Do Now:

What is common between *sound and light*? What are the differences between *sound and light*?

Sound Waves

1. Define Sound Waves from three different perspectives

(1) _____ wave:

(2) _____ wave:

(3) _____ wave:

2. Define *compression*:

Define rarefaction:

Identify the *compression (C)* and the *rarefaction (R)* in the diagram:

3. What are the relation between *Period* and *Frequency*:

Speed of Sound

- 4. The frequency of sound equals to that of the
- 5. Dynamic range of human ear: ______.

· _____

The frequency of sound f < 20 Hz: ______.

The frequency of sound f > 20 kHz:

6.	Speed of sound =	

Formula: v = .

d: _____.

t: .

7. Speed of sound = .

Formula: v = .

λ: ______.

т.

8. Speed of Sound vs. Temperature:

Formula: $v = \underline{\hspace{1cm}}$

T:

9. When slower than the speed of sound: _____.

When faster than the speed of sound:

The speed of sound is also called:

10. Sound and Medium:

All sounds are produced by ______.

The transmission of sound requires a ______.

Sound cannot travel in a ______.

11. Sound and Elasticity:

The speed of sound in a material depends on its

____(not _____).

Define *elasticity*:

Sound travels about ____ times faster in steel than in air.

Sound travels about ____ times faster in water than in air.

12. What is SONAR?

r nysics w orksneet Sound ar	-
Loudness	List three examples of resonance:
13. What is the intensity of the sound:	(1)
<u> </u>	(2)
The intensity of a sound is proportional to the	(3)
of a sound wave.	Interference
Loudness is a subjective sensation but is related to	19. Interference can occurs for both
Human hearing is approximately	20. What is <i>constructive interference</i> ?
14. The unit of intensity for sound is the().	
The scale range isdB \sim dB.	21. What is destructive interference?
A sound of 10n dB is times as intense as sound of 0 dB	·
15. What is the <i>decibel (dB)</i> :	22. Define <i>beats</i> ?
If P_1 and P_0 are the intensities of sound,	1 3 4 5 6 7 8 9 10 Time
$L_{dB} = $	
If $P_I = P_{0}$, then L_{dB}	Time
If $P_1 > P_0$, then L_{dB}	Loud—A A Loud—A A A
If $P_I < P_0$, then L_{dB}	Faint
Example: 120dB means $P_1/P_0 =$	
Resonance	If the frequency of the first sound is m, and the frequency of the second is n , a <i>beat frequency</i> (f_{beat}):
16. What is the <i>forced vibration</i> :	
	23. Two tuning forks are sounded together producing 3 beats per second. If the first fork has a frequency of 300
17. What is the <i>natural frequency</i> :	Hz, what are the possible frequencies of the second fork?
	24. A tuning fork with a frequency of 256 Hz is sounded the
Natural frequency depends on of the object.	same time as a second tuning fork producing 20 beats in 4 seconds. What are the possible frequencies of the second tuning fork?
Natural frequency at which is required to produce and continue forced vibrations.	
18. What is the <i>natural frequency</i> :	
	25. When will the beats disappear?

Sound of Music

26. Music consists of a pleasing succession of pitches

(

Music pitches are selected from a specific sequence called

a

The 12-note scale consists of a sequence of 12 pitches, the

13th note has the frequency of the first note.

Each of which is the _____ times the frequency of the next lower note.

- 27. *Example*: The frequency of note A is 440 Hz, calculate the frequency of note B.
- 28. *Example*: The frequency of note A is 440 Hz, calculate the frequency of note A in the next higher octave.
- 29. To set up a continuous sound, it is necessary to set up a

30. Three large classes of traditional musical instruments differ from one another in how they produce standing waves
-Stringed instrument:
-Percussion instrument:
-Wind instrument:
31. The wave with wavelength 2L is called the

32. The first resonant length of an open pipe is 33.0 cm. If the frequency of a sound resonating over this pipe is 512 Hz, what is the speed of sound?

33. A sound with a frequency of 560 Hz is traveling at 350 m/s. What is the length of an open-air column that resonates this sound at its shortest resonant length?

34. The air temperature in a room is 25°C. A tuning fork resonates over a closed tube 30.0 cm long, its shortest resonant length. What is the wavelength of the sound?

- and several ______.

 The distinctive *timbres* of different musical instruments are a consequence of ______.
- 36. The technique of taking complex wave and breaking down into a sum of simple, single frequency waves is

called _____

Light

37. The only thing we can see is ______.

38. Briefly describe the two basic theory of light?

(1) _____:

(2) _____:

39. What is the *photon model* of light?

40. What is the *photoelectric effect*? Summarize it in the following points:

(1)_____

(2)_____

(3)_____

(4) _____

(5)

(6) _____

$E_{photon} = hv$

Potassium - 2.0 eV needed to eject electron

Speed of Light

41. Explain how has the Michelson's Interferometer been used to measure the speed of light.

42. 1887 Michelson-Morley's experiment measured the speed of light to understand the properties of *ether*. What are the results?

(1)_____

(2) _____

Electromagnetic Waves

43. Light is energy that is emitted by accelerating ______ in atoms. The energy travels in ______.

44. Light is a small portion of the _____.

45. The electromagnetic waves have different ______ and _____, but all have the _____.

46. Typical human eyes respond to wavelengths from about

_____nm, or In terms of frequency,
Hz.

47. The frequencies lower than the red light are called

The frequencies higher than the violet light are called

Light	and	Materials
Light	unu	mucriuis

48	. Light and Transparent Materials: When light is incident upon matters,
	are forced into vibration, since they have small enough
	to vibrate this fast.
	Material responds depending on the
	of light and the of electrons in the material.
49	. UV Light and Transparent Materials: Electrons in glass have a natural vibration frequency in the
	range.
	When ultraviolet light shines on glass, occurs. The amplitude of the vibration is unusually large, and the atom collides with other atoms and give up its
	energy in the form of So, glass
	is to short wavelength ultraviolet.
50	. Visible Light and Transparent Materials: When the visible light shins on glass, the electrons are
	vibrate with smaller
	The atom has less chance of,
	and less energy is transferred as
	Glass is to all the frequency
	of the visible light. The of the reemitted light passed from atom to atom is identical to the original
	one. The main difference is thebetween absorption and reemission.
	. Speed of Light in Transparent Materials The light has a lower average speed through a transparent material. In water light travels at
	In glass light travels at
	In diamond light travels at
	When light is back into the air, it travels at
52	. Infrared Light and Transparent Materials:
	Infrared waves vibrate
	of the glass, and increases the of the glass and makes it warmer.
	Glass is to infrared light.
53	. Light and Opaque Materials Most materials absorb light without and thus allow no light through them. They are opaque. In opaque materials, any coordinated vibrations given by
	light are turned into and makes the materials slightly warmer .
	Metals have lots of When light shins on metal, and they are set into vibration,

and their energy is reemitted as _____.

That's why metals are shiny.

Colors

54. The *primary colors* of light are _____.

55.	The color an object appears depends on the	
_		_ it reflects.

Shade	ows
-------	-----

56.	What is shadow?
_	
-	
57	Sharp shadows are formed by:

(1)	 _•
(2)	

(3)	
58. A total shadow is called an	.,
and a partial shadow a	•

59.	Define solar eclipse:	

ou.	Define lunar ecupse:		

61. Light waves are _____ waves.

Polarization

A horizontally vibrating electron emits light that is	
A vertically vibrating electron emits light that is	
When common light shines on a polarizing filter, the light	
that is transmitted is	

62. 3-D vision depends o	on both eyes viewing a scene from
slightly	·
3-D movies are accomp	plished by projecting a pair of
views through	onto a screen
	are at to each other larizing eyeglasses with the lens
axes also at	, viewers will feel the depth