

LAS POSITAS COLLEGE

Physiology I: Human Physiology

Fall 2007

Rooms 1810

Lecture: Monday Wednesday 5:00-

6:15

Lab: MW 6:30-9:20

John Gallagher, BS, MS, DVM

- Colorado State University
 - BS, Animal Sciences, 1974
 - MS, Clinical Sciences, 1976
 - DVM, VeterinaryMedicine, 1980

A Few Details:

Turn off your Cell Phone!

Review the new Safety Rules in the syllabus.

Don't bother to telephone me.

There are new guidelines for microscope use.

Email:

jgallagher@laspositascollege.edu

My web site:

http://lpc1.clpccd.cc.ca.us/lpc/jgallagher/index.htm

Blackboard: http://clpccd.blackboard.com/

First Assignment! Send me an email before Sunday, 11:00PM, the first week of class (3 points!)

- Always put Physiology in the subject line.
 - Why are you taking this class?
 - Do you plan a career in the medical field?
 - What special interests do you have?
 - What is your college background?
 - Do you have a job? Where?
 - Who was your Bio 31 instructor? Anatomy?

Textbook, some special features:

Background basics

RUNNING PROBLEM

nlago

- Concept checks
- EOC questions and Explorations
- Silverthorn web site

(http://www.awbc.com/physiologyplace/, or Google physiology

Course Introduction

Lectures and exams are textbook based

Lecture Notes: Posted on my website.

About Chapter 1: Introduction to Physiology

- What is physiology?
- From cell to human (levels of organization)
- A review of the organ systems
- Introduction of the concept of homeostasis
- Themes in Physiology
- The science of Physiology
 - Experimental design
 - Data

Physiology is

- the study of the function of all plants and animals in their normal state.
- an integrative science

Figure 1-1: Levels of organization and the related fields of study

Review Levels of Organization

Organ Systems

- operate as integrated units
- How many? Can you list them?

Examples:

- Regulation of
 - Plasma calcium concentration
 - Blood pressure etc.

Function and Process: Teleological vs. Mechanistic Approach to Science

Teleological:

What is purpose or function? Why does something exist? Why does it need to be done?

Mechanistic:

What are processes involved?

How does something work?

Distinguish between Process & Function

How do we breathe?

How does blood flow?

How do RBCs transport O₂? Why do we breathe?

Why does blood flow?

Why do RBC transport O₂?

Integrate both for complete picture!

Focus on . . . (Concept)

Mapping

- Structure function maps
- 2. Process maps or Flow charts

Follow process in sequence

Fig 1-5b

1. Homeostasis (Chapter 6)

Body systems work together (Integration of function)

Internal vs. external failure of homeostasis

2. Communication and movement across cell membranes

Vital to integration & homeostasis

Cells communicate with other cells, tissues & organs

Energy Flow and Law of Mass Balance

All living processes require constant input of energy Where from? - How is it store How is it used to do work?

Total amount of substance in body = intake + production - output

What substances are maintained through law of mass balance?

The Science of Physiology is based on the Scientific Method

Review:

- 1. Basic steps of scientific method
- 2. Parameters to consider
- 3. Experimental design
- 4. Anecdotal evidence

Basic Steps of Scientific Method:

Observation (and/or study of prior knowledge)

Hypothesis

Experimentation

Collection and analysis of data (can you replicate results?)

Conclusion: reject or accept hypothesis

Parameters to consider:

Independent vs. dependent variables

Controlled by experimenter

Responds to independent variable: gives results.

Experimental group vs. control group: only one independent variable is changed

Independent variable (= manipulated, altered variable) = ?

Dependent variable (= responding to independent variable) = ?

Example:

Company has found new artificial sweetener (S)

Prior knowledge:

Some food additives are not safe.

Hypothesis: ?

Experiments: ?

Collect and analyze data

Conclusion

Animal vs. Human Experimentation

- In Physiology most knowledge is derived from animal experimentation.
- Sometime human experimentation necessary.
- Difficulties of Human Experimentation:
 - Very dissimilar test subjects
 - Psychological aspects (placebo and nocebo effects)
 - Ethical questions (is it o.k. to withhold potential drug from seriously ill?)

Experimental Design for Human Studies

Blind study (subjects do not know if they get treatment or placebo)

Double blind study (subjects & administrators . . .)

Cross over study (each subject participates in experimental AND control group)

Double blind cross over study

Experimental Design for Human Studies cont.

Longitudinal studies

Prospective studies

Cross-sectional studies

Retrospective studies

Meta-analysis

Development of pharmaceutical drugs (not in book)

In vitro

In vivo tests on lab animals

In vivo human clinical trials (3 phases)

FDA approval

Focus on Graphs

- Data are often presented in form of a graph
- For examples see *Fig 1-8*

