherical coordinates.
4. Newton's Laws of Motion - A Category III module, in which the student must move from exploring the effect of a single force, through several forces in a straight line, to three forces in two dimensions. He is left with the challenge of writing a program to investigate the capabilities of an aircraft arresting system used at military-civilian airports.
5. Kepler's Law - This is another Category III module in which the student writes a program to check Kepler's constant $\left(R^{3} / T^{2}=K\right)$ for the most accurate data available at the moment.

The stwdent will have to make the assumption that the orbits of the major planets are circular and then combine laws of gravitation and centripetal force relations to determine a value for the mass of the sun determining that $M=4 \pi^{2} \mathrm{~K} / \mathrm{G}$.
6. Conservation of Momentum - A Category III module is employed with a Category I tutorial introduction to establish the student's readiness for the Category III module. The final problem involves nuclear particles in two dimensional collisions. It does not require prior knowledge of the particles but gives experience which is normally not received..."
[7. Circular Motion - A series of programs ranginy through Categories I, II, III, \& IV. Synthesizes the use of Newton's law of motion, centripetal acceleration, and Newton's law of gravitation in situations involving circular motion. Possible orbitai situations about various bodies in the solar system are considered.]

Weight-weight, weight-volume, volume-volume

This modile is designed to drill and review youx knowledge of the above relationships while you enjoy the adventures of Willy Wizbang, boy scientist. You may use the @NBS feature to program solutions to your problems. Remember to enter all answers without labels. To take this lesson:

1. Logon the computer using the procedures previously given.
2. Then type the parts shown below not underlined. -NBS
V̄ER. AUG 26 9:37
>RUN 166DM /WILL: $1 /$
At the completion of the lesson, you will be asked to write another adventure program using Wiliy or some other character. If you ask your instructor or computer room assistant he will give you a copy of one section of the program that you have just run. This can be used as a guide but don't hesitate to ask for help!!

When you have finished the lesson turn in your computer printout with your comments on it.

RUN /WILL: $1 /$
TYPE YOUR NAME HERE $?$ DAVE
HELLO DAVE!

LET'S LOOK AT SOME WEIGHT-WEIGHT,WEIGHT-VOL•, AND VOL.-VOL• FROBLEMS :

ONE DAY, WILLY WIZBANG WAS WORKING IN HIS LAB AND FOUND THAT HE COULD MAKE CHLORINE GAS, MNCL2, AND STEAM (H2O) BY FEACTING MNO2 WITH HYDROCHLORIC ACID. HE THEN DESIGNED AN APPARATUS SO THAT HE COULD COLLECT THE WATER GAS IN ONE CON* TAINER AND THE CHLORINE GAS IN ANOTHER CONTAINER. CAN YOU GIVE THE BALANCED EQUATION FOR THIS REACTION? TYPE IT IN THE FOBM: 2H2 + 02 = 2 H 20 . ? MNO2 + $4 \mathrm{HCL}=\mathrm{CL2}+\mathrm{MNCL2}+2 \mathrm{H} 2 \mathrm{O}$

MAZELTOU!! (AND IN CASE YOU DON'T SPEAK FRENCH, THAT
MEANS CONGRATULATIONS:I) YOUR EQUATION IS CORRECT;
LUCKILY, WILLY WIEGHED THE MNO2 BEFORE HE USED
AND FOUND THAT HE HAD USED 31 GM. OF MNO2.
WHAT IS THE WEIGHT OF CL2 PRODUCED?
THIS NUMBER IS RANDOMLY ? ENBS
VER. NOV 23 10:42
>PRINT 31./87*71
$25 \cdot 29885057$
PROGRAM HAS CALCULATED THE ANSWER USING THE RANDOMLY GENERATED NUMBER IN ORDER TO CORRECT THE STUDENT'S ANSWER,
> EXIT
GTUDENT ANSWERS THE QUESTION,
BUT FRENCH AND ITALIAN TOO!
25.29885057 IS THE CORRECT VOLUME OF GAS.

WILLY THEN WANTED TO CALCULATE WHAT VOLUME CONTAINER WOULD BE NEEDED FOR STORING THE CL2 GAS AT STP.
WOULD YOU CALCULATE IT FOR HIM AND ENTER YOUF ANSWER BELOW? 225.29

WRONG!! REMEMBER THAT ONE MOLE OF' ANY GAS OCCUPYS 22.4 LITERS AT STP. THIS IS YOUR LAST CHANCE! ENTER YOUR ANSWER AGAIN! ? 2 NBS
VER. NOU 23 10:42
>PRINT 25.298/71.*22.4
STUDENT RE-CALCULATES
DATA, USING THE COMPUTER, (Category III),
7.981340845
$>$ EXIT
? 7.981
WHAT A SUPER-CHEMIST YOU ARE! YOU AND WILLY

Tutorial Mode
(Category I)

```
?15.96
GOOD
    WILLY NOW USED THE CL2 GAS PRODUCED TO REACT IT WITH
H2 GAS STORED IN CYLINDAR AT 4.65 ATM PRESS. AND 25C DEG. TO
MAKE HCL GAS. WHAT VOLUME OF H2 DID HE NEED AT THESE CONDITIONS?
30NBS
VER. NOU 23 10:42
>PRINT 7.981/273.*298./4.65
    1.873518453
>EXIT
31.8735
    GREAT!! THAT'S RIGHT. NOW FOR THE LAST PROBLEM(SIGH!).
    WILL'T WANTED TO STORE THE HCL PRODUCED IN A STEEL CONTAINER
    AT A PRESSURE OF 4.49 ATMS. AND A TEMP. OF 3OC DEG.
    WHAT SIZE CONTAINER WOULD HE NEED? GIVE THE ANSWER IN LITERS:
    30NBS
VER. NOU 23 10:42
>PRINT 15.96/273.*303./4.49
III
    3.945177317
    > EXIT
                                    INVITATION TO CATEGORY IV
    ?3.945
    CORRECT! NOW WRITE A NEW ADUENTURE FOR WILLY SIMILAR TO THIS!
```

Student Interaction with Stoichiometry-1 (cont.)

```
THIS PR@GRAM DEALS WITH WEIGHT WEIGHT, WEIGHT-VØL.,AND VDL.-VOL.
THIS PROGRAM IS GUARANTEED TO STUFIFY YOUR IMAGINATION.
AMAZING...FANTASTIC...NEW YORK TIMES.
SI|ILAR IN \MANY WAYS TO DAVE MCMILEIN'S 'NTLLY WHIZBANG' IF
    ANYTHING BETTCR...T.A.FMREWORD
GA...CEE... ©DO...DUH.....PITTSBURGH PRESS.
NOW LETS GET TO WORK
JØE SHLABOTNIKI WAS WORKING IN HIS FAMOUS KOLBASSI LAB
WHEN HE FOUND THAT BY ROASTING LEAD SILLFIDE(PBS) HE
CØULD PRODUCE LEAD OXIDE(PB0).&AND SIJLFUR DIOXIDE(S02)
SINCE THIS WAS JOE'S BLIND LIJCK,HE WAS WONDERING WHAT HAPPENED
HELP JQE FIND OUT WHAT DID HAPPEN. TYPE IN THE BALANCED
EQUATION,USE THIS FORM:2H20+02=2H20
?2PBS + 302 = 2PBO + 2S02
JØE IS MUCH OBLIGED. THANKS FOR YOUR AID
JOE HAPPENED TD DREP THE ROASTED LEAD(PBO) (THE DUMMY
PICKED IT UP WHILE TT WAS HOT) ON HIS KOSHER MEAT SCALE.
HE NOTICED THAT THE WEIGHT OF IT WAS 6.13 GM.
WHAT WAS THE WEIGHT OF D2 WHICH WAS USED ?
?@NBS
VER. DEC 3 15:17
>PR. 32.*3./2**1 =/2:23.*6.13
    1.319461883
>EXIT
?1.319461883
EXCELLENT
JØE WANTED TO CALCULATE WHAT VOLUME BEER CAN (CONTAINER)
HE NEEDED TO STORE THE OXYGEN AT RODM TEMPERATURE(HE HAD THE SAME
WEIGHT OF 02 AS USED IN THE EXPERIMENT.
? @NBS
VER•DEC 3 15:17
>PR.1.3:7461883/32.*24.5
    1.010213004
> EXIT
?1.010213004
CORRECT!!WHAT VØLUME BEER CAN WOULD JOE USE AT STP?
? @NBS
VER. DEC 3 15:17
>PR. 1.319461883/32.*22.4
    0.923623318
>EXIT
?.923623318
EXACTLY RIGHT!
```

An interaction with a revised version of Stoichiometry-1 written by a student in response to the invitation at the end of the previous program. Since this previous program was also written by a student (in the Spring, 1970 term), the program above (written in Fall, 1970) illustrates how Category IV "inspiration" can be derived from fellow students.

```
1 PRINT "THIS PROGRAM IS ABLE
?. PRINT "RETARDING FORCE, AND
3 PRINT "ANGLES FROM ONE FORC
4 PRINT " THE OBJECT, AND IT'
5 PRINT "N IS THE NUMBER OF F।
6 ~ P R I N T ~ " A ( 1 ) ~ S H O U L D ~ R E ~ E N T E R । ~
PRINT " REFERENCE DIRECTION
8 PRINT "SUCCEEDING A(I)'S ARI
9 PRINT "FORCE F!I) AND FORCE
20 PRINT "N="3
30 INPUT N
40 PRINT "F(I)= A(I)="
50 FOR I=1 T0 N
60 INPUT F(I),A(I)
7O NFXT I
8O LET R=F(I)
85 0N N GOT0 245
90 LET X=A(I)/57.2.8835
100 LET J=1
110 LET A2=A(J)-X*57.28835+A(J.1)
120 LET J=J+1
130 LET T=(180-A2)/57.28835
140 LET F2=R
150 LET R=SQR(R+2+F(J)!2-2*R*F J)*C0S(T))
160 LET Sl=F(J)*SIN(T)/R
170 LET C=(F2+2+R+2-F(J)+2)/(2 -2*R)
180 LET X=ATAN(S1/C)
190 IF J<N THEN 110
200 LET S=0
2.10 FOR I=1 TO N
220 LET S=S+A(I)
230 NEXT I
240 LE.T H=S-A2+X*57.28835
241 G0TD 250
?. }45\mathrm{ LET H=A(I)
250 PRINT "DM YDU WISH TO FIND THF RETARDING FORCE.".
260 PRINT "GIVEN THE ACCFLERAT MV, A, AND THE MASS, M,"
264 PRINT "OF THE बRJFCT?"
270 INPUT Qs,
273 IF Q\Phi="YES" THEN 330
2.77 IF QG="NE" THEN 300
280 PRINT "PLEASE TYPE YFS OR : A"
2.90 G0T0 2.70
300 PRINT "RETARDING FOKCF: IS \. T TO RF CALCULATED."
310 PRINT "RESULTANT IS";RB"WI' | DIKFCTIDN";HB"."
32.0 END
330 PRINT "TYPE IN THE VALUES G A ANI) M, IN THAT ORDER,"
340 INPIIT A,M
350 LFT F=A*M-R
```



```
370 に.%T` 310
```

:egory IV) initiated by the Laws of Motion".

THIS PROGRAM IS ARLE Tת FINI) THE RESIJLTANT FORCE RETARDING FORCE, AND HEADING, GIVEN THE FORCES, ANGLES FROM ONE FORCE TO THE NEXT, THE MASS OF THE OFJF.CT, AND IT S ACCELERATION.
N IS THF NUMRER OF FQRCES
A(1) SHOULD BF. FNTERED AS THE ANGLE BETWEEN YOUR REFERENCE DIRECTION AND THE FIRST FORCE
SUCCEEDING A(I)'S ARE. THE. ANGLES BETWEEN THE
F 2 RCE $F(I)$ AND FORCE $F(I+1)$
$N=\quad ? 6$
$F(I)=A(I)=$
? 3.8521
? 4.9827
? 2.77 55
? 5. 1333
?8.11 25
? 5.8567
DO YOU WISH TO FIND THE RETARDING FORCE.
GIVEN THE ACCELERATI日N, A, AND THE MASS, M, OF THE OBJECT?
? YES
TYPE IN THE VALUES OF A AND M, IN THAT ORDER,
? L.83 24.7
RETARDING FORCE IS 22.7811 W:TH DIRECTION 164.404.
RESULTANT IS 22.4199 WITH DIRECTION 164.404.

An interaction with the previous studentauthored program by a beginning student. For the beginning student this is Category II--for the author, Category IV.

N1
 K

A Tutorial on the MKS System of Measurement

This module contains a brief description of the MKS system (Part A) and a review of scientific notation (Part B).

The procedure for calling a computer tutorial is then given in Part C, followed by a challenge for you to improve this tutorial program in Part D.

A. The MKS System of Measurement

It is necessary to have a means of measurement before any pheromenon can be described. If the description is done in terms of well defined quantities it can be more readily understood by others.

The MKS system of units has been agreed on as the international system of measurement. Its use is being adopted throughout the world, although the transfer has been slowed down in places where the conversion involves considerable financial outlay.

In any system of units it is necessary to define three main units--namely:
(1) Length
(2) Mass
(3) Time

The initials of these units give the system its title i.e. length in Meters, mass in Kilograms, and time in Seconds. Because of the confusion which frequently arises for a person just starting physics, we also give the unit for force, although force can actually be expressed in terms of the other three units. In the MKS system a force is measure \vec{i} in Newtons.

B. Scientific Notation and Significant Figures

In physics you will encounter extremely small numbers and extremely large numbers. For example, the size of the nucleus of an atom is $0.000,000,000,000,001$ meters across, while the galaxy in which our solar system is located is 100,000 light years across, where a light year is the distance light travels in one year. This is about 5,800,000, 000,000 miles. In the form given these numbers don't mean very much to people. We may also be uncertain of the accuracy to which such numbers are known.

A method of writing numbers called scientific notation was devised to (a) make numbers more manageable and (b) indicate how accurately the number is known.

Scientific notation uses a number between one and ten multiplied by ten raised to an appropriate power. For example, 100,000 would be 1.0×10^{5} in scientific notation. The number between one and ten indicates how accurate the number is--in this case using 1.0 instead of 1.00 implies that the number is bigger than 9.95×10^{5} but less than $1=05 \times 10^{5}$, so the number is not known to closer than 500 light years. This is quite a large distance because one light year is 5.80×10^{12} miles.
C. Using the MKS Tutorials

To access the first program type:
-NBS
>RUN 166JS /MKS/
If you finish this lesson without difficulty you should then type:
>EXIT
-NBS
This will clear your work space in order to let you run the second program. You then type:
>RUN l66JS /MKS:1/
Complete as much of this program as you can.
At one stage you will be asked to write a short program. Use the @NBS feature for this (see page 5-4 of the NBS Primer).

D. Challenge

If the tutorials /MKS/ and /MKS:1/ have not been too helpful, or if you can see weaknesses in them, ask your teacher for a listing of the original programs and see if you can make changes to improve things for those who have not used this module yet. Their future is in your hands.

Sample Interactions with the tutorials:
>RUN 166JS /MKS/
IN THIS LESSON YOU WILL GAIN SOME FAMILIARITY
WITH THE MKS SYSTEM OF UNITS•
WHAT IS YOUR WEIGHT IN PØUNDS?
? 110
THEREFORE YOUR WEIGHT IS 490 NEWTONS. Y OUR MASS IS 50 KILDGRAMS.
WHILE I AM STILL BEING PERSONAL.
HOW LDNG DOES IT TAKE YOU TO GET TO SCHO日L?
GIVE YOURTIME IN MINS.
310
THAT IS 600 SECONDS.
WELL I GUESS THAT ISN'T TOO BAD:
NOW LET'S CONSIDER DISTANCES
HOW FAR DO YOU LIVE FROM SCHODL?
ALLOW 10 RLOCKS PER MILE AND PRINT YOUR
ANSWER IN BLQCKS:
? 5
THAT IS A DISTANCE GF 804.672 METERS.
YOUR AVERAGE SPEED ON THE WAY TO SCHOOL IS . 1.34112 M/SEC
HOW DO YOU GET TO SCHOOL?
INDICATE EITHER WALKING, BY BUS, CAR, BICYCLE OR OTHER
? WALKING
AS YOU WALK T® SCHDOL YQUR MAXIMUM SPEED WILL
BE ONLY ABDUT 4 MILES PER HOUR. HOW FAST IS THIS
IN METERS PER SECOND?
? @NBS
VER. NOV 23 10:42
$>$ PRINT $4 * 88 \cdot / 60 * 12 * 2 \cdot 54 E-2$
1.78816
$>E X I T$
P1.78816
YOU HAVE JUST CALCULATED WHAT YQUR MAXIMUM SPEED SHØULD HAVE BEEN - DØ YOU EXCEED
ANY SPEED LIMITS?
? Nの
RIGHT: YOUR DATA INDICATES THAT YGU ARE STEADY, RELIABLE, HONEST, QR LAZY, OR A LIAR. MY PRØGNOSTICATION CAN NOT BE MARE SFECIFIC UNTIL YOU DO THE NEXT LESSØN. VEIRY GOQD. GET INSTRUCTION YOU NEED FROM YOUR TEACHER.

```
Sample Interaction (cont.).
>RUN 166JS /MKS:1/
AND SD WE CONTINUE WITH THE MKS SYSTEM ØF UNITS.
IF A CAR HAS A MASS OF 1000 KILOGRAMS. WHAT IS ITS
WEIGHT IN NEWTONS?
?9800
VERY GOOD.
NOW TRY ANOTHER ONE. WHAT IS THE WEIGHT OF AN
\squareBJECT WHICH HAS A MASS OF
    6522 KILQGRAMS?
? QNBS
VER. NOV 23 10:42
>PRINT 6522*9.8
    63915.6
~EXIT
?63915.6
GgOD. SOON YOU'LL BE AN EXPERT.
WOULD YOU LIKE TE TRY ANOTHER CONVERSIEN OF
MASS T0 WEIGHT?
? NO
NOW TRY THIS ONE.
HOW MANY METERS ARE THERE IN A MILE?
?1609
O.K. YOU ARE GETTING THE IDEA\bullet GO TD ONBS
AND WRITE. A SHORT PROGRAM WHICH WILI. CONVERT
EACH OF THE FOLLOWING DISTANCES TC PETERS.
    74 MILES.
    6 9 \text { MILES.}
    30 MILES.
    86 MILES.
?NAS
VER. NOV 23 10842
\PRINT 74*1609*69*1609*30*1609,86*1609
    119066 111021 48270 138374
* EXIT
2119066
NEXT DATUM&111021
NEXT DATUM: 482.70
NFXT DNTUM&138374
CONGRATULATIONSI
SHOW YOUR GREAT PROGRAM TO YOUR TEACHER.
SEE YOU NEXT TIME. GOOD DAY.
```

Tisting of the /MKS/ Program:

```
1 LET X=0
2 LET Y=0
    10 PRINT "IN THIS LESS@N YOU WILL GAIN SMME FABILIAFIITY"
20 PRINT "WITH THE MKS SYSTEM OF UNITS."
30 PRINT "* "*
40 PRINT "WHAT IS YOUR WEIGHT IN PØUNDS?"
50 INPUT A
60 LET A=A*9.8/2.2
70 PR. "THEREFORE YOUR WEIGHT IS ":A&" NEWTONS."
80 IF A<200 G0T0 200
90 IF A>900 G0T0 250
100 LET M=A/9.8
101 PRINT "YØUR MASS IS "; M&" KILøGRAMS."
105 PRINT "WHILE I AM STILL BEING PERSONAL,"
110 G0T0 300
200 PRINT "CHECK THAT YOU TYPED IN YOUR CORRECT WEIGHT!"
210 PRINT "IF YOU DID MAYBE YOU SHOULD G0 AND HAVE A"
220 PRINT "BIg LUNCH"
230 G0T0 100
250 PRINT " CHECK THAT YOU TYPED IN Y@UR WEIGHT CØRRECTLY"
260 PRINT "IF S\varnothing MAYBE YOU SHOULD SKIP LUNCH"
270 G0T0 100
300 PRINT "H0W LONG D0ES IT TAKE YOU T0 GET T0 SCh00L?"
310 PRINT "GIVE YOU TIME IN MINS."
320 INPUT B
330 LET B=B*60
340 PR. "THAT IS ":&B&" SECONDS."
350 IF B<бо́ GOT0 400
360ै IF B>1800 GOT0 500
370 PRINT "WELL I GUESS THAT ISN'T T00 BAD!"
380 GRTO }80
400 PRINT "DO YGU hAVE A. TEigT ON THE FR@NT LAWN?"
400 G0T0 600
SOO PRINT "MAYBE YOU SHOULD APPLY FOR TRAVEL PAY!"
SiO G0T0 600
600 PRINT "NOW LET'S CONSIDER DISTANCES"
610 PRINT "HEW FAR D\varnothing YOU LIVE FROM SCHO日L?"
620 PRINT "ALLOW 10 BLøCKS PER MILE AND PRINT YøUR"
630 PRINT "ANSWER IN BL.CKS!"
6 4 0 ~ I N P U T ~ C ~ C
650 LET C=C*176*36*2.54E-2
660 PR. "THAT IS A DISTANCE OF "&C8" METERS."
6 7 0 ~ L E T ~ D = C / B ~
680 PRINT "YOUR AVERAGE SPEED ON THE WAY T0 SCH00L IS"OBD;"M/SEC"
690 PRINT "H0W DO YOU GET T0 SCH00l.?"
700 PRINT "INDICATE EITHER WALKING,BY BUS, CAR, BICYCLE OR OTHER"
710 INPUT ES
720 IF ICg(ES,"WALK",0) G0T0 800
730 IF IC0(ES,"BUS",0) G0T0900
740 IF IC0(ES,"CAR",O) GET0 1000
750 IF ICब(ES, "CYCLE",0) G0T0 1100
```

```
Listing (cont.)
760 IF IC0(ES,"0THER",O) G0T0 1200
770 LET Y=Y+1
771 IF Y>1 G0T0 9990
780 PRINT "TYPE @NLY ONE OF THE FOLLOWINGgYQUR ANSWER IS NOT UNDERSTOOD"
790 G0T0 700
800 PRINT "AS YOU WALK T0 SChøOL YgUR MAXIMUM SPEED WILL "
801 PRINT "EE gNLY ABOUT 4 MILES PER HबUR. HEW FAST IS THIS **
802 PRINT "IN METERS PER SECØND?"
810 INPUT F
820 IF (F-1.78816)/1.78816<.03 G0T0 2000
8 3 0 ~ L E T ~ Y = Y + 1
840 IF Y>1 G0T0 870
Z5O PRINT "YOUR ANSWER DOES NOT EOUAL A MPH EXPRESSED IN MASEC"
851 PRINT "CHECK YOUR ANSWER AND TRY AGAIN."
860 G0T| 810
870 PRINT " N\varnothing! 4 MPH IS EQUAL T0 1.78816 M/SEC."
880 LET F=1.78816
890 GOTE 2000
900 PRINT "THE CITY BUSSES MANAGE T0 AVERAGE ABOUT 15 MPH"
901 PRINT "ON A GøøD DAY. HØW MUCH IS THIS IN METERS PER SECØND?"
910 INPUT F
920 IF (F-6.7056)/6.7056<.03 G0T0 2000
930 LET Y=Y+1
940 IF Y>1 G0T0 970
950 PRINT "YOUR ANSWER IS N0T EQUIVALENT T0 15 MPH!"
951 PRINT "CHECK YOUR ANSWER AND TRY AGAIN."
960 G0T0 910
970 PRINT "WRONG AGAIN. 15 MPH IS EQUAL T0 6.7056 M/SEC."
980 LET F=6.?056
990 GOT0 2000
i0.00 PRINT "THE SPEED LIMIT IN THE CITY IS 25 MPH."
1001 PRINT "WHAT IS THIS SPEED EXPRESSED IN METERS PER SECOND?"
1010 INPUT F
1020 IF (F-11.176)/11.176 <.03 G0T0 2000
1030 LET Y=Y+1
1040 IF Y>1 G®T0 1070
1050 PRINT "YOUR ANSWER IS NOT EQUAL TØ 25 MPK.""
1051 PRINT "CHECK YबUR ANSWER AND TRY AGAIN."
1060 G0T0 1010
1070 PRINT "S0RRY! 25 MPH IS EQUAL T0 11.176 M/SEC."
1080 LET F=11.176
1090 G0T0 2000
1100 PR. "IF YOU PEDAL HARD YOU MIGHT AVERACE 10 MPH. CONVERT
THIS T0 A SPEED IN METERS PER SECONDAND ENTEP IT BEL®W."
1110 INPUT F
1120 IF (F-4.4704)/4.4704 <.03 G0T0 2000
1130 LET Y=Y+1
1140 IF Y>1 GOT0 1170
1150 PRINT "YOUR ANSWER IS NOT EQUAL T0 10 MPH."
1151 PRINT "CHECK YOUR ANSWER AND TRY AGAIN."
1160 GETO 1110
1170 PRINT "NØ! 10 MPH IS EQUAL TG 4.4704 METERS PER SECOND."
1180 LET F=4.4704
1190 G0T02000
```

```
Listing (cont.)
1200 PR. "WHATEVER MEANS OF TRANSPORTATION YOU USE, IN THE CITY
YOU WILL NOT AVERAGE MORE THAN 2O MPH. EXPRESS THIS SPEED IN."
1203 PRINT "METERS PER SECOND."
1210 INPUT F
1220 IF (F-8.9408)/8.9408<.03 GET0 2000
1230 LET Y Y Y+1
1240 IF Y>1 G0T0 1270
1250 PRINT "YOUR ANSWER DOES NOT EQUAL 20 MPH."
1251 PRINT "CHECK YOUR ANSWER AND TRY AGAIN."
1260 GOT0 1210
1270 PRINT "S@RRYI 20 MPH IS EQUAL T0 8.9408 M/SEC."
1280 LET F=8.9408
1290 GOT0 2000
2000 PRINT "YOU HAVE JUST CALCULATED WHAT YOUR MAXIMUM"
2001 PRINT "SPEED SHOULD HAVE BEEN - DO YOU EXCEED"
2002 PRINT "ANY SPEED LIMITS?"
2010 INPUT GS
2020 IF ICO(GS;"YES",1) G0T0 2100
2030 IF IC0(G$,"N0",1) G0T0 2200
2040 IF IC@(GS,"SOME",0) 0R ICO(GS,"0FTEN",0) OR ICO(GS,"HARDLY",0) GOT0 23
O
2050 PRINT "ANSWER YES GR NO, DO NOT PREVARICATE."
2060 LET Y=Y+1
2061 IF Y>2 G0T0 9999
2070 G0T0 2010
2100 IF D>F G0T02150
2110 PR. "ACCORDING TO MY CALCULATIONS YOU ARE NOT A SPEEDER."
2120 PRINT "MAYBE YOU CAN BEAT THE NEXT LESSON."
2130 G0T0 5000
2150 PR. "CORRECT!!! YOU MGVE TOO FAST. SLOW DOWN AND LIVE
T0 DO THE NEXI LESSZN."
2160 G0T0 5000
2200 1F D>F G0T02250
2210 PR. "RIGHT! YOUR DATA INDICATES THAT YOU ARE STEADY, RELIABLE,
HONEST, OR LAZY, OR A LIER. MY PROGNOSTICATION CAN NOT BE
MORE SPECIFIC UNTIL YOU DO THE NEXT LESSON."
2220 G0 T0 5000
2250 PR. "YOU ARE IN ERROR. YOUR DATA INDICATES THAT YOU MOVE FASTER
THAN WOLLD BE EXPECTED FOR YOUR MEANS OF TRAVEL. GQ AND TRY
THE NEXT LESSON."
2 2 6 0 ~ G O T 0 ~ 5 0 0 0 ~
2300 IF D>F G0T02350
2310 PR. "YøUR DATA SH0WS THAT YOU MOVE SLOWER THAN EXPECTED,
ADMIT IT. NOW TRY THE NEXT LESSON."
2320 G0T0 5000
2350 PR. "YOU ARE A SPEEDER! NOW DO THE NEXT LESSGN. GOOD DAY."
2360 GO T0 10000
5000 PR. "VERY GOOD. GET INSTRUCTION YOU NEED FROM YOUR TEACHER."
5001 G0TO 1C000
9990 PR. "YOUR ANSWER IS NOT UNDERSTOOD."
9999 PR. "SHOW THIS TO YOUR TEACHER. GØOD DAY."
10000 FND
```

Listing of the /MKS:l/ Program:
CØPY /MKS:I/ T0 TPT
10 PR. "AND SØ WE CONTINUE WITH THE MKS SYSTEM OF UNITS."
20 PR: ""IF A CAR HAS A MASS OF 1000 KILØGRAMS• WHAT IS ITS
WEI GHT IN NEWTONS?"
40 INPUT AI
50 IF $A 1=9 \cdot 8 \mathrm{E}+3$ GOT0 200
60 IF ARS $(A 1-9.8 E+3) / 9.8 E+3<, 02 G 0 T 0300$
70 P只. "CHECK YØUR WORK AND REENTER YOUR ANSWER."
$901 F$ PASS> 1 GØT0 9000
100 GOT0 40
200 PR. "VERY GOOD. "
201 GØSUB 1000 G0T0 210
210 LET $Z=B 1+B 2+B 3+B 4$
220 PR. "NØW TRY ANØTHER DNE. WHAT IS THE WEIGHT OF AN
OBJECT WHICH HAS A MASS OF ":Z:" KILOGRAMS?"
230 INPUT A2
240 IF ABS $(A 2-Z * 9.80) /(Z * 9.80)<.0001$ G0T0 400
250 IF ABS (A2-Z*9.80)/(Z*9.80)<.02 G0T0 500
260 PR. "NØ. CHECK YOUR WORKING AND RETYPE YOUR ANSWER BELOW."
280 IF PASS>2 GOTO 9000
290 G0T0 230
300 PR. "YOU ARE FAIRLY CLOSE. ON THE EARTH'S SURFACE A MASS OF 1000 KILØGRAMS HAS A WEIGHT OF 9800 NEWTONS,"
310 GOSUB 1000 GDTD 210
400 PR. "GOOD. SOON YOU'LL BE AN EXPERT."
450 PR. "WOLLD YOU LIKE TO TRY ANOTHER CONVERSION OF
MASS TO WEIGHT? ${ }^{\circ}$
455 INPUT A3S
460 IF A3S="YES" GØSUB 1000 G0T0 210
470 GOT0 1100
500 LET $Y=Y+1$
510 !F $Y=2$ G0T0 550
520 PR. "CLOSE, BUT LIKE IN HORSESHOES, THAT IS WORTH SOMETHING."
521 PR. : Z \% ${ }^{\circ \prime}$ K:LOGRAMS IS EQUAL TO ":Z*9.808" NEWTONS."
530 GØT0 450
550 PR. "YOU ARE NOT BEING TOO ACCURATE IN YOUR CALCULATIONS
TRY TE BE A LITTLE MORE CAREFUL. ":Z:"KILDGRAMS IS
EOUAL TO ": Z*9,80:" NEWTONS."
560 GOT0 450
1000 LET $B 1=\operatorname{NUM}(10) * 1000$
1001 LET B2 $=$ NUM (10) $* 100$
1002 LET B3=NUM(10)*10
1003 LET BA=NUM(10)
1004 RETURN
1100 FR. "NDW TRY THIS ONE."
1110 PR. "HOW MANY METERS ARE THERE IN A MILE?"

```
Listing (cont.)
1120 INPUT A4
1125 LET D=5280*12*2.54E-2
1130 IF ABS(A4-D)/D<.001 G0T0 1500
1140 PR. "CHECK YOUR ANSWER AND RETYPE IT BELOW.""
1150 IF PASS>2 G0T0 9000
1160 GOTO 1120
1500 PR. "O.K. YOU ARE GETTING THE IDEA. GD TD ONBS
AND WRITE A SHORT PRDGRAM WHICH WILL CONVERT
EACH OF THE FOLLOWING DISTANCES TO METERS."
1510 FOR I=1 T0 4
1520 G0SUB 1000
1530 LET M(I)=B3+B4
1540 PR. M(I)& % MILES."
1550 NEXT I
1560 INPUT A5,A6,A7,A8
1570 LET P=0
1580 LET Q=0
1590 GOSUB 2000
1600 IF P=4 GOTO 1800
1610 IF Q=4 GOT0 1700
    1620 IF P+Q=4 G0T0 1750
1630 GOSUB 2000 GOT0 1600
1700 PR. "CONGRATULATIONS!
SHOW YOUR GREAT PROGRAM TO YOUR TEACHER.
SEE YOU NEXT TIME. GODD DAY."
1710 STOP
1750 PR. "YOU GOT ".&Q&" OF THEM RIGHT, AND
"&P&"0F THEM WRONG. CHECK YOUR ANSWERS AND
SHOW THEM TO YOUR TEACHER."
1800 PR." NO. YOU DIDN'T GET ANY OF THEM CORRECT."
1810 IF PASS>2 G0T@9000
$820 PF. "CHECK THINGS OVER AND TRY AGAIN USING
THE FELLOWING DISTANCES.**
1830 GØ゙TO 1510
2000 FOR I=1 T0 A
2010 7F ABS(A5-M(I)*D)/A5<.O1 G0T0 2100
2020 iF ABS(AG-M(1)*D)/A6<.O1 G0T0 2120
2030 IF ABS(A7-M(I)*D)/A7<.O1 G0T0 2\40
2040 IF ABS(A8-M(I)*D)/A8<.01 G0T0 2160
2045 NEXT I
2050 LET P=P+1
2060 G0T0 2210
2100 LET AS=0 G8T0 2200
2120 LET A6=0 G0T0 2200
2140 LET A7=0 G0T0 2200
2160 LET A8=0 G0T0 2200
2200 LET Q=0+1
2210 RETURN
9000 PR. "YOU NEED SOME HELP. SEE YOUR TEACHER."
9500 PR. "GOODI'0
10000 END
```


NEWTON'S LAWS OF MOTION

Long ago in sunny England an apple fell off a tree! It just so happened that the law of probability was working against Isaac because he was beaned by it. As a result of this beaning Isaac got a knjghthood and everyone had to call him Sir Isaac, except his wife who called him lumpy.

That however is another story ard what we want to investigate now are the results of Newton's thinking after the apple and before the knighthood.

In your class you have already learned three so-called laws, namely:

1. A body in motion will reme n in the same constant motion, and a body at rest will re ain at rest, unless actea upon by some unbalanced external orce.
2. When an unbalanced exte inal force acts on a body, the body experiences an accelf ation which is equal to the ratio of the force to the wass of the body $(\vec{F}=m \vec{a})$.
3. For every actir.. force there is an equal and opposite reaction f- -e.

Although all three laws above are due to Newton, the second law is the one we most often employ directly in calculation. The simplest application of this law occurs when a single force acts. Problem 1 on the next page is a worked out example of such a situation. You should imitate if you are not experienced in the use of computers. problems 1.5, 2, and 3 also deal with single forces, since they all assume that the force of friction is negligible. Ask yourself which other problems in this modile neglect friction as you move ahead.

Notice that laws you learned previously (such as $V=V 0+A$ * T) are combined with Newton's second law in solving some of the problems. You will also have to use the previously learned principles of vector addition when you work with problems that involve several forces.

We will illustrate the application of these ideas with several problems, each of which you should solve by using the computer.

EXAMPLE--Problem 1
If a cart, mass 3.84 kg , is moving along a horizontal table at $2.05 \mathrm{~m} / \mathrm{sec}$, when a force of 1.83 nts is exerted on it for 0.77 sec. in the same direction as it is moving. (a) What will
 be the acceleration of the cart?
(b) What will be the final velocity of the cart?

To solve part (a), it is necessary to apply Newton's second law of motion, which states that the acceleration of a mass is equal to the ratio of the applied force to the mass.

In the form of a formula this becomes:

$$
A=F / M
$$

It is therefore necessary to do several things:
(a)
$\begin{cases}(1) & \text { Give a value of } 1.83 \text { to a variable } F \\ (2) & \text { Give a value of } 3.84 \text { to a variable } M \\ (3) & \text { Calsulate the value of the ratio of the value } \\ & \text { given to } F \text { to the value given to } M \\ (4) & \text { Give the value calculated in (3) to a variabie } A \\ (5) & \text { Write the value given to } A \text { as the acceleration of } \\ \text { the mass. }\end{cases}$

For part (b) a similar process has to take place in order to solve for the relationship between final velocity, initial velocity acceleration, and time. When the acceleration is constant this can be expressed by the following equation:

$$
V=V 0+A * T
$$

The steps which must be followed are:
(2) Give a value of 0.77 to a variable T
(3) Retain the value given to A in part (a)
(4) Multiply the value given to A by the value given to T.
(b)
(5) Add the value given to $V 0$ to the product determined in step (4) and give this sum as the value of a variable V.
(6) Write the value given to V as the final velocity of the mass.

These two sets of procedures will provide the required answers for Example 1.

In order to solve Example 1 on the computer it is necessary to convert each step of the algorithm to a language that the computer can handle. The five* steps of part (a) then become:
(a) $\left\{\begin{array}{lll}(1) & & 10 \text { LET } F=1.83 \\ (2) & & 20 \text { LET } M=3.84 \\ (3) & \& & (4) \\ 30 & \text { LET } A=F / M \\ (5) & & 40 \text { PRINT A } \\ (6) & & \text { RUN }\end{array}\right.$

The numbers 10,20 , etc. make it. possible to save this work as a program which can be run for several problems.

To make the program suitable for more problems it may be better to combine steps (1) and (2) in a single statement, which asks you to type in values for F and M. This makes part (a) of your program appar as follows:

10 INPUT F,M
20 LET $A=F / M$
30 PRINT "A=":A
Part (b) can then be added on to the same program as follows:

40 INPUT VO,T
50 L.ET V=V0+A*T
60 PRINT "V(METERS/SEC)=":V

[^0]By giving the computer the command RUN it will perform all indicated calculaitions and print (depending how you input data):
either $>$ RUN or $>$ RUN
? 1.83
MORE ? 3.84
$\mathrm{A}=0.47656$
? 2.05
MORE ? 0.77
$\mathrm{V}=2.41695$

```
? 1.83 3.84
    A= 0.47656
    ?2.05 0.77
    V=2.41695
```

Problem 1. 5
Use the above program to fill in the following table which studies acceleration for 3 cars. HINT: Add the statement

$$
70 \text { PR. "V(MI/HR)=":V*(.00062)*3600 }
$$

Assume $\mathrm{V}_{0}=0 \mathrm{~m} / \mathrm{sec}$

			$\begin{aligned} & \text { ACCEL } ; \\ & \left(M / S E C C^{2}\right) \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (SEC) } \end{aligned}$	FINAL VELOCITY	
CAR	MASS (KG)	FORCE (NT)			METERS/SEC	MILES/HR
compact	570	085		3		
	570	985		10		
Medium	1100	3800		3		
	1100	3800		10		
Super GT	1690	7120		3		
	1690	7120		10		

It has been well established that the acceleration of a falling body close to the earth is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ if air friction is negligible, which is usually the case for compact objects moving at slow speeds.
Problem 2 (EASY--YOU CAN USE DIRECT MODE)
Calculate the gravitational force on a mass of 5.19 kg . which, when allowed to fall, has an acceleration of $9.80 \mathrm{~m} / \mathrm{sec}^{2}$. This gravitational force is the weight of the object (neglect friction).

Problem 3

A car at rest at a traffic light weighs 5.63×10^{3} nts.
(a) What is the mass of the car (use direct mode)?

When the light changes to green it accelerates at $3.18 \mathrm{~m} / \mathrm{sec}^{2}$.
(b) If friction is negligible what must be the force between the rear wheels and the road?
(c) What is the final velocity of the car when it has moved 30 m ?

If some other force in ad̉ition to the gravitational force acts on a falling body its acceleration will not be 9.8 $\mathrm{m} / \mathrm{sec}{ }^{2}$ Modify the program you used in Example 3 to solve Example 4.

Problem 4

A model airplane, mass 0.55 kg ., has an engine which exerts a force of 4.26 nts , on it. What will be tine acceleration of the plane when it goes into a vertical power dive. Again neglect friction.

A similar problem is encountered with rockets. Use the same program format as in Example 4 to solve Exampie 5.

Problem 5

The Saturn V rocket has a mass of $3.18 \times 10^{6} \mathrm{~kg}$. The thrust of its first stage engines is quoted as being $7.5 \times 10^{6} \mathrm{lbs}$. What is the initial acceleration of the rocket as it blasts off for the moon?

In these first five examples we have only considered motion in a straight line, and worked with constant forces. This could be extended to include more forces, for example friction which is sometimes constant and sometimes dependent on the velocity of the moving object. In the latter case the problem becomes complicated and requires

a more sophisticated mathematical approach.
The problem becomes more complicated and yet still manageable when there is more than one force with the forces not acting in the same straight line.

Problem 6

Two equal forces at right angles to each other, each of magnitude 5.79 nts, act on a mass of 1.81 kgs . What will be the acceleration of the mass?

This problem requires that you modify your basic program to include the addition of two vectors not in a straight line.

If your prograr: is general enough, you will not have written it so that only vectors at right angles may be added, and you can use it to solve the next problem.

Problem 7

An elephant and a giraffe teamed up to pull Noah's ark off a sand bank. The elephant exerted a force $6.02 \times 10^{3} \mathrm{nts}$. in a direction 025° while the gi:atfe exerted a force of 1.17×10^{3} nts. in the direction of 085° and moved off the sand bank with an acceleration of $0.17 \mathrm{~m} / \mathrm{sec} .2$. What force did the sand bank exert on the ark while it was moving? Mass of ark $=9.72 \times 10^{3}$ kg .

We conclude this module with a challenge problem. If you would like to first interact with a program that someone else wrote to solve this problem do the following:

$$
\begin{aligned}
& \text {-NBS } \\
& \text { >RUN 166JS /LANDING/ }
\end{aligned}
$$

Problem 8

The aircraft arrestor system shown in the figure below is used to stop military aircraft in the event thit they overshoot the normal runway. Write a prograin that accepts as input the mass and landing velocity or various aireraft, and allows the user \%o determine which combinations of cable "braking force" and runway "runout" distances will safely handi.e these aircraft.

If you wish to see a listing of the program /LANDING/, ask your teacher for a copy. He can also supply data on typical civiiian and military aircraft.

[^0]: *Part (a) could also be solved by using the direct statement:
 PR. "A=":1.83/3.84
 As you reac on, ask yourself what disadvantages this simple approach can have.

