
Physics Tutorial 1: Introduction to Newtonian Dynamics

Summary

The concept of the Physics Engine is presented. Linear Newtonian Dynamics are reviewed, in terms
of their relevance to real time game simulation. Different types of physical objects are introduced and
contrasted. Rotational dynamics are presented, and analogues drawn with the linear case. Importance
of environment scaling is introduced.

New Concepts

Linear Newtonian Dynamics, Angular Motion, Particle Physics, Rigid Bodies, Soft Bodies, Scaling

Introduction

The topic of this set of tutorials is simulating the physical behaviour of objects in games through the
development of a physics engine. The previous module has taught you how to draw objects in complex
scenes on the screen, and now we shift our focus to moving those objects around and enabling them
to interact.

Broadly speaking a physics engine provides three aspects of functionality:

• Moving items around according to a set of physical rules

• Checking for collisions between items

• Reacting to collisions between items

Note the use of the word item, rather than object this is intended to suggest that physics can
be applied to any and all elements of a game scene – objects, characters, terrain, particles, etc., or
any part thereof. An item could be a crate in a warehouse, the floor of the warehouse, the limb of a
jointed character, the axle of a racing car, a snowflake particle, etc.

1



A physics engine for games is based around Newtonian mechanics which can be summarised as
three simple rules of motion that you may have learned at school. These rules are used to construct
differential equations describing the behaviour of our simulated items. The differential equations are
then solved iteratively by the algorithms that you will explore over the course of this module. This
results in believable movement and interaction of the scene elements.

Later tutorials concentrate on preventing the various moving elements from intersecting with other
elements of the scene. So far, the scenes which you have developed have had no physical presence to
them any object can intersect with any other. This is obviously not acceptable for a game world. In
order to prevent solid objects from intersecting, we first need to detect when they have intersected.
Later tutorials address a suite of algorithms, and two distinct approaches, for detecting these in-
tersections (or collisions). When a collision is identified, the engine needs to resolve the situation,
by pushing the two intersecting items apart. This is achieved through the algorithms which simulate
Newtonian mechanics mentioned above, resulting in believable looking bounces, rebounds and friction.

The physics engine itself is discussed in this tutorial with regards to its position within your
overall game engine framework. The subsequent focus of this lesson is the physical foundations on
which it is constructed, beginning with a refresher on Newtonian dynamics, before progressing onto
more advanced topics.

The Physics Engine

Throughout this tutorial series the piece of software which provides the physical simulation is referred
to as a Physics Engine. Strictly speaking an engine is a device designed to convert energy into useful
mechanical motion. Within the context of a game, the physics engine provides the motion of all of
the elements of the game world; as such, it needs to be able to move any item in the world. At the
risk of stretching the analogy, imagine designing a real engine which needs to be able to move many
different things in the real world - such an engine would need a generic set of connections, and those
connections would need to be built into everything it was expected to power.

Hence the physics engine for a game tends to be a separate entity which links to the rest of the
code through an interface; it doesn’t care what the entities are that it is moving, it just cares about
their physical size, weight, velocity, etc. This leads to the concept of an ”engine” as a module which
is distinct to the game code, renderer code, audio code, etc. Ideally a physics engine should be able to
provide physical motion and interaction for any game, through a standard interface and data structure.

2



1 //A whole physics engine in 6 simple steps =D

2 //1. Broadphase Collision Detection (Fast and dirty)

3 //2. Narrowphase Collision Detection (Accurate but slow)

4 //3. Initialize Constraint Params (precompute elasticity/baumgarte

5 // factor etc)

6 //4. Update Velocities

7 //5. Constraint Solver Solve for velocity based on external

8 // constraints

9 //6. Update Positions (with final ’real’ velocities)

PhysicsEngine::UpdatePhysics

There are a number of commercially available physics engines used in the games industry, such as
PhysX, Bullet and Havok – you will have noticed these logos during the start-up sequence of many
games in recent years. Also, some larger publishers use internally developed physics engines across
multiple projects and studios. As the aim of this lecture series is to provide an understanding of how
and why physics functionality works in games.

While we will not be using a physics engine developed elsewhere (you will be developing a physics
engine of your own), the principles you become familiar with over the course of the module should give
you a deep familiarity with the complexities involved in physics programming, and that knowledge
maps well to an understanding of effective use of any commercial physics engine.

You are encouraged to explore commercial physics engines (many are available for hobbyist use),
to gain familiarity with how industrial employers might handle function calls, etc., but you will not
be assessed on this.

Update Loop

A physics system typically operates by looping through every object in the game, updating the phys-
ical properties of each object (position, velocity, etc), checking for collisions, and reacting to any
collisions that are detected.

The simulation loop, which calls the physics engine for each object of interest, is kept as separate as
possible from the rendering loop, which draws the graphical representation of the objects. Indeed the
main loop of the game can essentially consist of just two lines of code: one calling the render update,
and the other calling the simulation update. The simulation should be able to run without rendering
anything to screen, if the rendering and simulation aspects of the code are correctly decoupled. The
part of the code which accesses the physics engine will typically run at a higher frame-rate than the
rest of the game, especially the renderer. The physical accuracy of the simulation improves as the
speed of the simulation is increased - games often update the physics at a rate of 120fps, even though
the renderer may only be running at 30fps.

As we will see later in this series, the physics engine works by iteratively solving differential equa-
tions representing the motion of the simulated objects. The more frequent the iterations, the more
accurate the results will be, hence the higher update rate of the physics engine when compared to the
renderer.

Clearly, if there are large numbers of game entities requiring physical simulation, this becomes
a computationally expensive situation. In order to reduce the number of objects simulated by the
physics engine at any time, similar techniques to those used in the graphics code for limiting the
number of objects submitted to the renderer are employed. However, culling objects based on the
viewing frustum is not a good way of deciding which objects receive a physics update – if objects’
physical properties cease to be updated as soon as they are off camera, then no moving objects would
enter the scene, and any objects leaving the scene would just pile up immediately outside the viewing
frustum, which would look terribly messy when the camera pans around.

A more satisfactory approach is to update any objects which may have an interaction with the
player, or which the player is likely to see on screen, either now or in the near future. This is usually

3



achieved by splitting the game world into a series of regions in some way – the simulation loop then
only updates the objects which are in the regions currently of interest. The decision of which regions
are currently of interest is made right at the start of the simulation loop, as it provides a very high
level culling of candidate objects. It will typically involve selecting the region(s) where the camera
and player are currently residing, and any regions which the camera or player may move into in the
near future.

As you can tell from this description, there is no single solution to this issue, and the algorithms
will be crafted toward the specific game. For example, an open world game will be made up of
many regions, and the algorithm deciding which ones are currently active will be based on numerous
parameters including the current speed of the player, the activity of particularly relevant AI, etc.
Whereas a two-dimensional scrolling platform game is likely to consist of a chain of regions along the
two-dimensional route, only updating the region where the player happens to be, and the next one
along the chain.

When simulating the physical behaviour of many objects, it is easy to fall into the trap of updating
some of the objects more than once in a single step of the simulation. For example, if body A collides
with body B, but then body C collides with body A, it is tempting to go back and update body A
again with this new information. This approach can quickly lead to discrepancies due to some objects
receiving far more updates than others, or even to an extended or infinite delay as the sequence goes
round and round some inter-related objects. Moreover, the subsequent resolutions for a single object
can actually lead to a less consistent simulation.

For the remainder of this tutorial, we will focus on the science which underpins real-time physics
simulation, rather than the engineering. There’ll be plenty of both in subsequent lectures, but in
order to grasp the application of more advanced, mathematical concepts, it’s crucial to have a solid
grounding in the basic, underlying physics.

Newtonian Dynamics

A physics engine for games is based around Newtonian dynamics, which are described by three fun-
damental laws of motion:

• A body will remain at rest or continue to move in a straight line at a constant speed unless
acted upon by a force.

• The acceleration of a body is proportional to the resultant force acting on the body, and is in
the same direction as the resultant force.

• For every action there is an equal and opposite reaction.

These laws may be familiar to you from school. We’ll now consider each law in turn, and discuss
their relevance to developing a physics engine for games.

Newton’s First Law

Often referred to as the Law of Inertia, this law states that an object will only change its velocity if
there is a force acting on it. Consider a spacecraft in the vacuum of space - it will remain stationary
until its boosters are started. The booster applies a forward force causing the spacecraft to move
forward. If the booster is then stopped, the spacecraft will continue to move with constant velocity
until a further force is applied (e.g. a steering force, a slowing force, or a collision).

This is a fundamental aspect of a physics system for games - all elements of the game which are
controlled by the physics engine are moved through the use of forces. If no force is being applied to an
object, then its velocity does not change. Remember, this means that it will either remain stationary,
or continue to move at a constant velocity (i.e. the same direction and speed). Of course, in the real
world, a moving object in the room you are currently in will gradually slow down, due to friction from
the surface it is moving along, or from the air it is moving through. For this behaviour to occur in
our game world, these forces of friction must be simulated through the physics engine, often in an
abstract way.

4



Newton’s Second Law

The second law of motion describes the relationship between the force on a body, and the resultant
acceleration of that body. It is expressed mathematically as

F = ma (1)

where F is the force on the body, m is the mass of the body, and a is the resulting acceleration.
Clearly the acceleration is proportional to the force, as stated in the second law, and the proportional
factor is equal to the mass of the body.

The first law of motion tells us that when a force is applied to a body, it changes the object’s
speed - the second law defines that change. This is the equation which is at the core of a game physics
engine - the physical movement of the objects in the game world is calculated by solving this equation
for every frame of the game. We will see how that is achieved soon.

Newton’s Third Law

The third law states that every action has an equal and opposite reaction. This means that whenever
two physical objects interact, there is an effect on both of them. An obvious example is a collision
of two pool balls - when one ball strikes another, the speed and direction of both balls is changed.
Another oft-quoted example is of a weight on a table - there is a force downward from the weight
(due to gravity) and there is an equal force upward from the table, keeping the weight on the surface.
An alternative wording of the law is ”the forces of two bodies on each other are always equal and
are directed in opposite directions”. Note that this wording states that the forces are equal, not the
acceleration - the acceleration is inversely proportional to the mass of the object (as described in the
second law), so a larger body will accelerate less than a smaller body. For example, bouncing an
orange off a car causes a big change in the orange’s velocity, but an imperceptible change in the car’s
velocity - although the force acting on both is equal.

Whereas the first two laws give us the basis for moving objects around in our physics engine, the
third law adds an element of realism and believability to how they interact. Taking account of the
third law leads us to the collision detection and collision response routines that we will address in
later tutorials of this module.

Conservation of Momentum

There is one further physics law which we need to remind ourselves of - the law of conservation of
momentum. This states that, if no external force acts on a closed system of objects, the momentum
of the closed system remains constant. Momentum is the product of a body’s mass and velocity. The
total momentum of a system is the sum of the momenta of each object in that system. This is best
illustrated with an example.

Consider a body of mass m1 travelling with velocity v−1 , when it collides with a mass of m2

travelling with velocity v−2 . The respective velocities of the two bodies after the collision are v+1 and
v+2 . The following equation must hold true:

m1v
−
1 +m2v

−
2 = m1v

+
1 +m2v

+
2 (2)

5



The equation sums the momentum of the two objects before and after the collision, and equates them.
Note that all velocities must be expressed in the same context, so in this example, v−2 and v+1 are
negative numbers. Also note the nomenclature of adding a − sign for values before the collision, and a
+ sign for values afterwards – we will use this naming convention extensively when we look at collision
response in more detail An alternative way to state this law is that the centre of mass of any system
of objects will always continue with the same velocity unless acted on by a force from outside the
system. If we think of the two objects in the example as a system, then the velocity of their combined
centre of mass can not change after the collision.

As with Newton’s third law, the law of conservation of momentum will allow us to increase the
realism introduced by our physics engine as we introduce collision response algorithms in later tutorials.

Three Dimensions and Vectors

The physics engine which is developed in this tutorial series is three dimensional – that is, it simulates
the behaviour of objects within a three-dimensional environment, so all objects are modelled and
simulated in the x, y and z axes. The concepts presented are just as applicable to a two-dimensional
simulation, such as a 2D platform game or old-style space shooter, in which case only the x and y
axes would be used.

It is also important to remember that the physical properties of the simulated objects are rep-
resented by vectors, rather than scalar parameters. This means that, not only is the position of an
object in world space represented by a three dimensional vector (Px, Py, Pz), but the velocity and
acceleration are also represented by three dimensional vectors. For example a ball falling vertically
to the ground may have a velocity of (0.0,−1.0, 0.0), showing that the y component of the velocity
is negative while the x and z components are zero. A hover-ship which is moving in a vertical circle
at constant speed will have sinusoidally changing values of velocity in the x and y components of the
velocity vector.

Remember that speed is a scalar quantity, whereas velocity is a vector, so the length of the velocity
vector is equal to the speed.

S =
√
V 2
x + V 2

y + V 2
z

Resolving Multiple Forces

We also require a quick reminder of how to resolve multiple forces acting on a single body. The
body in the left half of the figure below has two forces acting upon it: a propulsion force F and a
downward gravitational force G. The right hand figure shows how the two forces are combined to give
the resultant force R

As you can see, the resolved force is simply the sum of all the forces acting on the body. Bear in
mind that we represent forces with three dimensional vectors, comprising a x, y and z component, so
adding two vectors simply involves adding the relevant components of the vectors.

(Rx, Ry, Rz) = (Fx +Gx, Fy +Gy, Fz +Gz)

or, more generally ∑
F = (

∑
x,
∑

y,
∑

z)

6



The scalar size of the force is thus the length of the summed vector, and the direction of the force
is found by normalising the summed vector. Remember that the scalar size of a vector is found by
summing the squares of the components and taking the square root. Normalising the vector then
involves taking each component of the original vector and dividing by the length. Also bear in mind
that square roots and divisions are expensive computationally, so only calculate the scalar size, and
normalised vector, if they are required – a lot of your algorithms will only require the three components
of the summed vector, which are much cheaper to compute.

Defining Our Linear Motion Variables

Linear motion concerns itself with three physical properties of an object:

• a is the acceleration of the object. If an object’s speed changes over time, it has acceleration
(acceleration can easily have negative vector components in 3D space, while still having high
absolute magnitude; as such, we avoid the term ’deceleration’).

• v is the velocity of the object - how much it is displaced over time. If an object is moving, it
has velocity.

• s is the displacement, or position, of the object.

Introducing Angular Motion

Before we move on to discuss the properties which underpin angular motion in a Newtonian physical
simulation, we need to introduce (and reintroduce) a couple of key concepts.

Radians

The basic unit for angular motion is the Radian. While it is possible to store rotations as either de-
grees or rotations, it is much more straightforward, and consistent, to use radians. If you need to use
trigonometric functions such as sine and cosine, they will expect the parameters to be given in radians.

An angle expressed in radians is defined as the ratio of the arc length s swept out by the angle θ,
to the radius of the corresponding circle r.

θ =
s

r

Consequently a full rotation of 360o is expressed as 2π radians; half of a complete revolution (i.e.
180o) is π radians and so on. In most game simulations, if an angle gets bigger than 2π radians then it
is reduced by 2π radians. This has no effect on the mathematics, or the simulation, as the orientation
is identical (i.e. if something has rotated by 2π radians then it is back at the original orientation of
zero radians). To give an example, imagine the wheel on a car in a racing game - as the car moves
along the track, the wheel rotates repeatedly; if we don’t reset the orientation every revolution, then
the angle will quickly become extremely high with no additional benefit or accuracy. This is achieved
in C++ as follows:

1 if (ThisAngle > TWO_PI) ThisAngle -= TWO_PI;

2 if (ThisAngle < -TWO_PI) ThisAngle += TWO_PI;

Revolutions

Note that a defined constant is used (TWO PI), instead of multiplying π by two for every object.
Also note that this is only checked for the angle – it is acceptable for an angular velocity or even
acceleration to exceed 2π if something is spinning very fast.

Quaternions

Here’s a little spanner thrown into the works. If we’re dealing with objects which exist in space,
those objects will have an orientation. Orientation is important for a multitude of reasons. In the
simplest case, a sphere, orientation informs texture mapping. For more complex objects, orientation
affects both collision detection and collision response. In short, knowing, tracking, and changing the
orientation of an object is essential to it ’looking good’ and ’behaving well’.

7



The orientation of an object, and how quickly that orientation changes, are modelled through
angular mathematics. The concept is pretty much similar to that of linear motion, so we have direct
counterparts to position, velocity and acceleration. These are the angle or orientation Θ, the angular
velocity ω and the angular acceleration α. As with linear motion, these can be generalised to three
dimensional parameters represented by vectors and quaternions.

In the case of Θ, this can be represented as a quaternion for orientation about an axis. ω is a
vector representing angular velocity about the same axis and scaled by the magnitude of the rotation.
Angular acceleration has a similar relationship with torque (discussed later) as linear acceleration does
with Force (as discussed previously).

Quaternions were introduced during the skeletal animation portion of the graphics tutorials. In
the context of our physics modelling, Θ can be defined:

Θ =

(
x sin

(
θ

2

)
, y sin

(
θ

2

)
, z sin

(
θ

2

)
, cos

(
θ

2

))
where n̂ = (x, y, z), and represents the axis of rotation, and θ represents the angle of that rotation.

Torque

Now we’ve covered some of the tools needed to understand how we’ll move forward with our explo-
ration of angular motion, we need to start framing the problem in a familiar way. Torque is the result
of a force applied to an object, a given distance from its pivot point. As force is the fundamental
building block of our physics simulation in a linear sense, so its angular analogue is here. Consider
the figure below:

Torque τ produced by force F at distance d from the pivot point is calculated from:

τ = dF

As we are simulating in three dimensions, the torque must be calculated for each of the three axes.
This is achieved by taking the cross product of the distance vector and the force vector.

τ = d× F

We have already calculated the force F acting on an object earlier in this tutorial, by resolving
all the active forces at each step of the simulation. The distance d is simply the vector between the
object’s centre of gravity and the position on the surface of the body where the force is applied. This
position will become important in later tutorials as we move on to collision detection and response.

Defining Our Angular Motion Variables

Now we have an analogue for force in our angular motion, we should clarify the other analogues which
exist, to make understanding what follows a little more straightforward. As with the linear variables,
the actual interactions between these variables are explicitly explored in a future tutorial.

• θ is the angle of our computation - this is analogous to position or displacement in the linear
case.

• ω is the angular velocity of our rotating object - if an object’s angle is changing, it has angular
velocity. This is analogous to v in the linear case.

• α is the angular acceleration. If ω is changing, then an object has angular acceleration.

8



Inertia

As with the linear motion of the objects simulated by the physics engine, we need to relate the angular
acceleration of a rigid body to the forces acting upon it. This is achieved through the use of Torque
and Moment of Inertia, which can be thought of as the angular equivalents of Force and Mass. The
relationship between the torque τ acting on a body to the inertia I of that body and the resulting
angular acceleration α is:

τ = Iα

This is the rotational equivalent to Newton’s second law for linear motion F = ma.

The moment of inertia of a rigid body represents the amount of resistance a body has to chang-
ing its state of rotational motion (i.e. its angular acceleration). The moment of inertia depends on
how the mass is distributed about the axis. For a given total mass, the moment of inertia is greater
if more mass is farther from the axis than if the same mass is distributed closer to the axis. The
classic example of this is the ice dancer who brings her arms vertically above her body to increase
the speed at which she is spinning, or holds her arms out horizontally to slow down her spinning speed.

As we are simulating three-dimensional worlds, a scalar value of I does not contain sufficient
information to describe the inertial behaviour of a body – the body’s shape and the axis of rotation
have an effect on its behaviour. We therefore introduce the concept of the Inertia Matrix or Inertia
Tensor. First, we’ll expand our equation for angular acceleration to express the torque and acceleration
as vectors, and the inertia tensor as a matrix: τx

τy
τz

 =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 αx

αy

αz


Each element of the inertia matrix represents the effect a torque around a particular axis has on

the acceleration around a particular axis. So Ixx represents the effect that a torque around the x axis
has on acceleration around the x axis, Ixy represents the effect that a torque around the x axis has on
acceleration around the y axis, etc. For a completely symmetrical object, a torque around the x axis
will cause acceleration around the x axis only, however for more complex objects a torque around a
particular axis may cause acceleration around the other two axes. For example, an evenly weighted
cube floating in space is a completely symmetrical object. Applying a rotational nudge around its
x axis will cause it to spin around its x axis only; the angular velocity around its y and z axes will
remain zero. However if we attach a very heavy lump to one of the cube’s corners, then this will
affect how it spins – a nudge around the unevenly weighted cube’s x-axis will cause a wobble around
the other two axes, as the inertia of the heavy lump drags the cube off its rotation. As a further
example, reconsider the spinning skater with her arms held out horizontally – if you could attach a
heavy weight to one of her arms, she would wobble over and fall almost immediately, the poor thing.

Before we move on, there are a couple of important properties of the inertia matrix that we will
discuss in a little more detail:

• The diagonal elements (Ixx, Iyy, Izz) of the matrix must not be zero

• The matrix must be symmetrical, that is Ixy = Iyx, Ixz = Izx and Izy = Iyz.

Calculation of Acceleration

Now we have all the information required to calculate the angular acceleration of a body. The equation
which we use is

τ = Iα

As τ and α are three dimensional vectors, and I is a three dimensional matrix, we must calculate the
inverse of the inertia matrix I−1, and calculate the angular acceleration from

α = I−1τ

Calculating the inverse of a matrix can be computationally expensive. For diagonal matrices, however,
it is very straightforward as each diagonal element is simply replaced by its reciprocal, while the non-
diagonal elements remain zero. This means that it is straightforward to calculate the inverse inertia

9



matrix for symmetrical objects. For non-symmetrical objects, a full matrix inverse calculation must
be performed. There are functions readily available to do this. It should also be noted that, as the
shape of rigid bodies does not change, the inverse inertia matrices can be calculated at load time (or
in a pre-load step in the tool-chain), so that they do not need to be calculated every iteration of the
simulation.

Symmetrical Objects

Many world elements in games can be simulated by the physics engine as completely symmetrical
objects – i.e. objects where the weight is evenly distributed around the centre of gravity – even many
objects which, in the real world, would not actually be symmetrical, such as barrels, bricks, crates, etc.
As we have discussed, a completely symmetrical object only rotates around the axes which have torque
applied to them. This behaviour is defined in the inertia matrix by ensuring that the non-diagonal
elements are set to zero. So the inertia matrix for a symmetrical object takes the form: Ixx 0 0

0 Iyy 0
0 0 Izz


The diagonal elements must be non-zero. To understand why, consider the equation for the x axis

torque:
τx = Ixxαx

This equation defines the amount of torque required to instigate an angular acceleration around the x
axis. The lower the value of Ixx, the higher the angular acceleration αx that is produced by a particular
amount of torque τx. If the inertia Ixx is zero, then an infinite angular acceleration would be produced
by that same value of torque. This is clearly undesirable, and indeed physically impossible, which is
why the diagonal elements of the inertia tensor must be non-zero. If your physics engine is exhibiting
weird behaviour for symmetrical objects, then you should test that the diagonal elements are non-zero,
and that the non-diagonal elements are zero.

Inertial Matrix for Cuboid and Spherical Objects

The majority of objects simulated in your physics engine can be represented either as a solid sphere,
or as a solid cuboid, so we will look at how to calculate the inertia matrix for such shapes. Remember
that the rendered shapes of the graphical objects are unlikely to be perfect spheres or cuboids, but
for the purposes of physical simulation, most game objects can be represented by one or more basic
shapes of this type. For example, a girder falling from a collapsing building can be simulated in the
physics engine as a long cuboid, while a roughly hewn asteroid can be simulated by a sphere. This
idea of having two representations of a game object (the graphical shape which is rendered, and the
physical shape which is simulated) is central to game development, and will be discussed in much
more detail when we move on to collision detection and response.

Solid Sphere

The equation for calculating the inertia of a solid sphere of radius r and mass m is:

I =
2mr2

5

and the inertia matrix is constructed from setting the diagonal elements equal to this value, and the
non-diagonal elements equal to zero.  I 0 0

0 I 0
0 0 I


Hence the sphere rotates around each axis equally, with no non-symmetrical behaviour; the matrix
is symmetrical and the diagonal values are non-zero. If for some reason, you require your sphere to
rotate more easily about a specific axis, then the value of I for that axis should be reduced slightly;
and for a stiffer rotation response, the value should be increased somewhat.

10



Solid Cuboid

The equations for calculating the inertia of a solid cuboid of length l, height h, width w and mass m
are:

Ixx =
1

12
m(h2 + w2)

Iyy =
1

12
m(l2 + w2)

Izz =
1

12
m(h2 + l2)

again the inertia matrix is constructed from setting the diagonal elements equal to these values, and
the non-diagonal elements equal to zero. Ixx 0 0

0 Iyy 0
0 0 Izz


So the cuboid rotates around each axis according to how big it is along that axis, with no non-
symmetrical behaviour; the matrix is symmetrical and the diagonal values are non-zero. If for some
reason, you require your cuboid to rotate more easily about a specific axis, then the value of I for
that axis should be reduced slightly; and for a stiffer rotation response, the value should be increased
somewhat.

Asymmetrical Objects

In the real world, almost no objects are symmetrical. However in a game world, simulating non-
symmetrical objects is more computationally expensive than simulating symmetrical objects, so care
should be taken that the extra computation involved is actually worthwhile for the intended effect.
Simulating the rotational behaviour of non-symmetrical bodies requires the inertia matrix to be fully
populated – i.e. some of the non-diagonal elements are not zero.

The diagonal elements must be non-zero, for the same reasons as described above for symmetrical
bodies (i.e. a zero element in the diagonal will result in errors related to an infinite angular accelera-
tion).

Mathematically the elements of the inertia matrix are calculated by considering the rigid body
as a continuous set of connected particles, in fixed positions relative to one another, and integrating
their momentum across the volume of the body. We won’t go into the details of this here, but the
equations for calculating the diagonal elements are:

Ixx = M
∫
V
(y2 + z2) dV Iyy = M

∫
V
(x2 + z2) dV Izz = M

∫
V
(x2 + y2) dV

and the non-diagonal elements are:

Ixy = −M
∫
V
xy dV Iyx = −M

∫
V
yx dV

Ixz = −M
∫
V
zy dV Izx = −M

∫
V
zx dV

Iyz = −M
∫
V
yz dV Izy = −M

∫
V
zy dV

It can be seen that the equations for Ixy and Iyx are equivalent. Similarly for the other two pairs
of diametrically opposite elements. Hence, the inertia matrix must be symmetrical for meaningful
rotational simulation. If your physics engine is exhibiting weird behaviour for non-symmetrical objects,
then you should test that the inertia matrix is symmetrical, and that the diagonal elements are non-
zero.

Physical Representation

Each item simulated by the physics engine requires some data representing the physical state of the
item. This data consists of parameters which describe the item’s position, orientation and movement.
Depending on the complexity and accuracy of the physical simulation required, the data and the way
in which it is used become more detailed. As ever, the simpler the physical representation, the cheaper
the computational cost and, therefore, the greater the number of items which can be simulated. The
three main types of simulation are particles, rigid bodies and soft bodies.

11



Particles

The simplest representation of physical properties is achieved through the particles method. In this
case, items are assumed by the physics engine to consist of a single point in space (i.e. a particle).
The particle can move in space (i.e. it has velocity), but it does not rotate, nor does it have any
volume. This approach can be used for actual in-game particles, and also for other game items at
times when speed of calculation is more important than accuracy – for example, when larger objects
are sufficiently distant, or even off-camera, so that the player is unlikely to see intersections or lack of
rotational detail.

Rigid Bodies

The most common physical representation system is that of rigid bodies. In this case, items are defined
by the physics engine as consisting of a shape in space (e.g. a cube or a collection of spheres). The
rigid body can move in space, and can rotate in space – so it has both linear and angular velocity. It
also has volume – this volume is represented by a fixed shape which does not change over time, hence
the term ”rigid body”. This approach is taken for practically everything in games where reasonable
accuracy (or better) is required. More complex items, such as a spaceship, a tea-pot, or a dinosaur,
are built up from a number of interconnected rigid bodies – each element of the skeletons and scene
graphs that we saw during the graphics course is likely to be represented in the physics engine by a
rigid body.

Soft Bodies

Items which need to change shape are often represented in the physics engine as soft bodies. A soft
body simulates all the aspects of a rigid body (linear and angular velocity, as well as volume), but with
the additional feature of a changeable shape - i.e. deformation. This approach is used for items such
as clothing, hair, wobbly alien jellyfish, etc. It is considerably more expensive, both computationally
and memory-wise, than the rigid body representation, so it is only used where it is specifically required
and when the player will see the resultant behaviour.

Velocity Angular Volume Deformation
Particle Y N N N
Rigid Body Y Y Y N
Soft Body Y Y Y Y

It should be noted that a fully implemented physics engine will include options to simulate items
at any of these levels of complexity at any time; it is up to the user to decide which items are simulated
by which methods, appropriate to the game and frame-rate constraints. Later tutorials in the series
consider these simulation approaches in a lot more detail.

Physics Shapes are not the same as Graphics Shapes

We have already suggested that physics simulation should be as decoupled as possible from the ren-
dering loop, and facilitating this will be explored later on. This principle also applies, however, to
the data structures, and to the shapes and meshes of the game objects. Whereas the object which is
rendered onto the screen can be any shape, made up of many polygons, it is not practical to simulate
large numbers of complicatedly shaped objects in the physics engine.

Almost every object that is simulated by the physics engine will be represented as a simple convex
shape, such as a sphere or cuboid or other straightforward polyhedron, or as a collection of such
shapes. As we’ll see in later tutorials, calculating collisions and penetrations between objects can
be a very expensive process, so simplifying the shapes which represent the simulated objects greatly
improves the required computation. This is the case even when employing the more advanced collision
and response techniques explored later in this lecture series.

Each game object data structure contains a link to the graphical representation (the vertex lists,
textures, etc. that we dealt with on the graphics course), and the physical representation (where
the object is, how fast it is travelling, the shape and size of its physical presence, etc.). So the data
structure for an object such as a crate contains a link to the vertex lists which give the renderer

12



detailed instructions on how to draw it, and a much more simple set of data defining the height, width
and length of the cuboid which contains all vertices of the crate. Similarly a Christmas bauble data
structure contains some very basic information on the size of the sphere which is used to simulate it
in the physics engine.

On Environment Scaling

One crucial, and deceptively simple, concept to grasp when constructing a physics engine is the re-
lationship between motion of entities and their size: the relative scaling of the environment. Many
apparent glitches and aberrant behaviours demonstrated by a physics system can ultimately be traced
back to an error in scaling.

Consider the example below. A sphere, 1m in diameter, is travelling at 1ms−1 towards the wall.

If we assume our fixed timestep is small, 1/120th of a second. In this case, an interface between
the two bodies should be reliably detected and resolved. The sphere can only have travelled 1/120th
of a metre between frames of our simulation, meaning its penetration of the wall between frames can
only be of the order of 0.008m, or 0.8% of its diameter.

But what happens if our sphere is 2mm in diameter? In that scenario, there is a very real possi-
bility that an interface between the sphere and the wall might be overlooked - the sphere might pass
through the wall, because in one frame it is on one side, and in the next it has already traversed the
space the wall occupies. Further to that, even if a collision is detected, the normal of that collision
(the direction of approach of the sphere, essentially) might be inverted (i.e., the physics engine might
deduce that the collision is happening from the other direction, because the sphere interface is detected
after it has travelled over halfway through the wall).

Another common issue is the reverse problem. Imagine you have a sphere 200m in diameter,
travelling at 0.02ms−1. It is easy to conclude, during debugging, that the sphere isn’t moving at all
- particularly without a graphical frame of reference from the environment (such as a skybox). The
problem is further complicated if using meshes of vertices to define a complex object - you need to
ensure that the mesh coordinates are scaled to match the physical model of the entity, and that the
physical model of the entity is also scaled sensibly for the environment.

For this reason, physics engines tend to employ a common scaling system to define the size of
objects and the magnitude of velocities. When you set a cube to be 1.0 units wide, and a sphere to
be 1.0 units wide, they should appear to be the same size in your environment, irrespective of the
vertex values defining the cube. Similarly, if you apply a velocity of magnitude 1.0 units per second
to a cube 2.0 units wide, it should traverse 1.0 unit every second, not 1.0 times its own width.

Implementation

During the course of this tutorial series you will create a physics engine. The implementation sec-
tions of the tutorials include example code, and explanation, of how to achieve this. While the series
on Programming for Games and Graphics for Games introduced new C++ commands and OpenGL
functions as they progressed, this is not the case with the Games Technology tutorials. You will be
using the C++ that you already know to build your physics engine. Consequently the example code

13



should be seen as just that: an example of how to implement the theories and algorithms presented
in each tutorial.

Another difference between this module and your previous modules is that practical work is gen-
erally associated with the entire day’s learning objectives, rather than a single tutorial’s. This is due
to the double-lecture nature of some material, where theory needs addressing before implementation
can be approached (in part, so as to understand where implementation has to diverge from theory).

Review the Practical Tasks hand-out for Week 1 of the module. Undertake the tasks suggested
during the next practical session.

Tutorial Summary

We have introduced the concept of a physics engine, and had a quick refresher course of the physics
required to develop the algorithms. The physics engine which we will develop will be based on forces,
so we have seen how to resolve multiple forces affecting a single body, and discussed the mathematical
relationship between force and acceleration. We have extended these principles to the rotational
dynamics of objects within our environment. In the next tutorial we will discuss how to implement
these relationships and how to translate acceleration and torque into a moving, spinning object in a
game environment.

14


