

Schola Europaea / Office of the Secretary-General

Pedagogical Development Unit

Ref.: 2019-01-D-50-en-2 Orig.: EN

# **Physics Syllabus – S4-S5**

Approved by the Joint Teaching Committee at its meeting on 7 and 8 February 2019 in Brussels

Entry into force on: 1 September 2019 for S4 1 September 2020 for S5

# Table of contents

| 1.   | General Objectives     | 3 |
|------|------------------------|---|
| 2.   | Didactical Principles  | 4 |
| 3.   | Learning Objectives    | 5 |
| 3.1. | Competences            | 5 |
| 3.2. | Cross-cutting concepts | 6 |
| 4.   | Content                | 7 |
| 4.1  | Topics                 | 7 |
| 4.2  | The tables             | 9 |
| •    | Year S4                | 9 |
| •    | Year S51               | 6 |
| 5.   | Assessment 2           | 2 |
| 5.1. | Attainment Descriptors | 4 |
| Ann  | ex2                    | 6 |
|      |                        |   |

### 1. General Objectives

The European Schools have the two objectives of providing formal education and of encouraging pupils' personal development in a wider social and cultural context. Formal education involves the acquisition of competences (knowledge, skills and attitudes) across a range of domains. Personal development takes place in a variety of spiritual, moral, social and cultural contexts. It involves an awareness of appropriate behaviour, an understanding of the environment in which pupils live, and a development of their individual identity.

These two objectives are nurtured in the context of an enhanced awareness of the richness of European culture. Awareness and experience of a shared European life should lead pupils towards a greater respect for the traditions of each individual country and region in Europe, while developing and preserving their own national identities.

The pupils of the European Schools are future citizens of Europe and the world. As such, they need a range of competences if they are to meet the challenges of a rapidly-changing world. In 2006 the European Council and European Parliament adopted a European Framework for Key Competences for Lifelong Learning. It identifies eight key competences which all individuals need for personal fulfilment and development, for active citizenship, for social inclusion and for employment:

- 1. Literacy competence;
- 2. Multilingual competence;
- 3. Mathematical competence and competence in science, technology and engineering;
- 4. Digital competence;
- 5. Personal, social and learning to learn competence;
- 6. Civic competence;
- 7. Entrepreneurship competence;
- 8. Cultural awareness and expression competence.

The European Schools' syllabi seek to develop all of these key competences in the pupils.

## 2. Didactical Principles

The didactical principles of the European Schools are formulated in the teaching standards of the European Schools (ref: 2012-09-D-11-en-4). For delivery the teaching standards state that the teacher:

- Uses teaching skills and creativity to inspire and motivate pupils
- Delivers well-structured lessons
- Makes an effective use of teaching time
- Employs a variety of teaching and learning methods, including technology, appropriate to the content
- Motivates pupils to be actively involved in their own learning
- Demonstrates good subject and curriculum knowledge including their national and European dimensions

The eight competences for physics are knowledge, comprehension, application, analysis, experimental work, digital competences, communication and team work.

To teach the competences for physics according to the teaching standards of the European Schools an inquiry-based approach to teaching and learning is strongly recommended in S4 - S5. The learning objectives listed in this syllabus, especially the competences concerning experimental work, digital and information competency, communication and team work cannot be achieved without a large focus on practical work.

# 3. Learning Objectives

Learning is not just getting more content knowledge. With learning in school, content is used to give the pupils competences to be prepared for society and work. Learning objectives for student performance therefore arise out of three dimensions: the European Framework for Key Competences for Lifelong Learning outlined in section 1, the academic competences outlined in 3.1 and the Cross-cutting concepts (Interdisciplinary Connections) in 3.2. This way we hope that the pupils will become prepared to a lifelong learning.

#### 3.1. Competences

|    | Competency                                | Key Concepts                                                                                                                                                                                           |
|----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Knowledge                                 | The student displays a comprehensive knowledge of facts                                                                                                                                                |
| 2. | Comprehension                             | The student displays a thorough command and use of concepts and principles in science                                                                                                                  |
| 3. | Application                               | The student makes connections between different parts of the syllabus and applies concepts to a wide variety of unfamiliar situations and makes appropriate predictions                                |
| 4. | Analysis                                  | The student is capable of detailed and critical analysis and explanations of complex data                                                                                                              |
| 5. | Experimental work                         | The student can formulate hypotheses and plan and carry out investigations using a wide range of techniques while being aware of ethical issues                                                        |
| 6. | Digital and<br>information<br>Competences | The student can consistently and independently find and assess the reliability of information on scientific subjects, on- and offline and can independently use appropriate software for science tasks |
| 7. | Communication (oral and written)          | The student can communicate logically and concisely using correct scientific vocabulary and demonstrates excellent presentation skills                                                                 |
| 8. | Teamwork                                  | The student works well in a team                                                                                                                                                                       |

#### **3.2. Cross-cutting concepts**

The list of cross cutting competences places the learning objectives within a larger context which i. e. can form the basis of a cross-curricular projects. The tentative list to be taught is based on the next generation science standards in the United States (National Research Council, 2013):

|    | Concept                        | Description                                                                                                                                                                                                                                                                                      |
|----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Patterns                       | Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them                                                                                                                                   |
| 2. | Cause and effect               | Events have causes, sometimes simple, sometimes multifaceted.<br>Deciphering causal relationships, and the mechanisms by which they<br>are mediated, is a major activity of science and engineering                                                                                              |
| 3. | Scale, proportion and quantity | In considering phenomena, it is critical to recognize what is relevant<br>at different size, time, and energy scales, and to recognize<br>proportional relationships between different quantities as scales<br>change                                                                            |
| 4. | Systems and system models      | Defining the system under study—specifying its boundaries and<br>making explicit a model of that system—provides tools for<br>understanding the world. Often, systems can be divided into<br>subsystems and systems can be combined into larger systems<br>depending on the question of interest |
| 5. | Energy and matter              | Tracking energy and matter flows, into, out of, and within systems helps one understand their system's behaviour                                                                                                                                                                                 |
| 6. | Structure and function         | The way an object is shaped or structured determines many of its properties and functions                                                                                                                                                                                                        |
| 7. | Stability and change           | For both designed and natural systems, conditions that affect stability<br>and factors that control rates of change are critical elements to<br>consider and understand                                                                                                                          |

## 4. Content

#### 4.1 Topics

In S4 - S5 the material is structured by topic so that relevant content and competences are acquired at depth as well as in breadth. The material from S1 to S3 is expected to be known in S4 and will only be briefly repeated at the introduction of each topic.

Students in S4 - S5 must decide at the end of S5 if they wish to continue studying physics in S67. Statistics show that for most of them, S5 will be the final year of physics. Teaching and learning must address both groups.

The students, as citizens, should later be able to discuss and decide about items which are associated with physics. Therefore, it is strongly recommended that the students undertake one project each year linked to aspects of social issues (see attainment descriptors). There are suggestions for projects in the fourth column.

It is recommended that physics and mathematics teachers coordinate their teaching order to help the students address the mathematics needed for science subjects (see assessment part).

| Торіс                      | S4 | S5 |
|----------------------------|----|----|
| Electricity / Magnetism    | x  |    |
| Mechanics                  | x  | x  |
| Waves                      | x  |    |
| Matter and Heat            |    | x  |
| Atomic and Nuclear Physics |    | x  |

There are six different symbols in the following content part, which indicate the areas:

| ₫~B        | Activity               |  |  |  |
|------------|------------------------|--|--|--|
|            | Extension              |  |  |  |
| Ŕ          | Phenomenon             |  |  |  |
|            | History                |  |  |  |
| $\bigcirc$ | Cross-Cutting Concepts |  |  |  |
|            | Digital Competence     |  |  |  |

These icons highlight different areas and are used to make the syllabus easier to read. These areas are based on the key competences mentioned in section 1 of this document.

#### 4.2 The tables

#### • Year S4

| YEAR S4 TOPIC: Electricity   |                                                                                                                                  | Pre-knowledge: S3 science introduces isolators and conductors. S3 science already teaches the behaviour of current and voltage in circuits. The relationship between energy, power and time, and kWh is are already taught in S3 science. |            |                                                                                                                                                                              |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subtopic                     | Content                                                                                                                          | Learning objectives                                                                                                                                                                                                                       | Key cor    | Key contexts, phenomena and activities                                                                                                                                       |  |  |
| Properties of<br>DC Circuits | Electricity introduced as a versatile means of transferring energy                                                               | Set up experiments to test Ohmic and<br>non-Ohmic components on how the current<br>through them varies with potential<br>difference and <b>analyse</b> the graphs for<br>resistance                                                       | \$B        | Determining resistance with a simple circuit                                                                                                                                 |  |  |
|                              | Introduce the Coulomb as the SI<br>unit for measuring the quantity of<br>charge                                                  |                                                                                                                                                                                                                                           | $\bigcirc$ | Work together with Chemistry on the explanation of conductivity for different materials, for example by doing                                                                |  |  |
|                              | The idea of current as charge flow per unit time is introduced                                                                   |                                                                                                                                                                                                                                           |            | experiments and explaining by different models                                                                                                                               |  |  |
|                              | The idea of voltage as energy per coulomb is introduced                                                                          |                                                                                                                                                                                                                                           |            |                                                                                                                                                                              |  |  |
| Circuits                     | Series and parallel circuits                                                                                                     | <b>Apply</b> the principle of conservation of<br>current to <b>calculate</b> (now with formulas)<br>currents within circuits                                                                                                              | \$~~       | Experiment to verify calculations made with circuits about current, voltage and resistance                                                                                   |  |  |
|                              |                                                                                                                                  | Determine how voltage is divided in circuits                                                                                                                                                                                              |            | Experiments to draw $U \rightarrow I$ graphs for<br>examples of Ohmic and non-Ohmic<br>components                                                                            |  |  |
|                              | Resistance:<br>$R = \frac{U}{I}$                                                                                                 | <b>Calculate</b> potential difference or current or resistance from $R = \frac{U}{I}$                                                                                                                                                     |            | Use of applets to construct circuits from schema's and possibly check them in an experiment                                                                                  |  |  |
|                              | Rules of current, potential<br>difference and total resistance in<br>circuits:<br>• Series:<br>• $I_{tot} = I_1 = I_2 = \cdots;$ | <b>Calculate</b> resistance, current and voltage in series and parallel circuits                                                                                                                                                          | \$~B       | Challenge the students to design a circuit<br>using two or more switches placed in<br>different positions which can govern the<br>circuit alternately as found on staircases |  |  |
|                              | • $U_{\text{tot}} = U_1 + U_2 + \cdots;$<br>• $R_{\text{tot}} = R_1 + R_2 + \ldots$                                              |                                                                                                                                                                                                                                           |            |                                                                                                                                                                              |  |  |

| YEAR S4                | TOPIC: Electricity                                                                                                 | Pre-knowledge: S3 science introduces isolators and conductors. S3 science already teaches the behaviour of current and voltage in circuits. The relationship between energy, power and time, and kWh is are already taught in S3 science.          |            |                                                                                                                                                                                                                                                                                                  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subtopic               | Content                                                                                                            | Learning objectives                                                                                                                                                                                                                                | Key cor    | ntexts, phenomena and activities                                                                                                                                                                                                                                                                 |  |
|                        | <ul> <li>Parallel:</li> <li><i>I</i><sub>tot</sub> = <i>I</i><sub>1</sub> + <i>I</i><sub>2</sub> + ···:</li> </ul> | <b>Construct</b> circuits from a schema and <b>measure</b> current and voltage                                                                                                                                                                     | \$~B       | Parallel circuit as idea of home circuit                                                                                                                                                                                                                                                         |  |
|                        | • $U_{\text{tot}} = U_1 = U_2 = \cdots;$<br>• $\frac{1}{R_{\text{tot}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$  |                                                                                                                                                                                                                                                    |            | Calculations with combinations of series<br>and parallel can be considered with a<br>motivated class                                                                                                                                                                                             |  |
| Electricity at<br>home | Power:<br>P = U I<br>Energy:<br>E = P t<br>Commercial units of energy                                              | <ul> <li>Explain that electric circuits enable the transfer of energy at a distance and its transformation into heat, light, mechanical energy, and other appropriate forms</li> <li>Express power as the rate of energy transformation</li> </ul> | ¢.         | <ul> <li>Safety at home</li> <li>Find the circuit breaker box and electricity meter at home and find out</li> <li>the maximum amount of current that can be drawn</li> <li>the number of kWh used in a day or a week</li> <li>Identify which appliance uses the most energy in a week</li> </ul> |  |
|                        | Electrical safety in the home                                                                                      | <b>Explain</b> which safety measures are used at home for electricity, as isolation, earth leakage switch, earthing, fuse,                                                                                                                         | $\bigcirc$ | This can be combined with biology (and<br>chemistry and math) by measuring also<br>the use of water and gas or oil and the<br>production of waste to determine the<br>ecological footprint in a project                                                                                          |  |
|                        | Electrical devices at home                                                                                         | <b>Identify</b> multiple energy conversions in real<br>life devices and <b>discuss</b> reasons for<br>changing technologies of electrical devices                                                                                                  | 66         | Build and explain circuits with sensors and bulbs or resistors                                                                                                                                                                                                                                   |  |
|                        |                                                                                                                    | such as light bulbs                                                                                                                                                                                                                                |            | Sensors such as LDR, NTC could be<br>addressed and students may <b>design</b><br>simple circuits with sensors as LDR and<br>NTC                                                                                                                                                                  |  |

| YEAR S4   | TOPIC: Magnetism                                                                                                        | Pre-knowledge: The idea of magnetic field is introduced in S3                                                                                                       |         |                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subtopic  | Content                                                                                                                 | Learning objectives                                                                                                                                                 | Key con | Key contexts, phenomena and activities                                                                                                                                                                                                                                                                                                                                            |  |
| Magnetism | Magnetic field, electromagnets                                                                                          | <b>Draw</b> the magnetic field diagram of a solenoid or magnet and <b>describe</b> the similarities between them                                                    |         | <ul> <li>Examples of uses of magnetism and the Motor effect:</li> <li>Door bells and buzzers</li> <li>Deflection of electron beams (with Helmholtz coils or a permanent magnet)</li> <li>Auroras</li> <li>Fire door release mechanism</li> <li>Motors and generators</li> <li>Loudspeakers</li> <li>Metal detectors</li> <li>Maglev train</li> <li>Bicycle speedometer</li> </ul> |  |
|           | Motor effect (qualitative principles)                                                                                   | <b>Explain</b> qualitatively how an electric motor works                                                                                                            | \$      | Build yourself a model electric motor<br>and/or make a cartoon strip to simply<br>explain how an electric motor works                                                                                                                                                                                                                                                             |  |
|           | Electromagnetic induction<br>(qualitative principles)<br>Consider motors and generators as<br>energy conversion devices | <b>Explain</b> that a varying magnetic field in a coil induces an electric current and that the phenomenon is used in generators (no Lorentz force or calculations) | A CAR   | Similarities and differences between<br>various electricity generating methods:<br>gas turbine, windmills, hydroelectric,<br>solar                                                                                                                                                                                                                                                |  |

| YEAR S4              | TOPIC: Mechanics                                                                                                                                               | Pre-knowledge: S1 science introduces speed, acceleration and graphs, $s = v \cdot t$ is used, no calculations with <i>a</i> has been done. The idea that forces can change velocity is introduced in S3. Gravity is introduced in S1 |                                        | ohs, $s = v \cdot t$ is used, no calculations with $a$ have<br>in S3. Gravity is introduced in S1                                      |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Subtopic             | Content                                                                                                                                                        | Learning objectives                                                                                                                                                                                                                  | Key contexts, phenomena and activities |                                                                                                                                        |  |
| Accelerated motion   | <i>s, v, a</i> : Define these quantities and distinguish between the vector and scalar terms                                                                   | Calculate movements with constant speed                                                                                                                                                                                              | \$~~                                   | Measure time and distance for several<br>ways of travelling for calculating the<br>speed in m/s and km/h                               |  |
|                      | Speed<br>$v = \frac{\Delta s}{\Delta t};$                                                                                                                      |                                                                                                                                                                                                                                      |                                        | Make position-time graphs with a computer                                                                                              |  |
|                      | Acceleration:<br>$a = \frac{\Delta v}{\Delta t}; \qquad s = \frac{1}{2} a t^2$                                                                                 | <b>Calculate</b> movement with constant acceleration                                                                                                                                                                                 |                                        | Make velocity-time graphs with a<br>computer including freefall acceleration or<br>inclined plane                                      |  |
|                      | Distinguish between instantaneous<br>and average velocities or speed                                                                                           | <b>Construct</b> and <b>analyse</b> $s(t)$ and $v(t)$ graphs to get information and <b>make calculations</b> using gradients and key points on the graphs                                                                            | Ŕ                                      | Relate freefall acceleration to the force of gravity<br>F = m g                                                                        |  |
| Effects of<br>forces | Forces can:  Change speed                                                                                                                                      | <b>Explain</b> that forces can change velocity or are balanced so nothing changes                                                                                                                                                    |                                        |                                                                                                                                        |  |
|                      | <ul><li>Change direction of motion</li><li>Deform materials</li></ul>                                                                                          | <b>Distinguish</b> between the force (invisible) and the effect of a force (visible)                                                                                                                                                 |                                        |                                                                                                                                        |  |
|                      | <ul> <li>Force as a vector:</li> <li>Summing forces in 1 dimension</li> <li>Extension of the concept of a sum of forces (resultant) to 2 dimensions</li> </ul> | <b>Draw</b> vectors and vector sums graphically only                                                                                                                                                                                 |                                        | Extension of scale diagrams may be<br>interesting: the concept of components:<br>the effect in each of two perpendicular<br>directions |  |

| YEAR S4          | TOPIC: Mechanics                                                                                                  | Pre-knowledge: S1 science introduces speed, acceleration and graphs, $s = v \cdot t$ is used, no calculations with <i>a</i> have been done. The idea that forces can change velocity is introduced in S3. Gravity is introduced in S1 |            |                                                                                                                                          |  |
|------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subtopic         | Content                                                                                                           | Learning objectives                                                                                                                                                                                                                   | Key con    | Key contexts, phenomena and activities                                                                                                   |  |
|                  | <ul><li>Examples of common forces:</li><li>Gravitational force (weight)</li></ul>                                 | <b>Explain</b> that weight is a force and depends on mass and gravitational field strength                                                                                                                                            | \$B        | Methods of measuring g                                                                                                                   |  |
|                  | $F_{\rm G} = m g$<br>• Tension                                                                                    | <b>Use</b> the correct name for a given force in written and oral descriptions                                                                                                                                                        |            | Hooke's law:<br>Students investigate how the extension of<br>a spring depends on mass attached to it                                     |  |
|                  | <ul><li>Normal force</li><li>Friction force</li></ul>                                                             | <b>Calculate</b> magnitudes of weight, mass and field strength                                                                                                                                                                        |            | Calculations could be explored                                                                                                           |  |
|                  |                                                                                                                   | <b>Describe</b> situations that give rise to the normal force                                                                                                                                                                         |            | Why does the weight of an object appear<br>to change when placed into different<br>fluids? (Archimedes)                                  |  |
| Forces in action | Newton's 1 <sup>st</sup> Law<br>Newton's 2 <sup>nd</sup> Law for a given mass                                     | <b>Calculate</b> the sum of forces in 1 dimension<br>and <b>determine</b> force and acceleration from<br>Newton's 1 <sup>st</sup> and 2 <sup>nd</sup> Law.                                                                            | 40         | Experiments with constant force on an air track, without and with friction                                                               |  |
|                  | Consider mass as a measure of<br>how easy or hard it is for a given<br>force to change the motion of an<br>object | <b>Explain</b> how mass affects the acceleration of a body when a net force acts on it                                                                                                                                                | R          | Experiments involving freefall and air resistance (Newton's coin and feather tube)                                                       |  |
|                  |                                                                                                                   | <b>Use</b> the second law to <b>calculate</b> velocity at given time during a uniform acceleration                                                                                                                                    | R          | Investigate how air (or water) resistance<br>changes with the speed of the object<br>moving through it. Investigate terminal<br>velocity |  |
|                  | Newton's 3 <sup>rd</sup> Law                                                                                      | <b>State</b> that in a system of interacting<br>masses an action provokes an equal and<br>opposite reaction and <b>recognise</b> that<br>these forces act on different bodies                                                         | $\bigcirc$ | Design a package with as little material as<br>possible in which you can drop an egg<br>from a height of 10m without breaking            |  |

| YEAR S4                       | TOPIC: Mechanics                                                                                                    | Pre-knowledge: S1 already introduces characteristics                                                                   | edge: S1 already introduces characteristics of sound qualitatively. Students are familiar with square roots |                                                                                                                                                                                                                    |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Subtopic                      | Content                                                                                                             | Learning objectives                                                                                                    | Key contexts, phenomena and activities                                                                      |                                                                                                                                                                                                                    |  |
| Oscillators as<br>a source of | Characteristics of the oscillating source                                                                           | <b>Define</b> and <b>apply</b> the concepts of frequency, period and amplitude                                         | R                                                                                                           | Examples such as a mass on a spring or the simple pendulum can be explored                                                                                                                                         |  |
| waves                         | Amplitude, frequency and period                                                                                     |                                                                                                                        |                                                                                                             |                                                                                                                                                                                                                    |  |
|                               | $f = \frac{1}{T}$                                                                                                   |                                                                                                                        |                                                                                                             |                                                                                                                                                                                                                    |  |
| Characteristics<br>of Waves   | Waves should be approached as<br>energy on the move from an<br>oscillating source without the<br>transfer of matter | <b>Describe</b> the characteristics of waves                                                                           | \$~B                                                                                                        | Ripple tank, loudspeakers, tuning forks<br>etc. illustrate the characteristics of waves<br>in amplitude and wavelength. Practical<br>examples such as ocean waves, pitch<br>and loudness of sounds, brightness and |  |
|                               | Common characteristics of all<br>waves: wavelength, frequency,<br>period, velocity, amplitude:                      | Make calculations with frequency, velocity and wavelength                                                              |                                                                                                             | colours of light etc. can be explored.                                                                                                                                                                             |  |
|                               | $v = \lambda f;  s = v t$                                                                                           |                                                                                                                        |                                                                                                             |                                                                                                                                                                                                                    |  |
|                               | Longitudinal and transverse waves                                                                                   | <b>Distinguish</b> between longitudinal and transverse waves and <b>list</b> examples                                  |                                                                                                             |                                                                                                                                                                                                                    |  |
| Sound                         | Apply the characteristics described above to sound waves                                                            | <b>Explain</b> qualitatively how a musical instrument makes sound and what determines the characteristics of the sound |                                                                                                             | Students design an experiment to measure the velocity of sound                                                                                                                                                     |  |
|                               | State of<br>sound<br>waves                                                                                          | State other examples of similar waves to sound such as sonar, ultrasound or shock waves                                | $\bigcirc$                                                                                                  | Explore the audible range of the human ear                                                                                                                                                                         |  |
|                               |                                                                                                                     | (                                                                                                                      | R                                                                                                           | A room with and without curtains and furniture, design of a concert hall. The idea of echo                                                                                                                         |  |
|                               |                                                                                                                     |                                                                                                                        | 40                                                                                                          | Students investigate the frequency from a vibrating string as a function of the attached mass (or the tension <i>F</i> )                                                                                           |  |
|                               |                                                                                                                     |                                                                                                                        | $\bigcirc$                                                                                                  | Qualitatively relate ultrasound to sonar (echo location) and medical scanners                                                                                                                                      |  |

| YEAR S4                   | TOPIC: Mechanics                        | Pre-knowledge: S1 already introduces characteristics of sound qualitatively. Students are familiar with square roots |                                        |                                                                          |  |
|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|--|
| Subtopic                  | Content                                 | Learning objectives                                                                                                  | Key contexts, phenomena and activities |                                                                          |  |
| Light and the<br>electro- | Regions of the electromagnetic spectrum | <b>Identify</b> the different regions of the electromagnetic spectrum, <b>relate</b> them to frequency or wavelength | $\bigcirc$                             | Discuss uses and applications of regions of the electromagnetic spectrum |  |
| spectrum                  |                                         |                                                                                                                      | AF A                                   | Discussion of lasers and photoelectricity could be engaged               |  |
|                           |                                         |                                                                                                                      |                                        | Historical methods for measuring the speed of light                      |  |

• Year S5

| YEAR S5                                                                                                                               | <b>TOPIC: Work and Energy</b>                                                                                                                            | Pre-knowledge: Newton's Laws are already covered in S4           |                                        |                                                            |                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| Subtopic                                                                                                                              | Content                                                                                                                                                  | Learning objectives                                              | 5                                      | Key contexts, phenomena and activities                     |                                                                                                     |  |
| Work and energy                                                                                                                       | Mechanical work                                                                                                                                          | Use the concept of work to calculate change in energy            |                                        | R                                                          | Applications to situations like hydroelectricity                                                    |  |
|                                                                                                                                       | The energy transformed when a<br>body moves with or against a force<br>W = F s<br>where distance moved, <i>s</i> , is parallel<br>to the force, <i>F</i> |                                                                  |                                        | $\bigcirc$                                                 | Energy transformations in situations like<br>skiing, batteries in E-bikes and E-cars,<br>fuel, etc. |  |
| Gravitational potential energy $E_P$ Calculate kinetic and gravitational energy. $\Delta E_p = m g \Delta h$ Calculate transformation |                                                                                                                                                          | gravitational<br>ons between them                                |                                        | Factors affecting the efficiency of energy transformations |                                                                                                     |  |
|                                                                                                                                       | Kinetic energy:<br>$E_{\rm k} = \frac{1}{2} m v^2$                                                                                                       | <b>Calculate</b> how much ti<br>needed to stop a car.            | me and distance is                     | $\bigcirc$                                                 | Context of driving safety                                                                           |  |
|                                                                                                                                       | Conservation of energy:<br>$\sum E_{before} = \sum E_{after}$                                                                                            | Use the idea of power to do calculations about maximum velocity. | from S4 with friction<br>out power and | AFX                                                        | How to reduce energy losses through resistive forces in cars, aeroplanes, ships, etc                |  |

| YEAR S5                     | TOPIC: Matter and Heat                                                                                                   | Pre-knowledge: S2 introduces the particle model of solids, liquids and gases. S4 chemistry also gives attention to particle model and micro-macro thinking. S2 gives a particle model for transitions of state. S3 gives attention to transitions between different forms of energy without calculations. The mole and Avogadro are introduced in S4 chemistry. S4 biology talks about cooling and sweating |                           |                                                                                                                                                                                                                                  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subtopic                    | Content                                                                                                                  | Learning objectives                                                                                                                                                                                                                                                                                                                                                                                         | Key con                   | itexts, phenomena and activities                                                                                                                                                                                                 |  |  |
| Particles and the structure | Random motion and forces between particles of matter                                                                     | <b>Describe</b> the behaviour of molecules in different states of matter                                                                                                                                                                                                                                                                                                                                    | R                         | Contexts for energy exchange due to change of state: cooling of aerosol cans                                                                                                                                                     |  |  |
| of matter                   | Temperature as a measure of<br>average kinetic energy of particles.<br>The Kelvin scale. The concept of<br>absolute zero | <b>Determine</b> the equivalent temperature in Kelvin from Celsius and vice versa                                                                                                                                                                                                                                                                                                                           |                           | when they are operated, refrigeration, practical heat pumps                                                                                                                                                                      |  |  |
|                             | Transitions between states                                                                                               | Explain why a change of state involves                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                                                                                                                                                  |  |  |
|                             | Energy required or released during a change of state                                                                     | energy exchange                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                                                                                                                                                                                                  |  |  |
|                             | Boiling, melting and evaporation<br>should be considered along with<br>the reverse processes                             | <b>Give a reason</b> as to why temperature<br>stays constant when a pure material<br>changes state at its boiling or melting point                                                                                                                                                                                                                                                                          | R                         | Examples can be used from weather phenomena                                                                                                                                                                                      |  |  |
|                             | Heat and mechanical work seen in the expansion and compression of gases                                                  | <b>Explain</b> why gases cool when they expand and heat when compressed (no calculations)                                                                                                                                                                                                                                                                                                                   |                           | Heating of air when compressed<br>(Demonstration: igniting cottonwood by<br>quickly compressing air in a transparent<br>tube)                                                                                                    |  |  |
| Heat energy                 | Heat to change temperature:                                                                                              | Calculate in problems and experiments                                                                                                                                                                                                                                                                                                                                                                       | <u>کر</u> کی              | Measuring temperature in time by heating                                                                                                                                                                                         |  |  |
|                             | $Q = m c \Delta T$                                                                                                       | Involving                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbb{G}^{\mathbb{O}}$ | water and making diagrams                                                                                                                                                                                                        |  |  |
|                             | Latent Heat to change state:                                                                                             | • specific heat capacity, <i>c</i>                                                                                                                                                                                                                                                                                                                                                                          | പ്പ                       | Method of mixtures experiments and                                                                                                                                                                                               |  |  |
|                             | Q = m l                                                                                                                  | • specific latent heat, <i>l</i>                                                                                                                                                                                                                                                                                                                                                                            | LES                       | problems could be explored                                                                                                                                                                                                       |  |  |
|                             |                                                                                                                          | the law of conservation of energy                                                                                                                                                                                                                                                                                                                                                                           | A.K                       | Experiments to compare the efficiencies                                                                                                                                                                                          |  |  |
|                             |                                                                                                                          | concept of efficiency                                                                                                                                                                                                                                                                                                                                                                                       | <b>G</b> O                | of different methods of heating                                                                                                                                                                                                  |  |  |
|                             |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                             | Ŕ                         | Discuss practical applications of the high<br>specific heat capacity of water such as for<br>central heating systems, water cooled<br>engines, moderating maritime climate,<br>coastal breezes, ocean heat conveying<br>currents |  |  |

| YEAR S5                                                                | <b>TOPIC: Conservation of </b> | Momentum Pre-knowledge: Newton's Laws, Ford                                                                                     | ce as a vector. V | elocity and acceleration (S4)                                                                                                                                 |  |  |
|------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subtopic                                                               | Content                        | Learning objectives                                                                                                             | Key con           | Key contexts, phenomena and activities                                                                                                                        |  |  |
| Momentum                                                               | Momentum:<br>p = m v           | <b>Describe</b> momentum as the quantity of motion of a body and <b>calculate</b> its momentum                                  | Ŕ                 | Compare the momenta of various objects:<br>low mass moving quickly like a bullet and<br>a large mass moving slowly like a bowling<br>ball                     |  |  |
| Application of<br>Newton's 3 <sup>rd</sup><br>Law to<br>collisions and | Conservation of momentum       | <b>Identify</b> the objects within a closed system<br>to which conservation of momentum<br>applies                              | Ŕ                 | Propulsion mechanisms such as reaction<br>engines could be discussed where mass<br>varies or the force at the end of a water<br>canon/hosepipe                |  |  |
| propulsion                                                             |                                | <b>Describe</b> interactions between objects<br>where two concepts are required to predict<br>the outcomes: momentum and energy | \$B               | Experiments with a simple air rocket could be explored or trolleys connected by a spring                                                                      |  |  |
|                                                                        |                                |                                                                                                                                 | AF T              | Corresponding situations could be researched:                                                                                                                 |  |  |
|                                                                        |                                |                                                                                                                                 |                   | <ul> <li>a) ion engines or light sails</li> <li>b) Projectile launchers like canons or<br/>rifles</li> </ul>                                                  |  |  |
|                                                                        |                                |                                                                                                                                 |                   | Consider elastic collisions (e.g. billiard<br>balls) and inelastic collisions (e.g. kinetic<br>energy converted into deformation energy<br>in a car accident) |  |  |
|                                                                        |                                |                                                                                                                                 | AFX A             | Calculations can be made to conservation of linear momentum in these phenomena                                                                                |  |  |

| YEAR S5                                | TOPIC: Atomic and Nucle                                                                                  | <b>COPIC: Atomic and Nuclear Physics</b>                                                                                                                                                                                                                                                                                        |                                                   | Pre-knowledge: How an atom is built; periodic system; isotopes (s4-chemistry). S5-chemistry introduces the orbital model, Pauli's exclusion principle and nuclear structure and processes |                                                                                                                                                                 |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subtopic                               | Content                                                                                                  | Learning obje                                                                                                                                                                                                                                                                                                                   | ctives                                            | Key con                                                                                                                                                                                   | Key contexts, phenomena and activities                                                                                                                          |  |  |
| Fundamental<br>Particles and<br>Forces | Electrons, neutrons, protons                                                                             | <b>Describe</b> the charge and mass and<br>dimensions of these particles and how they<br>contribute to the structure of the atom( <b>State</b> that there are only a few<br>fundamental forces(                                                                                                                                 |                                                   | $\bigcirc$                                                                                                                                                                                | A deeper discussion could be engaged<br>with motivated students.<br>CERN's "Particle Adventure" website and                                                     |  |  |
|                                        | Fundamental forces that cause interactions between particles                                             |                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                                                                                                                                           | others like it can be used to explore<br>particle accelerators for probing matter,<br>quarks, the structure of nuclear particles.                               |  |  |
|                                        |                                                                                                          | <b>Describe</b> qualitatively their role in the structure of an atom                                                                                                                                                                                                                                                            |                                                   |                                                                                                                                                                                           | the Standard Model, exchange model of forces and the Higgs Boson                                                                                                |  |  |
|                                        |                                                                                                          | <b>Apply</b> the notation ${}^{A}_{Z}X$ to <b>describe</b> the structure of a nucleus                                                                                                                                                                                                                                           |                                                   | \$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                   | Discussion of how the numbers of<br>neutrons and protons determine the<br>stability of the nuclei they form                                                     |  |  |
|                                        | Isotopes                                                                                                 | <b>Distinguish</b> between different isotopes of<br>an element and <b>relate</b> the difference to the<br>respective numbers of neutrons                                                                                                                                                                                        |                                                   | R                                                                                                                                                                                         | Neutron stars and other exotic examples of particles in nature could be researched                                                                              |  |  |
| Radioactive<br>decay                   | Activity <i>A</i> , half-life, nuclear radiation<br>Decay with $\alpha$ , $\beta$ and $\gamma$ radiation | Identify the decay product when an atom<br>decays with alpha or beta radiation (no<br>electron capture, or beta+ decay).<br>Determine the activity or quantity of a<br>radioisotope remaining after a few half-<br>lives or vice versa. Only whole numbers of<br>half-lives: no calculations with logarithms<br>or exponentials |                                                   | F.                                                                                                                                                                                        | Together with mathematics (probability<br>rules) and also from an experiment with<br>100 dice or coins students gain insight<br>about half-life and probability |  |  |
|                                        | Reaction equations                                                                                       | <b>Construct</b> a balanced reaction equation for a decay                                                                                                                                                                                                                                                                       |                                                   |                                                                                                                                                                                           |                                                                                                                                                                 |  |  |
|                                        |                                                                                                          | <b>Explain</b> the emise<br>as emission of e<br>from the nucleus                                                                                                                                                                                                                                                                | ssion of gamma radiation<br>lectromagnetic energy | R                                                                                                                                                                                         | Experiment with beer froth                                                                                                                                      |  |  |

| YEAR S5  | <b>TOPIC: Atomic and Nuclear Physics</b> |                     | Pre-knowledge: How an atom is built; periodic system; isotopes (s4-chemistry). S5-chemistry intro<br>the orbital model, Pauli's exclusion principle and nuclear structure and processes |                                       |                                 |
|----------|------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|
| Subtopic | Content                                  | Learning objectives |                                                                                                                                                                                         | Key contexts, phenomena and activitie |                                 |
|          |                                          |                     |                                                                                                                                                                                         |                                       | The discovery of radioactivity. |

| <b>TOPIC: Atomic and Nucle</b>                                                                    | ear Physics                                                                                                                                                                                                              | Pre-knowledge: How an atom is to chem introduces the orbital mode                                                                                                                                                                                                                                                                                                                                                                                                                           | tom is build (S4-chem); periodic system (S4-chem); isotopes (S4-chem). S al model, Pauli's exclusion principle and nuclear structure and processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Content                                                                                           | Learning object                                                                                                                                                                                                          | tives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Key cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Key contexts, phenomena and activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Penetration of radiation,<br>diagnostics, treatment in simple<br>words, use of ionising radiation | Apply the concept of ionisation to explain<br>the need for safety measures                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ionising radiation and safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                   | <b>Give reasons</b> for the use of short living isotopes in diagnostics and treatment                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Students could research examples of<br>medical imaging and/or treatment or<br>industrial applications that uses ionising<br>radiation. Presentation to the other<br>students                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                   | <b>Discuss</b> the risk of radiation qualitatively in terms of activity, energy of radiation and time of exposure                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Background radiation and situations<br>presenting different levels of risk such as<br>increased exposure to radiation due to<br>radon gas, or cosmic rays (during a plane<br>flight or time in space), or periods of<br>increased solar activity                                                                                                                                                                                                                                                                                                                            |  |  |
| Mass as a form of energy<br>Examples of fission reactions                                         | State that when r<br>energy, the mass<br>than that of the re<br>$E = m c^2$                                                                                                                                              | nuclear reactions release<br>of the products is less<br>eactants as described by                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Student could research the advantages<br>and disadvantages of different energy<br>sources with respect to need, time for<br>construction, resources, environment and<br>health risks. This can be done together<br>with chemistry and biology in the context<br>of energy transition. This could end in a                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                   | TOPIC: Atomic and Nucle         Content         Penetration of radiation,<br>diagnostics, treatment in simple<br>words, use of ionising radiation         Mass as a form of energy         Examples of fission reactions | TOPIC: Atomic and Nuclear PhysicsContentLearning objectPenetration of radiation,<br>diagnostics, treatment in simple<br>words, use of ionising radiationApply the concept<br>the need for safeGive reasons for<br>isotopes in diagnGive reasons for<br>isotopes in diagnDiscuss the risk<br>terms of activity, time of exposureMass as a form of energyState that when re<br>energy, the mass<br>than that of the re<br>$E = m c^2$ Examples of fission reactionsImage: Colspan="2">Content | Pre-knowledge: How an atom is to<br>chem introduces the orbital modeContentLearning objectivesPenetration of radiation,<br>diagnostics, treatment in simple<br>words, use of ionising radiationApply the concept of ionisation to explain<br>the need for safety measuresGive reasons for the use of short living<br>isotopes in diagnostics and treatmentGive reasons for the use of short living<br>isotopes in diagnostics and treatmentDiscuss the risk of radiation qualitatively in<br>terms of activity, energy of radiation and<br>time of exposureState that when nuclear reactions release<br>energy, the mass of the products is less<br>than that of the reactants as described by<br>$E = m c^2$ Examples of fission reactionsExamples of fission reactions | TOPIC: Atomic and Nuclear PhysicsPre-knowledge: How an atom is build (S4-cher<br>chem introduces the orbital model, Pauli's exclContentLearning objectivesKey corPenetration of radiation,<br>diagnostics, treatment in simple<br>words, use of ionising radiationApply the concept of ionisation to explain<br>the need for safety measuresImage: ContentDiscuss the risk of radiation qualitatively in<br>terms of activity, energy of radiation and<br>time of exposureImage: ContentImage: ContentMass as a form of energyState that when nuclear reactions release<br> |  |  |

| YEAR S5  | TOPIC: Atomic and Nuclear Physics    |                                                                                                      | Pre-knowledge: How an atom is build (S4-chem); periodic system (S4-chem); isotopes (S4-chem). S5-<br>chem introduces the orbital model, Pauli's exclusion principle and nuclear structure and processes  |         |                                                                                                                    |  |
|----------|--------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|--|
| Subtopic | Content                              | Learning objec                                                                                       | tives                                                                                                                                                                                                    | Key con | texts, phenomena and activities                                                                                    |  |
|          | How this results in a chain reaction | Identify fission and fusion from reaction<br>equations and construct balanced<br>reaction equations. |                                                                                                                                                                                                          | R       | Fusion of hydrogen in stars, ITER as a                                                                             |  |
|          | Examples of fusion reactions         |                                                                                                      |                                                                                                                                                                                                          |         |                                                                                                                    |  |
|          | Nuclear power                        | <b>Explain</b> how a fis chain reaction.                                                             | <b>Explain</b> how a fission reaction can lead to<br>chain reaction. <b>Describe</b> how this leads to an uncontrolled<br>explosion and <b>explain</b> how it can be<br>controlled in a nuclear reactor. |         | Advantages and disadvantages of fusion<br>in relation to fission (for example nuclear<br>waste fusion temperature) |  |
|          |                                      | <b>Describe</b> how this<br>explosion and <b>exp</b><br>controlled in a nuc                          |                                                                                                                                                                                                          |         |                                                                                                                    |  |

### 5. Assessment

For each level there are attainment descriptors which are listed in the following table and explained by the competences. They give an idea of the level that students have to reach. They also give an idea of the kind of assessments that can be done. Pupils should be assessed in a broad variety of ways throughout the year, to give a wide-ranging picture of each pupil's attainments, strengths, and areas for further work.

Assessment is summative when it is used to evaluate student learning at the end of the instructional process or of a period of learning. The purpose is to summarise the students' achievements and to determine whether, and to what degree, the students have demonstrated understanding of that learning. Summative assessment evaluates the student's learning by long written tests in S4 or later in S5. The S5 physics exam, must always be completely harmonised between the language sections.

Assessment is formative when either formal or informal procedures are used to gather evidence of learning during the learning process, and are used to adapt teaching to meet student needs. The process permits teachers and students to collect information about student progress and to suggest adjustments to the teacher's approach to instruction and the student's approach to learning.

Formative assessment takes place in almost every lesson of the school year and should include the following:

- Lab reports
- Presentations
- Tests of subject content
- Tests of practical skills
- Self and peer evaluation

The competences are expressed in the table as a set of verbs that give an idea of what kind of assessment can be used to assess that goal. In the table with learning objectives these verbs are used and put bold, so there is a direct link between the competences and the learning objectives.

Assessing content knowledge can be done by written questions where the student has to respond on. Partly that can be done by multiple choice but competences as constructing explanations and engaging in argument as well as key competences as communication and mathematical competence need open questions or other ways of assessing.

An assignment where students have to use their factual knowledge to make an article or poster about a (broader) subject can be used to also judge the ability to critically analyse data and use concepts in unfamiliar situations and communicate logically and concisely about the subject. Students have to be able to do an (experimental) inquiry. An (open) inquiry should be part of the assessments. Assessing designing and inquiry can be combined with other subjects.

Digital competence can be assessed by working with spreadsheets, gathering information from internet, measuring data with measuring programs and hardware, modelling theory on the computer and comparing the outcomes of a model with measured data. Do combine this with other assessments where this competence is needed.

For all assessment, the marking scale of the European schools shall be used, as described in "*Marking system of the European schools: Guidelines for use*" (Ref.: 2017-05-D-29-en-7).

# **5.1. Attainment Descriptors**

|                      | <b>A</b> (9,0 - 10<br>Excellent)                                                                                                                                                              | <b>B</b> (8,0 - 8,9<br>Very good)                                                                                                                    | <b>C</b> (7,0 - 7,9<br>Good)                                                                                                            | <b>D</b> (6,0 - 6,9<br>Satisfactory)                                       | <b>E</b> (5,0 - 5,9<br>Sufficient)                                        | <b>F</b> (3,0 - 4,9<br>Weak/Failed)                                            | <b>FX</b> (0 - 2,9<br>Very weak/Failed)                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Knowledge            | Displays<br>comprehensive<br>knowledge of<br>facts                                                                                                                                            | Displays a very<br>broad knowledge<br>of facts                                                                                                       | Displays a broad<br>knowledge of<br>facts                                                                                               | Displays a<br>reasonable<br>knowledge of<br>facts and<br>definitions       | Recalls main<br>names, facts and<br>definitions.                          | Displays little<br>recall of factual<br>information                            | Displays very little<br>recall of factual<br>information.                          |
| Comprehension        | and a thorough<br>command and<br>use of concepts<br>and principles in<br>science.                                                                                                             | and a good<br>command and<br>use of concepts<br>and principles in<br>science.                                                                        | and good<br>understanding of<br>main concepts<br>and principles in<br>science.                                                          | and<br>understanding of<br>basic concepts<br>and principles in<br>science. | Understands only<br>basic concepts<br>and principles in<br>science        | and a limited<br>understanding of<br>concepts and<br>principles in<br>science. | Shows very little<br>understanding of<br>scientific<br>principles and<br>concepts. |
| Application          | Makes<br>connections<br>between different<br>parts of the<br>syllabus and<br>applies concepts<br>to a wide variety<br>of unfamiliar<br>situations and<br>makes<br>appropriate<br>predictions. | Makes some<br>connections<br>between different<br>parts of the<br>syllabus and<br>applies concepts<br>and principles to<br>unfamiliar<br>situations. | Is capable of<br>using knowledge<br>in an unfamiliar<br>situation.                                                                      | Is capable of<br>using knowledge<br>in a familiar<br>situation.            | and can use<br>basic knowledge<br>in a familiar<br>situation.             | /                                                                              | /                                                                                  |
| Analysis             | Is capable of<br>detailed and<br>critical analysis<br>and explanations<br>of complex data.                                                                                                    | Analyses and<br>explains complex<br>data well.                                                                                                       | Produces good<br>analysis and<br>explanations of<br>simple data.                                                                        | Produces basic<br>analysis and<br>explanations of<br>simple data.          | Given a structure<br>can analyse and<br>explain simple<br>data.           | Can use data<br>only with<br>significant<br>guidance.                          | Fails to use data adequately.                                                      |
| Experimental<br>work | Formulates<br>hypotheses,<br>plans and carries<br>out investigations<br>using a wide<br>range of<br>techniques while<br>being aware of<br>ethical issues.                                     | Plans and carries<br>out experiments<br>using appropriate<br>techniques, being<br>aware of safety<br>issues.                                         | Follows a written<br>procedure safely<br>and makes and<br>records<br>observations,<br>presenting them<br>using different<br>techniques. | Follows a written<br>procedure safely<br>and records<br>observations.      | Follows a written<br>procedure safely<br>and makes basic<br>observations. | Has difficulty<br>following<br>instructions<br>without<br>supervision.         | Is not able to<br>safely follow a<br>written procedure.                            |

|                                            | <b>A</b> (9,0 - 10<br>Excellent)                                                                                                                                                                                          | <b>B</b> (8,0 - 8,9<br>Very good)                                                                                                                                                                                              | <b>C</b> (7,0 - 7,9<br>Good)                                                                                                                                                                                         | <b>D</b> (6,0 - 6,9<br>Satisfactory)                                                                                                                                                                                   | <b>E</b> (5,0 - 5,9<br>Sufficient)                                                                                                                                                                                     | <b>F</b> (3,0 - 4,9<br>Weak/Failed)                                                                                                                                                                                                                 | <b>FX</b> (0 - 2,9<br>Very weak/Failed)                                                                                                                                                                             |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital and<br>Information<br>Competences* | Can consistently<br>independently<br>find and assess<br>the reliability of,<br>information on<br>scientific<br>subjects, on- and<br>offline.<br>Can<br>independently<br>use appropriate<br>software for<br>science tasks. | Can usually<br>independently<br>find and assess<br>the reliability of,<br>information on<br>scientific<br>subjects, on- and<br>offline.<br>Can use<br>appropriate<br>software for<br>science tasks<br>with some<br>assistance. | Can often<br>independently<br>find and assess<br>the reliability of,<br>information on<br>scientific<br>subjects, on- and<br>offline.<br>Can use<br>appropriate<br>software for<br>science tasks<br>with assistance. | With aid, can find<br>and assess the<br>reliability of,<br>information on<br>scientific<br>subjects, on- and<br>offline.<br>Can use<br>appropriate<br>software for<br>science tasks<br>given structured<br>assistance. | Can retrieve<br>information on<br>scientific subjects<br>when directed to<br>reliable sources,<br>on- and offline.<br>Can follow<br>structured<br>instructions to<br>use appropriate<br>software for<br>science tasks. | Generally unable<br>to find, or to<br>assess the<br>reliability of,<br>information on<br>scientific<br>subjects, on- and<br>offline.<br>Has great<br>difficulties using<br>appropriate<br>software for<br>science tasks<br>even with<br>assistance. | Unable to find, or<br>to assess the<br>reliability of,<br>information on<br>scientific<br>subjects, on- or<br>offline.<br>Unable to use<br>appropriate<br>software for<br>science tasks<br>even with<br>assistance. |
| Communication<br>(oral and<br>written)     | Communicates<br>logically and<br>concisely using<br>scientific<br>vocabulary<br>correctly.<br>Demonstrates<br>excellent<br>presentation<br>skills.                                                                        | Communicates<br>clearly using<br>scientific<br>vocabulary<br>correctly.<br>Demonstrates<br>very good<br>presentation<br>skills.                                                                                                | Communicates<br>clearly most of<br>the time using<br>scientific<br>vocabulary<br>correctly.<br>Demonstrates<br>good presentation<br>skills.                                                                          | Uses basic<br>scientific<br>vocabulary, and<br>descriptions show<br>some structure.<br>Demonstrates<br>satisfactory<br>presentation<br>skills.                                                                         | Uses basic<br>scientific<br>vocabulary, but<br>descriptions may<br>lack structure or<br>clarity.<br>Demonstrates<br>satisfactory<br>presentation<br>skills.                                                            | Generally<br>produces<br>descriptions that<br>are insufficient or<br>incomplete with a<br>poor use of<br>scientific<br>vocabulary. Lacks<br>acceptable<br>presentation<br>skills.                                                                   | Has very poor<br>Communication<br>and presentation<br>skills.                                                                                                                                                       |
| Teamwork                                   | Shows initiative –<br>a team leader.                                                                                                                                                                                      | Works<br>constructively in a<br>team.                                                                                                                                                                                          | Works well in a team.                                                                                                                                                                                                | Works<br>satisfactorily in a<br>team.                                                                                                                                                                                  | and participates in team work.                                                                                                                                                                                         | Needs assistance<br>when working in a<br>team.                                                                                                                                                                                                      | Does not work in a team.                                                                                                                                                                                            |

\*) This competence is part of the European Digital Competence Framework (<u>https://ec.europa.eu/jrc/en/digcomp</u>)

#### Annex

Physics in S4 - S5 is a discipline where students attempt to discover and apply general laws which govern force and motion, matter and energy, and space and time. Observing phenomena, experimenting, finding models to explain and predicting the behaviour of matter are important tasks in physics. Students learn by doing, by analysing and by communicating about physics. As they are getting older, physics becomes more abstract and more mathematical.

Safety shall be given priority. Teachers must start the S4 - S5 physics course with an introduction to safety in the lab as well as each experiment by focussing on the specific safety issues for the activity. Furthermore, safety must be part of the evaluation of the competence 'experimental work'.

The syllabus does not include teaching hours, because teaching time does not only depend on the content but also on the competency being taught.

The table below gives approximate times and are for guidance only.

| Торіс                              | Periods in S4 | Periods in S5 | Total periods |
|------------------------------------|---------------|---------------|---------------|
| Electricity / magnetism (4.1, 4.2) | 20            | 0             | 20            |
| Mechanics (4.3, 5.1, 5.3)          | 18            | 22            | 40            |
| Waves (4.4)                        | 12            | 0             | 12            |
| Matter and Heat (5.2)              | 0             | 12            | 12            |
| Atomic and Nuclear (5.4)           | 0             | 16            | 16            |
| Total                              | 50            | 50            | 100           |