Physiology and Pathophysiology of Liver

Prof. Anil Dhawan MD-FRCPCH Director, King's Cell Therapy Unit Director Paediatric Liver GI and Nutrition Centre King's College Hospital London

Remit of the talk

- Applied anatomy
- Synthetic functions
- Detoxification functions
- Common pathophysiology states in liver disease
 - Hepatorenal syndrome
 - Hepatopulmonary syndrome
 - Ascites
 - Encephalopathy
 - Portal hypertension

Hepatic Blood Flow

Dual blood supply Hepatic Artery (40%) Portal vein (60%) Outflow Three Hepatic Veins

Formation of bile

Central function of liver

The synthesis and enterohepatic circulation of bile salts

Focal biliary cirrhosis

University of London

aminoacidopathies

organic acidemia

Detoxification Functions of Liver

. Toxin-concentration . Initial Event Hydrophobic substances Infection (bact, /viral) •Hydrophobic bile acids Bleeding Bilirubin n Hypothesis of Liver failupas matic NO Intoxication Ischemia **Cicious cycle of autointoxicationstacycune** •other **Metabolits** •Toxic fatty acids •Thiols . Secondary •Digoxin/Diazepam-**Organd**ysfunctions like subst. •Brain (HE, Edema) Hydrophilic substances Kidneys (HRS) Ammonia Cardiovascular system (SVRI \downarrow , MAP \downarrow , CI \uparrow) Bone marrow (Depression) •Immune system (Activation/Paralysis) •Liver (Inflammation, Necrosis, Apoptosis)

NAFLD In Children

Pathogenesis of NAFLD

Pathogenesis of NAFLD

Pathogenesis of NAFLD

ROS to Steatohepatitis

Lipid peroxidation products (HNE, MDA Cytokines (TNF-α, TGF-ß, FasL, IL-8)

Vascular Pathologies

- Portal inflow
 - EHPVO
 - Portal Vein Sclerosis
- Hepatic artery pathologies
 - Rare , hepatic artery problems more seen after LTx
- Hepatic venous outflow
 - Budd Chiari Syndrome
 - Sinusoidal obstruction syndrome

Medussa Head venous pattern

Figure 40-13 Mechanisms of disturbed liver function related to portal hypertension.

Copyright © 2005 Lippincott Williams & Wilkins. Instructor's Resource CD-ROM to Accompany Porth's Pathophysiology: Concepts of Altered Health States, Seventh Edition.

Spider Naevi

Renal Involvement In Liver Disease

Pathogenesis of Acute Kidney Injury

Arterial vasodilatation ("VASOPLEGIA")

Decreased SVR

High Cardiac Output

Renal Auto-regulation becomes Pressure Dependent - Intra-renal Vasoconstriction

Aetiology of renal involvement in LD

- Multifactorial
- Hypovolaemia induced pre-renal AKI
- Acute tubular necrosis due to profound hypovolemia and hypotension.
- Direct drug nephrotoxicity (paracetamol, NSAIDs) OR Drugs affecting both liver/kidney
- Hepatorenal syndrome
- Intra-abdominal hypertension (IAH) and development of ICS

HEPATO-RENAL SYNDROME

HRS - Diagnosis of exclusion

- Hepatorenal syndrome (HRS) is defined as the occurrence of renal failure in a patient with advanced liver disease in the absence of an identifiable cause of renal failure
- The diagnosis of HRS is one of exclusion, so investigations should be performed to rule out other common causes of AKI.

Characteristics of Type 1 and Type 2 Hepatorenal Syndrome

	Course	Precipitating Event	History of Diuretic- Resistant Ascites	Prognosis
Type -1 HRS	Precipitous doubling of serum creatinine in < 2 weeks	Present in > 50% of cases	May or may not be present	Without therapy- 90-day survival of 10%
Type -2 HRS	Gradually progressive	Absent	Always Present	Median survival- 6 months

Ascites

Intra-abdominal pressure Sugrue et al Arch Surg 1999 134:1082 Malbrain CCM 2005;33:315

263 patients 40.7% increased IAP Renal dysfunction: 32% with IAP elevated 14% with normal IAP 32% IAP > 12 40% IAP > 20

HEPATOPULMONARY SYNDROME

HPS and clubbing in CLD

Definition – HEPATOPULMONARY SYNDROME

Arterial Oxygenation Defect induced by intrapulmonary vascular dilatation(IPVD) associated with hepatic disease

Hepatopulmonary syndrome (HPS)

Liver disease

In absence of intrinsic cardiopulmonary disease

Pathogenesis

- Enhanced pulmonary production of nitric oxide
- Exhaled nitric oxide increased in HPS, normalise after transplant
- Nitric oxide synthesized by nitric oxide synthase eNO and iNO
- eNO pulmonary endothelial cells
- iNO alveolar macrophages
- Endothelin 1 acts through ET-A (vascular smooth muscle)or ET-B receptors (pulmonary endothelium)
- ET-A causes vasoconstriction, ET-B causes vasodilatation

Clinical Features of HPS

- Non-specific
- Dyspnoea at rest/exertion
- Platypnoea/orthodeoxea Arterial PaO2 decreases by 5% or more when the patient moves from a supine to an upright position -further ventilation-perfusion mismatch
- Spider nevi, digital clubbing, cyanosis
- Differential Diagnosis :
- Several pulmonary complications or pleural complications
- Porto-pulmonary hypertension (PPHTN)

CARDIOVASCULAR INVOLVEMENT IN ALF

Cardiovascular changes in ALF -Pathogenesis

- Multi-factorial
- Lesser intake, ongoing losses hypovolaemia
- Severe SIRS and sepsis play a paramount role.
- Vasodilatation due to loss of vascular tone leads to systemic hypotension, low effective arterial blood volume and high cardiac output
- Cytokine release from the failing liver appears to be partly responsible for the observed haemodynamic disturbances
- Subclinical myocardial injury

Implication

The associated cardiovascular collapse and organ hypo-perfusion may be central to the progression of multiple organ failure

Strategy

- Target hypovolaemia fluids
- Target SIRS, infection antibiotics
- Target vasodilatation vasopressorsnoradrenaline , vasopressin
- If myocardial depression Inotropes
- Target Adrenal insufficiency
- Optimise oxygen delivery

Neurological Involvement In Liver Disease

Neurologic Support; Brain Swelling

Acute Hepatic Dysfunction

Neurotoxins; ↑ Ammonia

Astrocytic metabolism to glutamine

Increased intra-cellular osmotic load

Mitochondrial toxicity

Failure of energy metabolism

 Neurotransmitter alterations

Systemic Inflammatory <u>Resp</u>onse

Vascular function

Vasomotor dysfunction Endothelial dysfunction

Alterations in BBB?

Water/neurotoxin permeability

Mitochondrial toxicity -

Failure of energy metabolism

Neurological involvement in ALF

- Highly contentious in ALF
- Concept of Hyperaemia vs Ischaemia
- Risk factors for ICP ??
- Neuro-critical care monitoring –To Bolt or Not to bolt ???
- Role of non/minimally invasive monitoring ??
- Management uncertainties ?????

Who is at risk of raised ICP?

- 25-75% of ALF with Grade iii/iv encephalopathy
- Rapid onset
- High ammonia
- Younger age
- Inotropic support
- RRT

Neurologic Support; Arterial Ammonia and Risk of Cerebral Oedema ALF Cases, n=165

Why does raised ICP matter

- Compromises CPP
- Transtentorial herniation
- 2nd commonest cause of death in ALF
- Does measuring it help?

Summary

Presentation of cirrhosis/portal hypertension.

Conclusions

Understanding of applied anatomy and physiology is essential to understand the complications and natural history of liver disease