APPENDIX A

PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

OVERVIEW

In the first section of this appendix, we describe the instruction format of the PIC18. Special emphasis is placed on the instructions using both WREG and file registers. This section includes a list of machine cycles (clock counts) for each of the PIC18 instructions.

In the second section of this appendix, we describe each instruction of the PIC18. In many cases, a simple programming example is given to clarify the instruction. This Appendix deals mainly with PIC18 instructions. In Section A.1, we describe the instruction formats and categories. In Section A.2, we describe each instruction of PIC18 with some examples.

SECTION A.1: PIC18 INSTRUCTION FORMATS AND CATE-GORIES

As shown in Figure A-1, the PIC18 instructions fall into five categories:

- 1. Bit-oriented instructions
- 2. Intructions using a literal value
- 3. Byte-oriented instructions
- 4. Table read and write instructions
- 5. Control instructions using branch and call

In this section, we describe the format and syntax with special emphasis placed on byte-oriented instructions. For some of the instructions, the reader needs to review the concepts of access bank and bank registers in Chapter 6 (Section 6.3).

Bit-oriented instructions

The bit-oriented instructions perform operations on a specific bit of a file register. After the operation, the result is placed back in the same file register. For example, the "BCF f,b,a" instruction clears a specific bit of fileReg. See Table A-1. In these types of instructions, the b is the specific bit of the fileReg, which can be 0 to 7, representing the D0 to D7 bits of the register. The fileReg location can be in the bank register called access bank (if a = 0) or a location within other bank registers (if a = 1). Notice that if a = 0, the assembler assumes the access bank automatically.

 Table A-1: Bit-Oriented Instructions (from Microchip datasheet)

Mnemonic, Operands		Description	Cycles
BIT-ORI	ENTED) FILE REGISTER OPERA	TIONS
BCF BSF BTFSC BTFSS BTG	f, b, a	Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set Bit Toggle f	1 1 1 (2 or 3) 1 (2 or 3) 1

Look at the examples that follow for clarification of bit-oriented instructions:

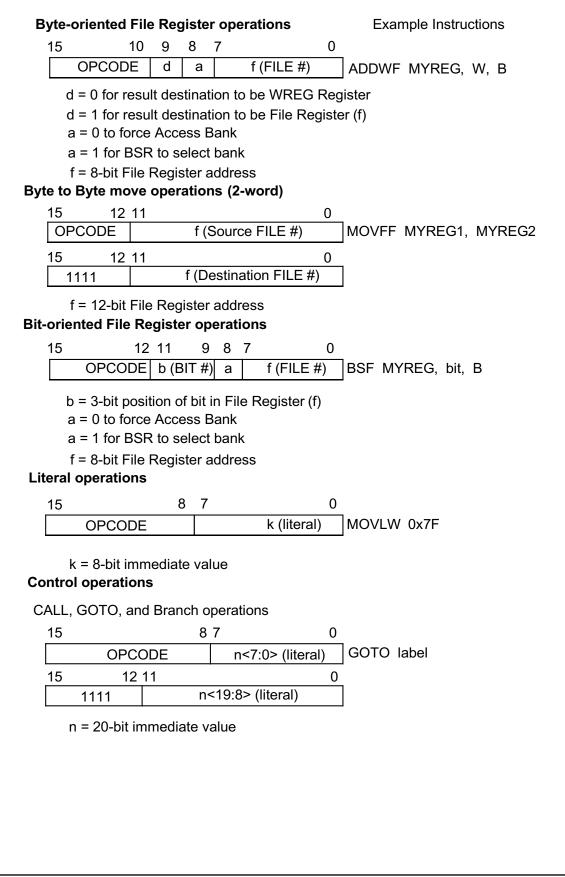


Figure A-1. General Formatting of PIC18 Instructions (From MicroChip)

BCF	PORTB,5	;clear bit D5 of PORTB
BCF	TRISB,4	;clear bit D4 of TRISC reg
BTG	PORTC,7	;toggle bit D7 of PORTC
BTG	PORTD,0	;toggle bit D0 of PORTD
BSF	STATUS,C	;set carry flag to one

The following example uses the fileReg in the access bank:

```
MyRegSET0x30; set aside loc 30H for MyRegMOVLW 0x0;WREG = 0MOVWF MyReg;MyReg = 0BTG MYReg,7;toggle bit D7 of MyRegBTG MYReg,5;toggle bit D5 of MyReg
```

The following example uses the fileReg in the access bank:

MyReg	SET	0x50	;set	aside	loc.	50)H fo	r MyB	Reg
MOVLW	0x0		:WREG	i = 0					
MOVWF	MyReg		;MyRe	g = 0					
BTG	MYReg,2		;togg	le bit	t D2	of	MyRe	g	
BTG	MYReg,4		;togg	le bit	t D4	of	MyRe	g	

As we discuss in Chapter 6, when using a bank other than the access bank, we must load the BSR (bank select register) with the desired bank number, which can go from 1 to F (in hex), depending on the family member. We do that by using the MOVLB instruction. Look at the following examples.

The example below uses a location in Bank 2 (RAM locations 200–2FFH).

```
YReg SET 0x30 ;set aside loc 30H for YReg
MOVLB 0x2 ;use Bank 2 (address loc 230H)
MOVLW 0x0 :WREG = 0
MOVWF YReg ;YReg = 0
BTG YReg,7,1 ;toggle bit D7 of YReg in bank 2
BTG YReg,5,1 ;toggle bit D5 of YReg in bank 2
```

The example below uses a location in Bank 4 (RAM locations 400–4FFH).

ZReg SET 0x10 ;set aside loc 10H for ZReg MOVLB 0x4 ;use Bank 4 (address loc 410H) MOVWL 0x0 ;WREG = 0 MOVWF ZReg ;ZReg = 0 BSF ZReg,6,1 ;set HIGH bit D6 of ZReg in bank 4 BSF ZReg,1,1 ;set HIGH bit D1 of ZReg in bank 4

Notice that all the bit-oriented instructions start with letter B (bit). The branch instructions also start with letter B, like "BZ target" for branch if zero, but they are not bit-oriented.

Mnemonic, Operands		Description	Cycles
LITERAL	OPE	RATIONS	
ADDLW	k	Add literal and WREG	1
ANDLW	k	AND literal with WREG	1
IORLW	k	Inclusive OR literal with WREG	1
LFSR	f, k	Move literal (12-bit)2nd word	2
		to FSRx 1st word	
MOVLB	k	Move literal to BSR <3:0>	1
MOVLW	k	Move literal to WREG	1
MULLW	k	Multiply literal with WREG	1
RETLW	k	Return with literal in WREG	2
SUBLW	k	Subtract WREG from literal	1
XORLW	k	Exclusive OR literal with WREG	1

 Table A-2: Literal Instructions (from Microchip datasheet)

Instructions using literal values

In this type of instruction, an operation is performed on the WREG register and a fixed value called k. See Table A-2. Because WREG is only 8-bit, the k value cannot be greater than 8-bit. Therefore, the k value is between 0-255 (00-FF in hex). After the operation, the result is placed back in WREG. Look at the following examples for clarification:

MOVLW	0x45 ;WREG	=	45H
ADDLW	0x24 ;WREG	=	45H + 24H = 69H
MOVLW	0x35 ;WREG	=	35н
ANDLW	0x0F ;WREG	=	35H ANDed with $0FH = 05H$
MOVLW	0x55 ;WREG	=	55H
XORLW	0xAA ;WREG	=	55H EX-ORed with AAH = FFH

Byte-oriented instructions

There are two groups of instructions in this category. In the first group, the operation is performed on the file register and the result is placed back in the file register. The instruction "CLRF f,a" is an example in this group. See Table A-3. In the second group, the operation involves both fileReg and WREG. As a result, we have the options of placing the result in fileReg or in WREG. As an example in this group, examine the "ADDWF f,d,a" instruction. The destination for the result can be WREG (if d = 0) or file register (if d = 1). For the fileReg location, it can be in the access bank (if a = 0) or in other bank registers (if a = 1). Also notice that if a = 0, the assembler assumes that automatically.

 Table A-3: Byte-Oriented Instructions (from Microchip datasheet)

Mnemonic, Operands	Description	Cycles	
BYTE-ORIEN	TED FILE REGISTER OPE	RATIONS	
ADDWF f, d, a	Add WREG and f	1	
	Add WREG and Carry bit to f	1	
	Add WREG with f	1	
	, Clear f	1	
COMF f, d, a	Complement f	1	
	, Compare f with WREG, skip =	1	
CPFSGT f, a	, Compare f with WREG, skip >	1	
CPFSLT f, a	, Compare f with WREG, skip <	1	
DECF f, d,		1	
DECFSZ f, d,	Decrement f, Skip if 0	1	
	Decrement f, Skip if Not 0	1	
	a Increment f	1	
INCFSZ f, d,	Increment f, Skip if 0	1	
INFSNZ f, d,	Increment f, Skip if Not 0	1	
IORWF f, d,	Inclusive OR WREG with f	1	
MOVF f, d,	Move f	1	
MOVFF f _s , f	d Move f _s (source) to 1st word	2	
	f _d (destination) 2nd word		
MOVWF f,	^a Move WREG to f	1	
MULWF f,	Multiply WREG with f	1	
NEGF f,	A Negate f	1	
RLCF f, d,	Rotate Left f through Carry	1	
RLNCF f, d,	Rotate Left f (No Carry)	1	
RRCF f, d,	Rotate Right f through Carry	1	
RRNCF f, d,	Rotate Right f (No Carry)	1	
SETF f, a	[,] Set f	1	
SUBFWB f, d,	Subtract f from WREG with	1	
	borrow		
SUBWF f, d, a	^a Subtract WREG from f	1	
SUBWFB f, d, a	Bubtract WREG from f with	1	
	borrow		
SWAPF f, d,	^a Swap nibbles in f	1	
TSTFSZ f,	Test f, Skip if 0	1	
XORWF f, d,	Exclusive OR WREG with f	1	

Look at the following examples.

```
When d = 0 and a = 0:

MyReg SET 0x20 ;loc 20H for MyReg

MOVLW 0x45 ;WREG = 45H

MOVWF MyReg ;MyReg = 45H

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg ;WREG = 68H (45H + 23H = 68H)
```

In the above example, the last instruction could have been coded as "ADDWF MyReg,0,0".

When d = 1 and a = 0:

MyReg	SET 0x20) ;loc 20H for MyReg
MOVLW	0x45	;WREG = 45H
MOVWF	MyReg	; MyReg = $45H$
MOVLW	0x23	;WREG = 23H
ADDWF	MyReg,F	;MyReg = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as "ADDWF MyReg,F,0" or "ADDWF MyReg,1,0". As far as the MPLAB is concerned, they mean the same thing. Notice that the use of letter F in "ADDWF MyReg,F" is being used in place of 1.

To use banks other than the access bank, we must load the BSR register first. The following example uses a location in Bank 2 (RAM location 200–2FFH).

When d = 0 and a = 1:

MyReg SET 0x30 ;set aside location 30H for MyRegMOVLB0x2;use Bank 2 (address loc 230H)MOVLW 0x45;WREG = 45HMOVWF MyReg,1;MyReg = 45H (loc 230H)MOVLW 0x23;WREG = 23HADDWF MyReg,1;WREG = 68H (add loc 230H to W)

```
When d = 1 and a = 1:
```

 MyReg
 SET
 0x20
 ;loc 20H for MyReg

 MOVLB
 0x4
 ;use bank 4

 MOVLW
 0x45
 ;WREG = 45H

 MOVWF
 MyReg
 ;MyReg = 45H (loc 420H)

 MOVLW
 0x23
 ;WREG = 23H

 ADDWF
 MyReg,F,1
 ;MyReg = 68H (loc 420)

Register-indirect addressing mode uses FSRx as a pointer to RAM location. We have three registers, FSR0, FSR1, and FSR2, that can be used for pointers.

Examples:

ADDWF POSTINCO ;add to W data pointed to by FSRO, ;also increment FSRO ADDWF POSTINC1 ;add to W data pointed to by FSR1 ;also increment FSR1

See Example 6-6 in Chapter 6.

Table processing instructions

The table processing instructions allow us to read fixed data located in the program ROM of the PIC18. See Table A-4. They also allow us to write into the program ROM if it is Flash memory. Chapter 14 discusses the TBLRD and TBLWRT instructions in detail. It also shows how to use table read and write to access the EEPROM.

Table A-4: Table Processing Instructions (from Microchip datasheet)

Mnemonic, Operands	Description	Cycles
DATA←→PF	ROGRAM MEMORY OPER	RATIONS
TBLRD*	Table Read	2
TBLRD*+	Table Read with post-increment	2
TBLRD*-	Table Read with post -decrement	2
TBLRD+*	Table Read with pre-increment	2
TBLWT*	Table Write	2
TBLWT*+	Table Write with post-increment	2
TBLWT*-	Table Write with post-decrement	2
TBLWT+*	Table Write with pre-increment	2

Control instructions

The control instructions such as branch and call deal mainly with flow control. See Table A-5. We must pay special attention to the target address of the control instructions. The target address for some of the branch instructions such as BZ (branch if zero) cannot be farther than 128 bytes away from the current instruction. The CALL instruction allows us to call a subroutine located anywhere in the 2M ROM space of the PIC18. See the individual instructions in the next section for further discussion on this issue.

Mnemonic, Operands		Description	Cycles
CONTRO	L OPI	ERATIONS	
BC	n	Branch if Carry	1
BN	n	Branch if Negative	1
BNC	n	Branch if Not Carry	1
BNN	n	Branch if Not Negative	1
BNOV	n	Branch if Not Overflow	1
BNZ	n	Branch if Not Zero	1
BOV	n	Branch if Overflow	1
BRA	n	Branch Unconditionally	2
BZ	n	Branch if Zero	1
CALL	n, s	Call subroutine 1st word 2nd word	2
CLRWDT		Clear Watchdog Timer	1
DAW		Decimal Adjust WREG	1
GOTO	n	Go to address 1st word 2nd word	2
NOP		No Operation	1
NOP	—	No Operation	1
POP		Pop top of return stack (TOS)	1
PUSH	—	Push top of return stack (TOS)	1
RCALL	n	Relative Call	2
RESET		Software device RESET	1
RETFIE	S	Return from interrupt enable	2
RETLW	k	Return with literal in WREG	2
RETURN	s	Return from Subroutine	2
SLEEP		Go into standby mode	1

 Table A-5: Control Instructions (from Microchip datasheet)

SECTION A.2: THE PIC18 INSTRUCTION SET

In this section we provide a brief description of each instruction with some examples.

ADDLW K	Add Literal to WREG
Function:	ADD literal value of k to WREG
Syntax:	ADDLW k

This adds the literal value of k to the WREG register, and places the result back into WREG. Because register WREG is one byte in size, the operand k must also be one byte.

The ADD instruction is used for both signed and unsigned numbers. Each one is discussed separately. See Chapter 5 for discussion of signed numbers.

Unsigned addition

In the addition of unsigned numbers, the status of C, DC, Z, N, and OV may change. The most important of these flags is C. It becomes 1 when there is a carry from D7 out in 8-bit (D0–D7) operations.

Example:

-	MOVLW	0x45	;WREG = 45H
	ADDLW	0x4F	;WREG = 94H (45H + 4FH = 94H)
			;C = 0
Example:			
	MOVLW	0xFE	;WREG = FEH
	ADDLW	0x75	;WREG = FE + 75 = 73H
			;C = 1
Example:			
	MOVLW	0x25	;WREG = 25H
	ADDLW	0x42	; WREG = $67H$ (25H + 42H = $67H$)
			; C = 0

Notice that in all the above examples we ignored the status of the OV flag. Although ADD instructions do affect OV, it is in the context of signed numbers that the OV flag has any significance. This is discussed next.

Signed addition and negative numbers

In the addition of signed numbers, special attention should be given to the overflow flag (OV) because this indicates if there is an error in the result of the addition. There are two rules for setting OV in signed number operation. The overflow flag is set to 1:

- 1. If there is a carry from D6 to D7 and no carry from D7 out.
- 2. If there is a carry from D7 out and no carry from D6 to D7. Notice that if there is a carry both from D7 out and from D6 to D7, OV = 0.

Example:

MOVLW +D'8' ;W = 0000 1000 ADDLW +D'4' ;W = 0000 1100 OV = 0, ;C = 0, N = 0

Notice that N = D7 = 0 because the result is positive, and OV = 0 because there is neither a carry from D6 to D7 nor any carry beyond D7. Because OV = 0, the result is correct [(+8) + (+4) = (+12)].

Example:

MOVLW +D'66' ;W = 0100 0010 ADDLW +D'69' ;W = 1000 0101 = -121 ADDWF ;W = 1000 0111 = -121 ;(INCORRECT) C = 0, N = D7 = 1, OV = 1

In the above example, the correct result is +135 [(+66) + (+69) = (+135)], but the result was -121. OV = 1 is an indication of this error. Notice that N = 1 because the result is negative; OV = 1 because there is a carry from D6 to D7 and C = 0.

Example:

MOVLW -D'12' ;W = 1111 0100 ADDLW +D'18' ;W = W + (+0001 0010) ;W = 0000 0110 (+6) correct ;N = 0, OV = 0, and C = 1

Notice above that the result is correct (OV = 0), because there is a carry from D6 to D7 and a carry from D7 out.

Example:

MOVLW -D'30' ;W = 1110 0010 ADDLW +D'14' ;W = W + 0000 1110 ;W = 1111 0000 (-16, CORRECT) ;N = D7 = 1, OV = 0, C = 0

OV = 0 because there is no carry from D7 out nor any carry from D6 to D7.

Example:

MOVLW -D'126' ;W = 1000 0010 ADDLW -D'127' ;W = W + 1000 0001 ;W = 0000 0011 (+3, INCORRECT) ;D7 = N = 0, OV = 1

C = 1 because there is a carry from D7 out but no carry from D6 to D7.

From the above discussion we conclude that while Carry is important in any addition, OV is extremely important in signed number addition because it is used to indicate whether or not the result is valid. As we will see in instruction "DAW", the DC flag is used in the addition of BCD numbers.

ADDWF Add WREG and f

Function:ADD WREG and fileRegSyntax:ADDWF f,d,a

This adds the fileReg value to the WREG register, and places the result in WREG (if d = 0) or fileReg (if d = 1).

The ADDWF instruction is used for both signed and unsigned numbers. (See ADDLW instruction.)

Example:

MyReg SET 0x20; loc 20H for MyReg MOVLW 0x45; WREG = 45H MOVWF MyReg; MyReg = 45H MOVLW 0x4F; WREG = 4FH ADDWF MyReg; WREG = 94H (45H + 4FH = 94H) ; C = 0

We can place the result in fileReg, as shown in the following example:

		; (45H	+ 4E	TH =	94H), C =	= 0
ADDWF	MyReg, H	-	;MyRe	eg =	94H		
MOVLW	0x4F		;WREG	= 4	lFΗ		
MOVWF	MyReg		;MyRe	eg =	45H		
MOVLW	0x45		;WREG	z = 4	15H		
MyReg	SET	0x20	;loc	20H	for	MyReg	

For cases of a = 0 and a = 1, see Section A.1 in this chapter.

ADDWFC

Add WREG and Carry flag to fileReg

Function:ADD WREG and Carry bit to fileRegSyntax:ADDWFC f,d,a

This will add WREG and the C flag to fileReg (Destination = WREG + fileReg + C). If C = 1 prior to this instruction, 1 is also added to destination. If C = 0 prior to the instruction, source is added to destination plus 0. This instruction is used in multibyte additions. In the addition of 25F2H to 3189H, for example, we use the ADDWFC instruction as shown below.

```
Example when d = 0:
```

Assume we have the following data in RAM locations 0x10 and 0x11

0x10 = (F2) 0x11 = (25) Reg_L SET 0x10 ; loc 0x10 for Reg_L Reg_H SET 0x11 ; loc 0x11 for Reg_H BCF STATUS,C ; make carry = 0 MOVLW 89H ;WREG = 89H ADDWFC Reg_L,1 ; Reg_L = 89H + F2H + 0 = 7BH ;and C = 1 MOVLW 0x31 ;WREG = 31H ADDWFC Reg 2,1 ;Reg H = 31H + 25H + 1 = 57H

Therefore the result is:

25F2H
<u>+3189H</u>
577BH

ANDLW AND Literal byte with WREG

Function:Logical AND literal value k with WREGSyntax:ANDLW

This performs a logical AND on the WREG and the Literal byte operand, bit by bit, storing the result in the WREG.

Α	B	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Example:

Limpit									
	MOVLW	0x3	9	; W	=	39H		•	
	ANDLW	0x0	9	; W	=	39H	ANDed	with	09
			1001						
	<u>09H</u> 0	000	1001	-					
	09H 0	000	1001	-					
Example:									
	MOVLW	32H	; W	=	32F	Ŧ	32H	0011	0010
	ANDLW	50H	;AN	ID I	Ŵ V	vith	<u>50H</u>	0101	0000
			;(W	1 =	10)H)	10H	0001	0000
ANDWF	A	ND V	VREC	i wit	th fi	ileReg	5		

Function:	Logical AND for byte variables
Syntax:	ANDWF f,d,a

This performs a logical AND on the fileReg value and the WREG register, bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:

MyReq SET 0x40; set MyReg loc at 0x40 MOVLW 0x39 ;W = 39H; MyReq = 39HMOVWF MyReg MOVLW 0x09 ANDWF MyReg ;39H ANDed with 09 (W = 09) 39H 0011 1001 09H 0000 1001 09Н 0000 1001

Example:

```
MyReg SET 0x40; set MyReg loc at 0x40
MOVLW 0x32 ; W = 32H
MOVWF MyReg ; MyReg = 32H
MOVLW 0x0F ; WREG = 0FH
ANDLW MyReg ; 32H ANDed with 0FH (W = 02)
32H 0011 0010
0F<u>H 0000 1111</u>
02H 0000 0010
```

We can place the result in fileReg as shown in the examples below:

```
MyReg SET 0x40; set MyReg loc at 0x40
MOVLW 0x32 ; W = 32H
MOVWF MyReg ; MyReg = 32H
MOVLW 0x50 ; WREG = 50H
ANDLW MyReg,F ; MyReg = 09, WREG = 50H
```

The instructions below clear (mask) certain bits of the output ports, assuming the ports are configured as output ports:

```
MOVLW 0xFE
ANDWF PORTB,F ;mask PORTB.0 (D0 of Port B)
MOVLW 0x7F
ANDWF PORTC,F ;mask PORTC.7 (D7 of Port C)
MOVLW 0xF7
ANDWF PORTD,F ;mask PORTD.3 (D3 of Port D)
```

Branch Condition

Function: Conditional Branch (jump)

In this type of Branch (jump), control is transferred to a target address if certain conditions are met. The following is list of branch instructions dealing with the flags:

BC	Branch if carry	jump if $C = 1$
BNC	Branch if no carry	jump if $C = 0$
BZ	Branch if zero	jump if $Z = 1$
BNZ	Branch if no zero	jump if $Z = 0$
BN	Branch if negative	jump if $N = 1$
BNN	Branch if no negative	jump if $N = 0$
BOV	Branch if overflow	jump if $OV = 1$
BNOV	Branch if no overflow	jump if $OV = 0$
BNOV	Branch if no overflow	jump if $OV = 0$

Notice that all "Branch condition" instructions are short jumps, meaning that the target address cannot be more than -128 bytes backward or +127 bytes forward of the PC of the instruction following the jump. In other words, the target address cannot be more than -128 to +127 bytes away from the current PC. What

happens if a programmer needs to use a "Branch condition" to go to a target address beyond the -128 to +127 range? The solution is to use the "Branch condition" along with the unconditional GOTO instruction, as shown below.

NEXT:	ADDLW 0x95 ; BNC NEXT ;	WREG = 87H C = 1 after addition branch if C = 0 target more than 128 bytes away
	ORG 0x5000	
OVER:	MOVWF PORTD	
BC	Branch if C = 1	
Fund	ction:Branch if Carrycax:BC target_addre	-
Synt	-	255
Synt This	ax: BC target_addre	255
Synt This Exar	ax: BC target_addre instruction branches if C = mple: MOLW 0x0 ; K ADDLW 0x1 ; BC EXIT ;	255

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BCF		Bit Clear fileReg
	Function: Syntax:	Clear bit of a fileReg BCF f,b,a

This instruction clears a single bit of a given file register. The bit can be the directly addressable bit of a port, register, or RAM location. Here are some examples of its format:

```
BCF STATUS,C ;C = 0
BCF PORTB,5 ;CLEAR PORTB.5 (PORTB.5 = 0)
BCF PORTC,7 ;CLEAR PORTC.7 (PORTC.7 = 0)
BCF MyReg,1 ;CLEAR D1 OF File Register MyFile
```

.

BNBranch if N = 1Function:Jump if Negative flag bit = 1Syntax:BN target address

Syntax. Biv target_address

This instruction branches if N = 1. It is used in signed number addition. See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BNC		Branch if no Carry
	Function: Syntax:	Branch if Carry flag is 0 BNC target_address

This instruction examines the C flag, and if it is zero it will jump (branch) to the target address.

Example: Find the total sum of the bytes F6H, 98H, and 8AH. Save the carries in register C_Reg.

C_Reg SET 0x20 ;set aside loc 0x20 for carries

	MOVLW 0x0	; $W = 0$
	MOVWF C Reg	;C Reg = 0
	ADDLW 0xF6	_
	BNC OVER1	
	INCF C_Reg,F	
OVER1:	ADDLW 0x98	
	BNC OVER2	
	INCF C_Reg,F	
OVER2:	ADDWF 0x8A	
	BNC OVER3	
	INCF C_Reg	
OVER3:		

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this.

BNN	Branch if Not Negative
	Branch if Negative flag bit = 0 BNN target_address

This instruction branches if N = 0. It is used in signed number addition. See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BNOV Branch if No Overflow

Function:Jump if overflow flag bit = 0Syntax:BNOV target_address

This instruction branches if OV = 0. It is used in signed number addition. See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BNZ	Branch if No Zero

Function:	Jump if Zero flag is 0
Syntax:	BNZ target_address

This instruction branches if Z = 0.

Example:

CLRF	TRISB	;PORTB as output
CLRF	PORTB	;clear PORTB
OVER INCF	PORTB,F	;INC PORTB
BNZ	OVER	;do it until it becomes zero

Example: Add value 7 to WREG five times.

COUNTER SET 0x20 ;loc 20H for COUNTER MOVLW 0x5 ;WREG = 5 MOVWF COUNTER ;COUNTER = 05 MOVLW 0x0 ;WREG = 0 OVER ADDLW 0x7 ;add 7 to WREG DECF COUNTER,F ;decrement counter BNZ OVER ;do it until counter is zero

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BOV	Branch if Overflow	
Function: Syntax:	Jump if Overflow flag = 1 BOV target_address	

This instruction jumps if OV = 1. It is used in signed number addition. See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this issue.

BRA		Branch unconditional	
	Function:	Branch unconditionally	
	Syntax:	BRA target address	

BRA stands for "Branch." It transfers program execution to the target address unconditionally. The target address for this instruction must be within 1K of program memory. This is a 2-byte instruction. The first 5 bits is the opcode and the rest is the signed number displacement, which is added to the PC (program counter) of the instruction following the BRA to get the target address. Therefore, in this branch, the target address must be within -1024 to +1023 bytes of the PC (program counter) of the instruction after the BRA because the 11-bit address can take values of +1024 to -1023. This address is often referred to as a *relative address* because the target address is -1024 to +1023 bytes relative to the program counter (PC).

BSF		Bit Set fileReg	_
	Function: Syntax:	Set bit BSF f, b, a	

This sets HIGH the indicated bit of a file register. The bit can be any directly addressable bit of a port, register, or RAM location.

Examples:

BSF	portb,3	;make PORTB.3 = 1
BSF	PORTC,6	;make PORTC.6 = 1
BSF	MyReg,2	;make bit D2 of MyReg = 1
BSF	STATUS,C	;set Carry Flag C = 1

BTFSC

Bit Test fileReg, Skip if Clear

Function:Skip the next instruction if bit is 0Syntax:BTFSC f, b,a

This instruction is used to test a given bit and skip the next instruction if the bit is low. The given bit can be any of the bit-addressable bits of RAM, ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and, when it becomes low, put 55H in WREG.

BSF TRISB,5 ;make PORTB.5 an input bit HERE BTFSC PORTB,5 ;skip if PORTB.5 = 0 BRA HERE MOVLW 0x55 ;because PORTB.5 = 0, ;put 55H in WREG Example: See if WREG has an even number. If so, make it odd.

	BTFSC WREG,0	;skip if it is odd
	BRA NEXT	
	ADDLW 0x1	; it is even, make it odd
NEXT:		

Function:	Skip the next instruction if bit is 1
Syntax:	BTFSS f, b, a

This instruction is used to test a given bit and skip the next instruction if the bit is HIGH. The given bit can be any of the bit-addressable bits of RAM, ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and when it becomes HIGH, put 55H in WREG.

BSF TRISB,5 ;make PORTB.5 an input bit HERE BTFSS PORTB,5 ;skip if PORTB.5 = 1 BRA HERE MOVLW 55H ;because PORTB.5 = 0 WREG = 55H

Example: See if WREG has an odd number. If so, make it even.

•							
	ADDLW 0x01	;it	is	even,	make	it	odd
	BRA NEXT						
	BTFSS WREG,0	;sk:	ip i	if it	is eve	∋n	

BTG Bit Toggle fileReg

NEXT

Function:Toggle (Complement) bitSyntax:BTG f, b, a

This instruction complements a single bit. The bit can be any bit-addressable location in the PIC18.

Examp	ole:		
	BCF	TRISB,0	;make PORTB.0 an output
AGAIN	BTG	portb,0	;complement PORTB.0 bit
	BRA	AGAIN	;continuously forever

Example: Toggle PORTB.7 a total of 150 times.

COUNTER SET 0x20 ;loc 20H for COUNTER MOVLW 'D' 150 ;WREG = 150 MOVWF COUNTER ;COUNTER = 150 BCF TRISB,7 ;make PORTB.7 an output OVER BTG PORTB.7 ;toggle PORTB.7 DECF COUNTER,F ;decrement and put it in ;COUNTER BNZ OVER ;do it 150 times

ΒZ **Branch if Zero** Function: Branch if Z = 1Syntax: BZ target address Example: Keep checking PORTB for value 99H. SETF TRISB ; port B as input BACK MOVFW PORTB ; get PORTB into WREG ;subtract 99H from it SUBLW 0x99 ; if 0x99, exit ΒZ EXIT ;keep checking BRA BACK . . . EXIT: . . . Example: Toggle PORTB 150 times. MyReq SET 0x40 ;loc 40H for MyReq SETF TRISB ; port B as output ; WREG = 150MOVLW D'150' MOVWF MyReg BACK COMF PORTB ;toggle PORTB ;decrement MyReq DECF MyReq, F ; if MyReq = 0, exit ΒZ EXIT ;keep toggling BRA BACK

EXIT:

. . .

. . .

Notice that this is a 2-byte instruction; therefore, the target address cannot be more than -128 to +127 bytes away from the program counter. See Branch Condition for further discussion on this.

CALL

Function:Transfers control to a subroutineSyntax:CALLk,s;s is used for fast context switching

The Call intruction is a 4-byte instruction. The first 12 bits are used for the opcode and the rest (20 bits) are set aside for the address. A 20-bit address allows us to reach the target address anywhere in the 2M ROM space of the PIC18. If calling a subroutine, the PC register (which has the address of the instruction after the CALL) is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the program counter is loaded with the new address and control is transferred to the subroutine. At the end of the procedure, when RETURN is executed, PC is popped off the stack, which returns control to the instruction after the CALL.

Notice that CALL is a 4-byte instruction, in which 12 bits are the opcode, and the other 20 bits are the 20-bit address of an even address location. Because

all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is automatically set to zero to make sure that the CALL instruction will not land at the middle of the targeted instruction. The 20-bit address of the CALL provides the A20–A1 part of the address and with the A0 = 0, we have the 21-bit address needed to go anywhere in the 2M address space of the PIC18.

We have two options for the "CALL k,s" instruction. They are s = 0, and s = 1. When s = 0, it is simply calling a subroutine. With s = 1, we are calling a subroutine and we are also asking the CPU to save the three major registers of WREG, STATUS, and BSR in internal buffers (shadow registers) for the purpose of context-switching. This fast context-switching can be used only in the main subroutine because the depth of the shadow registers is only one. That means no nested call with the s = 1. Look at the following case:

	ORG 0x0			
MAIN				
	 CALL M_SUB,1 ;call and save the registers MOVLW 0x55 ;address of this instruction is saved on stack 			
;				
	ORG 0x2000			
M_SUB				
	CALL Y_SUB ;we cannot use CALL Y_SUB,1			
	MOVLW 0xAA; address of this instruction is saved on stack			
	RETURN,1 ;return to caller and restore the registers ;notice the s = 1 for RETURN			
;				
Y SUB	ORG 0x3000			
	RETURN			
;	END			

As shown in RETURN instruction, we also have two options for the RETURN: s = 0 and s = 1. If we use s = 1 for the CALL, we must also use s = 1 for the RETURN. Notice that "CALL Target" with no number after it is interpreted as s = 0 by the assembler. Likewise, the "RETURN" with no number after it is interpreted as s = 0 by the assembler.

CLRF Clear fileReg

Function:ClearSyntax:CLRF f, a

This instruction clears the entire byte in the fileReg. All bits of the register are cleared to 0.

```
Example:
```

```
MyReg SET 0x20 ;loc 20H for MyReg

CLRF MyReg ;clear MyReg

CLRF TRISB ;clear TRISB (make PORTB output)

CLRF PORTB ;clear PORTB

CLRF TMR01L ;TMR0L = 0
```

Notice that in this instruction the result can be placed in fileReg only and there is no option for the WREG to be used as the destination.

CLRWDT

Function:	Clear Watchdog Timer
Syntax:	CLRWDT

This instruction clears the Watchdog Timer.

COMF	Complement the fileReg	
Function:	Complement a fileReg	
Syntax:	COMF f, d, a	

This complements the contents of a given fileReg. The result is the 1's complement of the register; that is, 0s become 1s and 1s become 0s. The result can be placed in WREG (if d = 0) or fileReg (if d = 1).

```
Example:
```

Ĩ	MOVLW 0x0 MOVWF TRISB MOVLW 0x55	;Make PORTB an output port
	MOVWF PORTB	
AGAIN	COMF PORTB,	F ;complement (toggle) PORTB
	CALL DELAY	
	BRA AGAIN	; continuously (notice WREG = 55H)
Example:		
-	MyReg SET	0x40;set MyReg loc at 0x40
	MOVLW 0x39	;W = 39H
	MOVWF MyRe	g ;MyReg = 39H
	COMPF MyRe	g,F;MyReg = C6H and WREG = 39H
Where 39H (0	011 1001 bin) be	comes C6H (1100 0110).

Example:

MyReg SET 0x40; set MyReg loc at 0x40 MOVLW 0x55 ; W = 55HMOVWF MyReg ; MyReg = 55H COMPF MyReg,F ; MyReg AAH, WREG = 55H

where 55H (0101 0101) becomes AAH (1010 1010).

Example: Toggle PORTB 150 times.

COUNTER SET 0x40 ;loc 40H for COUNTER SETF TRISB ;port B as output MOVLW D'150' ;WREG = 150 MOVWF COUNTER ;COUNTER = 150 MOVLW 0x55 ;WREG = 55H MOVWF PORTB BACK COMF PORTB,F ;toggle PORTB DECF COUNTER,F ;decrement COUNTER BNZ BACK ;toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set MyReg loc at 0x40 MOVLW 0x39 ;W = 39H MOVWF MyReg ;MyReg = 39H COMPF MyReg ;MyReg = 39H and WREG = C6H

Example:

MyReg SET 0x40 ;set MyReg loc at 0x40 MOVLW 0x55 ;W = 55H MOVWF MyReg ;MyReg = 55H COMPF MyReg ;WREG = AA and MyReg 55H SETF

CPFSEQ Compare FileReg with WREG and skip if equal (F = W)

Function:Compare fileReg and WREG and skip if they are equalSyntax:CPFSEQ f, a

The magnitudes of the fileReg byte and WREG byte are compared. If they are equal, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get out only when PORTB has the value 99H.

SETF TRISB ;PORTB an input port MOVLW 0x99 ;WREG = 99h BACK CPFSEQ PORTB ;skip if PORTB has 0x99 BRA BACK ;keep monitoring Notice that CPFSEQ skips only when fileReg and WREG have equal values.

CPFSGT Compare FileReg with WREG and skip if greater (F > W)

Function:Compare fileReg and WREG and skip if fileReg > WREG.Syntax:CPFSGT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If fileReg is larger than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get out only when PORTB has a value greater than 99H.

	SETF TRISB	;PORTB an input port
	MOVLW 0x99	;WREG = 99H
BACK	CPFSGT PORTB	;skip if PORTB > 99H
	BRA BACK	;keep monitoring

Notice that CPFSGT skips only if FileReg is greater than WREG.

CPFSLT Compare FileReg with WREG and skip if less than (F < W)

Function:Compare fileReg and WREG and skip if fileReg < WREG.</th>Syntax:CPFSLT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If fileReg is less than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get out only when PORTB has a value less than 99H.

	SETF TRISB	;PORTB an input port
	MOVLW 0x99	;WREG = 99H
BACK:	CPFSEQ PORTB	;skip if PORTB < 99H
	BRA BACK	;keep monitoring

Notice that CPFSLT skips only if FileReg < WREG.

DAW

Function:Decimal-adjust WREG after additionSyntax:DAW

This instruction is used after addition of BCD numbers to convert the result back to BCD. The data is adjusted in the following two possible cases:

- 1. It adds 6 to the lower 4 bits of WREG if it is greater than 9 or if DC = 1.
- 2. It also adds 6 to the upper 4 bits of WREG if it is greater than 9 or if C = 1.

Example:

```
MOVLW 0x47 ;WREG = 0100 0111

ADDLW 0x38 ;WREG = 47H + 38H = 7FH,

;invalid BCD

DAW ;WREG = 1000 0101 = 85H, valid BCD

47H

<u>+ 38H</u>

7FH (invalid BCD)

+ <u>6H</u> (after DAW)

85H (valid BCD)
```

In the above example, because the lower nibble was greater than 9, DAW added 6 to WREG. If the lower nibble is less than 9 but DC = 1, it also adds 6 to the lower nibble. See the following example:

```
MOVLW 0x29 ;WREG = 0010 1001

ADDLW 0x18 ;WREG = 0100 0001 INCORRECT

DAW ;WREG = 0100 0111 = 47H VALID BCD

29H

+<u>18H</u>

41H (incorrect result in BCD)

+<u>6H</u>

47H correct result in BCD
```

The same thing can happen for the upper nibble. See the following example:

```
MOVLW 0x52 ;WREG = 0101 0010

ADDLW 0x91 ;WREG = 1110 0011 INVALID BCD

DAW ;WREG = 0100 0011 AND C = 1

52H

+ <u>91H</u>

E3H (invalid BCD)

+ <u>6</u> (after DAW, adding to upper nibble)

143H valid BCD
```

Similarly, if the upper nibble is less than 9 and C = 1, it must be corrected. See the following example:

MOVLW	0x94		;W =	1001	0100	
ADDLW	0x91		;W =	0010	0101 1	INCORRECT
DAW		;W =	1000	0101,	, VALII	D BCD
			;FOR	85, 0	C = 1	

94H						
+ <u>91H</u>						
125H	(incor	rect	BCD)			
+ <u>6</u>	(after	DAW,	adding	to	upper	nibble)
185						

It is possible that 6 is added to both the high and low nibbles. See the following example:

> MOVLW 0x54 ;WREG = 0101 0100 ADDLW 0x87 ;WREG = 1101 1011 INVALID BCD DAW ;WREG = 0100 0001, C = 1 (BCD 141) 54H +<u>87H</u> DBH (invalid result in BCD) +<u>66H</u> 1 4 1H valid BCD

DECF	Decrement fileReg
	8

Function:Decrement fileRegSyntax:DECF f, d, a

This instruction subtracts 1 from the byte operand in fileReg. The result can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:

MyReg SET 0x40	;set aside loc 40H for MyReg
MOVLW 0x99	;WREG = 99H
MOVWF MyReg	;MyReg = 99H
DECF MyReg,F	;MyReg = 98H, WREG 99H
DECF MyReg,F	; MyReg = $97H$, WREG $99H$
DECF MyReg,F	;MyReg = 96H, WREG 99H

Example: Toggle PORTB 250 times.

```
COUNTER
          SET
               0x40 ;loc 40H for COUNTER
                    ; PORTB as output
     SETF TRISB
     MOVLW D'250'
                    ; WREG = 250
     MOVWF COUNTER ; COUNTER = 250
     MOVLW 0x55
                    ; WREG = 55H
     MOVWF PORTB
BACK COMF PORTB, F
                   ;toggle PORTB
     DECF COUNTER, F ; decrement COUNTER
     BNZ
          BACK ; toggle until counter becomes 0
```

We can place the result in WREG as shown in the examples below:

```
MyReg SET 0x40 ; set aside loc for MyReg
          MOVLW 0x99
                          ; WREG = 99H
          MOVWF MyReq
                          ; MyReq = 99H
          MOVWL 112DECF MyReg;WREG = 98n, 112100DECF MyReg;WREG = 97H, MyReg = 99HOCT MyReg = 99H
                        ;WREG = 96H, MyReg = 99H
          DECF MyReg
     Example:
          MyReg
                  SET
                          0x50 ;set MyReg loc at 0x50
          MOVLW 0x39
                          ;W = 39H
                          ; MyReg = 39H
          MOVWF MyReq
                          ; WREG = 38H and MyReg = 39H
          DECF MyReq
                 MyReq ; WREG = 37H and MyReg = 39H
          DECF
                          ; WREG = 36H and MyReg = 39H
          DECF MyReq
          DECF MyReg
                          ; WREG = 35H and MyReg = 39H
DECFSZ
                Decrement fileReg and Skip if zero
```

Function:Decrement fileReg and skip if fileReg has zero in itSyntax:DECFSZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result is zero, then it skips execution of the next instruction.

Example: Toggle PORTB 250 times.

SET 0x40 ;loc 40H for COUNT COUNT CLRF TRISB ; PORTB an output MOVLW D'250' ; WREG = 250;COUNT = 250 MOVWF COUNT ; WREG = 55HMOVLW 0x55 MOVWF PORTB BACK COMF PORTB, F ; toggle PORTB DECFSZ COUNT, F ; decrement COUNT and ;skip if zero BRA BACK ; toggle until counter becomes 0

DECFSNZ	Decrement fileReg and skip if not zero
Function: Syntax:	Decrement fileReg and skip if fileReg has other than zero DECFSNZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result is not zero, then it skips execution of the next instruction.

Example: Toggle PORTB 250 times continuously.

COUNT 0x40 ;loc 40H for COUNT SET CLRF TRISB ; PORTB an output OVER MOVLW D'250' ; WREG = 250; COUNT = 250MOVWF COUNT ; WREG = 55HMOVLW 0x55 MOVWF PORTB BACK COMF PORTB, F ;toggle PORTB DECFSNZ COUNT, F ; decrement COUNT and ;skip if zero BRA OVER ;start over BACK ; toggle until counter becomes 0 BRA GOTO **Unconditional Branch**

Function:Transfers control unconditionally to a new address.Syntax:GOTOk

In the PIC18 there are two unconditional branches (jumps): GOTO (long jump) and BRA (short jump). Each is described next.

- 1. GOTO (long jump): This is a 4-byte instruction. The first 12 bits are the opcode, and the next 20 bits are an even address of the target location. Because all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is automatically set to zero to make sure that the GOTO instruction will not land at the middle of the targeted instruction. The 20-bit address of the GOTO provides the A20–A1 part of the address and with A0 = 0, we have the 21-bit address needed to go anywhere in the 2M address space of the PIC18.
- 2. BRA: This is a 2-byte instruction. The first 5 bits are the opcode and the remaining 11 bits are the signed number displacement, which is added to the PC (program counter) of the instruction following the BRA to get the target address. Therefore, for the BRA instruction the target address must be within -1023 to +1024 bytes of the PC of the instruction after the BRA because a 11-bit address can take values of +1023 to -1024.

While GOTO is used to jump to any address location within the 2M code space of the PIC18, BRA is used to jump to a location within the 1K ROM space. The advantage of BRA is the fact that it takes 2 bytes of program ROM, while GOTO takes 4 bytes. BRA is widely used in chips with a small amount of program ROM and a limited number of pins.

Notice that the difference between GOTO and CALL is that the CALL instruction will return and continue execution with the instruction following the CALL, whereas GOTO will not return.

INCF Increment fileReg

Function:IncrementSyntax:INCF f, d, a

This instruction adds 1 to the byte operand in fileReg. The result can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:

MyReg SET 0x40 ;set aside loc 40H for MyReg MOVLW 0x99 ;WREG = 99H MOVWF MyReg INCF MyReg,F ;MyReg = 9AH, WREG 99H INCF MyReg,F ;MyReg = 9BH, WREG 99H DECF MyReg,F ;MyReg = 9CH, WREG 99H

Example: Toggle PORTB 5 times.

COUNTER SET 0x40 ;loc 40H for COUNTER SETF TRISB ;PORTB as output MOVLW D'251' ;WREG = 251 MOVWF COUNTER ;COUNTER = 251 MOVLW 0x55 ;WREG = 55H MOVWF PORTB BACK COMF PORTB,F ;toggle PORTB INCF COUNTER,F ;INC COUNTER BNC BACK ;toggle until counter becomes 0

We can place the result in fileReg as shown in the examples below:

	MOVLW (MOVWF N INCF M)x99 IyReg /Reg	;set aside loc for MyReg ;WREG = 99H ;MyReg = 99H ;WREG = 9AH, MyReg = 99H ;WREG = 9BH, MyReg = 99H
	MyReg MOVLW	0x5	<pre>0x40 ;set MyReg loc at 0x40 ;W = 05H ;MyReg = 05H ;WREG = 06H and MyReg = 05H</pre>
INCFSZ	In	crement file	eReg and skip if zero
Function Syntax		crement CFSZ f, d, a	a

This instruction adds 1 to fileReg and if the result is zero it skips the next instruction.

Example: Toggle PORTB 156 times.

```
COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'156' ;WREG = 156
MOVWF COUNTER ;COUNTER = 156
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB
BACK COMF PORTB,F ;toggle PORTB
INCFSZ COUNTER,F ;INC COUNTER and skip if 0
BRA BACK ;toggle until counter becomes 0
.....
```

INCFSNZ Increment fileReg and skip if not zero

Function:	Increment
Syntax:	INFSNZ f, d, a

This instruction adds 1 to the register or memory location specified by the operand. If the result is not zero, it skips the next instruction.

Example: Toggle PORTB 156 times continuously.

```
COUNTER SET 0x40 ;loc 40H for COUNTER

SETF TRISB ;PORTB as output

OVER MOVLW D'156' ;WREG = 156

MOVWF COUNTER ;COUNTER = 156

MOVLW 0x55 ;WREG = 55H

MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB

INCFSNZ COUNTER,F;INC COUNTER, skip if not 0

BRA OVER ;start over

BRA BACK ;toggle until counter becomes 0
```

```
IORLW OR K value with WREG
```

Function:Logical-OR WREG with value kSyntax:IORLW

This performs a logical OR on the WREG register and k value, bit by bit, and stores the result in WREG.

	Α	B	A OR B
Example:	0	0	0
MOVLW 0×30 ; $W = 30H$	0	1	1
IORLW $0x09$; now $W = 39H$	1	0	1
TOTELW ONOS , HOW W SSH	1	1	1

39Н	0011	0000
<u>09H</u>	0000	1001
39	0011	1001

Example:

•	MOVLW IORLW		;W = 32H ;(W = 72H)
	32H	0011	0010
	<u>50H</u>	0101	0000
	72H	0111	0010

IORWF OR FileReg with WREG

Function:	Logical-OR fileReg and WREG
Syntax:	IORWF f, d, a

This performs a logical OR on the fileReg value and the WREG register, bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:

MyReg SET 0x40;set MyReg loc at 0x40 MOVLW 0x39 ;WREG = 39H MOVWF MyReg ;MyReg = 39H MOVLW 0x07 IORWF MyReg ;39H ORed with 07 (W = 3F) 39 0011 1001 <u>07 0000 0111</u> 3F 0011 1111

Example:

MyReg SET 0x40; set MyReg loc at 0x40 ; WREG = 05HMOVLW 0x5 ; MyReq = 05HMOVWF MyReq MOVLW 0x30 IORWF MyReg ; 30H ORed with 05 (W = 35H) 05 0000 0101 30 0011 0000 35 0011 0101

We can place the result in fileReg as shown in the examples below:

MOVLW 0x30 ;W = 30H IORWF PORTB,F ;W and PORTB are ORed and result ;goes to PORTB Example:

```
MyReg SET 0x20

MOVLW 0x54 ;WREG = 54H

MOVWF MyReg

MOVLW 0x67 ;WREG = 67H

IORWF MyReg,F ;OR WREG and MyReg

;after the operation MyReg = 77H

44H 0101 0100

<u>67H 0110 0111</u>

77H 0111 0111 Therefore MyReg will have 77H, WREG = 54H.
```

LFSR

Load FSR

Function:	Load into FSR	registers a 12-bit value of k
Syntax:	LFSR f,k	;k is between 000 and FFFH

This loads a 12-bit value into one of the FSR registers of FSR0, FSR1, or FSR2.

LFSR 0 , 0x200 ;FSR0 = 200H LFSR 1 , 0x050 ;FSR1 = 050H LFSR 2 , 0x160 ;FSR2 = 160H

This is widely used in register indirect addressing mode. See Chapter 6.

MOVF (or MOVFW) Move fileReg to WREG

Function:Copy byte from fileReg to WREGSyntaxMOVF f, d, a:

This instruction is widely used for moving data from a fileReg to WREG. Look at the following examples:

CLRF	TRISC	;PORTC output
SETF	TRISB	;PORTB as input
MOVFW	PORTB	;copy PORTB to WREG
ANDLW	0x0F	;mask the upper 4 bits
MOVWF	PORTC	;put it in PORTC
Example: CLRF SETF MOVFW IORW MOVWF	TRISD TRISB PORTB 0x30 PORTD	;PORTD as output ;PORTB as input ;copy PORTB to WREG ;OR it with 30H ;put it in PORTD

This instruction can be used to copy the fileReg to itself in order to get the status of the N and Z flags. Look at the following example.

```
Example:
```

```
MyReg SET 0x20 ;set aside loc 0x20 to MyReg
MOVLW 0x54
              ;W = 54H
MOVWF MyReq
              ; MyReq = 54H
MOVFW MyReg, F; My Reg = 54, also N = 0 and Z = 0
```

MOVFF	Move FileReg to Filereg
-------	-------------------------

Function:	Copy byte from one fileReg to another fileReg
Syntax:	MOVFF fs, fd

This copies a byte from the source location to the destination. The source and destination locations can be any of the file register locations, SFRs, or ports.

MOVFF	PORTB, MyReg
MOVFF	PORTC, PORTD
MOVFF	RCREG, PORTC
MOVFF	Reg1,REG2

Notice that this a 4-byte instruction because the source and destination address each take 12 bits of the instruction. That means the 24 bits of the instruction are used for the source and destination addresses. The 12-bit address allows data to be moved from any source location to any destination location within the 4K RAM space of the PIC18.

MOVLB	Move Literal 4-bit value to lower 4-bit of the BSR			
Function:	Move 4-bit	value k	to lower 4 bits of the BSR registers	
Syntax:	MOVLB	k	;k is between 0 and 15 (0–F in hex)	

We use this instruction to select a register bank other than the access bank. With this instruction we can load into the BSR (bank selector register) a 4-bit value representing one of 16 banks supported by the PIC18. That means the values between 0000 and 1111 (0-F in hex). For examples of the MOVLB instruction, see Chapter 6 and Section A.1 in this chapter.

MOVLW K	Move Liter	al to WREG
Function:		value k to WREG
Syntax:	MOVLW	k ;k is between 0 and 255 (0–FF in hex)
Example:		
MOVLW	0x55	;WREG = 55H
MOVLW	0x0	;clear WREG (WREG = 0)
MOVLW	0xC2	;WREG = C2H
MOVLW	0x7F	;WREG = 7FH

This instruction, along with the MOVWF, is widely used to load fixed values into any port, SFR, or fileReg location. See the next instruction to see how it is used.

MOVWF Move WREG to a fileReg

Function:	Copy the WREG contents to a fileReg
Syntax:	MOVWF f, a

This copies a byte from WREG to fileReg. This instruction is widely used along with the MOVLW instruction to load any of the fileReg locations, SFRs, or PORTs with a fixed value. See the following examples:

Example: Tog	gle PORTB.				
MOVLW	0x55	;WREG	= 55H		
MOVWF	PORTB				
MOVLW	0xAA	;WREG	= AAH		
MOVWF	PORTB				
BRA	OVER	; keep	toggling	the	PORTB

Example: Load RAM location 20H with value 50H.

MyReg	SET	0x20	;set	aside	the	e loc	c 0x2	0 fc	or My	vReg
MOVLW		0x50								
MOVWF		MyReq	1	;MyReg	- =	50H	(loc	20H	has	50H)

Example: Initialize the Timer0 low and high registers.

MOVLW	0x05	;WREG = 05H
MOVWF	TMROH	; TMROH = $0x5$
MOVLW	0x30	;WREG = 30H
MOVWF	TMROL	; TMROL = $0x30$

MULLW

Multiply Literal with WREG

Function:Multiply $k \times$ WREGSyntax:MULLWk

This multiplies an unsigned byte k by an unsigned byte in register WREG and the 16-bit result is placed in registers PRODH and PRODL, where PRODL has the lower byte and PRODH has the higher byte.

Example:

·· F			
	MOVLW	0x5	;WREG = 5H
	MULLW	0x07	;PRODL = 35 = 23H, PRODH = 00
Examp	le:		
	MOVLW	0x0A	;WREG = 10
	MULLW	0x0F	;PRODL = 10 x 15 = 150 = 96H
			; PRODH = 00
Examp	le:		
	MOVLW	0x25	
	MULLW	0x78 ;P	RODL = 58H, PRODH = 11H
	;becau	ise 25H x	78H = 1158H

Example: MOVLW D'100' ;WREG = 100 MULLW D'200' ;PRODL = 20H, PRODH = 4EH ;(100 x 200 = 20,000 = 4E20H)

MULWF	Multiply WREG with fileReg
-------	----------------------------

Function:	Multiply WREG × fileReg and place the result in
	PRODH:PROFDL registers
Syntax:	MULWF f, a

This multiplies an unsigned byte in WREG by an unsigned byte in the fileReg register and the result is placed in PRODL and PRODH, where PRODL has the lower byte and PRODH has the higher byte.

Example:		
MyReg	SET 0x20	;MyReg has location of 0x20
MOVLW	0x5	
MOVWF	MyReg	;MyReg has 0x5
		; WREG = $0x7$
MULWF	MyReg	; $PRODL = 35 = 23H$, $PRODH = 00$
Example:		
MOVLW	0x0A	
		;MyReg = 10
MOVLW	0x0F	;WREG = 15
MULFW	MyReg ;	PRODL = 150 = 96H, PRODH = 00
Example:		
	0x25	
		;MyReg = $0x25$
		;WREG 78H
MULWF	Myreg	; PRODL = 58H, PRODH = 11H
		;(25H x 78H = 1158H)
Example:		
		;WREG = 100
MOVWE	MyReg	;MyReg = 100
MOVLW	D'200'	;WREG = 200
MULWF	MyReg	; PRODL = 20H, PRODH = 4EH
	;(10	$0 \times 200 = 20,000 = 4E20H$
NEGF	Negate fileRe	eg

NEGF	Negate fileReg
Function:	No operation
Syntax:	NEGF f, a

This performs 2's complement on the value stored in fileReg and places it back in fileReg.

Example: MyReq SET 0x30 MOVLW 0×98 ; WREG = 0×98 MOVWF MyReq ; MyReq = 0x98;2's complement fileReg NEGF 98H 10011000 01100111 1's complement + 1 01101000 Now FileReg = 68HExample: MyReq SET 0x10 MOVLW 0x75 ; WREG = 0x75MOVWF MyReq ; MyReq = 0x75NEGF ;2's complement fileReg 75H 01110101 10001010 1's complement + 1 10001011 Now FileReg = 7AH

Notice that in this instruction we cannot place the result in the WREG register.

NOP		No Operation	
	Function: Syntax:	No operation NOP	

This performs no operation and execution continues with the next instruction. It is sometimes used for timing delays to waste clock cyles. This instruction only updates the PC (program counter) to point to the next instruction following NOP. In PIC18, this a 2-byte instruction.

РОР		POP Top of Stack
	unction: yntax:	Pop from the stack POP

This takes out the top of stack (TOS) pointed to by SP (stack pointer) and discards it. It also decrements SP by 1. After the operation, the top of the stack will be the value pushed onto the stack previously.

PUSH	PUSH Top of the Stack			
Function:	Push the PC onto the stack			
Syntax:	PUSH			

This copies the program counter (PC) onto the stack and increments SP by 1, which means the previous top of the stack is pushed down.

RCALL

Relative Call

Function:Transfers control to a subroutine within 1K spaceSyntax:RCALL target_address

There are two types of CALLs: RCALL and CALL. In RCALL, the target address is within 1K of the current PC (program counter). To reach the target address in the 2M ROM space of the PIC18, we must use CALL. In calling a subroutine, the PC register (which has the address of the instruction after the RCALL) is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the program counter is loaded with the new address and control is transferred to the subroutine. At the end of the procedure, when RETURN is executed, PC is popped off the stack, which returns control to the instruction after the RCALL.

Notice that RCALL is a 2-byte instruction, in which 5 bits are used for the opcode and the remaining 11 bits are used for the target subroutine address. An 11-bit address limits the range to -1024 to +1023. See the CALL instruction for discussion of the target address being anywhere in the 2M ROM space of the PIC18. Notice that RCALL is a 2-byte instruction while CALL is a 4-byte instruction. Also notice that the RCALL does not have the option of context saving, as CALL has.

RESET	Reset (by software)

Function:	Reset by software
Syntax:	RESET

This instruction is used to reset the PIC18 by way of software. After execution of this instruction, all the registers and flags are forced to their reset condition. The reset condition is created by activating the hardware pin MCLR. In other words, the RESET instruction is the software version of the MCLR pin.

RETFIE Return from Interrupt Exit

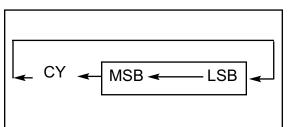
Function:	Return from interrupt
Syntax:	RETFIE s

This is used at the end of an interrupt service routine (interrupt handler). The top of the stack is popped into the program counter and program execution continues at this new address. After popping the top of the stack into the program counter (PC), the stack pointer (SP) is decremented by 1.

Notice that while the RETURN instruction is used at the end of a subroutine associated with the CALL and RCALL instructions, RETFIE must be used for the interrupt service routines (ISRs).

RETLW	Return with Literal in WREG
Function:	The k value is placed in WREG and the top of the stack is
Syntoxy	the placed in PC (program counter) RETLW k
Syntax:	KEILW K

After execution of this instruction, the k value is loaded into WREG and the top of the stack is popped into the program counter (PC). After popping the top of the stack into the program counter, the stack pointer (SP) is decremented by 1. This instruction is used for the implementation of a look-up table. See Section 6.3 in Chapter 6.

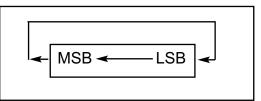

RETURN	Return		
Function:	Return from	subroutine	
Syntax:	RETURN	S	;where $s = 0$ or $s = 1$

This instruction is used to return from a subroutine previously entered by instructions CALL or RCALL. The top of the stack is popped into the program counter (PC) and program execution continues at this new address. After popping the top of the stack into the program counter, the stack pointer (SP) is decremented by 1. For the case of "RETURN s" where s = 1, the RETURN will also restore the context registers. See the CALL instruction for the case of s = 1. Notice that "RETURN 1" cannot be used for subroutines associated with RCALL.

```
RLCF Rotate Left Through Carry the fileReg
```

Function:Rotate fileReg left through carrySyntax:RLCF f, d, a

This rotates the bits of a fileReg register left. The bits rotated out of fileReg are rotated into C, and the C bit is rotated into the opposite end of the fileReg register.


```
Example:
MyReg SET 0x30
                     ;set aside loc 30H for MyReg
                     ; C = 0
     BCF
          STATUS, C
                     ; WREG = 99H
     MOVLW 0x99
     MOVWF MyReq
                     ;MyReq = 99H = 10011001
     RLCF MyReg, F
                     ; now MyReg = 00110010 and
                     ; C = 1
     RLCF MyReq, F
                     ; now MyReq = 01100101 and
                     ; C = 0
```

RLNCF

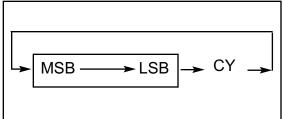
Rotate left not through Carry

Function: Syntax: Rotate left the fileReg RLNCF f, d, a

This rotates the bits of a fileReg register left. The bits rotated out of fileReg are rotated back into fileReg at the opposite end.

Example:

```
MyReg SET 0x20 ;set aside loc 20 for MyReg
MOVLW 0x69 ;WREG = 01101001
MOVWF MyReg ;MyReg = 69H = 01101001
RLNCF MyReg,F ;now MyReg = 11010010
RLNCF MyReg,F ;now MyReg = 10100101
RLNCF MyReg,F ;now MyReg = 01001011
RLNCF MyReg,F ;now MyReg = 10010110
```

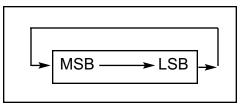

Notice that after four rotations, the upper and lower nibbles are swapped.

RRCF

Rotate Right through Carry

Function: Syntax: Rotate fileReg right through carry RRCF f, d, a

This rotates the bits of a fileReg register right. The bits rotated out of the register are rotated into C, and the C bit is rotated into the opposite end of the register.


Example:

MyReg SET ()x20 ;set	aside loc 20 for MyReg
BSF S	STATUS,C	;C = 1
MOVLW	0x99	;WREG = 10011001
MOVWF	MyReg	;MyReg = 99H = 10011001
RRCF	MyReg,F	;now MyReg = 11001100, C = 1
RRCF	MyReg,F	;now MyReg = 11100110, C = 0

RRNCF Rotate Right not through Carry

Function:Rotate fileReg rightSyntax:RRNCF f, d, a

This rotates the bits of a fileReg register right. The bits rotated out of the register are rotated back into fileReg at the opposite end.

Example:

```
MyReg SET 0x20 ;set aside loc 20H for MyReg
MOVLW 0x66 ;WREG = 66H = 01100110
MOVWF MyReg ;MyReg = 66H = 01100110
RRNCF MyReg,F ;now MyReg = 00110011
RRNCF MyReg,F ;now MyReg = 10011001
RRNCF MyReg,F ;now MyReg = 01100110
```

Example: We can use this instruction to swap the upper and lower nibbles.

```
MyReg SET 0x20 ;set aside loc 20H for MyReg
MOVLW 0x36 ;WREG = 36H = 00110110
MOVWF MyReg ;MyReg = 36H = 00110110
RRNCF MyReg,F ;now MyReg = 00011011
RRNCF MyReg,F ;now MyReg = 10001101
RRNCF MyReg,F ;now MyReg = 11000110
RRNCF MyReg,F ;now MyReg = 01100011 = 63H
```

SETF Set fileReg

Function:SetSyntax:SETF f, a

This instruction sets the entire byte in fileReg to HIGH. All bits of the register are set to 1.

Examples:

SETF	MyReg	;MyReg = 11111111	
SETF	TRISB	;TRISB = FFH, (makes PORTB	input)
SETF	PORTC	;PORTC = 1111 1111	

Notice that in this instruction, the result can be placed in fileReg only and there is no option for WREG to be used as the destination for the result.

SLEEP	Enter Sleep mode
Function:	Put the CPU into sleep mode
Syntax:	SLEEP

This instruction stops the oscillator and puts the CPU into sleep mode. It also resets the Watchdog Timer (WDT). The WDT is used mainly with the SLEEP instruction. Upon execution of the SLEEP instruction, the entire microcontroller goes into sleep mode by shutting down the main oscillator and by stopping the Program Counter from fetching the next instruction after SLEEP. There are two ways to get out of sleep mode: (a) an external event via hardware interrupt, (b) the internal WDT interrupt. Upon wake-up from a WDT interrupt, the microcontroller resumes operation by executing the next instruction after SLEEP.

Check the Microchip Corp. website for application notes on WDT.

SUBFWBSubtract fileReg from WREG with borrow

Function:WREG – fileReg – #borrow ;#borrow is inverted carrySyntax:SUBFWB f, d, a

This subtracts fileReg and the Carry (borrow) flag from WREG and puts the result in WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed by the internal hardware of the CPU are as follows:

- 1. Take the 2's complement of the fileReg byte.
- 2. Add this to register WREG.
- 3. Add the inverted Carry (borrow) flag to the result.
- 4. Ignore the Carry.
- 5. Examine the N (negative) flag for positive or negative result.

Example:

```
MyReq SET 0x20 ; set aside loc 0x20 for MyReq
    BSF STATUS,C ;make Carry = 1
    MOVLW 0x45 ;WREG 45H
    MOVWF MyReq
                  ; MYReq = 45H
    MOVLW 0x23
    SUBWF MyReg ; WREG = 45H - 23H - 0 = 22H
         0100 0101
 45H
                               0100 0101
-23H
         0010 0011 2's comp + 1101 1101
               Inverted carry+
                                      0
_____
+22H
                               0010 0010
Because D7 (the N flag) is 0, the result is
positive.
```

This instruction sets the negative flag according to the following:

NWREG > (fileReg + #C)0the result is positiveWREG = (fileReg + #C)0the result is 0WREG < (fileReg + #C)</td>1the result is negative and in 2's comp

SUBLW Subtract WREG from Literal value

Function:Subtract WREG from literal value k (WREG = k - WREG)Syntax:SUBLW

This subtracts the WREG value from the literal value k and puts the result in WREG. The steps for subtraction performed by the internal hardware of the CPU are as follows:

- 1. Take the 2's complement of the WREG value.
- 2. Add it to literal value k.
- 3. Ignore the Carry.
- 4. Examine the N (negative) flag for positive or negative result.

MOVLW 0x23 ;WREG 23H ; WREG = 45H - 23H = 22HSUBLW 0x45 45H 0100 0101 0100 0101 -23H 0010 0011 2's comp +1101 1101 _____ _____ 0010 0010 +22H Because D7 (the N flag) is 0, the result is positive.

This instruction sets the negative flag according to the following:

Literal value k > WREG Literal value k = WREG Literal value < WREG	N0the result is positive0the result is 01the result is negative and in 2's comp
Example: MOVLW 0x98 SUBLW 0x66	;WREG 98H ;WREG = 66H - 98H = CEH
66H 0110 0110 -98H 1001 1000	0110 0110 2's comp +0110 1000
CEH Because D7 (the N negative and in 2's	

SUBWF	
-------	--

Subtract WREG from fileReg

Function:Subtract WREG from fileReg (Dest = fileReg - WREG)Syntax:SUBWF f, d, a

This subtracts the WREG value from the fileReg value and puts the result in either WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed by the internal hardware of the CPU are as follows:

- 1. Take the 2's complement of the WREG byte.
- 2. Add this to the fileReg register.
- 3. Ignore the carry.
- 4. Examine the N (negative) flag for positive or negative result.

Example:

```
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H
SUBWF MyReg,F ;MyReg = 45H - 23H = 22H
```

45H 0100 0101 0100 0101 -23H 0010 0011 2's comp +1101 1101 ------+22H 0010 0010 Because D7 (the N flag) is 0, the result is positive.

This instruction sets the negative flag according to the following:

N

	IN	
fileReg > WREG	0	the result is positive
fileReg = WREG	0	the result is 0
fileReg < WREG	1	the result is negative and in 2's comp

SUBWFB Subtract WREG from fileReg with borrow

Function: Dest = fileReg – WREG – #borrow ;#borrow is inverted carry Syntax: SUBWFB f, d, a

This subtracts the WREG value and the inverted borrow (carry) flag from the fileReg value and puts the result in WREG (if d = 0), or fileReg (if d = 1). The steps for subtraction performed by the internal hardware of the CPU are as follows:

- 1. Take the 2's complement of WREG.
- 2. Add this to fileReg.
- 3. Add the inverted Carry flag to the result.
- 4. Ignore the carry.
- 5. Examine the N (negative) flag for positive or negative result.

```
Example:
```

```
MyReg SET 0x20 ; set aside loc 0x20 for MyReg
            STATUS, C; C = 1
    BSF
    MOVLW 0x45
                 ;WREG 45H
    MOVWF MyReq
                 ; MYReq = 45H
                 ; WREG = 23H
    MOVLW 0x23
    SUBWFB MyReg, F; MyReg = 45H - 23H - 0 = 22H
 45H
         0100 0101
                            0100 0101
-23H
         0010 0011 2's comp +1101 1101
              Inverted carry +
                                    0
                            _____
____
+22H
                             0010 0010
Because D7 (the N flag) is 0, the result is
positive.
```

This instruction sets the negative flag according to the following:

	Ν	
fileReg > (WREG + #C)	0	the result is positive
fileReg = (WREG + #C)	0	the result is 0
fileReg < (WREG + #C)	1	the result is negative and in 2's comp

SWAPF	Swap Nibbles in fileReg		
Function:	Swap nibbles within fileReg		

Syntax: SAWPF f, d, a

The SWAPF instruction interchanges the lower nibble (D0–D3) with the upper nibble (D4–D7) inside fileReg. The result is placed in WREG (d = 0) or fileReg (d = 1).

Example:

MyReg	SET 0X20	;set a	aside	loc	20H	for	MyReg
MOVLW	0x59H ;	W = 59	H (01	01 1	001	in b	inary)
MOVWF	MyReg	;MyReq	g = 5	ЭН ((0101	1001)
SWAPF	MyReg,F	;MyReq	g = 9	5H (1	1001	0101)

TBLRD

Table	Read

Function:	Read a byte from ROM to the TABLAT register
Syntax:	TBLRD *
-	TBLRD *+
	TBLRD *-
	TBLRD +*
TTI · · ·	

This instruction moves (copies) a byte of data located in program (code) ROM into the TableLatch (TABLAT) register. This allows us to put strings of data, such as look-up table elements, in the code space and read them into the CPU. The address of the desired byte in the program space (on-chip ROM) is held by the TBLPTR register. Table A-6 shows the auto-increment feature of the TBLRD instruction.

Table A-6: PIC18 Table Read Instructions

Instruction	Function	
TBLRD*	Table Read	After read, TBLPTR stays the same
TBLRD*+	Table Read with post-	ncrement (Read and increment TBLPTR)
TBLRD*-	Table Read with post-	decrement (Read and decrement TBLPTR)
TBLRD+*	Table Read with pre-in	crement (increment TBLPTR and read)

Note: A byte of data is read into the TABLAT register from code space pointed to by TBLPTR.

Example: Assume that an ASCII character string is stored in the on-chip ROM program memory starting at address 500H. Write a program to bring each character into the CPU and send it to PORTB.

	ORG	0000н		;burn into ROM starting at 0
	MOVLW	LOW (I	MESSAGE)	;WREG = 00 low-byte addr.
	MOVWF	TBLP	TRL	;look-up table low-byte addr
	MOVLW	HIGH	(MESSAGE)	;WREG = 05 = high-byte addr
	MOVWF	TBLP	TRH	;look-up table high-byte addr
	CLRF	TBLP	TRU	;clear upper 5 bits
B8	TBLRD'	* +	;read the	e table,then increment TBLPTR
	MOVF	TABL	AT,W	; copy to WREG (Z = 1 if null)
	ΒZ	EXIT		;exit if end of string
	MOVWF	PORT	В	;copy WREG to PORTB
	BRA	В8		
EXIT	GOTO I	EXIT		
;			mes	ssage
	ORG 0	x500	;data	a burned starting at 0x500
	(ORG	0x500	
MESSA	AGE I	DB	"The earth	n is but one country and "
]	DB	"mankind i	its citizens","Baha'u'llah",0
]	END		

In the program above, the TBLPTR holds the address of the desired byte. After the execution of the TBLRD*+ instruction, register TABLAT has the character. Notice that TBLPTR is incremented automatically to point to the next character in the MRESSAGE table.

TBLWT	Table Write
Function:	Write to Flash a block of data
Syntax:	TBLWT*
	TBLWT*+
	TBLWT*-
	TBLWT+*

This instruction writes a block of data to the program (code) space assuming that the on-chip program ROM is of Flash type. The address of the desired location in Flash ROM is held by the TBLPTR register. The process of writing to Flash ROM using the TBLWT instruction is discussed in Section 14.3 of Chapter 14.

TSTFSZ	Test fileReg, Skip if Zero
Function: Syntax:	Test fileReg for zero value and skip if it is zero TSTFSZ f, a

This instruction tests the entire contents of fileReg for value zero and skips the next instruction if fileReg has zero in it.

Example: Test PORTB for zero continuously. SETF TRISB ;make PORTB an input CLRF TRISD ;make PORTD an output BACK TSTFSZ PORTB BRA BACK MOVFF PORTB,PORTD

Example: Toggle PORTB 250 times.

```
0x40 ;loc 40H for COUNTER
COUNTER
          SET
                    ; PORTB as output
     SETF TRISB
     MOVLW D'250'
                    ; WREG = 250
     MOVWF COUNTER ; COUNTER = 250
     MOVLW 0x55
                    ; WREG = 55H
     MOVWF PORTB
BACK COMF PORTB, F ; toggle PORTB
     DECF COUNTER, F ; decrement COUNTER
     TSTFSZ COUNTER ;test counter for 0
                    ;keep doing it
     BRA
          BACK
     .....
```

XORLW

Ex-Or Literal with WREG

Function:Logical exclusive-OR Literal k and WREGSyntax:XORLW

This performs a logical exclusive-OR on the Literal value and WREG operands, bit by bit, storing the result in WREG.

Α	B	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Example:

MOVLW	0x39	;WREG = 39H	
XORLW	0x09	;WREG = 39H ORed with 09	
		;now, WREG = 30H	
39H	0011	1001	
<u>09H</u>	0000	1001	
30	0011	0000	

Example:

MOVLW	0x32	;WREG =	32H		
XORLW	0x50	;(now,	WREG	=	62H)

32H	0011	0010
<u>50H</u>	0101	0000
62H	0110	0010

XORWF

Ex-Or WREG with fileReg

Function:	Logical exclusion	sive-OR fileReg and WREG
Syntax:	XORWF	f, d, a

This performs a logical exclusive-OR on the operands, bit by bit, storing the result in the destination. The destination can be WREG (d = 0), or fileReg (d = 1).

Example:

```
MyReg SET 0x20 ;set aside loc 20h for MyReg
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x09 ;WREG = 09H
XORWF MyReg,F ;MyReg = 39H ORed with 09
;MyReg = 30H
```

Example:

MyReg	SET 0x15	;set aside loc 15 for MyReg
MOVLW	0x32	;WREG = 32H
MOVWF	MyReg	;MyReg = 32H
MOVLW	0x50	;WREG = 50H
XORWF	MyReg,F	;now W = 62H
32H	0011 001	0
<u>50H</u>	0101 000	<u>0</u>
62H	0110 001	0.

We can place the result in WREG.

Example:

```
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW 0x44  ;WREG = 44H
MOVWF MyReg  ;MyReg = 44H
MOVLW 0x67  ;WREG = 67H
XORWF MyReg  ;now W = 23H, and MyReg = 44H
44H 0100 0100
<u>67H 0110 0111</u>
23H 0010 0011
```

APPENDIX B

BASICS OF WIRE WRAPPING

OVERVIEW

This appendix shows the basics of wire wrapping.

BASICS OF WIRE WRAPPING

Note: For this tutorial appendix, you will need the following: Wire-wrapping tool (Radio Shack part number 276-1570) 30-gauge (30-AWG) wire for wire wrapping (Thanks to Shannon Looper and Greg Boyle for their assistance on this section.)

The following describes the basics of wire wrapping:

- 1. There are several different types of wire-wrap tools available. The best one is available from Radio Shack for less than \$10. The part number for the Radio Shack model is 276-1570. This tool combines the wrap and unwrap functions in the same end of the tool and includes a separate stripper. We found this to be much easier to use than the tools that combined all these features on one two-ended shaft. There are also wire-wrap guns, which are, of course, more expensive.
- 2. Wire-wrapping wire is available prestripped in various lengths or in bulk on a spool. The prestripped wire is usually more expensive and you are restricted to the different wire lengths you can afford to buy. Bulk wire can be cut to any length you wish, which allows each wire to be custom fit.
- 3. Serveral different types of wire-wrap boards are available. These are usually called perfboards or wire-wrap boards. These types of boards are sold at many electronics stores (such as Radio Shack). The best type of board has plating around the holes on the bottom of the board. These boards are better because the sockets and pins can be soldered to the board, which makes the circuit more mechanically stable.
- 4. Choose a board that is large enough to accommodate all the parts in your design with room to spare so that the wiring does not become too cluttered. If you wish to expand your project in the future, you should be sure to include enough room on the original board for the complete circuit. Also, if possible, the layout of the IC on the board needs to be such that signals go from left to right just like the schematics.
- 5. To make the wiring easier and to keep pressure off the pins, install one standoff on each corner of the board. You may also wish to put standoffs on the top of the board to add stability when the board is on its back.
- 6. For power hook-up, use some type of standard binding post. Solder a few single wire-wrap pins to each power post to make circuit connections (to at least one pin for each IC in the circuit).
- 7. To further reduce problems with power, each IC must have its own connection to the main power of the board. If your perfboard does not have built-in power buses, run a separate power and ground wire from each IC to the main power. In other words, DO NOT daisy chain (chip-to-chip connection is called daisy chain) power connections, as each connection down the line will have more wire and more resistance to get power through. See Figure B-1. However, daisy chaining is acceptable for other connections such as data, address, and control buses.
- 8. You must use wire-wrap sockets. These sockets have long square pins whose edges will cut into the wire as it is wrapped around the pin.

- 9. Wire wrapping will not work on round legs. If you need to wrap to components, such as capacitors, that have round legs, you must also solder these connections. The best way to connect single components is to install individual wire-wrap pins into the board and then solder the components to the pins. An alternate method is to use an empty IC socket to hold small components such as resistors and wrap them to the socket.
- 10. The wire should be stripped about 1 inch. This will allow 7 to 10 turns for each connection. The first turn or turn-and-a-half should be insulated. This prevents stripped wire from coming in contact with other pins. This can be accomplished by inserting the wire as far as it will go into the tool before making the connection.
- 11. Try to keep wire lengths to a minimum. This prevents the circuit from looking like a bird nest. Be neat and use color coding as much as possible. Use only red wires for V_{CC} and black wires for ground connections. Also use different colors for data, address, and control signal connections. These suggestions will make troubleshooting much easier.
- 12. It is standard practice to connect all power lines first and check them for continuity. This will eliminate trouble later on.
- 13. It's also a good idea to mark the pin orientation on the bottom of the board. Plastic templates are available with pin numbers preprinted on them specifically for this purpose, or you can make your own from paper. Forgetting to reverse pin order when looking at the bottom of the board is a very common mistake when wire wrapping circuits.
- 14. To prevent damage to your circuit, place a diode (such as IN5338) in reverse bias across the power supply. If the power gets hooked up backwards, the diode will be forward biased and will act as a short, keeping the reversed voltage from your circuit.
- 15. In digital circuits, there can be a problem with current demand on the power supply. To filter the noise on the power supply, a 100 μ F electrolytic capacitor and a 0.1 μ F monolithic capacitor are connected from V_{CC} to ground, in parallel with each other, at the entry point of the power supply to the board. These two together will filter both the high- and the low-frequency noises. Instead of using two capacitors in parallel, you can use a single 20–100 μ F tantalum capacitor. Remember that the long lead is the positive one.
- 16. To filter the transient current, use a 0.1 μ F monolithic capacitor for each IC. Place the 0.1 μ F monolithic capacitor between V_{CC} and ground of each IC. Make sure the leads are as short as possible.

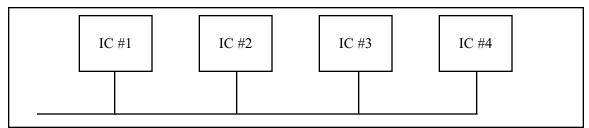


Figure B-1. Daisy Chain Connection (not recommended for power lines)

APPENDIX C

IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

OVERVIEW

This appendix provides an overview of IC technology and PIC18 interfacing. In addition, we look at the microcontroller-based system as a whole and examine some general issues in system design.

First, in Section C.1, we provide an overview of IC technology. Then, in Section C.2, the internal details of PIC18 I/O ports and interfacing are discussed. Section C.3 examines system design issues.

C.1: OVERVIEW OF IC TECHNOLOGY

In this section we examine IC technology and discuss some major developments in advanced logic families. Because this is an overview, it is assumed that the reader is familiar with logic families on the level presented in basic digital electronics books.

Transistors

The transistor was invented in 1947 by three scientists at Bell Laboratory. In the 1950s, transistors replaced vacuum tubes in many electronics systems, including computers. It was not until 1959 that the first integrated circuit was successfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the invention of the IC, the use of transistors, along with other discrete components such as capacitors and resistors, was common in computer design. Early transistors were made of germanium, which was later abandoned in favor of silicon. This was because the slightest rise in temperature resulted in massive current flows in germanium-based transistors. In semiconductor terms, it is because the band gap of germanium is much smaller than that of silicon, resulting in a massive flow of electrons from the valence band to the conduction band when the temperature rises even slightly. By the late 1960s and early 1970s, the use of the silicon-based IC was widespread in mainframes and minicomputers. Transistors and ICs at first were based on P-type materials. Later on, because the speed of electrons is much higher (about two-and-a-half times) than the speed of holes, N-type devices replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had replaced the slower PNP and PMOS transistors in every sector of the electronics industry, including in the design of microprocessors and computers. Since the early 1980s, CMOS (complementary MOS) has become the dominant technology of IC design. Next we provide an overview of differences between MOS and bipolar transistors. See Figure C-1.

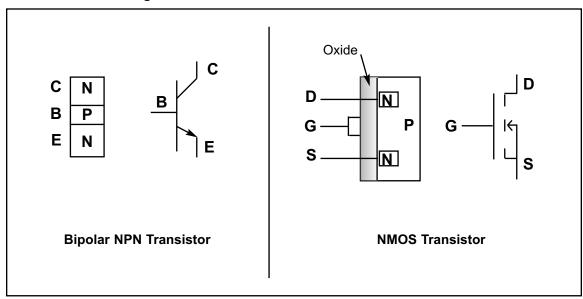


Figure C-1. Bipolar vs. MOS Transistors

MOS vs. bipolar transistors

There are two types of transistors: bipolar and MOS (metal-oxide semiconductor). Both have three leads. In bipolar transistors, the three leads are referred to as the *emitter*, *base*, and *collector*, while in MOS transistors they are named source, gate, and drain. In bipolar transistors, the carrier flows from the emitter to the collector, and the base is used as a flow controller. In MOS transistors, the carrier flows from the source to the drain, and the gate is used as a flow controller. In NPN-type bipolar transistors, the electron carrier leaving the emitter must overcome two voltage barriers before it reaches the collector (see Figure C-1). One is the N-P junction of the emitter-base and the other is the P-N junction of the basecollector. The voltage barrier of the base-collector is the most difficult one for the electrons to overcome (because it is reverse-biased) and it causes the most power dissipation. This led to the design of the unipolar type transistor called MOS. In N-channel MOS transistors, the electrons leave the source and reach the drain without going through any voltage barrier. The absence of any voltage barrier in the path of the carrier is one reason why MOS dissipates much less power than bipolar transistors. The low power dissipation of MOS allows millions of transistors to fit on a single IC chip. In today's technology, putting 10 million transistors into an IC is common, and it is all because of MOS technology. Without the MOS transistor, the advent of desktop personal computers would not have been possible, at least not so soon. The bipolar transistors in both the mainframes and minicomputers of the 1960s and 1970s were bulky and required expensive cooling systems and large rooms. MOS transistors do have one major drawback: They are slower than bipolar transistors. This is due partly to the gate capacitance of the MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes time to charge up to the turn-on (threshold) voltage, leading to a longer propagation delay.

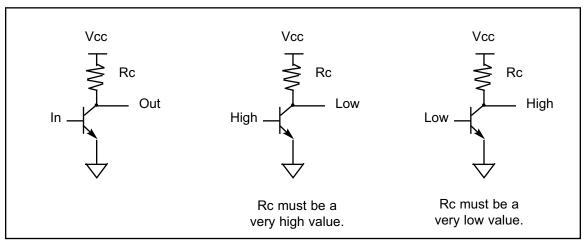
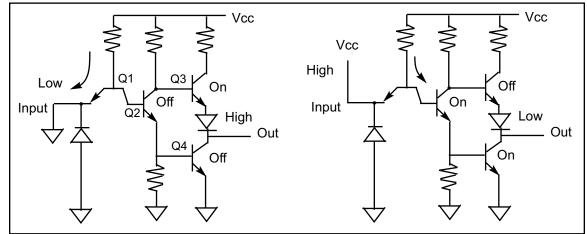
Overview of logic families

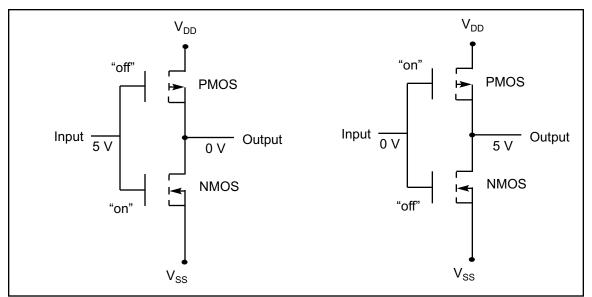
Logic families are judged according to (1) speed, (2) power dissipation, (3) noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable qualities are high speed, low power dissipation, and high noise immunity (because it prevents the occurrence of false logic signals during switching transition). In interfacing logic families, the more inputs that can be driven by a single output, the better. This means that high-driving-capability outputs are desired. This, plus the fact that the input and output voltage levels of MOS and bipolar transistors are not compatible mean that one must be concerned with the ability of one logic family to drive the other one. In terms of the cost of a given logic family, it is high during the early years of its introduction but it declines as production and use rise.

The case of inverters

As an example of logic gates, we look at a simple inverter. In a one-transistor inverter, the transistor plays the role of a switch, and R is the pull-up resistor. See Figure C-2. For this inverter to work most effectively in digital circuits, however, the R value must be high when the transistor is "on" to limit the current flow from V_{CC} to ground in order to have low power dissipation (P = VI, where V

= 5 V). In other words, the lower the I, the lower the power dissipation. On the other hand, when the transistor is "off", R must be a small value to limit the voltage drop across R, thereby making sure that V_{OUT} is close to V_{CC} . This is a contradictory demand on R. This is one reason that logic gate designers use active components (transistors) instead of passive components (resistors) to implement the pull-up resistor R.


Figure C-2. One-Transistor Inverter with Pull-up Resistor

The case of a TTL inverter with totem-pole output is shown in Figure C-3. In Figure C-3, Q3 plays the role of a pull-up resistor.

Figure C-3. TTL Inverter with Totem-Pole Output CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to construct a CMOS (complementary MOS) inverter as shown in Figure C-4. In CMOS inverters, when the PMOS transistor is off, it provides a very high impedance path, making leakage current almost zero (about 10 nA); when the PMOS is on, it provides a low resistance on the path of V_{DD} to load. Because the speed of the hole is slower than that of the electron, the PMOS transistor is wider to compensate for this disparity; therefore, PMOS transistors take more space than NMOS transistors in the CMOS gates. At the end of this section we will see an open-collector gate in which the pull-up resistor is provided externally, thereby allowing system designers to choose the value of the pull-up resistor.

Figure C-4. CMOS Inverter

Input/output characteristics of some logic families

In 1968 the first logic family made of bipolar transistors was marketed. It was commonly referred to as the standard TTL (transistor-transistor logic) family. The first MOS-based logic family, the CD4000/74C series, was marketed in 1970. The addition of the Schottky diode to the base-collector of bipolar transistors in the early 1970s gave rise to the S family. The Schottky diode shortens the propagation delay of the TTL family by preventing the collector from going into what is called deep saturation. Table C-1 lists major characteristics of some logic families. In Table C-1, note that as the CMOS circuit's operating frequency rises, the power dissipation also increases. This is not the case for bipolar-based TTL.

Characteristic	STD TTL	LSTTL	ALSTTL	HCMOS
V _{CC}	5 V	5 V	5 V	5 V
V _{IH}	2.0 V	2.0 V	2.0 V	3.15 V
V _{IL}	0.8 V	0.8 V	0.8 V	1.1 V
V _{OH}	2.4 V	2.7 V	2.7 V	3.7 V
V _{OL}	0.4 V	0.5 V	0.4 V	0.4 V
I _{IL}	-1.6 mA	-0.36 mA	-0.2 mA	-1 μA
I _{IH}	40 µA	20 µA	20 µA	1 µA
I _{OL}	16 mA	8 mA	4 mA	4 mA
I _{OH}	-400 µA	-400 µA	-400 µA	4 mA
Propagation delay	10 ns	9.5 ns	4 ns	9 ns
Static power dissipation $(f = 0)$	10 mW	2 mW	1 mW	0.0025 nW
Dynamic power dissipation				
at $f = 100 \text{ kHz}$	10 mW	2 mW	1 mW	0.17 mW

Table C-1: Characteristics of Some Logic Families

History of logic families

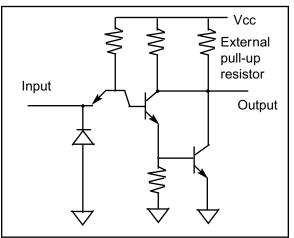
Early logic families and microprocessors required both positive and negative power voltages. In the mid-1970s, 5 V V_{CC} became standard. In the late 1970s, advances in IC technology allowed combining the speed and drive of the S family with the lower power of LS to form a new logic family called FAST (Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced CMOS Technology), a much higher speed version of HCMOS, was introduced. With the introduction of FCT (Fast CMOS Technology) in 1986, the speed gap between CMOS and TTL at last was closed. Because FCT is the CMOS version of FAST, it has the low power consumption of CMOS but the speed is comparable with TTL. Table C-2 provides an overview of logic families up to FCT.

D J	Year		Static Supply	High/Low Family
Product	Introduced	Speed (ns)	Current (mA)	Drive (mA)
Std TTL	1968	40	30	-2/32
CD4K/74C	1970	70	0.3	-0.48/6.4
LS/S	1971	18	54	-15/24
HC/HCT	1977	25	0.08	-6/-6
FAST	1978	6.5	90	-15/64
AS	1980	6.2	90	-15/64
ALS	1980	10	27	-15/64
AC/ACT	1985	10	0.08	-24/24
FCT	1986	6.5	1.5	-15/64

Table C-2: Logic Family Overview

Reprinted by permission of Electronic Design Magazine, c. 1991.

Recent advances in logic families


As the speed of high-performance microprocessors reached 25 MHz, it shortened the CPU's cycle time, leaving less time for the path delay. Designers normally allocate no more than 25% of a CPU's cycle time budget to path delay. Following this rule means that there must be a corresponding decline in the propagation delay of logic families used in the address and data path as the system frequency is increased. In recent years, many semiconductor manufacturers have responded to this need by providing logic families that have high speed, low noise, and high drive I/O. Table C-3 provides the characteristics of high-performance logic families introduced in recent years. ACQ/ACTQ are the second-generation advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS input level, ACTQ is equipped with TTL-level input. The FCTx and FCTx-T are second-generation FCT with much higher speed. The "x" in the FCTx and FCTx-T refers to various speed grades, such as A, B, and C, where A means low speed and C means high speed. For designers who are well versed in using the FAST logic family, FASTr is an ideal choice because it is faster than FAST, has higher driving capability (I_{OL}, I_{OH}), and produces much lower noise than FAST. At the time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the fastest logic family in the market (with the 5 V V_{CC}), but the power consumption is high relative to other logic families, as shown in Table C-3. The combining of high-speed bipolar TTL and the low power consumption of CMOS has given birth to what is called BICMOS. Although BICMOS seems to be the future trend in IC design, at this time it is expensive due to extra steps required in BICMOS IC fabrication, but in some cases there is no other choice. (For example, Intel's Pentium microprocessor, a BICMOS product, had to use high-speed bipolar transistors to speed up some of the internal functions.) Table C-3 provides advanced logic characteristics. The "x" is for different speeds designated as A, B, and C. A is the slowest one while C is the fastest one. The above data is for the 74244 buffer.

		Number	0	I Characteristic		Static	
Family	Year	Suppliers		I/O Level	Speed (ns)		I _{OH} /I _{OL}
ACQ	1989	2	CMOS	CMOS/CMOS	6.0	80 μΑ	-24/24 mA
ACTQ	1989	2	CMOS	TTL/CMOS	7.5	80 μΑ	-24/24 mA
FCTx	1987	3	CMOS	TTL/CMOS	4.1–4.8	1.5 mA	-15/64 mA
FCTxT	1990	2	CMOS	TTL/TTL	4.1–4.8	1.5 mA	-15/64 mA
FASTr	1990	1	Bipolar	TTL/TTL	3.9	50 mA	-15/64 mA
BCT	1987	2	BICMOS	TTL/TTL	5.5	10 mA	-15/64 mA

Reprinted by permission of Electronic Design Magazine, c. 1991.

Since the late 70s, the use of a +5 V power supply has become standard in all microprocessors and microcontrollers. To reduce power consumption, 3.3 V V_{CC} is being embraced by many designers. The lowering of V_{CC} to 3.3 V has two

major advantages: (1) it lowers the power consumption, prolonging the life of the battery in systems using a battery, and (2) it allows a further reduction of line size (design rule) to submicron dimensions. This reduction results in putting more transistors in a given die size. As fabrication processes improve, the decline in the line size is reaching submicron level and transistor densities are approaching 1 billion transistors.

Open-collector and open-drain gates

To allow multiple outputs to be connected together, we use open-collector logic gates. In such cases, an external resistor will serve as load. This is shown in Figures C-5 and C-6.

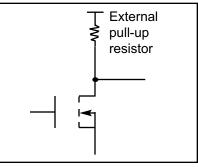


Figure C-6. Open Drain

SECTION C.2: PIC18 I/O PORT STRUCTURE AND INTERFACING

In interfacing the PIC18 microcontroller with other IC chips or devices, fan-out is the most important issue. To understand the PIC18 fan-out we must first understand the port structure of the PIC18. This section provides a detailed discussion of the PIC18 port structure and its fan-out. It is very critical that we understand the I/O port structure of the PIC18 lest we damage it while trying to interface it with an external device.

IC fan-out

When connecting IC chips together, we need to find out how many input pins can be driven by a single output pin. This is a very important issue and involves the discussion of what is called IC fan-out. The IC fan-out must be addressed for both logic "0" and logic "1" outputs. See Example C-1. Fan-out for logic LOW and fan-out for logic HIGH are defined as follows:

fan-out (of LOW) = $\frac{I_{OL}}{I_{IL}}$ fan-out (of HIGH) = $\frac{I_{OH}}{I_{IH}}$

Of the above two values, the lower number is used to ensure the proper noise margin. Figure C-7 shows the sinking and sourcing of current when ICs are connected together.

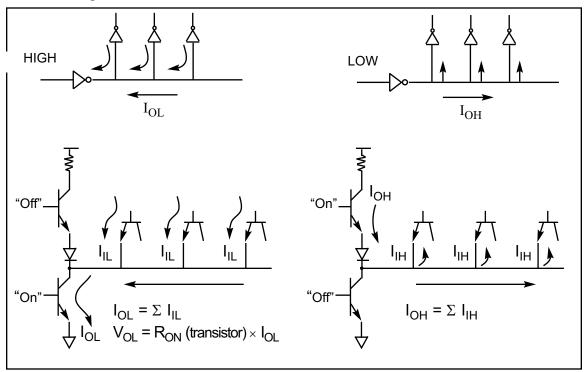


Figure C-7. Current Sinking and Sourcing in TTL

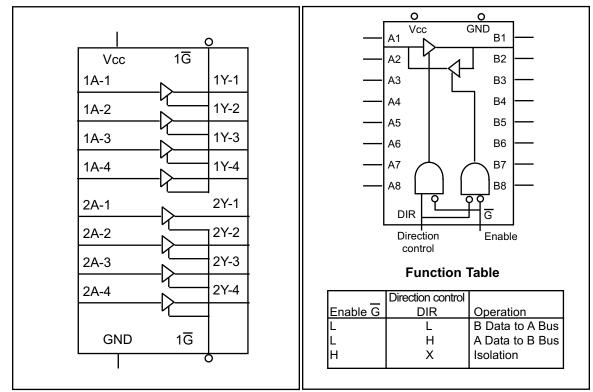
Notice that in Figure C-7, as the number of input pins connected to a single output increases, I_{OL} rises, which causes V_{OL} to rise. If this continues, the rise of V_{OL} makes the noise margin smaller, and this results in the occurrence of false logic due to the slightest noise.

Example C-1

Find how many unit loads (UL) can be driven by the output of the LS logic family.

Solution:

The unit load is defined as $I_{IL} = 1.6$ mA and $I_{IH} = 40 \ \mu$ A. Table C-1 shows $I_{OH} = 400 \ \mu$ A and $I_{OL} = 8$ mA for the LS family. Therefore, we have


fan-out (LOW) =
$$\frac{I_{OL}}{I_{IL}} = \frac{8 \text{ mA}}{1.6 \text{ mA}} = 5$$

fan-out (HIGH) = $\frac{I_{OH}}{I_{IH}} = \frac{400 \,\mu\text{A}}{40 \,\mu\text{A}} = 10$

This means that the fan-out is 5. In other words, the LS output must not be connected to more than 5 inputs with unit load characteristics.

74LS244 and 74LS245 buffers/drivers

In cases where the receiver current requirements exceed the driver's capability, we must use buffers/drivers such as the 74LS245 and 74LS244. Figure C-8 shows the internal gates for the 74LS244 and 74LS245. The 74LS245 is used for bidirectional data buses, and the 74LS244 is used for unidirectional address buses.

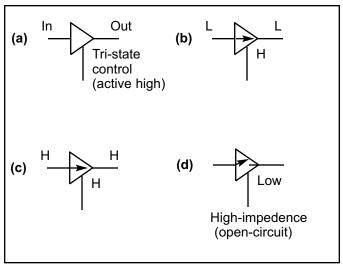


Figure C-8 (a). 74LS244 Octal Buffer (Reprinted by permission of Texas Instruments, Copyright Texas Instruments, 1988)

Figure C-8 (b). 74LS245 Bidirectional Buffer (Reprinted by permission of Texas Instruments, Copyright Texas Instruments, 1988)

Tri-state buffer

Notice that the 74LS244 is simply 8 tristate buffers in a single chip. As shown in Figure C-9 a tri-state buffer has a single input, a single output, and the enable control input. By activating the enable, data at the input is transferred to the output. The enable can be an active-LOW or an active-HIGH. Notice that the enable input for the 74LS244 is an active-LOW whereas the enable input

pin for Figure C-9 is active-HIGH.

74LS245 and 74LS244 fan-out

It must be noted that the output of the 74LS245 and 74LS244 can sink and source a much larger amount of current than that of other LS gates. See Table C-4. That is the reason we use these buffers for driver when a signal is travelling a long distance through a cable or it has to drive many inputs.

	I _{OH} (mA)	I _{OL} (mA)	
74LS244	3	12	
74LS245	3	12	

Table C-4: Electrical Specifications for Buffers/Drivers

After this background on the fan-out, next we discuss the structure of PIC18 ports.

PIC18 port structure and operation

Because all the ports of the PIC18 are bidirectional they all have the following four components in their structure:

- 1. Data latch
- 2. Output driver
- 3. Input buffer
- 4. TRIS latch

Figure C-10 shows the structure of a port and its four components. Notice that in Figure C-10, the PIC18 ports have both the latch and buffer. Now the question is, in reading the port, are we reading the status of the input pin or are we read-

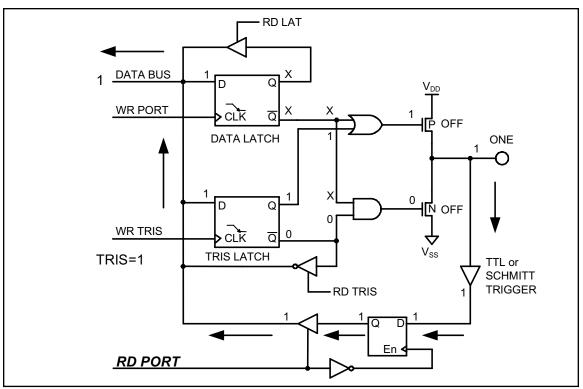


Figure C-10. Inputting (Reading) 1 from a Pin in the PIC18

ing the status of the latch? That is an extremely important question and its answer depends on which instruction we are using. Therefore, when reading the ports there are two possibilities: (1) reading the input pin, or (2) reading the latch. The above distinction is very important and must be understood lest you damage the PIC18 port. Each is described next.

Reading the pin when TRIS = 1 (Input)

As we stated in Chapter 4, to make any bits of any port of the PIC18 an input port, we first must write a 1 (logic HIGH) to the TRIS bit. Look at the following sequence of events to see why:

- 1. As can be seen from Figure C-10, a 1 written to the TRIS latch has "HIGH" on its Q. Therefore, Q = 1 and $\overline{Q} = 0$. Because Q = 1, it turns off the P transistor.
- 2. Because $\overline{Q} = 0$ and is connected to the gate of the N transistor, the N transistor is off.
- 3. When both transistors are off, they block any path to the ground or VCC for any signal connected to the input pin, and the input signal is directed to the buffer.
- 4. When reading the input port in instructions such as "MOVFW PORTB" we are really reading the data present at the pin. In other words, it is bringing into the CPU the status of the external pin. This instruction activates the read pin of buffer and lets data at the pins flow into the CPU's internal bus. Figures C-10 and C-11 show HIGH and LOW signals at the input, respectively.

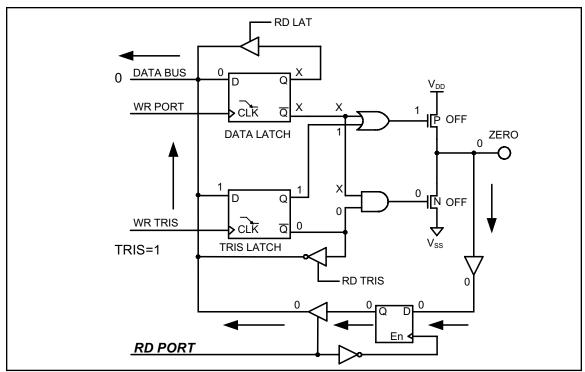


Figure C-11. Inputting (Reading) 0 from a Pin in the PIC18 Writing to pin when TRIS = 0 (Output)

The above discussion showed why we must write a "HIGH" to a port's TRIS bits in order to make it an input port. What happens if we write a "0" to TRIS that was configured as an input port? From Figure C-12 we see that when TRIS = 0, if we write a 0 to the Data latch, then Q = 0 and $\overline{Q} = 1$. As a result of $\overline{Q} = 1$, the N transistor is "on" and the P transistor is "off." If N is "on," it provides the path to ground for the input pin. Therefore, any attempt to read the input pin will always get the "LOW" ground signal. Figure C-13 shows what happens when we write "HIGH" to output port (Data latch) when TRIS = 0. Writing 1 to the Data latch makes $\overline{Q} = 0$. As a result of that, the P transistor is "on" and the N transistor is "off," which allows a 1 to be provided to the output pin. Therefore, any attempt to read the input pin will always get the "HIGH" signal.

Avoid damaging the port

The following methods can be used as precautions to prevent damage to the PIC18 ports:

- 1. Have a 10k ohms resistor on the V_{CC} path to limit current flow.
- 2. Connect any input switch to a 74LS244 tri-state buffer before it is fed to the PIC18 pin.

The above points are extremely important and must be emphasized because many people damage their ports and afterwards wonder how it happened. We must also use the right instruction when we want to read the status of an input pin. Table C-5 shows the list of instructions in which reading the port reads the status of the input pin.

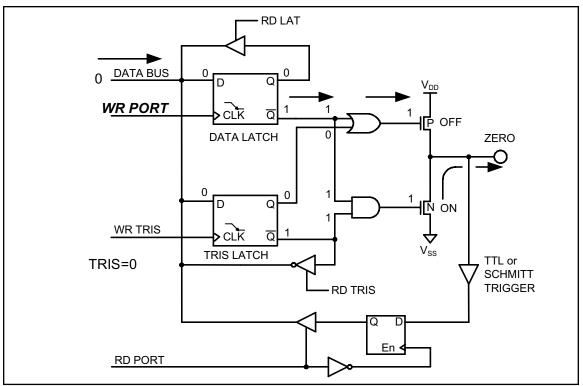


Figure C-12. Outputting (Writing) 0 to a Pin in the PIC18

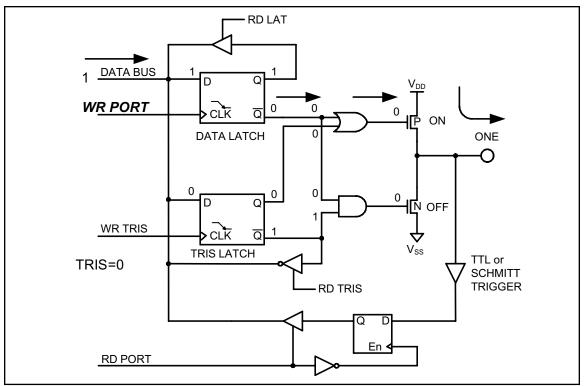


Figure C-13. Outputting (Writing) 1 to a Pin in the PIC18

Mnemonics	Examples
MOVFW PORTx	MOVFW PORTB
TSTFSZ f	TSTFSZ PORTC
BTFSS f,b	BTFSS PORTD,0
BTFSC f,b	BTFSC PORTB,7
CPFSEQ f	CPFSEQ PORTB

Table C-5: Some of the Instructions Reading the Status of Input Port

PIC18 port fan-out

Now that we are familiar with the port structure of the PIC18, we need to examine the fan-out for the PIC18 microconctroller. While the early chips were based on NMOS IC technology, today's PIC18 microcontrollers are all based on CMOS technology. Note, however, that while the core of the PIC18 microcon-

troller is CMOS, the circuitry driving its pins is all TTL compatible. That is, the PIC18 is a CMOS-based product with TTL-compatible pins. All the ports of the PIC18 have the same I/O structure, and therefore the same fan-out. Table C-6 provides the I/O characteristics of PIC18F458 ports.

Table C-6: PIC18 Fan-out for PORTS

Pin	Fan-out	
IOL	8.5 mA	
IOH	-3 mA	
IIL	1 μA	
IIH	1 μΑ	
	tive current is defined as current	

sourced by the pin.

74LS244 driving an output pin

In some cases, when an PIC18 port is driving multiple inputs, or driving a single input via a long wire or cable (e.g., printer cable), we can use the 74LS244 as a driver. When driving an off-board circuit, placing the 74LS244 buffer between your PIC18 and the circuit is essential because the PIC18 lacks sufficient current. See Figure C-14.

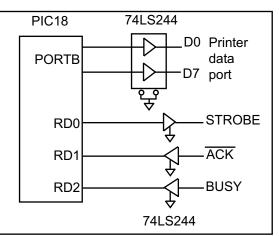


Figure C-14. PIC18 Connection to Printer Signals

SECTION C.3: SYSTEM DESIGN ISSUES

In addition to fan-out, the other issues related to system design are power dissipation, ground bounce, V_{CC} bounce, crosstalk, and transmission lines. In this section we provide an overview of these topics.

Power dissipation considerations

Power dissipation of a system is a major concern of system designers, especially for laptop and hand-held systems in which batteries provide the power. Power dissipation is a function of frequency and voltage as shown below:

$$Q = CV$$

$$\frac{Q}{T} = \frac{CV}{T}$$
since
$$F = \frac{1}{T}$$
and
$$I = \frac{Q}{T}$$

$$I = CVF$$
now
$$P = VI = CV^{2}F$$

In the above equations, the effects of frequency and V_{CC} voltage should be noted. While the power dissipation goes up linearly with frequency, the impact of the power supply voltage is much more pronounced (squared). See Example C-2.

Example C-2

Compare the power consumption of two microcontroller-based systems. One uses 5 V and the other uses 3 V for $V_{CC}.$

Solution:

Because P = VI, by substituting I = V/R we have P = V^2/R . Assuming that R = 1, we have P = $5^2 = 25$ W and P = $3^2 = 9$ W. This results in using 16 W less power, which means power saving of 64%. (16/25 × 100) for systems using 3 V for power source.

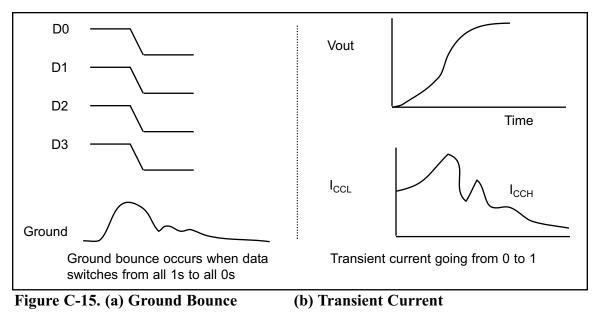
Dynamic and static currents

Two major types of currents flow through an IC: dynamic and static. A dynamic current is I = CVF. It is a function of the frequency under which the component is working. This means that as the frequency goes up, the dynamic current and power dissipation go up. The static current, also called DC, is the current consumption of the component when it is inactive (not selected). The dynamic current dissipation is much higher than the static current consumption. To reduce power consumption, many microcontrollers, including the PIC18, have power-saving modes. In the PIC18, the power saving mode is called *sleep mode*. We describe the sleep mode next.

Sleep mode

In sleep mode the on-chip oscillator is frozen, which cuts off frequency to the CPU and peripheral functions, such as serial ports, interrupts, and timers. Notice that while this mode brings power consumption down to an absolute minimum, the contents of RAM and the SFR registers are saved and remain unchanged.

Ground bounce


One of the major issues that designers of high-frequency systems must grapple with is ground bounce. Before we define ground bounce, we will discuss lead inductance of IC pins. There is a certain amount of capacitance, resistance, and inductance associated with each pin of the IC. The size of these elements varies depending on many factors such as length, area, and so on.

The inductance of the pins is commonly referred to as *self-inductance* because there is also what is called *mutual inductance*, as we will show below. Of the three components of capacitor, resistor, and inductor, the property of self-inductance is the one that causes the most problems in high-frequency system design because it can result in ground bounce. Ground bounce occurs when a massive amount of current flows through the ground pin caused by many outputs changing from HIGH to LOW all at the same time. See Figure C-15(a). The voltage is related to the inductance of the ground lead as follows:

$$V = L \frac{di}{dt}$$

As we increase the system frequency, the rate of dynamic current, di/dt, is also increased, resulting in an increase in the inductance voltage L (di/dt) of the ground pin. Because the LOW state (ground) has a small noise margin, any extra voltage due to the inductance can cause a false signal. To reduce the effect of ground bounce, the following steps must be taken where possible:

- 1. The V_{CC} and ground pins of the chip must be located in the middle rather than at opposite ends of the IC chip (the 14-pin TTL logic IC uses pins 14 and 7 for ground and V_{CC}). This is exactly what we see in high-performance logic gates such as Texas Instruments' advanced logic AC11000 and ACT11000 families. For example, the ACT11013 is a 14-pin DIP chip in which pin numbers 4 and 11 are used for the ground and V_{CC} , instead of 7 and 14 as in the traditional TTL family. We can also use the SOIC packages instead of DIP.
- 2. Another solution is to use as many pins for ground and V_{CC} as possible to reduce the lead length. This is exactly why all high-performance microprocessors and logic families use many pins for V_{CC} and ground instead of the traditional single pin for V_{CC} and single pin for GND. For example, in the case of Intel's Pentium processor there are over 50 pins for ground, and another 50 pins for V_{CC} .

The above discussion of ground bounce is also applicable to V_{CC} when a large number of outputs changes from the LOW to the HIGH state; this is referred to as V_{CC} bounce. However, the effect of V_{CC} bounce is not as severe as ground bounce because the HIGH ("1") state has a wider noise margin than the LOW ("0") state.

Filtering the transient currents using decoupling capacitors

In the TTL family, the change of the output from LOW to HIGH can cause what is called *transient current*. In a totem-pole output in which the output is LOW, Q4 is on and saturated, whereas Q3 is off. By changing the output from the LOW to the HIGH state, Q3 turns on and Q4 turns off. This means that there is a time when both transistors are on and drawing current from V_{CC} . The amount of current depends on the R_{ON} values of the two transistors, which in turn depend on the internal parameters of the transistors. The net effect of this, however, is a large amount of current in the form of a spike for the output current, as shown in Figure C-15(b). To filter the transient current, a 0.01 µF or 0.1 µF ceramic disk capacitor can be placed between the V_{CC} and ground for each TTL IC. The lead for this capacitor, however, should be as small as possible because a long lead results in a large self-inductance, and that results in a spike on the V_{CC} line [V = L (di/dt)]. This spike is called V_{CC} bounce. The ceramic capacitor for each IC is referred to as a *decoupling capacitor*. There is also a bulk decoupling capacitor, as described next.

Bulk decoupling capacitor

If many IC chips change state at the same time, the combined currents drawn from the board's V_{CC} power supply can be massive and may cause a fluctuation of V_{CC} on the board where all the ICs are mounted. To eliminate this, a relatively large decoupling tantalum capacitor is placed between the V_{CC} and ground lines. The size and location of this tantalum capacitor varies depending on the number of ICs on the board and the amount of current drawn by each IC, but it is

common to have a single 22 μF to 47 μF capacitor for each of the 16 devices, placed between the V_{CC} and ground lines.

Crosstalk

Crosstalk is due to mutual inductance. See Figure C-16. Previously, we discussed selfinductance, which is inherent in a piece of conductor. *Mutual inductance* is caused by two electric lines running parallel to each other. The mutual inductance is a function of l, the length of two conductors running in parallel, d, the distance between them, and the medium mate-

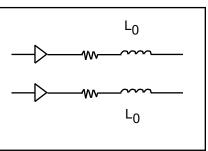


Figure C-16. Crosstalk (EMI)

rial placed between them. The effect of crosstalk can be reduced by increasing the distance between the parallel or adjacent lines (in printed circuit boards, they will be traces). In many cases, such as printer and disk drive cables, there is a dedicated ground for each signal. Placing ground lines (traces) between signal lines reduces the effect of crosstalk. This method is used even in some ACT logic families where a V_{CC} and a GND pin are next to each other. Crosstalk is also called *EMI* (electromagnetic interference). This is in contrast to *ESI* (electrostatic interference), which is caused by capacitive coupling between two adjacent conductors.

Transmission line ringing

The square wave used in digital circuits is in reality made of a single fundamental pulse and many harmonics of various amplitudes. When this signal travels on the line, not all the harmonics respond in the same way to the capacitance, inductance, and resistance of the line. This causes what is called *ringing*, which depends on the thickness and the length of the line driver, among other factors. To reduce the effect of ringing, the line drivers are terminated by putting a resistor at the end of the line. See Figure C-17. There are three major methods of line driver termination: parallel, serial, and Thevenin.

In serial termination, resistors of 30–50 ohms are used to terminate the line. The parallel and Thevenin methods are used in cases where there is a need to match the impedance of the line with the

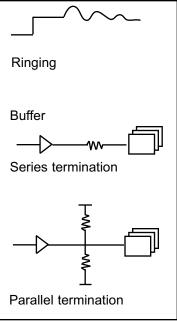


Figure C-17. Reducing Transmission Line Ringing

load impedance. This requires a detailed analysis of the signal traces and load impedance, which is beyond the scope of this book. In high-frequency systems, wire traces on the printed circuit board (PCB) behave like transmission lines, causing ringing. The severity of this ringing depends on the speed and the logic family used. Table C-7 provides the length of the traces, beyond which the traces must be looked at as transmission lines.

Table C-7: Line Length Beyond Which	
Traces Behave Like Transmission Lines	

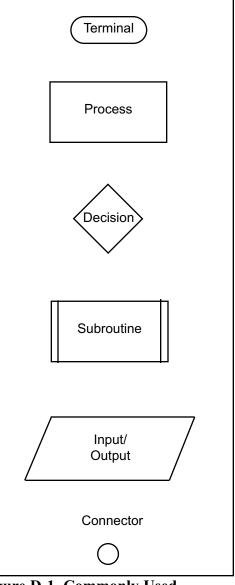
Logic Family	Line Length (in.)
LS	25
S, AS	11
F, ACT	8
AS, ECL	6
FCT, FCTA	5

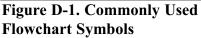
(Reprinted by permission of Integrated Device Technology, copyright IDT 1991)

APPENDIX D

FLOWCHARTS AND PSEUDOCODE

OVERVIEW


This appendix provides an introduction to writing flowcharts and pseudocode.


Flowcharts

If you have taken any previous programming courses, you are probably familiar with flowcharting. Flowcharts use graphic symbols to represent different types of program operations. These symbols are connected together into a flowchart to show the flow of execution of a program. Figure D-1 shows some of the more commonly used symbols. Flowchart templates are available to help you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard practice in industry for decades. However, some find limitations in using flowcharts, such as the fact that you can't write much in the little boxes, and it is hard to get the "big picture" of what the program does without getting bogged down in the details. An alternative to using flowcharts is pseudocode, which involves writing brief descriptions of the flow of the code. Figures D-2 through D-6 show flowcharts and pseudocode for commonly used control structures.

Structured programming uses

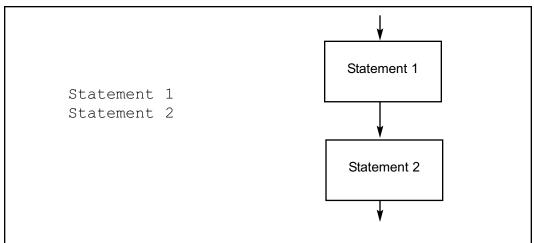


Figure D-2. SEQUENCE Pseudocode versus Flowchart

three basic types of program control structures: sequence, control, and iteration. Sequence is simply executing instructions one after another. Figure D-2 shows how sequence can be represented in pseudocode and flowcharts.

Figures D-3 and D-4 show two control programming structures: IF-THEN-ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that "statement" can indicate one statement or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT UNTIL and WHILE DO. Both structures execute a statement or group of statements repeatedly. The difference between them is that the REPEAT UNTIL structure always executes the statement(s) at least once, and checks the condition after each iteration, whereas the WHILE DO may not execute the statement(s) at all because the condition is checked at the beginning of each iteration.

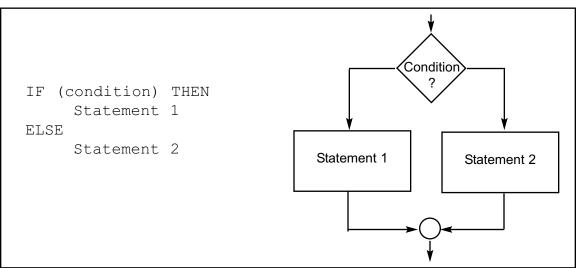


Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

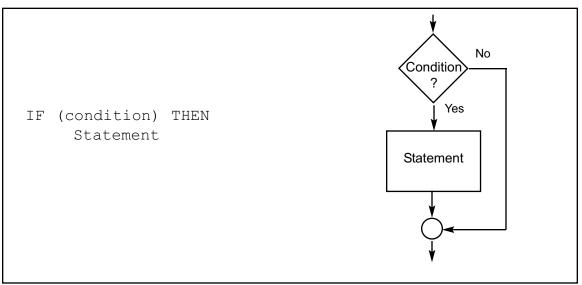


Figure D-4. IF THEN Pseudocode versus Flowchart



Figure D-5. REPEAT UNTIL Pseudocode versus Flowchart

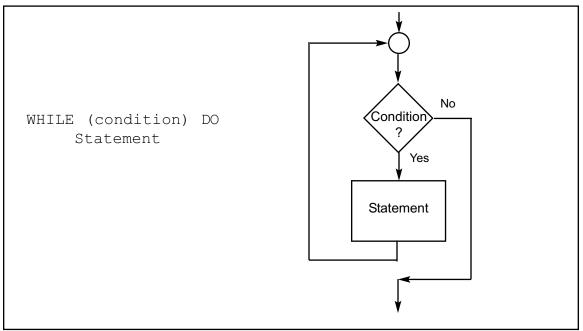


Figure D-6. WHILE DO Pseudocode versus Flowchart

Program D-1 finds the sum of a series of bytes. Compare the flowchart versus the pseudocode for Program D-1 (shown in Figure D-7). In this example, more program details are given than one usually finds. For example, this shows steps for initializing and decrementing counters. Another programmer may not include these steps in the flowchart or pseudocode. It is important to remember that the purpose of flowcharts or pseudocode is to show the flow of the program and what the program does, not the specific Assembly language instructions that accomplish the program's objectives. Notice also that the pseudocode gives the same information in a much more compact form than does the flowchart. It is important to note that sometimes pseudocode is written in layers, so that the outer level or layer shows the flow of the program and subsequent levels show more details of how the program accomplishes its assigned tasks.

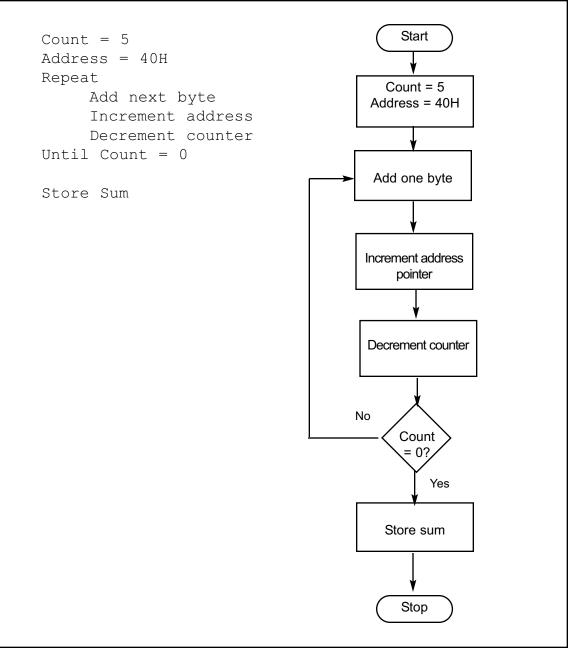


Figure D-7. Pseudocode versus Flowchart for Program D-1

Г

	_	
COUNTVAL	EQU 5	; $COUNT = 5$
COUNTREG	SET 0x20	;set aside location 20H for counter
SUM	SET 0x30	;set aside location 30H for sum
MOVLW	COUNTVAL	;WREG = 5
MOVWF	COUNTREG	;load the counter
LFSR	0,0x40	;load pointer. FSR0 = 40H, RAM address
CLRF	WREG	;clear WREG
B5 ADDWF	POSTINCO, W	;add RAM to WREG and increment FSR0
DECF	COUNTREG, F	;decrement counter
BNZ	В5	;loop until counter = zero
MOVWF	SUM	;store WREG in SUM
Program D-1	l	

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

APPENDIX E.1

PIC18 PRIMER FOR x86 PROGRAMMERS

	x86	PIC18
8-bit registers:	AL, AH, BL, BH,	WREG and up to
	CL, CH, DL, DH	256 RAM locations in Access Bank
16-bit (data pointer):	BX, SI, DI	TBLPTR
Program Counter:	IP (16-bit)	PC (21-bit)
Input:		
	MOV DX,port addr	MOVFW PORTx ; $(x = A, B,G)$
	IN AL,DX	
Output:		
1	MOV DX,port addr	MOVWF PORTx ; $(x = A, B,G)$
	OUT DX, AL	
Loop:		
1	DEC CL	DECF MyReg,F
	JNZ TARGET	BNZ TARGET
Stack pointer:	SP (16-bit)	SP (21-bit)
I .		
	As we PUSH data onto the	Push increments the SP.
	stack, it decrements the SP.	(Used exclusively for saving PC)
	As we POP data from the st	ack, Pop decrements the SP.
	it increments the SP.	(Used exclusively for retrieving PC)
Data movement:		
From the co	de segment:	
	MOV AL, CS:[SI]	TBLRD
From the dat	ta segment:	
	MOV AL,[SI]	MOVFW FSRx
From RAM:		
	MOV AL,[SI]	MOVFW FSRx
	(Use SI, DI, or BX only.)	
To RAM:	MOV [SI],AL	MOVWF FSRx

APPENDIX E.2

PIC18 PRIMER FOR 8051 PROGRAMMERS

	8051	PIC18
8-bit registers:	A, B, R0, R1,R7	WREG and up to 256 RAM locations in Access Bank
16-bit (data po	Dinter): DPTR	TBLPTR
Program Cour	tter: PC (16-bit)	PC (21-bit)
Input:	MOV A, Pn ; (n=0 - 3)	MOVFW PORTx ; (x = A, B,G)
Output:	MOV Pn,A ; (n=0 - 3)	MOVWF PORTx ; (x = A,B,G)
Loop:	DJNZ R3, TARGET (Using R0-R7)	DECF MyReg,F BNZ TARGET
Stack pointer:	SP (8-bit)	SP (21-bit)
	As we PUSH data onto the stack, it increments the SP.	Push increments the SP. (Used exclusively for saving PC)
Data movemen	As we POP data from the stack, it decrements the SP.	Pop decrements the SP. (Used exclusively for retrieving PC)
From	the code segment: MOVC A, @A+PC	TBLRD
From	the data segment: MOVX A, @DPTR	MOVFW FSRx
From To RA		MOVFW FSRx
	MOV @R0, A (Use R0 or R1 only)	MOVWF FSRx

APPENDIX F

ASCII CODES

Ctrl	Dec	Hex	Ch	Code
^@	0	00		NUL
^A	1	01	⋳	SOH
^B	2	02	•	STX
^c	3	03	•	ETX
^D	4	04	•	EOT
^E	5	05	\$	ENQ
^F	6	06	÷	ACK
^G	7	07	-	BEL
^H	8	08		BS
^I	9	09	0	HT
^J	10	ØA	o	LF
^к	11	ØB	8	VΤ
^L	12	ØC	Ŷ	FF
^M	13	ØD	F	CR
^N	14	ØE	п	so
^0	15	ØF	*	SI
^р	16	10	▶ .	DLE
^Q	17	11	◀	DC1
^R	18	12	t	DC2
^s	19	13	!!!	DC3
^T	20	14	91	DC4
^U	21	15	§	NAK
^∪	22	16	-	SYN
^₩	23	17	ŧ	ETB
^X	24	18	t	CAN
^Y	25	19	1	EM
^z	26	1A	→	SUB
1^	27	1B	+	ESC
\sim	28	10	- L	FS
^] ^^	29	1D	++	GS
^^	30	1E	▲	RS
^_	31	1F	•	US

Dec	Hex	Ch
32	20	
33	21	1
34	22	
35	23	#
36	24	\$
37	25	×
38	26	&
39	27	,
40	28	<
41	29	>
42	2A	×
43	2B	+
44	2C	
45	2D	-
46	2E	
47	2F	/
48	30	0
49	31	1
50	32	2
51	33	3
52	34	4
53	35	5
54	36	6
55	37	7
56	38	8
57	39	9
58	3A	:
59	3B	;
60	3C	<
61	3D	=
62	ЗE	>
63	ЗF	?

Dec	Hex	Ch	
64	40	6	
65	41	A	
66	42	В	
67	43	С	
68	44	D	
69	45	E	
70	46	F	
71	47	G	
72	48	H	
73	49	Ι	
74	4A	J	
75	4B	к	
76	4C	L	
77	4D	M	
78	4E	N	
79	4F	0	
80	50	Р	
81	51	Q	
82	52	R	
83	53	S	
84	54	Т	
85	55	U	
86	56	U	
87	57	W	
88	58	X	
89	59	Y	
90	5A	z	
91	5B	Γ	
92	5C	\mathbf{x}	
93	5D	1	
94	5E	^	
95	5F	_	

Dec	Hex	Ch
96	60	•
97	61	a
98	62	b
99	63	С
100	64	d
101	65	е
102	66	f
103	67	a
104	68	h
105	69	i
106	6A	j
107	6B	k
108	6C	1
109	6D	m
110	6 E	n
111	6F	o
112	70	p
113	71	q
114	72	r
115	73	s
116	74	t
117	75	u
118	76	v
119	77	w
120	78	x
121	79	у
122	7A	z
123	7B	<
124	70	1
125	7D	>
126	7E	~
127	7F	۵

Dec	Hex	Ch	Dec	Hex	Ch		Dec	Hex	Ch		Dec	Hex	Ch
128	80	Ç	160	AØ	á	1	192	CØ	L	1	224	EØ	α
129	81	ü	161	A1	í		193	C1	–		225	E1	ß
130	82	é	162	A2	ó		194	C2	т		226	E2	Г
131	83	â	163	A3	ú		195	C3			227	E3	π
132	84	ä	164	A4	ñ		196	C4	-		228	E4	Σ
133	85	à	165	A5	Ñ		197	C5	+		229	E5	σ
134	86	å	166	A6	<u> </u>		198	C6			230	E6	μ
135	87	ç	167	A7	<u> </u>		199	C7	l Ił		231	E7	τ
136	88	ê	168	A8	i		200	C8	Ľ		232	E8	Σ
137	89	ë	169	A9	- F		201	C9	 		233	E9	0
138	8A	è	170	AA	- I		202	CA	<u> </u>		234	EA	Ω
139	8B	Ï	171	AB	12		203	CB	Π		235	EB	δ
140	8C	î	172	AC	*4		204	CC	11		236	EC	w
141	8D	ì	173	AD	•		205	CD	=		237	ED	ø
142	8E	Ä	174	AE	~		206	CE	1		238	EE	E
143	8F	Å	175	AF	»		207	CF	±		239	EF	n
144	90	É	176	BØ			208	DØ	ш		240	FØ	≡
145	91	æ	177	B1			209	D1	-		241	F1	±
146	92	Æ	178	B2	8		210	D2	Π		242	F2	2
147	93	Ô	179	B3			211	D3	u		243	F3	≤
148	94	Ö	180	B4	1		212	D4	?		244	F4	ſ
149	95	ò	181	B5	=		213	D5	F		245	F5	J
150	96	û	182	B6	11		214	D6	п		246	F6	÷
151	97	ù	183	B7	п		215	D7	H		247	F7	ສ
152	98	ÿ	184	B8	1		216	D8	+		248	F8	ະ
153	99	Ö	185	B9	- 11		217	D9	L		249	F9	-
154	9A	Ü	186	BA			218	DA	г		250	FA	.
155	9B	¢	187	BB	ิล		219	DB			251	FB	1
156	9C	£	188	BC	ц		220	DC	-		252	FC	n
157	9D	¥	189	BD	п		221	DD	1		253	FD	z
158	9E	Pts	190	BE	н		222	DE			254	FE	•
159	9F	F	191	BF	٦		223	DF	-		255	FF	

APPENDIX G

ASSEMBLERS, DEVELOPMENT RESOURCES, AND SUPPLIERS

This appendix provides various sources for PIC18 assemblers and trainers. In addition, it lists some suppliers for chips and other hardware needs. While these are all established products from well-known companies, neither the authors nor the publisher assumes responsibility for any problem that may arise with any of them. You are neither encouraged nor discouraged from purchasing any of the products mentioned; you must make your own judgment in evaluating the products. This list is simply provided as a service to the reader. It also must be noted that the list of products is by no means complete or exhaustive.

PIC18 assemblers

The PIC18 assembler is provided by Microchip and other companies. Some of the companies provide shareware versions of their products, which you can download from their Web sites. However, the size of code for these shareware versions is limited to a few KB. Figure G-1 lists some suppliers of assemblers.

PIC18 trainers

There are many companies that produce and market PIC18 trainers. Figure G-2 provides a list of some of them. Microchip Corp. www.microchip.com

Custom Computer Services Inc www.ccsinfo.com

Figure G-1. Suppliers of Assemblers and Compilers

Microchip Corp. www.microchip.com

www.MicroDigitalEd.com

Custom Computer Services Inc. www.ccsinfo.com

RSR Electronics www.elexp.com

Figure G-2. Trainer Suppliers

Parts Suppliers

Figure G-3 provides a list of suppliers for many electronics parts.

RSR Electronics Electronix Express 365 Blair Road Avenel, NJ 07001 Fax: (732) 381-1572 Mail Order: 1-800-972-2225 In New Jersey: (732) 381-8020 www.elexp.com

Altex Electronics 11342 IH-35 North San Antonio, TX 78233 Fax: (210) 637-3264 Mail Order: 1-800-531-5369 www.altex.com

Digi-Key 1-800-344-4539 (1-800-DIGI-KEY) Fax: (218) 681-3380 www.digikey.com

Radio Shack www.radioshack.com

JDR Microdevices 1850 South 10th St. San Jose, CA 95112-4108 Sales 1-800-538-5000 (408) 494-1400 Fax: 1-800-538-5005 Fax: (408) 494-1420 www.jdr.com Mouser Electronics 958 N. Main St. Mansfield, TX 76063 1-800-346-6873 www.mouser.com

Jameco Electronic 1355 Shoreway Road Belmont, CA 94002-4100 1-800-831-4242 (415) 592-8097 Fax: 1-800-237-6948 Fax: (415) 592-2503 www.jameco.com

B. G. Micro
P. O. Box 280298
Dallas, TX 75228
1-800-276-2206 (orders only)
(972) 271-5546
Fax: (972) 271-2462
This is an excellent source of LCDs, ICs, keypads, etc.
www.bgmicro.com

Tanner Electronics 1100 Valwood Parkway, Suite #100 Carrollton, TX 75006 (972) 242-8702 www.tannerelectronics.com

Figure G-3. Electronics Suppliers

APPENDIX H

DATA SHEETS

25.0 INSTRUCTION SET SUMMARY

PIC18F2480/2580/4480/4580 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimiza tion of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PICmicro[®] instruction sets, while maintaining an easy migration from these PICmicro instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 25.2 lists byte-oriented, bit-oriented, literal and control operations. Table 25-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- The file register (specified by 'f')
- 2 The destination of the result (specified by 'd').
- The accessed memory (specified by 'a')

The file register designator 'f specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WRI G register. It 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands.

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register desig nator 'f represents the number of the file in which the bit is located. The literal instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The control instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a XOP.

All single word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is $1\,\mu s$. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is $2\,\mu s$. Two-word branch instructions (if true) would take $3\,\mu s$.

Ligure 25.1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number

The Instruction Set Summary, shown in Table 25-2, lists the standard instructions recognized by the Microchip MPASM^{IM} Assembler.

Section 25.1.1 "Standard Instruction Set" provides a description of each instruction.

^{🕸 2004} Microchip Technology Inc.

TABLE 25-1: OPCODE FIELD DESCRIPTIONS

Field	Description
1	RAM access bit
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a - I. RAM bank is specified by BSR register
bb	Bit address within an 8-bit file register (0 to 7).
SR	Bank Select Register. Used to select the current RAM bank.
, DC, 2, OV, N	ALU status bits: Carry, Digit Carry, Zero, Overflow, Negative.
	Destination select bit
	d = 0: store result in WRFG
	d – 1: store result in file register f
eat.	Destination: either the WRFG register or the specified register file location
	8-bit Register file address (00h to FFh), or 2-bit FSR designator (0h to 3h).
c .	12-bit Register file address (000h to FFFh) This is the source address
4	12-bit Register file address (000h to FFFh). This is the destination address.
enc.	Global Interrupt Enable bit
	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)
abel	l abel name
nm.	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
•	No change to register (such as TBLPTR with table reads and writes)
+	Post-Increment register (such as TBI PTR with table reads and writes)
•	Post-Decrement register (such as TBLPTR with table reads and writes)
.7	Pre-Increment register (such as TBI PTR with table reads and writes)
1	The relative address (2's complement number) for relative branch instructions or the direct address for Call/Branch and Return instructions
ec.	Program Counter.
чст.	Program Counter Low Byte.
CH .	Program Counter High Byte.
CLATH	Program Counter High Byte Latch.
PCLATO	Program Counter Upper Byte Latch.
ক	Power down bil.
RODE	Product of Multiply High Byte.
PRODE	Product of Multiply Low Byle.
	Fast Call/Return mode select bit
	s = 0. do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TRI.PTR	21 bit Table Pointer (points to a Program Memory location).
ABLAT	8-bit lable Latch.
10	Time out bit.
log	lop-of-Stack.
1	Unused or unchanged.
(1)/1'	Watchdog limer.
OREC:	Working register (accumulator).
6	Don't care ('v' or '1'). The assembler will generate code with x = v. It is the recommended form of use for compatibility with all Microchip software tools.
,	7-bit offset value for indirect addressing of register files (source)
د <u>،</u>	
a .	7 bit offset value for indirect addressing of register files (destination).
}	Optional argument.
text]	Indicates an indexed address.
(text)	The contents of LexL.
expr] en s	Specifies bit n of the register indicated by the pointer corpr.
÷	Assigned to.
: >	Register bil field.
	In the set of.
1talica	User defined term (font is Courier).

DS39637A page 362

 \otimes 2004 Microchip Technology Inc.

FIGURE 25-1:	GENERAL FORMAT FOR INSTRUCTIONS	
	Byte-oriented file register operations	Example Instruction
	15 10 9 8 7 0 OPCODF d a f(FIF#)	ADDWF MYRRG, W. B
	d - o for result destination to be WREG register d = 1 for result destination to be file register (f) a = o to force Access Bank a = i for BSR to select bank f = 8-bit file register address	
	Byte to Byte move operations (2-word)	
	15 12 11 0	
	OPCODE f (Source FILE #)	MOVER MYREGI, MYREG2
	15 12 11 0 1111 1 (Destination FILE #)	
	f = 12 bit file register address	
	Bit-oriented tile register operations	
	15 1211 987 0	
	OPCODE b (BIT #) s f (FILE #)	DEER MYRREA, bill, D
	b = 3 bit position of bit in file register (f) a = 0 to torce Access Bank a = 1 for BSR to select bank f = 8-bit file register address	
	Literal operations	
	15 8 7 0 OPCODE k (literal) k - 8 bit immediate value	MOVLW 7Ph
	Control operations	
	CALL, GOTO and Branch operations 15 87 0	
	15 8 7 0 OPCODE n :0 (literal)	LEDITS Leibel
	15 12 11 0	
	1111 n<19:8> (literal)	
	n = 20-bit immediate value	
	15 8 7 0	
	OPCODE & n<7.0> (ileral)	CALL MYFUNC
	15 12 11 0	
	n=19:8> (literal)	
	S - Fast bil	
	15 11 10 0	
	OPCODE n<10:0> (iteral)	BRA MYFUNC
	15 8.7 0	
	OPCODE n<7:0> (literal)	DC MYFINC

to 2004 Microchip Technology Inc.

TABLE 25-2: PIC18FXXXX INSTRUCTION SET

Mnemo	onic,	Beenvietien	Curles	16-E	3it Instr	uction \	Nord	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	ſ, d, a	Add WREG and f	1	0010	01da	tttt	tttt	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	០០៨៦	0000	0000	C, DC, Z, OV, N	1, 2
ANDW	t, d, a	AND WREG with t	1	0001	01da	++++	++++	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	1111	1111	z	2
COMI	t, d, a	Complement f	1	0001	11da	++++	++++	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	1111	1111	None	4
CPLSGI	t, a	Compare t with WRLG skip >	1 (2 or 3)	0110	010a	++++	++++	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	1111	1111	None	1, 2
DECF	f, d, a	Decrement f	1	0000	ាដង	0000	0000	C, DC, Z, OV, N	1, 2, 3,
DECFSZ	ſ, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	tttt	tttt	None	1, 2, 3,
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	01.00	11da	0000	0000	None	1, 2
INCF	ľ, d, a	Increment f	1	0010	10da	tttt	tttt	C, DC, Z, OV, N	1, 2, 3,
NCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	0000	0000	None	4
NFSNZ	ſ, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	tttt	tttt	None	1, 2
ORWF	f, d, a	Inclusive OR WREG with f	1	1000	00da	1111	1111	Z, N	1, 2
NOVI	t, d, a	Move f	1	0101	0Dda	++++	++++	Z, N	1
MOVFF	f_s, f_d	Move f _s (source) to 1st word	2	1100	1111	1111	1111	None	
		t _d (destination)2nd word		1111	++++	++++	++++		
MOVWF	f, a	Move WREG to f	1	0110	111a	1111	1111	None	
MULWI	t, a	Multiply WRLG with f	1	0000	0015	++++	++++	None	1,2
NEGF	í.a	Negale F	1	0110	110a	iiii	tttt	C. DC. Z. OV. N	ľ
RLCF	f, d, a	Rotate Left f through Carry	1	0011	ាដង	0000	0000	C, Z, N	1, 2
RLNCF	ľ, d, a	Rolate Left (No Carry)	1	0100	01da	iiii	tttt	Z, N	ľ
RRCF	f, d, a	Rotate Right f through Carry	1	0011	ooda	reer	cond	C, Z, N	
RRNCF	ľ, d, a	Rolate Right f (No Carry)	1	0100	00da	tttt	TITT		
SETF	f, a	Set f	1	d1 1 U	100a	reer	cond	None	1.2
SUBLWB	t, d, a	Subtract f from WRLG with	1	0101	(1da	++++	++++	C, DC, Z, OV, N	Ľ.
		borrow							
SUBWI	t, d, a	Subtract WRLG from f	1	0101	11da	++++	++++	C, DC, Z, OV, N	1.2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	1111		C, DC, Z, OV, N	ľ.
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	1111	1111	None	4
ISH SZ	t a	lest f, skip if 0	1 (2 or 3)	0110	0115	++++		None	1.2
XORWF		Exclusive OR WREG with f	1		10da	tttt	tttt		· ·

Note 1: When a Port register is modified as a function of itself (e.g., NOVE_FORTE, 1, 0), the value used will be that value present on the pins themselves. For example, if the data tatch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOR.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

Mnem	onic,	Description.		16-Bit Instruction Word				Status	
Opera	ands	Description	Cycles	MSb LSb			Affected	Noter	
BIT-ORIEN	NTED OP	ERATIONS						-	
BCI	f, b, a	Bit Clear f	1	1001	bbba	++++	++++	None	1, 2
BSF	ľ, b, a	Bit Set f	1	1000	bbba	tttt	tttt	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	0000	0000	None	3, 4
BTFSS	ľ, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	tttt	tttt	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	0000	0000	None	1, 2
CONTROL	OPERA	TIONS	1						
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
3NZ	n	Branch if Not Zero	1 (2)	1110	0001	רזרורורו	חחחח	None	
SOV	n	Branch if Overflow	1 (2)	1110	0100	and the	mm	None	
A5IE	n	Branch Unconditionally	2	1101	מחחת	רזרורו	חחחח	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	and the	mm	None	
CALL	n, s	Call subroutine1st word	2	1110	110a	k k k k	kkkk	None	
		2nd word		TTTT	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW		Decimal Adjust WREG	1	0000	0000	0000	0111	C	
COTO	n	Co to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP		No Operation	1	1111	XXXX	XXXXX	XXXX		4
POP	_	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000		None	
RCALL	n	Relative Call	2	TTOT	Tuun	1111111	mm		
a si i		Software device Reset	1	0000	0000	1111		All	
RETFIE	s	Return from interrupt enable	2	0000	0000	0001	0006	GIE/GIEH,	
								PLII VOILI	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk		
RETURN	s	Return from Subroutine	2	0000	0000	0001	0016		
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a Port register is modified as a function of itself (e.g., MOVE PORTR, int, iii), the value used will be that value present on the pins themselves. For example, if the data tatch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and where applicable, 'd' - 1), the prescaler will be cleared if assigned.

 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOR.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

to 2004 Microchip Technology Inc.

Mnem	onic,	Description	Cuoles	16-	Bit inst	ruction	Word	Status	Notes
Operands		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERA	TIONS	_						
WICCA	k	Add literal and WRLG	1	0000	1111	k k k k	iciale in	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	ſ, k.	Move literal (12-bit) 2nd word	2	1110	1110	0011	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3.0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WRLG	1	0000	1101	k k k k	ic ic ic ic	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WRLG from literal	1	0000	1000	k k k k	ic ic ic ic	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEI	MORY	PROGRAM MEMORY OPERATI	ONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
EBERD≛⊫		Table Read with post increment		0000	aboa	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBERD+*		Table Read with pre-increment		0000	aboa	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	5
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	5
TBLWT^-		Table Write with post-decrement		0000	0000	0000	1110	None	5
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	5

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a Port register is modified as a function of itself (e.g., NOVP_PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is 'n' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

 If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

DS39637A page 366

25.1.1 STANDARD INSTRUCTION SET

ADDWF	ADD W to f
Syntax:	ADDWF 1{,d{,a}}
Operands.	0 ≤ [< 255 d ∈ [0,1] a ∈ [0,1]
Operation:	$(W) + (I) \rightarrow dest$
Status Affected.	N, OV, C, DC, Z
Encoding:	1111 1111 sbiv 0100
Description:	Add W to register 'f' If 'd' is 'o', the result is stored in W. If 'd' is 'i', the result is stored back in register 'f' (detault). If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the BSR is used to select the GPR bank (detault). If 'a' is 'u' and the extended instruction set is enabled, this instruction operates
	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever t ≤ 96 (5+h). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles.	1
Q Cycle Activity:	
Q1	02 03 04
Decode	Read Process Write to register 'f' Data destination
Example:	ADDWP REG, 0, 0
Before Instructi	on
W REG After Instruction	= 1/h - 0C2h
W REG	= 0L%h - 0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes. {label} instruction argument(s).

🕸 2004 Microchip Technology Inc.

ADDWFC	ADD W and Carry bit to f	ANDLW	AND Literal with W
Syntax.	ADDWFC ({,a })	Syntax.	ANDLW k
Operands:	0 ≤ f ≤ 255	Operands:	0 ≤ k ≤ 255
	d ⊂ [0,1] a ∈ [0,1]	Operation:	(W) AND $k \rightarrow W$
Operation.	are (0,1) (W) + (I) + (C) ⇒ desl	Status Affected:	N, Z
Status Affected:	N.OV. C. DC. Z	Encoding:	0000 1011 kkkk kkkk
Fncoding ⁻	0010 00da IIII IIII	Description.	The contents of W are ANDed with the 8-bit literal 'k'. The result is placed in W.
Description:	Add W, the Carry flag and data memory location 'f' If 'd' is 'o', the result is	Words.	1
	placed in W. If 'd' is '1', the result is	Cycles:	1
	placed in data memory	Q Cycle Activity:	
	location 'f'. If 'a' is 'n', the Access Bank is selected.	01	Q2 Q3 Q4
	It 'a' is '1', the BSR is used to select the GPR bank (default).	Decode	Read literal Process Write to W 'K' Data
	If 'a' is 'u' and the extended instruction set is enabled, this instruction operates	Example:	ANDLW 05Fh
	in Indexed Literal Offset Addressing mode whenever t ≤ 95 (5Fh), See	Before Instru W	– A3h
	Section 25.2.3 "Byte-Oriented and	After Instructi	
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	w	= 03h
Words:	1		
Cycles.	1		
Q Cycle Activity:			
01	02 03 04		
Decode	Read Process White to register 1 Data destination		
Example.	ADDWPC REC. 0. 1		
Before Instruc Carry bil REC W After Instructio Carry bit REG W	- 1 = 02h - 1Dh		

ANDWF	AND W with f	BC	Branch if Carry	
Syntax:	ANDWF f {,d {,a}}	Syntax:	BC n	
Operands:	0 < f < 255	Operands:	-128 < n < 127	
	d c [0,1] a e [0,1]	Operation.	if Carry bill is '1' (PC) + 2 + 2n \rightarrow PC	
Operation:	(W).AND. (f) → dest	Status Affected.	None	
Status Affected:	N, 7	Encoding:	1110 0010 nnnn nn	
Encoding.	0001 01da ++++ ++++	Description.	If the Carry bit is '1', then the progra	
Description:	The contents of W are AND'ed with	acaonphan.	will branch.	
	register 'f'. If 'd' is '0', the result is stored in W. If 'd' is ' (', the result is stored back In register 'f' (default).		The 2's complement number '2n' is added to the PC. Since the PC will h incremented to fetch the next	
	If 'a' is 'o', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default).		instruction, the new address will be PC + 2 + 2n. This instruction is then two cycle instruction.	
	If 'a' is 'o' and the extended instruction	Words:	1	
	set is enabled, this instruction operates in Indexed Literal Offset Addressing	Cycles:	1(2)	
	mode whenever 1 ≤ 95 (5Fh). See	Q Cycle Activity:		
	Section 25.2.3 "Byte-Oriented and	If Jump		
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Q1	Q2 Q3 Q4	
100-rday		Decode	Read literal Process Write to P	PC
Words:	1		'n' Data	
Cycles:	1	No operation	No No No operation operation operatio	0.0
Q Cycle Activity:		If No Jump	operation operation operation	211
Q1	Q2 Q3 Q4	Q1	Q2 Q3 Q4	
Decode	Read Process While to register 'f Data destination	Decode	Read liferal Process No	
1	register i ivata bestination		'n' Data operatio	on
Example:	ANDRE RIGH, D, D			
Before Instruct		Example:	HERE BC 5	
W REG After Instructio	= 17h - C2h	Before Instruct PC After Instructi	= address (HERE)	
W REG	- 02h - C2h	It Carry PC If Carry	= 1; - address (HERE 12) - 0, = address (HERE 2)	

to 2004 Microchip Technology Inc.

BCF	Bit Clear f	BN	Branch if Negative	
Syntax:	BCF f, b {,a}	Syntax:	BN n	
Operands:	0 < f < 255	Operands:	-128 < n < 127	
-	0 ≤ b ≤ 7 a ⊭ [0,1]	Operation.	if Negative bit is '1' (PC) + $2 + 2n \rightarrow PC$	
Operation:	0 ⇒ f 	Status Affected.	None	
Status Affected:	None	Encoding:	1110 0110 nnnn nnn	nn
Encoding. Description:	I 001 bbbo FFFF FFFF Bit 'b' in register 'f' is cleared.	Description.	If the Negative bit is '1', then the program will branch.	
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset addressing		The 2's complement number '2n' is added to the PC. Since the PC will his incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then two cycle instruction.	have
	mode whenevert ≤ 95 (5Fh). See	Words:	1	
	Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed	Cycles	1(2)	
	Literal Offset Mode" for details.	Q Cycle Activity:		
Words:	1	If Jump		
Cycles.	1	01	Q2 Q3 Q4	
Q Cycle Activity:		Decode	Read literal Process White to P	PC
Q1	02 03 04		'n' Deta	
Decode	Read Process Winte	No operation	No No No operation operation operatio	0.0
	register 'f' Data register 'f'	If No Jump	operation operation operatio	/11
		Q1	Q2 Q3 Q4	
Example.	THOP FLAG REG, 7, 0	Decode	Read literal Process No	
Before Instru	iction		'n' Data operatio	on
After Instruct	REG - C7h Ion REG - 47h	<u>Example:</u> PC After Instruct If Negat PC	= address (HERE) on we = 1;	

If Negative - 0, PC = address (HERE + 2)

DS39637A page 370

Preliminary

 \otimes 2004 Microchip Technology Inc.

BNC	Branch if	Not Carry		BN	IN	Branch if	Not Negati	ve
Syntax.	BNC n			Syr	ilax.	BNN n		
Operands:	-128 ≤ n ≤ 1	27		Op	eranda:	-128 ≤ n ≤ 1	127	
Operation	if Carry bit i (PC) + 2 + 2			Op	eration:	if Negative (PC) + 2 +		
Status Affected:	None			Sta	tus Affected:	None		
Encoding:	1110	0011 nn	nn nnnn	Enc	oding:	1110	0111 nn	nn nnnn
Description:	If the Carry will branch.	bit is 'o', then	the program	Dea	scription:	If the Nega program wi	tive bit is 'o', t Il branch.	hen the
	added to the have increment instruction,	plement num e PC. Since the nented to fetcl the new addre the new addre the struction.	he PC will h the next ass will be			added to th incremente instruction,	d to fetch the the new addr n. This instruc	ne PC will have next ess will be
Words.	1			Wo	rds.	1		
Cycles:	1(2)			Cyc	des:	1(2)		
Q Cycle Activity- If Jump:				-	Cycle Activity [.] Jump:			
Q1	02	Q3	Q4		Q1	Q2	Q3	Q4
Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal	Process Data	Write to PC
No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation
It No Jump:					No Jump:			
Q1	02	Q3	Q4		Q1	02	Q3	04
Decode	Read literal 'n'	Process Dala	No operation		Decode	Read literal 'n'	Process Data	No operation
Example.	HERE	BNC Jump		Exa	mple.	भारतर	DNN Jung	,
Betore Instru PC After Instruct If Carry PC If Carry PC	- ad ion ; = ad; = 1;	dress (NRRR dress (Jump) dress (HERE			Before Instru PC Atter Instructi If Negati PC It Negati PC	- ad on ive - 0; = ad ive = 1;	idress (HERE idress (Jump idress (HERE	0

🕸 2004 Microchip Technology Inc.

BNOV	Branch if	Not Overflo	w	в	NZ	Branch if	Not Zero	
Syntax.	BNOV n			Sj	mlax.	BNZ n		
Operanda:	-128 ≤ n ≤ 1	27		0	perande:	-128 ≤ n ≤ 1	127	
Operation:	if Overflow I (PC) + 2 + 2			0	peration:	if Zero bit is (PC) + 2 + :		
Status Affected:	None			St	atus Affected:	None		
Encoding:	1110	0101 nm	nn nnnn	Er	ncoding:	1110	0001 nn	nn nnnn
Description:	If the Overfi program will	ow brt is "o", ti I branch.	hen the	D	escription:	If the ∠ero I will branch.	bit is "v", then	the program
	added to the incremented instruction, 1	d to fetch the i the new addre i. This instruct	e PC will have next ass will be			added to th incremente instruction,	d to fetch the the new addr n. This instruc	ne PC will have next əss will bə
Words.	1			W	brds.	1		
Cyclea:	1(2)			C)	/cles:	1(2)		
Q Cycle Activity: If Jump:					Cycle Activity Jump:			
Q1	Q2	Q3	Q4		Q1	02	Q3	Q4
Decode	Read literal 'n'	Process Dafa	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation
It No Jump:				It	No Jump:			
Q1	Q2	Q3	Q4		01	02	Q3	Q4
Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
Example.	HERE	NNOV Jump		E)	ample.	ารระเ	BNZ Jump)
After Instruction After Instruction If Overflow – 0; If Zero				- ad on - 0; = ad = 1;	dress (HRRR) dress (Jump) dress (HERE)		

^{© 2004} Microchip Technology Inc.

BRA		Uncondit	ional Branci	h	BSF	Bit Set f		
Synta	5X.	BRA n			Syntax.	BSF I, bi	(,a)	
Open	ands:	-1024 sin s	1023		Operanda:	0 ≤ f ≤ 255		
Open	ation:	(PC) + 2 + 2	2n → PC			0 < b < 7		
Statu	a Affected:	None				a e [0,1]		
Enco	ding:	1101	onnn nn	nn nnnn	Operation.	1 ⇒ f 		
Desc Word	riplion. Is:	Add the 2's the PC. Sin Incremente instruction,	complement i ce the PC will d to fetch the i the new addre n. This instruct	number '2n' lo have next ess will be	Status Affected: Encoding: Description:	lf 'a' is 'o', f lf 'a' is '1', t GPR bank lf 'a' is 'o' a	bbba FF glster 'F Is set. the Access Bai the BSR Is use (default) ind the extend- led, this instru	nk is selected d to select the ed instruction
Cycle O Cj	si yole Aclivily. Q1 Decode	Q2 Read literal	Q3 Process	Q4 Write to PC		mode when Section 25 Bit-Oriente	Literal Offset / never I < 95 (5 5.2.3 "Byte-On ed Instruction	Fh). See iented and s in indexed
		'n	Data				set Mode" for	details
	No operation	No	No operation	No operation	Words:	1		
	operation	operation	operation	operation	Cycles:	1		
					Q Cycle Activity.			
<u>Exam</u>	nple:	HERE	BKV Jumb		Q1	Q2	Q3	Q4
	Before Instruction PC = address (BERE) After Instruction		Decode	Read register "f	Process Data	Write register 'f		
	PC	= ad	dress (Jump	}	<u>Example:</u> Before Instru FLAC I After Instruct FLAG_I	ction REC = 0A ion		, 1

© 2004 Microchip Technology Inc.

Preliminary

BTFSC	Bit Test Fil	e, Skip if Cl	ear	BTF	ss	Bit Test Fil	e, Skip if Se	t
Syntax.	BTESC I, b	[s,]		Synta	uk.	BTESS I, b	(,a)	
Operands:	0 ≤ f ≤ 255			Open	ande:	0 ≤ 1 ≤ 255		
	0 < b < 7 a ∈ [0,1]					0 < b < 7 a ∈ 10.11		
Operation.	skip if (f)	- 0		Open	alion.	skip if (f)	- 1	
Status Affected:	None				a Affected:	None None		
Encoding:		10.044	rr rrrr	Fnco			աներ որ	
Description:	If bit 'b' in reg instruction is the next instru- current instru- and a MOP is this a two cy	gister 'f' is 'o', t skipped if bit ruction fetched sclion executio executed inst cle instruction.	then the next 'b' is 'o', then during the n is discarded tead, making		ription:	If bit 'b' in re- instruction is the next instru- current instru- and a MOP is this a two cy	gister 'f is '1', t skipped if bif ruction fetched action executio s executed inst cle instruction.	then the next 'b' is 't', then during the n is discarded lead, making
		BSR is used to	us selected. If select the				BSR is used to	is selected. If select the
	is enabled, ff Indexed Liter mode whene See Section Bit-Oriented	his instruction ral Offset Addr over f < 95 (SF)	essing i). Onented and in Indexed			set is enable In Indexed Li mode where See Section Bit-Oriented	d the extended d, this instructi teral Offset Ad ver f < 95 (SFF 25.2.3 "Byte- Instructions of Mode" for d	ion operates idressing 1). Oriented and in Indexed
Words.	1			Word	s.	1		
Cycles:	1(2)			Cycle	is:	1(2)		
		oles if skip and 2-word instru					les if skip and 2-word instruct	
O Cycle Activity.				0 C)	cle Activity.			
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Decode	Read register 't'	Process Data	No operation		Decode	Read register 't'	Process Data	No operation
lí skip.				lf ski	p.			
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
No	No	No	No		No	No	No	No
operation	operation	operation	operation		operation	operation	operation	operation
If skip and followe				li ski		1 by 2 word insi		
Q1 No	Q2 No	Q3 No	Q4 No	1	Q1 No	Q2 No	Q3 No	Q4 No
operation	operation	operation	operation		operation	operation	operation	operation
No	No	No	No		No	No	No	No
operation	operation	operation	operation		operation	operation	operation	operation
Example:	HERE IG FALSE : TRUE :	nese intaa	i, I, H	<u>Exam</u>	iple:	HIGRE IV FALSE : TRUR :	1997 - MUMA	, 1, 0
Before Instruction PC = address (ITRIR) After Instruction If FLAG<1> = 0, PC = address (TRUR) If FLAG<1> = 1; PC = address (FALGR)					Before Instruct PC After Instructio If FLAG< PC If FLAO< PC	- add n 1> - 0, = add 1> = 1;	ress (TIRRR) ress (TALSR) ress (TRUR)	I

Preliminary

© 2004 Microchip Technology Inc.

BTG	Bit Toggle f	BOV	Branch if Overflow
Syntax.	BTG f, b (,a)	Synlax.	BOV n
Operands:	0 ≤ f ≤ 255	Operanda:	-128 ≤ n ≤ 127
	0 < b < 7 a ∈ 0,1	Operation:	if Overflow bit is '+' (PC) + 2 + 2n → PC
Operation.	(d>) (d>) 	Status Affected:	None
Status Affected:	None	Encoding:	1110 0100 nnnn nnnn
Encoding Description:	Bit 'b' In data memory location 'f' is inverted	Description:	If the Overflow bit is '1', then the program will branch. The 2's complement number '2n' is
	If 'a' is 'c', the Access Bank is selected. If 'a' is 'c', the BSR is used to select the OPR bank (detault).		added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be
	If 'a' is 'o' and the extended instruction set is enabled, this instruction operates		PC + 2 + 2n. This instruction is then a two-cycle instruction.
	in Indexed Literal Offset Addressing	Words.	1
	mode whenever t ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and	Cycles:	1(2)
	Bit-Oriented Instructions in Indexed	Q Cycle Activity	
	Literal Offset Mode" for details.	If Jump:	
Words:	1	_ Q1	Q2 Q3 Q4
Cycles:	1	Decode	Read Iteral Process Write to PC 'n' Data
Q Cycle Activity: Q1	02 03 04	No	No No No
Decode	Read Process Write	operation If No Jump:	operation operation operation
	register f Data register f	Q1	Q2 Q3 Q4
Example.	RTG PORTC, 4, 0	Decode	Read Iteral Process No 'n' Data operation
Betore Instruct PORTC After Instruction	- 0111 0101 [75h] on:	Example. Before Instru	IIRRR BOV Jump
PORTC	- 0110 0101 [65h]	Atter Instructu Atter Instructu If Over/I PC If Over/I PC	- address (HERE) on ow - 1, = address (.trong.) ow = 0;

🕸 2004 Microchip Technology Inc.

ΒZ		Branch if	Zero		CALL	Subroutine	Call	
Synk	ΞΧ.	BZ n			Syntax.	CALL k (,s)		
Oper	randa:	-128 s n s 1	127		Operands:	0 ≤ k ≤ 104857	75	
Oper	ration:	if Zero bit is	• •			s⊂[0,1]		
		(PC) + 2 + 3	2n ⇒ PC		Operation:	$(PC) + 4 \rightarrow TO$ $k \rightarrow PC<20.1>$		
Statu	is Affected:	None				rts=1	-,	
Enco	oding:	1110	0000 nn	nn nnnn		$(W) \rightarrow WS,$		
Desc	ription:	if the ∠ero I will branch.	bit is '1', then	the program		(Status) → STA (BSR) → BSR		
			nplement nur		Status Affected:	None		
			e PC. Since the d to fetch the	e PC will have	Encoding.			
			the new addr		1st word (k :0)		106 k _y k	· ·
			1. This instruc	tion is then a	2nd word(k<19.8>)		okkk kkk	
		two-cycle in	struction.		Description:	Subroutine call memory range		
Word		1				(PC + 4) is pus		
Cycle		1(2)				stack. If 's' - 1		
-	ycle Activity:					registers are al		
if Ju	imp:	~~	~~			respective sha STATUSS and		
	Q1 Decode	Q2 Read literal	Q3 Process	Q4 Write to PC		update occurs		
	Decode	'n'	Data	write to FC		20 bil value 'k'		
	No	No	No	No		CALL is a two	i-cycle insin	uchon
	operation	operation	operation	operation	Words.	2		
It No	o Jump:				Cycles:	2		
	Q1	02	Q3	04	Q Cycle Activity.			
	Decode	Read literal	Process Data	No	Q1 Decode	Q2 Read literal Pu	Q3 ush PC to	Q4 Read literal
	1				Decode	'K'	stack	'k'<19:8>.
Exan	nple.	UERE	BZ Jump			1 ,		Write to PC
	Betore Instru	ction			No	No	No	No
	PC		dress (FIRRR	5	operation	operation o	operation	operation
	After Instruct							
	If Zero PC		dress (Jump)	Example.		ALL TIR	RT. I
	It ∠ero PC	= 0; - ad	dress (HERE	1.25	Before Instruct PC	tion - address (1		
					After Instruction		many	
					PC	- address {		
					TOS WS	= W	HRRR + 4	2
					BSRS STATUS	- BSR S- Slalus		
					31/103			

Preliminary

 \otimes 2004 Microchip Technology Inc.

CLRWDT None $000h \rightarrow WDT$,

TO, PD

operation

CLRWDT

and PD are set.

Clear Watchdog Timer

 $\begin{array}{l} 000h \rightarrow WDT \ \text{postscaler}, \\ 1 \rightarrow \overline{TO}, \\ 1 \rightarrow PD \end{array}$

0000 0000 0000 0100 CLRNDTP instruction resets the Watchdog Timer. It also resets the postscaler of the WDT. Status bits TO

Q3

Process

Data

7

00h

0 = 1 1 -

-

-- Q4

No

operation

CLRF	Clear f	CLRWDT	Clear
Syntax.	CLRF f {,a}	Syntax.	CLRW
Operands:	0 ≤ f ≤ 255	Operanda:	None
	ас [0,1]	Operation:	000h -
Operation:	000h ⇒f 1 ⇒Z		000h 1 → <u>T</u>
Status Affected:	z		1 → P
Encoding:	1111 1014 FEEL FEEL	Status Affected.	TO, PI
Description:	Clears the contents of the specified	Encoding:	000
	register	Description:	CLRM
	If 'a' is 'o', the Access Bank is selected. If 'a' is '1', the BSR is used to select the		Watch
	OPR bank (default).		and Pl
	If 'a' is 'o' and the extended instruction	Words.	1
	set is enabled, this instruction operates	Cycles:	1
	in Indexed Literal Offset Addressing mode whenever t ≤ 95 (5Fh), See	Q Cycle Activity	
	Section 25.2.3 "Byte-Oriented and	Q1	Q2
	Bit-Oriented Instructions in Indexed	Decode	No
	Literal Offset Mode" for details.		operati
Words:	1		
Cycles:	1	Example:	CLRWE
Q Cycle Activity:		Before Instruc	
_ Q1	Q2 Q3 Q4	WDT Co After Instructi	
Decode	Read Process Write	WDT Co	
	register 'f' Data register 'f'	WDT Po	stscaler
Example.	CLRF FLAG RRG, I		
Before Instruc	tion		
FLAG_R			
After Instruction FLAG R			
LEG2	LO - VVI		

to 2004 Microchip Technology Inc.

COMF	Complement f	CPFSEQ	Compare f with W, Skip if f = W
Syntax:	COMF _ f {,d {,a}}	Syntax:	CPFSEQf {,a}
Operands.	0 < f < 255	Operands.	0 < [< 255
	d ∈ [0,1]		a e 0,1
	a <u>c</u> [0,1]	Operation.	(I) (VV).
Operation:	(Î) → dest		skip if (f) = (W) (unsigned comparison)
Status Affected.	N, Z	Status Affected:	None
Encoding:	0001 11da tttt tttt	Encoding:	0110 001a 1111 1111
Description:	The contents of register 'f' are complemented. If 'd' is '1', the result is stored in W. If 'd' is '0', the result is	Description:	Compares the contents of data memory location 'f to the contents of W by performing an unsigned subtraction
	stored back in register "f' (detault).		If T - W, then the fetched instruction is
	If 'a' is '0', the Access Bank is selected.		discarded and a NOP is executed
	It 'a' is '1', the BSR is used to select the GPR bank (default).		instead, making this a two-cycle instruction.
	If 'a' is 'u' and the extended instruction		It 'a' is 'v', the Access Bank is selected.
	set is enabled, this instruction operates		If 'a' is 'o', the BSR is used to select the
	in Indexed Literal Offset Addressing mode whenever t ≤ 95 (5Fh), See		GPR bank (default)
	Section 25.2.3 "Byte-Oriented and		If 'a' is 'o' and the extended instruction
	Bit-Oriented Instructions in Indexed		set is enabled, this instruction operates In Indexed Literal Offset Addressing
	Literal Offset Mode" for details.		mode whenever f < 95 (5Fh). See
Words:	1		Section 25.2.3 "Byte-Oriented and
Cycles.	1		Bit-Oriented Instructions in Indexed Literal Offset Mode" for details
Q Cycle Activity:		Words:	1
Q1	Q2 Q3 Q4	Cycles:	1(2)
Decode	Read Process Write to register 'f' Data destination	0,000	Note: 3 cycles if skip and followed by a 2-word instruction
Example.	COMP REG, 0, 0	Q Cycle Activity:	
		Q1	Q2 Q3 Q4
Before Instruct REG	- 13h	Decode	Read Process No
Atter Instructio		lf skip:	register 'f' Data operation
REG	- 13h = FCh	01	02 03 04
00		No	No No No
		operation	operation operation operation
			d by 2-word instruction:
		Q1	Q2 Q3 Q4
		operation	operation operation operation
		No	No No No
		operation	operation operation operation
		<u>Example:</u>	NEQUAL : NEQUAL :
			IONIAL :
		Before Instruc PC Adds	ston ess = mexic
		w	= ?
		REG After Instructio	- ?
		After Instruction	- W;
		PC If REC	 Address (RQUAL)
		PC	

Syntax:	OPESCI 1							
Commenter	0110011	t {,a}		Synt	BIX:	CPESLI	f {,a}	
Operands.	0 < f < 255 a ∈ [0,1]			Oper	ands.	0 < f < 255		
Operation.	(0) (W),			-		a ∈ [0,1]		
operation	skip if (f) = (w)		Oper	ation.	(l) (W), skupit(t) <	(W)	
	(unsigned c	omparlaon)					comparison)	
Status Affected	None			Statu	is Affected:	None		
Encoding:	0110	010a ff:	1 1	Enco	ding.	0110	000a ff	** ****
Description:	location 'f' to	he contents of the contents an unsigned s		Desc	ription:		the contents o to the contents	fdata memory sofWby
		-	eater than the				an unsigned s	
		WRFG, then					ents of "I" are le " VV, then the te	
		s discarded ar stead, making					is discarded a	
	two-cycle in		,				nstead, making	g fhis a
			nk is selected.			two-cycle i If is in it	netruction. the Access Ba	nk is selected
	GPR bank (d to select the					d to select the
	1		ed instruction			GPR bank	(defaull).	
			ction operates	Word	is:	1		
		literal Offset / evert≲95 (5)	~	Cycle	351	1(2)		
	Section 25.2.3 "Byte-Oriented and						cycles if skip a a 2 word instr	
		d Instruction et Mode" for	s in Indexed	0.0	vcle Activity:	0,		iocdon.
Words:	1	et mode for	detallo.		01 01	02	03	04
Cycles:	1(2)				Decode	Read	Process	No
-,	1.1	ydles if skip a	nd followed			register 'f	Data	operation
	by :	a 2-word Instr	uction.	lf sk		~~		
Q Cycle Activity					Q1	Q2	Q3	Q4
Q1 Decode	Q2 Read	Q3 Process	Q/I No		operation	operation	operation	operation
TRUE IN	register "	Data	operation	lt sk	up and tollowe	ed by 2-word in	struction:	
lf skip.					01	02	03	04
Q1	Q2	Q3	Q4		No	No	No	No operation
No operation	No operation	No operation	No operation		operation No	operation No	operation No	No
If skip and followed					operation	operation	operation	operation
Q1	02	Q3	Q4					
No	No operation	No operation	No operation	Exar	nple.		CDESLT RRG.	, 1
No	No	No	No			LESS LESS	-	
operation	operation	operation	operation		Before Instru		-	
Example.	UFDF	CPESCT RE	77: 0		PC	- A4	idress (HERE	0
example:	NGREATER				W Atter Instruct	= 2		
	CREATER	:			If REG	< W		
Betore Instruct PC		irooo immen	1		PC If REG	2 W		-
W	= 2	dress (HERE	1		PC		idress (NLTS)	S)
After Instructio								
IFREG PC		dress (Galos	1102)					
If REG	≤ W;							

🕸 2004 Microchip Technology Inc.

DAW	Decimal A	Adjust W Re	gister	DECF	Decreme	nt f	
Syntax.	DAW			Synlax.	DECF (,	d (,a)}	
Operands: Operation	None If [W/<3:0=:	None If [W<3:0+ ≈9] or [DC = +] then			0 ≤ 1 ≤ 255 d ∈ [0,1]		
	· · · · · · /	6 → W<3:0×;			a e [0,1]		
	else antenes s	101-10-0-		Operation.	(l) 1 ⇒ di	esl	
	(W<3:0>) -	→ W<3:0>;		Status Affected:	C, DC, N, (DV, Z	
		≈9] or [C = +] f 6 → W<7:4>;		Encoding: Description:	occo Decrement	orda – Ff register 'f', if '	rr rrrr 'd'ls'o', the
	C = 1; else (W<7.4>)	> ₩ < 7.4>,		·		ared in W If 'd ared back in re	
Status Affected:	G				lf "a" is "v", f	the Access Ba	nk is selected.
Encoding [.]	0000 0000 0000				lf 'a' is '1', l CPR bank	he BSR is use (detault).	ed to select the
Description:	resulting fro variables (e	s the eight-bit v om the carlier a each in packed es a correct pa	ddition of two BCD format)		set is enab In Indexed mode when	ind the extend led, this instru Literal Offset / never f < 95 (5 5.2.3 "Byte-Or	ction operates Addressing Fh) Scc
Words.	1				Bil-Oriente	ed Instruction	is in Indexed
Cycles:	1				Literal Off	set Mode" for	details.
Q Cycle Activity				Words.	1		
Q1	Q2	Q3	Q1	Cycles:	1		
Decode	Read	Process	Write	Q Cycle Activity			
	register W	Data	w	Q1	92	Q3	Q-1
Example 1:	DAW			Decode	Read register 'f'	Process Data	Write to destination
Before Instruc	tion						
w c	- A5h - 0			Example:	DECF	сыт, 1, 0	
йс	= 0			Before Inst	ruction		
After Instructi				CNT Z	- 01h - 0		
w	= 05h = 1			Atter instru	-		
DC	- ċ			CNT	- 00h		
Example 21				7	= 1		
Before Instruc							
w	= CFh = 0						
DC	- Ó						
After Instructi							
w	- 3/1h - 1						
DC	= 0						

DS39637A page 380

Preliminary

© 2004 Microchip Technology Inc.

DECF	SZ	Decremer	nt f, Skip if ()	DCFSN	IZ	Decreme	nt f, Skip if ı	not 0
Syntax	-	DECESZ ((,d (,a))		Syntax.		DCFSNZ	[{,d {,a}}}	
Operar	nde:	0 ≤ f≤ 255 d ⊂ [0,1] a ∈ [0,1]		Operand	le:	0 ≤ f ≤ 255 d ⊂ [0,1] a ∈ [0,1]			
Operal	ion.	(f) 1 ⇒ desl, skap if result = 0		Operatio	ип.	(I) 1 ⇒ de skup it resul			
Status	Affected.	None			Status A	ffected	None		
Encod		0010	11da 110		Encodin		0100	11da tti	
Descrip	•	The content decremente placed in W placed back	is of register ' d. If 'd' is 'o', (. If 'd' is ' i', li (in register 'f'	f are the result is result is (detault).	Descript	*	The conten decrements placed in V placed bac	ts of register " ed. If 'd' is 'o', ' /. If 'd' is 'i ', U k in register 'f'	f are the result is result is (default).
		which is all and a NOP is it a fwo-cycl	le instruction	s discarded slead, making			instruction discarded a	tis not 'n', the which is alread and a NOP is es aking it a two-d	ty tetched is xeculed
		lf 'a' is 'u', ff GPR bank (te BSR is use (default).	nk is selected. d to select the ed instruction			lf 'a' is 'o', t	he Access Bar he BSR is use (defaull).	
	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever t ⊴ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				sel is enab in Indexed mode wher Section 25 Bit-Oriente	Literal Offset / hever f ≤ 95 (5 .2.3 "Byte-Or ed Instruction	ction operates Addressing Fh). See iented and is In Indexed		
Words		1						set Mode [®] for	delaris.
Cycles	:	1(2)			Words:		1		
			ycles if skip a a 2-word Inati		Cycles:			cycles if skip a a 2-word instr	
Q Cyc	le Activity- Q1	02	Q3	Q1	Q Cycle	e Activity:	.,		
Г	Decode	Read	Process	White to	,	Q1	02	03	Q4
	TALLICA.	register 'f'	Data	destination	1	Decode	Read	Process	Write to
lf skip							register 'f	Data	destination
_	Q1	Q2	Q3	01	lf skip:				
	No	No	No	No	1	Q1	Q2	Q3	Q4
	operation	operation d by 2-word in:	operation struction:	operation		No peration	No operation	No operation	No operation
ii anh	Q1	Q2	Q3	Q4			d by 2-word in		
Г	No	No	No	No	-	Q1	Q2	Q3	Q4
	operation	operation	operation	operation		No	No	No	No
	No	No	No	No	0	peration	operation	operation	operation
L	operation	operation	operation	operation		No peration	No operation	No operation	No operation
Examp	le:	HERE	DECESE COTO	CNT, 1, 1 LOOP	Example		HERE	DCFENZ TEN	
п	efore Instruc	lion					NZERO	:	
2.	PC		(HERE)		Bet	fore Instruc	tion		
A	fter Instructk					TEMP	-	7	
	CNT If CN I	= CNT - 1 = 0:			A04	er Instructio TEMP	=	IEMP – 1.	
	PC		CONTINUE	2)		ITEMP	-	0;	
			,						
	IF CNT PC	+ 0;	FIERE 1 2	0		PC IT LEMP	= #	Address (: 0:	XIGRD)

to 2004 Microchip Technology Inc.

GOT	ю	Unconditi	ional Branc	h	INCF	Incremen	tf	
Synta	1X.	GOTO k			Syntax.	INCE [{,d	i {,a}}	
Oper	anda:	0 ≤ k ≤ 104	8575		Operands:	0 ≤ f ≤ 255		
Oper	ation:	$k \to PC {<} 20$	r1>			d r [0,1]		
Statu	s Affected:	None			Operation.	a ∈ 0,1 (1) + 1 ⇒ de		
Enco	ding:				Status Affected:			
1sl w	ord (k<7.0>)		IIII k ₂ k			C, DC, N,		
2nd v	vord(k<19:8>)	1111	k ₁₂ kkk kki	kk kkkk _v	Encoding			1111 11
Description. COTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1> GOTO Is always a two-cycle instruction.		Description:	The contents of register 'f' are incremented. If 'd' is 'u', the result is placed in W. If 'd' is 'u', the result is placed back in register 'f' (default). If 'a' is 'u', the Access Bank is selected. If 'a' is 't', the BSR is used to select the					
Word	la:	2				CPR bank	Contraction of the	
Cycle	5	2					nd the extend led this instru	ed instruction ction operates
00	ycle Activity.					In Indexed	Literal Offact /	Addressing
	Q1	Q2	Q3	Q4			ever f < 95 (5 .2.3 "Byte-Or	
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC		Bil-Oriente Literal Offe	ed Instruction set Mode" for	is in Indexed
	No	No	No	No	Words.	1		
	operation	operation	operation	operation	Cycles:	1		
					Q Cycle Activity			
Exan	nple:	COTO THE	RΈ		Q1	Q2	Q3	Q1
	After Instructio				Decode	Read	Process	Write to
	PC -	Address (T	HERE)			register 'f'	Data	destination

Example:	INCF
Before Inst	ruction
CNT Z G	- FFh - 0
DC After Instru	= ? - ?
GNT Z DC	= 00h - 1 = 1 = 1

DS39637A page 382

CHT, 1, 0

INCF	SZ	Incremen	t f, Skip if 0		INF	SNZ	Incremen	t f, Skip if n	ot 0
Synta	1X.	INCESZ ((,d (,a))		Synt	BX.	INESNZ (([s,] b,]	
	ands:	0 ≤ f ≤ 255	v- v-n		Oper	ands:	$0 \le t \le 255$		
open		d c [0,1]			-		d c [0,1]		
		a e 0,1					a ∈ [0,1]		
Opera	alion	(n) + 1 ⇒ de	nd		Oper	ation.	(f) + 1 ⇒ de	est,	
open	duon:	skip it result					skip if resul	1 7 0	
Sister	s Affected.	None			Statu	is Affected.	None		
		1 1			L Enco	ding:	0100	10da [[2222 22
Enco	ding:	0011	11da tt:		Desc	aiplion.	The conten	ls of register "	l'are
Desc	ription:		ts of register 'f					d. lit 'd' is 'o', t	
			d. If "d" is "o", ti Auro-constante				placed in V	/. If "d" is "1", th	ne result is
			/. If 'd' is ' i', th k in register 't'				placed bac	k in register 'f'	(default)
		-	is '0', the next					is not "e", the	
			eady tetched i					which is alread	
			s executed ins					and a NOP is ea sking it a two o	
			le instruction				instruction.	iking it a two c	ijue
		lf 'a' la 'o', t	he Access Bar	nk is selected.				he Access Ba	nk is selected.
				d to select the					d to select the
		GPR bank	. ,				GPR bank	(default).	
			nd the extend				lf 'a' is 'u' a	nd the extend	ed instruction
				ction operates					ction operates
			Literal Offset / levert≤95 (5)	-				Literal Offset /	
			.2.3 "Byte-Or					nevert≤95(5 .2.3 "Byte-Or	-
			d Instruction						s in Indexed
		Literal Offs	set Mode" for	detalla.				set Mode" for	
Word	ls:	1			Word	is-	1		
Cycle	8:	1(2)			Cyck	P8.	1(2)		
-/		1.1	ydes if skip a	nd followed	0,0		3.6	ydes if skip a	nd followed
			a 2-word Instr					a 2-word instr	
0.0	vole Activity				0.0	ycle Activity			
	Q1	Q2	Q3	Q1		Q1	02	03	04
1	Decode	Read	Process	Write to	1	Decode	Read	Process	Write to
	Transa and	register 'f'	Data	destination		Decode	register 'f	Data	destination
lf ski	in [.]				lf sk	in:	regioner	0010	de administration i
	Q1	Q2	Q3	Q1		Q1	Q2	Q3	Q4
1	No	No	No	No	1	No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf ski		d by 2-word in			If sk		d by 2-word in		operation
	Q1	Q2	Q3	Q1		Q1	Q2	Q3	Q/1
1	No	No	No	No	1	No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
1	No	No	No	No	1	No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
					-				
<u>Exam</u>	ipie:	NZERO	INCFSZ CE : :	PT, 1, 0	Exar	nole:	HERE ZERO NZIGKO	INPSNZ REG	3, 1, 0
	Before Instruc	tion				Before Instruc	tion		
	PC		(HIGRIC)			PC		s (HRRR)	
	After Instruction	n				After Instructs			
	CNT	- CNT+1	1			REG	- REG +	1	
	IF CNT PC	= 0; - Address	(ZERO)			If REG PC	→ 0; = Address	5 (NZERO)	
	IF ON T	/ 0,				IFREG	- O,		
	PC	 Address 	(NZICRD)			PC	= Address	(210/C)	

to 2004 Microchip Technology Inc.

IORLW	Inclusive OR Literal with W					
Syntax.	IORLW k					
Operands:	0 ≤ k ≤ 255					
Operation:	(W) OR $k \rightarrow W$					
Status Affected:	N, Z					
Encoding:	0000 1001 kkkk kkkk					
Description.	The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.					
Words:	1					
Cycles.	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	Read Process Write to W literal 1k' Data					
Example:	токтик тел					

Before Instruction

w After Instruction

= 9Ah

IORWF	Inclusive	ÓRW	with f		
Syntax.	IORWE ([(s,) b,]			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation.	(W) .OR. (I)) ⇒ dest			
Status Affected:	N, Z				
Encoding	0001	00da	LLLL	LLLL	
Description:	 'o', the result is (default). if 'a' is 'o', t if 'a' is 'i', t OPR bank if 'a' is 'o' a set is enable in Indexed mode when 	Inclusive OR W with register 'f'. If 'd' is 'o', the result is placed in W. If 'd' is 'r', the result is placed back in register 'f' (default). If 'a' is 'v', the Access Bank is selected. If 'a' is 'v', the BSR is used to select the CPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f < 95 (SFh). See Section 25.2.3 "Byte-Oriented and			
	Literal Offe	set Mode	e" for deta	ıls.	
Words.	1				
Cycles:	1				
Q Cycle Activity					
01	Q2	Q3		Q-1	
Decode	Read	Proce		Write to	
	register 'f'	Data	a dea	stination	

Example: I	ORME	RESULT,	Ο,	1
------------	------	---------	----	---

13h 91h
13h 93h

DS39637A page 384

Preliminary

© 2004 Microchip Technology Inc.

LFS	R	Load FSF	۶		MOVF	Move f
Synta	5X.	LESR f, k			Syntax.	MOVF [(,d (,a))
Open	ands:	0 ≤ 1 ≤ 2 0 < k < 409	5		Operanda:	0 ≤ f ≤ 255 d ⊂ [0,1]
Open	ation:	$k \to FSRf$				a e [0,1]
Statu	s Affected:	None			Operation.	f > desl
Enco	ding:	1110	1110 00 0000 k _T k		Status Affected: Encoding	N, Z
Desc	ription:		lteral 'K' la loa ogister pointer		Description:	The contents of register 'f are moved to a destination dependent upon the
Word	la:	2				status of 'd'. If 'd' is 'o', the result is placed in W. If 'd' is '1', the result is
Cycle	×5.	2				placed back in register 'f' (default).
0 03	ycle Activity.					Location 'I' can be anywhere in the
	Q1	Q2	Q3	Q4		256-byte bank. If 'a' is '0', the Access Bank is selected.
	Decode	Read literal 'K' MSB	Process Data	Write Iteral 'k' MSB to ESRfH		If a is '0', the RSR is used to select the GPR bank (default).
Exam	Decode	Read literal TK1 SB	Process Data	Write literal 'k' fo FSRfl		set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever t ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed
	After Instructi					Literal Offset Mode" for details.
	FSR2H FSR2L	= 03 - AB			Words:	1
					Cycles.	1
					Q Cycle Activity:	
					01 Decode	02 03 04 Read Process Write W register T Data
					Example.	MOVE REG. 0. 0
					Before Instr REG W	uction - 22h = FFh

After Instruction RFG W

= 22h = 22h

🕸 2004 Microchip Technology Inc.

MOVFF	Move f to	f		MOVLB	Move Lite	ral to Low N	libble in BSR	
Syntax.	MOVEE (,	"la		Syntax.	MOVLW k			
Operands:	$0 \le f_{\rm S} \le 408$	95		Operands:	Operanda: 0 ≤ k ≤ 255			
	$0 \le f_{\rm cl} \le 409$	15		Operation:	$k \to BSR$			
Operation:	$(f_{\rm S}) \rightarrow f_{\rm d}$			Status Affected:	None			
Status Affected:	None			Encoding:	Encoding: 0000 0001 kkkk kkkk			
Encoding:				Description.	The eight b	il literal 'k' is l	loaded into the	
1st word (source)	1100						SR). The value	
2nd word (deatin.)	1111	tttt tt	11111 1111			I> always rem of the value of		
Description:		ts of source re estination regi	·· ·	Words:	1	or me, vanas, o	0.07.04	
		source 'f,' car			1			
		-byte data apa	· ·	Cycles:	1			
	P P	location of des anywhere tro		Q Cycle Activity.	Q2	Q3		
	FFFh.	anywnere ny	000110	Q1 Decode	Read	Process	Q4 Write fileral	
	Either sour	ce or destinati	on can be W	Decode	literal 'k'	Data	'k' to BSR	
	(a useful sp	ecial situation).					
		particularly use		Example:	NOVER	5		
) a data memor register (such a	r	Before Instruc	tion			
	buffer or an			BSR Reg		'n		
		instruction ca		After Instructio BSR Reg		h		
	PCL, TOSU destination), TOSH or TO register	SL as the	201110,				
Words:	2							
Cycles:	2 (3)							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read	Process	No					
	register 'f'	Data	operation					
Decode	(src) No	No	While					
01000	operation	operation	register 't'					
	No dummy		(desl)					
	read							
Example:	MOVER	REG1, REG2						
Before Instruc	lion							
REC1	= 33							
REG2 After Instructio	- 11 m	п						
REG1	- 33	h						
REG2	- 33	h						

MOVLW	Move Literal to W					
Syntax.	MOVLW k					
Operands:	0 ≤ k ≤ 255					
Operation:	$k \rightarrow W$					
Status Affected:	None					
Encoding:	0000 1110 kkkk kkkk					
Description.	The eight bit literal 'k' is loaded into W.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	Read Process Write to W literal 'k' Data					
Example:	ROVIN SAN					

After Instruction

W = 5Ah

MOVWF	Move W t	o f					
Syntax.	MOVWE	{s,}]]					
Operanda:	0 ≤ f≤ 255 a ⊂ [0,1]						
Operation:	$(W) \to f$						
Status Affected:	None						
Encoding:	0110	111a	tttt				
Description:	Location 'f'	Move data from W to register 'f'. Location 'f' can be anywhere in the 258-byte bank					
	lf 'a' la 'o', ti lf 'a' is '⊤', ti CPR bank (he BSR is					
	lf 'a' is '0' a	nd the ext	ended in	struction			
	set is enabl						
	in Indexed I mode when			~			
	Section 25	.2.3 "Byte	-Orlente	ed and			
	Bit-Oriente Literal Offs						
		set mode	lor deta	118.			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	02	G3		Q4 .			
Decode	Read register 'f'	Proces Data	•	Write glater 'f'			
Example.	MOVWP	RRG, O					
Before Instruc	tion						
W REG	- 4Гh = FFb						

After Instruction

W REG

- 4Fh = 4Fh

ಟ 2004 Microchip Technology Inc.

MULLW	Multiply Literal with W	MULWF	Multiply W with f			
Syntax:	MULLW k	Syntax:	MULWF f{,a}			
Operands.	0 < k < 255	Operands.	0 < f < 255			
Operation:	(W) $x k \rightarrow PRODH:PRODL$		a e [0,1]			
Status Affected:	None	Operation.	$(W) \times (I) \rightarrow PRODII.PRODL$			
Encoding:	0000 1101 RRRR RRRR	Status Affected:	None			
Encoding: 0000 1101 Rick Rick Rick Description: An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the status flags are affected. Note that netther overflow nor carry is possible in this operation. A zero result is possible in this operation. A zero result		Encoding: Description:	An unsigned multiplication is carried out between the contents of W and the register file location "f". The 16-bit result is stored in the PRODILPRODL register pair. PRODH contains the high byte. Both W and "f are unchanged None of the status flags are affected. Note that neither overflow nor carry is			
Words.	1		possible in this operation. A zero			
Cycles:	1		result is possible but not detected.			
Q Cycle Activity.			If 'a' is 'u', the Access Bank is selected. If 'a' is 'i', the BSR is used to select the CPR bank (detault). If 'a' is 'n' and the extended			
Q1	Q2 Q3 Q4					
Example: Defore Instruc	Read Process Write Iteral 'k' Data registers PRODI. PRODL NULLIK 0021h slion		in a to in and the extended instruction set is enabled, this instruction operates in indexed Literal Offset Addressing mode whenever t ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
W	= <u>E</u> 2h	Words:	1			
PRODL	- ?	Cycles.	1			
Atter Instruct) W	on - E2h	Q Cycle Activity:				
PRODH	= ADh	Q1	Q2 Q3 Q4			
PRODL	= 08h	Decode	Read Process Write register 'f' Data registers PRODH: PRODL			
		Example.	MULWE RRG, I			
		Before Instru W RFG PRODL PRODL After Instruct W REG PRODL PRODL	- C4h = B5h = ? - ? ion - C4h - B5h = 8Ah			

NEGF	Negate f							
Syntax.	NEGF f(, Β }						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	(f)+1⇒f							
Status Affected:	N, OV, C, D	C, 7						
Encoding:	0110	110a t	ttt	****				
Description:	complemen	Location 't' is negated using two's complement. The result is placed in the data memory location 'f'						
		ne Access B ne BSR is us (default).						
	If 'a' is 'n' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever t ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	02	Q3		04				
Decode	Read	Process		inte				
	register 'f	Data	regia	ster T				
Example.	NECE D	πG, I						
Betore Instruct REG	Before Instruction REG - 0011 1010 [3Ah]							

NOF	NOP No Operation								
Synb	£Χ.	NOP							
Oper	anda:	None							
Oper	ation:	No operation	No operation						
Statu	s Affected:	None							
Enco	ding:	0000	0000 XXXXX	000					
Desc	inption:	No operate	No operation.						
Word	s.	1	1						
Cycle	98:	1							
QC	ycle Activity								
	Q1	Q2	Q3	;	Q-1				
	Decode	Nn operation	Nn operat	ion	No operation				
					_				

Example:

None

@ 2004 Mic	rochip Tech	inology Inc.
------------	-------------	--------------

After Instruction

REG - 1100 0110 [C6h]

POP	Pop Top of Return Stack	PUSH	Push Top of Return Stack			
Syntax.	POP	Syntax.	PUSII			
Operands:	None	Operands:	None			
Operation:	$(TOS) \rightarrow bit bucket$	Operation:	$(PC + 2) \rightarrow TOS$			
Status Affected:	None	Status Affected:	None			
Encoding:	0000 0000 0000 0000	Encoding:	0000 0000 0000 0101			
Description.	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.	Description.	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing a software stack by modifying TOS and then pushing it onto the return stack			
Words:	1	Words:	1			
Cycles:	1	Cycles:	1			
Q Cycle Activity:		Q Cycle Activity.				
Q CYCIE ACIANY. 01	02 03 04	Q1	Q2 Q3 Q4			
Decode	No POP IOS No operation value operation	Decode	POSIT NO NO PC + 2 onto operation operation return stack			
Example:	POP COTO NEW	Example:	FUEH			
Before Instruc TOS Stack (1		Before Instruc TOS PC	- 345Ah - 0124h			
After Instructi TOS PC	en = 014332h - NEW	After Instructio PC IOS Stack (1	on = 0126h = 0126h level down) - 345Ah			

DS39637A page 390

Preliminary

 \otimes 2004 Microchip Technology Inc.

RCALL	Relative	Call		RESET	Reset				
Syntax.	RCALL n		Syntax.	RESET	RESET				
Operands:	-1024 ≤ n s	: 1023		Operanda:	None				
Operation:	(PC) + 2 → (PC) + 2 +	r		Operation:		Reset all registers and flags that are affected by a MCLR Reset.			
Status Affected:	None			Status Affected:	All				
Encoding:	1101	lnnn nr	nnn nnnn	Encoding:	0000	0000	1111	1111	
Description:		call with a ju irrent location	mp up to 1K First, return	Description:	This instru execute a		vides a wa eaet in sofi		
		'C + 2) is pusi n. add the 2's		Words:	1				
			ince the PC will	Cycles. 1					
		mented to tet		Q Cycle Activity:					
		, the new add n. This instru		Q1	Q2	Q:	3	Q4	
	two-cycle li		CUOTI No el	Decode	Start Resel	No operal		No eration	
Words:	1			I					
Cycles.	2			Example:	RIGHT				
Q Cycle Activity:				After Instruction					
_ Q1	02 03 04		Register						
Decode	Read literal 'n'	Process Data	Winte to PC	Hags"	= Reset	Value			
	PUSH PC to stack								
No	No	No	No						
operation	operation	operation	operation						
Example.	TIRRE	RCALL Jun	p						
Before Instruction PC - Address (ITRRE)									

After Instruction

PC - Address (Jump) TOS - Address (ITERE + 2)

© 2004 Microchip Technology Inc.

RETFIE Return from Interrupt		t	RET	RETLW Return Literal to V			teral to W			
Syntax.	RETFIE (s)			Synta	ж.		RETLW k			
Operands:	s ⊾ [0,1]			Open	anda:		$0 \le k \le 255$			
Operation:	if s = 1	IEH or PEIE/G	HEL,	Operation	Operation:		k → W, (TOS) → P PCLATU, P	C, CLATH are u	nchanged	
	$(WS) \rightarrow W$) → Status,		Statu	a Affect	ted:	None			
	(BSRS) →			Enco	ding:		0000	LIDD kk	kk kkkk	
	PCLATU, P	CLATH are ur	nchanged.	Desc	ription:		W is loaded	d with the eigh	t-bit literal 'k'.	
Status Affected	· GIF/GIFH,	PEIE/GIEI							saded from the	
Encoding. Description:	0000 Return from	0000 0000 0001 000a Return from Interrupt, Stack is popped						tack (the retur ddress latch (F changed.		
		Slack (TOS) is		Word	s.		1			
		the PC. Interrupts are enabled by setting either the high or low priority					2			
	V	global interrupt enable bit. If 's' = 1, the			Cycles: Q Cycle Activity:		-			
		contents of the shadow registers, WS,				Q1		Q3	Q-1	
		STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default) 1			Decode No	Read	Process	POP PC		
	Status and						literal 'k'	Data	from stack, Write to W	
Words.	1					-	No	No	No	
Cycles:	2				opera	stion	operation	operation	operation	
Q Cycle Activit	lv.			Exam	ole:					
Q1	Q2	Q3	Q.4		CALL	TABL	E : W cont	ains table		
Decode	e No	No	POP PC		; offset value					
	operation	operation	from stack				; M now has			
			Set GIEI I or				; table	value		
No	No	Na	OIEL	TABL	Е					
operatio		operation	operation		NDDWIP			faet.		
1		1			RETLW		, Begin	table		
Example:	RETFIE	1			RICLIW	K.I	;			
After Inter		-								
PC = 105				REDW	Ъn	; Kni of	Lable			
W		 WS BSRS 		I	Before					
Statu	6	= \$1A10			W After In		= 07h			
GIE/	GIEH, PEIE/GIEL	- 1			Anter In W		n - value o	ſkn		

Syntax. RETURN (s) Operands: $a \in [0,1]$ Operands: $a \in [0,1]$ Operands: $a \in [0,1]$ Operands: $a \in [0,1]$ If $a = 1$ (MS) > 3K. (GSRS) > 5BR. PCI ATU, PCI ATH are unchanged Status Affected. None Encoding: 0000 0001 012 Description. Return from subtroutine. The stack is popped and the top of the stack (105) is loaded into their corresponding registers, WS, STATUSS and BSR, If 'S' 'o, no update of these registers occurs (detault). The contents of the stack (105) is loaded into their corresponding registers, WS, STATUSS and BSR, If 'S' 'o, no update of these registers occurs (detault). The contents of these and bSR, If 'S' 'o, no update of these registers occurs (detault). Words: 1 Q Cycle Activity: Coccide operation operation operation After interrupt PC = TOS 2 Q Cycle Activity: Gi Q Q Gi Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	RETURN	Return fr	om Subrouti	ne	RLCF	Rotate Left f through Carry
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Syntax.	RETURN	(s)		Synlax.	RLCF ((,d (,a))
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Operands:	ප⊂ [0,1]			Operanda:	0 ≤ f ≤ 255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Operation	$(TOS) \rightarrow P$	с,			
$\begin{array}{c c c c c c } (c c) \rightarrow dest < 0, & (c c) \rightarrow dest < 0, & (c c) \rightarrow dest < 0, & ($	-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Operation.	
PCI ATU, PCI ATH are unchangedStatus Affected:C, N. ZStatus Affected:NoneIncoding:0000 0001 0012Description:Return from subroutine. The stack is popped and the top of the stack (105) is loaded into the program counter. If $is=1$, the contents of the shadow register, WS, STATUSS and BSR, if $S'=-2$, the contents of the shadow register W, Status and BSR. If $S'=-6$, no update of these registers occurs (detault).The contents of register T are rotated one bit to the left through the Carry tig, if 'o' is 't', the result is stored back in register T (detault).Words:1Cyclea:2Q Cycle Activity:2Q Cycle Activity:QQ1Q2Q3Q4DecodeNo operationPC = TOSNo ProcessPC = TOSNo ProcessStatus AffectionQ1Q Cycle Activity:Q1Q Cycle Activity:Q1QC = TOSQ1QC = TOSCAQC = TOSCAQC = TOSCAReturn the intervent PC = TOSReturn to the status of t						
Status Affected. None Encoding: 0000 0001 UULE Description. Return from subroutine. The stack is poped and the top of the stack (1OS) is loaded into the program counter. If 'S'= 1, the contents of the shadow registers, W, Status and BSR, are loaded into their corresponding register, W, Status and BSR. If 'S''s 'o', no update of these registers occurs (detault). The contents of the shadow register 'f (default). Words. 1 Cycle Activity: Status Affected Literal Offset Q Cycle Activity: Q Q3 Q4 Decode No No No After interrupt PC = TOS PC = TOS Q Q3 Q4 Example: Mectiver Q Q3 Q4 Decode No No No No PC = TOS CO1 Q2 Q3 Q4 Example: Mectiver No No No PC = TOS PC = TOS Process Virthe to Data Process QCycle Activity: Q1 Q2 Q3 Q4 Example: No No No No No QC = TOS PC = TOS Process <t< td=""><td></td><td></td><td></td><td>changed</td><td>Status Affected:</td><td>к <i>г</i></td></t<>				changed	Status Affected:	к <i>г</i>
Description: Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the poptents of the stack (TOS) registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If $S^{-1} = 0$, no update of these registers occurs (detault). Words. 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 $\overline{Decode} Nn Process POP PC$ $\overline{Decode} Qperation operation oper$	Status Affected.	None				
Description.Return from subroutine. The stack is popped and the top of the stack (IOS) is loaded into the program counter. If $'s' = 1$, the contents of the stack (IOS) is loaded into their corresponding registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, WS, STATUSS and BSR. If $'s' = 0$, no update of these registers occurs (default).one bit to the left through the Carry tag. It 'd' is 't', the result is stored back in register' 't (default).Words.1Cycles:2Q Cycle Activity:2Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q2Q3Q1Q2Q3Q2Q3Q1Q2Q3Q2Q3Q2Q3Q4DecodeNoNoPC = TOSRECTURNAfter Interrupt PC = TOSRECTURNRECTURNRECTURNAfter Interrupt PC = TOSRECTURN	Encoding:	0000	0000 000	1 0018	Description:	The contents of register 'f' are rotated
is loaded into the program counter. If is 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If is '= 0, no update of these registers occurs (detaut).W. If 'd' is '1', the result is stored back in register '' (detaut).Words.1Status and BSR. If soluctionStatus and BSR. If select the GPR bank (default).If 'a' is 'n' and the extended instruction 	Description.	Return from	n subrouline. T	he slack is		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If $U^{c} = 0$, no updale of these registers occurs (detault).If 'a' is '0', the Access Bank is selected if 'a' is '0', the BSR is used to select the GPR bank (detault).Words.1 $U^{c} = 0$, no updale of these registers occurs (detault).If 'a' is '0', the Access Bank is selected if 'a' is '0' and the extended instruction operation operationWords.1Operation operationOperation Control (detault).Q Cycle Activity:Q1Q2Q3Q1Q2Q3Q4DecodeNa operation operationNa operation operationNa operationAfter Interrupt PC = TOSRECTIRENQ1Q2Q3After Interrupt PC = TOSRECTIRENQ1Q2Q3CorrQ2Q3Q4Q4DecodeNa operation operationNa operationNa operationNa operationAfter Interrupt PC = TOSRECTIRENQ1Q2Q3Q Cycle Activity:Q1Q2Q3Q4DecodeRead register 'f'Process DataWrite to destinationExample:RECTIRENRECGTICORCGRECGCTIC0C0Q2CorrCCC0C						-
registera, W, Status and BSR. If select the GPR bank (default). S' = 0, no updale of these registers occurs (detault). if 'a' is 'b' and the extended instruction set is enabled, this instruction Words. 1 Cycles: 2 Q Cycle Activity: Q 2 Q1 Q2 Q2 Q3 Q4 Process Pc and no peration operation operation No No No After interrupt PC = TOS						
$\frac{S^{2} - 0}{C}, \text{ no updale of lhese registers occurs (detault).}}$ Words. 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 $\frac{D_{Cocde} N_{D} Process}{Operation Operation} POP \ PC \\ Operation Operation Operation \\ Operation Operation \\ Operation Operation \\ Operation Operation \\ Operation$						r -
occurs (default).Words.1Qit2Q Cycle activity:2Q Cycle Activity:Addressing mode wheneverQ1Q2Q3Q4DecodeNoProcessPOP PCPOP PCDecodeNoNoNoNooperationoperationoperationoperationOperation		· ·				1 2
Words. 1 operates in Indexed Literal Offset Cycles: 2 Addressing mode whenever Q Cycle Activity: Image: Cycles activity: Image: Cycles activity: Image: Q1 Q2 Q3 Q4 Image: Q2 Q3 Q4 Q4 Image: Q2 Q3 Q4 Q4 Image: Q2 Q3 Q4 Q2 Q3 Q4 Image: Q2 Q3 Q4 Q2 Q3 Q4 Image: Q2 Q3 Q4 Q2 Q3 Q4 Image: Q2 Q3 Q4 Q4 Q2 Q3 Q4 Image: Q2 Q3 Q4 Q4 Q4 Q4 Q4 Q4						
Cycles. 2 1 2 1 </td <td>Words.</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	Words.	1				
Q Cycle Activity-	Cycles:	2				
Q1 Q2 Q3 Q4 Decode No Process POP PC No No Decode Instructions in indexed Literal Offset No No No No operation operation operation operation PC No No No After Interrupt PC TOS PC TOS Q1 Q2 Q3 Q4 Decode Read Process Write to C = 0 O1 0.02	Q Cycle Activity					
No No <th< td=""><td></td><td></td><td>Q3</td><td>Q1</td><td></td><td>-</td></th<>			Q3	Q1		-
No No No No operation operation operation operation Example: RECIVEN No No After Interrupt PC = TOS RECIVEN Q1 Q2 Q3 Q4 Decode Read Process Winte to destination Example: RLCP RRC, 0, 0 Before Instruction REG	Decode	No	Process	POP PC		Mode" for details
operation operation operation Example: RECTURN After Interrupt PC = TOS Vords: 1 Cycles. 1 Q Cycle Activity: 01 02 01 02 03 04 Decode Read Process Winte to destination Example: RLCP RRC, 0, 0 Before Instruction REG - REG - 110.0110		<u> </u>				C - register f
Example: RECITION After Interrupt PC = TOS QCycle Activity: Q1 Q2 Q3 Q4 Ubcode Read PC = TOS Virite to destination Example: RLCP REG - REG - REG - QCycle Activity: - Q1 Q2 Q3 Q4 Decode Read PC = TOS -						
Example: RETURN Q Cycle Activity: After Interrupt Q1 Q2 Q3 Q4 PC = TOS Decode Read Process Write to destination Example: RLOP RRO, 0, 0 Before Instruction REG - 1110 0110 C = 0 010 010	operation	operation	operation	operation	Words:	1
Example: RECURN After Interrupt PC = TOS Q1 Q2 Q3 Q4 Decode Read Process Write to register 'T Write to Data destination Example: RLOF RRO, 0, 0 Before Instruction C REG 110 0110					Cycles.	1
After Interrupt PC = TOS Q1 Q2 Q3 Q4 PC = TOS Decode Read Process Write to destination Example. RLOF RRC, 0, 0 Before Instruction C REG -	Example:	RETURN			Q Cycle Activity	r:
PC = TOS PC = TOS Decode Read Process Write to register 1" Data destination Example. RLOP RRO, 0, 0 Before instruction REG - 1110 0110 C = 0		nt				
Example. RLCP RRC, 0, 0 Before instruction REG - 1110 0110 C = 0					Decode	
Before Instruction REG - 1110 0110 C = 0					I	legisler Data destriation
REG - 1110 0110 C = 0					Example.	RLCF RRG, 0, 0
C = 0						ruction
After Instruction					After Instru	
RFG = 1110 0110 W = 1100 1100						
W = 1100 1100 C - 1						- 1

🕸 2004 Microchip Technology Inc.

RLNCF	Rotate Left f (No Carry)	RRCF	Rotate Right f through Carry
Syntax.	RLNCF f (,d (,a)}	Syntax.	RRCF [{,d {,a}]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	Operands:	0 ≤ 1 ≤ 255 ರ್ಡ[0,1] ಷ ∈ [0,1]
Operation.	$(\text{Fans}) \rightarrow \text{destan + 1s},$ $(\text{fs}/\text{s}) \rightarrow \text{destave}$	Operation.	$(f < n >) \rightarrow dest < n = 1>,$ $(f < 0 >) \rightarrow 0,$ $(C) \rightarrow dest < 7>$
Status Affected.	N, Z	Status Attested:	.,
Encoding:	0100 01da ffff ffff	Status Affected:	C, N, Z
Description:	The contents of register 'f' are rotated	Encoding.	0011 00da ++++ ++++
	one bit to the left. If 'd' is 'o', the result is placed in W. If 'd' is 't', the result is stored back in register 'f' (detault). If 'a' is 'n', the Access Bank is selected. If 'a' is 'n', the BSR is used to select the GPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed I iteral Offset Addressing mode whenever f's 95 (SFh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Description:	The contents of register 'f' are rotated one bill to the right through the Carry flag. If 'd' is 'u', the result is placed in W. If 'd' is 'u', the result is placed back in register 'f' (detault). If 'a' is 'n', the Access Bank is selected. If 'a' is 'n', the BSR is used to select the GPR bank (default). If 'a' is 'u' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever t ≤ 95 (5H). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1		registerf — ⊨
Cycles.	1		
,	1	Words.	1
Q Cycle Activity: Q1	02 03 04	Cycles:	1
Decode	Read Process Write to	O Cycle Activity.	
Decode	register 'f' Data destination	Q1	Q2 Q3 Q4
		Decode	Read Process Write to
Example.	RINCE REC, L, 0		register " Data destination
Before Instruct REG After Instruction	- 1010-1011 N	<u>Example:</u> Before Instruc	RRAF REG.O.O
REG	- 0101 0111	REC C	= 1110 0110 - 0
		After Instructi	5
		REG W C	- 1110 0110 - 0111 0011 = 0

DS39637A page 394

RRNCF	Rotate Right f (No Carry)	SETF	Set f
Syntax:	RRNCF f {,d {,a}}	Syntax:	SETF f{,8}
Operands:	0 ≤ t ≤ 295 d ⊂ [0,1]	Operanda:	0 ≤ f ≤ 255 a ∈ [0,1]
	a e [0,1]	Operation:	FFh→t
Operation:	(f <n>) → dest<n 1="" =="">, (f<0>) → dest<7></n></n>	Status Affected.	None
Statua Affected:	N. Z	Encoding:	1111 1111 AUUA ([[[
Encoding:	111 111 xboo 0010	Description:	The contents of the specified register are set to FFh.
Description.	The contents of register 'I' are rotated one bit to the right. If 'd' is 'o', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default) If 'a' is 'o', the Access Bank will be		If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction
	selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is 'o' and the extended instruction		set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed
	set is enabled, this instruction operates in Indexed Literal Offset Addressing		Literal Offset Mode" for details.
	mode whenever 1 ≤ 95 (5Fh). See	Words:	1
	Section 25.2.3 "Byte-Oriented and	Cycles.	1
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Q Cycle Activity:	
	regiater f	Q1 Decode	Q2 Q3 Q4 Read Process Write
Words:	1	I	regisler 'F Data register 'F
Cycles.	1	Example:	500117 M100 4 , 1
Q Cycle Activity:	-	Before Instru	
01	02 03 04	RFG	= 5Ah
Decode	Read Process Write to register 'f Data destination	Atter Instructi REG	юл – ГГh
Example 1:	RENCE REA, 1, 0		
Before Instru			
RFG After Instruct	= 1101 0111		
REG	- 1110 1011		
Example 2.	RENCE REG, 0, 0		
Before Instru			
W	- ?		
After Instruct			
W	- 1110 1011		
REC	= 1101 0111		

🕸 2004 Microchip Technology Inc.

SLE	EP	Enter Sle	eep mode		SUBFWB	1	Subtrac	t f from W v	vith Borrow
Synt	ЗΧ.	SLEEP			Syntax.		SUBFWE	[{s,} b,} 1 6	
Oper	ands:	None			Operands:		0 ≤ 1 ≤ 25	5	
Oper	ation:	$00h \rightarrow Wf$)T,				d r [0,1]		
			postscaler,				a e (0,1)	-	
		$1 \rightarrow \overline{TO},$ $0 \rightarrow PD$			Operation.		1 7 57	(C) ⇒ desl	
Cl	is Affected.	TO, PD			Status Affec	cted:	N, OV, C,	DC, Z	
					Encoding		DIDI	Dida F	
	oding:	0000	0000 000	_	Description	c		register 'f' and	
Dest	ription.		r-Down status he Time-out st				· ·	irom W (2's co If 'd' is 'o', the	result is stored
			Ichdog Timer a				r -		all is slored in
		-	are cleared.					(detault).	
			ssor is put into				-		ank is selected.
	1.		scillator stoppe	a.				trie Bort is us k (default).	ed to select the
Word		1						1 2	ded instruction
Cycli		1							uction operates
QC	ycle Activity							t Literal Offset anever t≤ 95 (-
	Q1	Q2	Q3	Q1	т			5.2.3 "Byle-0	
	Decode	No operation	Process Data	Go to Sleep					ns in Indexed
					1		Literal Of	fset Mode" fo	or detalls.
<u>Exar</u>	nple:	SLEEP			Words:		1		
	Before Instruc	ction			Cycles.		1		
	<u>TO</u> -	?			Q Cycle A	-			
	PD -	?				01	02	03	Q4
	After Instruct) TO -	on 11			Dec	code .	Read gister 'f'	Process Data	White to destination
	10 =	0					•		1
					Example 1: Before	Instruction	SHOPMO	121004, 1,	0
† If	WDT causes	wake-up, this b	oif is cleared			REC =	3		
					V C	N -	2		
					-	nstruction	·		
						REG -	ГГ 2		
					C Z		0		
					Z		0 1 :re	sult is negati	ve
					Example 2:		SUBFWB	KRG' 0'	
						Instruction			
						REG -	25		
					0		1		
						netruction RFG =	2		
					Ŷ	V =	3		
					9		ó		
								sult is positiv	
					Example 3:	-		REG, 1,	0
						e instruction	1		
					v	N =	2		
					-	nstruction	0		
					H	REG =			
						· -			
					4	=	1 ; re	sult is zero	
					N		0		

© 2004 Microchip Technology Inc.

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax.	SUBLW k	Synlax.	SUBWF f [,d [,a]}
Operands:	0 ≤ k ≤ 255	Operanda:	0 ≤ f ≤ 255
Operation:	$k = (W) \rightarrow W$		d c [0,1]
Status Affected:	N, OV, C, DC, Z	0	a e 0,1 (0
Encoding:	0000 1000 kkkk kkk	Operation. Status Affected:	(f) (W) ⇒dest
Description.	W is subtracted from the eight bit		N, OV, C, DC, Z
	literal 'k'. The result is placed in W.	Encoding:	Publica at 10/ from scalator (f) (7/a
Words.	1	Description:	Subtract W from register 'f' (2's complement method) If 'd' is 'u', the
Cycles:	1		result is stored in W. If 'd' is '1', the
Q Cycle Activity			resull is stored back in register 'f' (default).
Q1	Q2 Q3 Q1		If 'a' is 'n', the Access Bank is selected.
Decode	Read Process Write to W Interal 'K' Data		It 'a' is '1', the BSR is used to select the GPR bank (default).
Example 1:	SURGA U25		If 'a' is 'b' and the extended instruction
Before Instruc			set is enabled, this instruction operates in Indexed Literal Offset Addressing
w c	= 01h - 7		mode whenever t≤95 (5Fh). See
After Instructio			Section 25.2.3 "Byte-Oriented and
w c	 01h 1 : result is positive 		Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
7	= 0	Words:	1
N Formula Q	•	Cycles.	1
Example 2.	SUBLW 02h	Q Cycle Activity:	
Before Instruc W	= 02h	Q 0708 Addity.	Q2 Q3 Q4
Ċ.	= ?	Decode	Read Process Write to
After Instructio	an = 00h		register 'f Data destination
c z	= 1 ; result is zero - 1	Example 1:	SUBWF REC, 1, 0
Ň	= 0	Before Instructi	
Example 3:	SUBLW 02h	REC W	= 3 - 2 = 2
Before Instruc	tion		
w	- 03h = 2	After Instruction REG	n – 1
After Instruction			 2 1 ; result is positive
w c	 FFh, (2's complement) 0 ; result is negative 	z	- 0
z	- 0 /	N Example 2.	= 0
N	- 1	Before Instruct	SURWE RRG, 0, 0
		REG	- 2
			= 2 = ?
		After Instruction	
		RFG W	= 2 - 0
		c	 1 , result is zero 1
		Ń	- 0
		Example 3:	SURWER - R184, 1, 0
		Before Instructi REG	
		w	- 1 = 2 - 7
		C After Instruction	
		REG	= FFh :(2's complement)
		w c	 2 3 (result is negative)
			= 0 - 1
		IN	

ಟ 2004 Microchip Technology Inc.

SUBWFB	Subtract W from f with Borrow	SWAPF	Swap f
Syntax:	SUBWEB f(d(a))	Synlax.	SWAPE_f {,d {,a}}
Operands.	0 < f < 255	Operanda:	0 ≤ 1 ≤ 255
	d ∈ [0,1]		d r [0,1]
Operation:	$a \in [0,1]$ (f) - (W) - ($\overline{\mathbb{C}}$) $\rightarrow \text{dest}$		a e [0,1]
Status Affected.	(i) – (w) – (c) → dest N, OV, C, DC, Z	Operation.	([<3.0>) ⇒ desl<7.4>,
Encoding:	0101 10da 1111 1111		$(1 \le 1 \le 4 >) \rightarrow dest \le 3 \le 0 >$
Description.	Subtract W and the Carry Rag (borrow	alarus Anecieo	
Description.	from register 'f' (2's complement	⁷ Encoding:	0011 10da titt titt
	method). If 'd' is 'o', the result is store		The upper and lower nibbles of register
	in W_If 'd' is '+', the result is stored ba- in register 'f' (default).	k	'f are exchanged. If 'd' is 'o', the result is placed in W. If 'd' is 'r', the result is
	If 'a' is 'o', the Access Bank is selecte		placed in register 't' (detault).
	If 'a' is '1', the BSR is used to select th		If 'a' is 'n', the Access Bank is selected.
	GPR bank (defaull).		If 'a' is '1', the BSR is used to select the
	It 'a' is 'o' and the extended instruction		GPR bank (default). It 'a' is 'o' and the extended instruction
	set is enabled, this instruction operate in Indexed Literal Offset Addressing	5	set is enabled, this instruction operates
	mode whenever f ≤ 95 (5Fh). See		in Indexed Literal Offset Addressing
	Section 25.2.3 "Byte-Oriented and		mode whenever f ≤ 95 (5Fh). See
	Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	1	Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed
Words:	1		Literal Offset Mode" for details.
Cycles:	1	Words:	1
Q Cycle Activity:	-	Cycles.	1
Q1	Q2 Q3 Q4	Q Cycle Activit	ty:
Decode	Read Process Write to	Q1	Q2 Q3 Q4
	register 'f' Data destination	1 Decode	Read Process Write to
Example 1:	SUBWFB REC, 1, 0		register 'f' Data destination
Refore Instru REC	= 19h (0001 1001)		
W	- ODH (0000 1101)	Example:	SMARK REG, L, H
C After Instruc	= 1 tion	Before Ins REG	
REG	- OCh (0000 1011)	Atter instru	
w	= ODh (0000 1101) - 1	REG	- 35h
C Z	- ó		
N Example 2.	= 0 ; result is positive SUBWIPE REG, 0, 0		
Before Instru			
REG	- 1Bh (0001 1011)		
w	= 1Ah (0000 0000) = 0		
After Instruc	-		
RFG W	= 1Bh (0000 0000) - 00h		
ç	- 1		
Ň	= 1 ; result is zero - 0		
Example 3:	SUDWICK R104, L, D		
Before Instru			
REG	- 03h (0000 0011) = 0Eh (0000 1101)		
ĉ	- 1		
After Instruc REC			
	, [2's comp]		
w.	= OFh (innun riin) = O		
ž	- ó		
N	= 1 ; result is negative		

DS39637A page 398

Preliminary

© 2004 Microchip Technology Inc.

TBL	RD	Table Read	ł		
Synta	x.	TBLRD (*, *	+, ^ , +*)		
Opera	ands:	None			
Open	ation:	if TBL RD *,			
		(Prog Mem (Τ;
			o Change	.	
		(Prog Mem (т.
		(TBI PTR) +			
		If TBLRD '			-
		(Prog Mem ((IBLPTR) -			1;
		if TBLRD +*,		- HX,	
		(IBLPIR)+			
		(Prog Mem (TBLPTR)) ⇒ TABLA	Τ;
Statur	s Affected:	None			
Enco	ding.	0000	0000	0000	10mm
					^ 0-nn + 1-
					2 7-
					=3 1*
Desci	ription:	This instructi	on is used	d to read th	e contents
		of Program N		r .	
		Program mer Pointer (TBL			d lable
		The TBLPTR			ints to
		each byte in	-		
		has a 2 Mby		-	
		IBLPIRØ		ist Significa gram Mern	
		TBLPTRIO] = ⊺. Mo:	st Significar gram Mem	ıl Byle of
		The TELRD II of TBI PTR a			the value
		 no change 			
		 post-increi 			
		 post-decre pre-increm 			
Word		1	ner#		
Cycle		2			
00	cle Activity				
T	Q1 Decode	Q2 No			Q4 No
	Decode	operation	opera		eration
	No	No operation	n No		operation
	operation	(Read Program Memory)	m opera	ition (Write	TABLAT)

TBLRD	Table Read (Continued)				
Example 1.	TRLED	*+	ĩ		
After Instruction IABLAI	(00A356h)		- - -	34h 34h	
TBLPTR Example 2:	TBLED	1.4	;	00A357h	
Before Instructi	on				
	(01A357h) (01A358h)		-		
IABLAI TBLPTR			=	34h 01A358h	

& 2004 Microchip Technology Inc.

TBLWT	Table Write
Syntax:	TBLWT ('; ''; '-; '')
Operands:	None
Operation:	If TBLWT', (TABLAT) → Holding Register; IBLPTR – No Change; if TBLWT'+, (TABLAT) → Holding Register; (TBLPTR) + 1 → TBLPTR; if TBLWT*-,
	(TABLAT) → Holding Register; (TBLPTR) 1 → TBLPTR, if IBLWI+*.
	(TBLPTR) + 1 → TBLPTR,
	(IABLAT) → Holding Register;
Status Affected.	None
Encoding:	0000 0000 0000 11nn nn-0 * 1 *+ -2 * 1 +*
Deacription:	This instruction uses the 3 LSBs of the TBI PTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Flash Program Memory" for additional details on programming Flash memory.) The TBI PTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 MBiye address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBI PTR[0] = 0" Least Significant Byte of Program Memory Word TBI PTR[0] = 1" Most Significant Byte of Program Memory Word The THINT instruction can modify the value of TBLPTR as follows: • no change • post-increment • post decrement
	 pre-increment
Words.	1
Cycles:	2
O Cycle Adivily.	
	Q1 Q2 Q3 Q4
	Decode No No No
	operation operation operation
	No No No No

	T _1_1_1000-00		с. р
TBLWT	Table Write	(Con	tinued)
Example 1:	TBLWT *+;		
Before Instru	ction		
TABLAT TBI PTP	2	-	55h 00A358h
(00A356	IC RECISTER 5h)	-	FFh
After Instruct	ions (table write	comp	letion)
TABLAT TBLPTF HOLDIN		Ξ	55h 00/\357h
(00A356		-	55h
Example 2:	TREWT (*;		
Before Instru	ction		
TABLAT		=	34h
IBLP IF	K IG REGISTER	=	01389Ah
(013894		=	FFh
(013890		-	ГГh
After Instruct	ion (table write o	:ompli	r .
TABLAT TBLPTF		Ξ	34h 01389Bh
(013894		-	FFh
(013895	ŝh)	=	34h

DS39637A page 400

TSTFSZ	Test f, Sk	ip if 0		XORLW	Exclusiv	e OR Liter	al with W
Syntax.	TSTESZ ((.a)		Syntax.	XORLW	k	
Operands:	0 ≤ f ≤ 255			Operanda:	$0 \le k \le 25$	5	
	ас [0,1]			Operation:	(W) XOR	$k \rightarrow W$	
Operation:	skip if f - 0			Status Affected:	N, Z		
Status Affected:	None			Encoding:	0000	1010 ki	kkk kkkk
Encoding:	0110	011a tt		Description.	The conte	ents of Ware	XORed with
Description:		e next instruct	on fetched tion execution		the 8-bit I In W.	teral 'k'. The i	result is placed
	~	d and a NOP is		Manda	1		
		a two-cycle in		Words:			
	r	he Access Bar		Cycles.	1		
			d to select the	Q Cycle Activity:			
	GPR bank	(deraulit). Ind the extend	od instruction	Q1	Q2	Q3	Q4
			clion operates	Decode	Read literal 'k'	Process Data	Write to W
		Literal Offset /				Data	1
		everf≤95 (5 .2.3 "Byte-Or		Example:	XORLW	0AFh	
		d Instruction		Before Instruc			
	Literal Off:	set Mode" for	delails.	W	- B5h		
Words:	1			After Instruction	on - 1Ah		
Cycles:	1(2)				1241		
		voles if skip an					
	by :	a 2-word instru	action				
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	No operation				
lf ekip:	1		1				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
It skip and follows							
01	02	03	Q4				
No operation	No operation	No operation	N0 operation				
No	No	No	No				
operation	operation	operation	operation				
Example.	TIERE	TSTESZ ON	Γ, Ι				
·	NZERO	:	-				
	ZERO	:					
Before Instru		Ideasa interne					
PC After Instruct		Idress (HERE	9				
If CNT	- 00						
PC If CNT	- Ad 7 00	dress (%RRO h	9				
PC		 WIZERO	2				

🕸 2004 Microchip Technology Inc.

XORWF	ORWF Exclusive OR W with f						
Syntax.	XORWE	f {,d {,a}}					
Operanda:	0 ≤ f≤ 255 d ⊂ [0,1] a ∈ [0,1]	d ~ [0,1]					
Operation.	(W) .XOR. ((f) ⇒ dest					
Status Affected:	N, Z						
Encoding [.]	D D D I	Toda - FF					
Deacription:	Exclusive OR the contents of W with register 'F' If'd' is 'u', the result is stored In W. If'd' Is '1', the result is stored back in the register 'F' (default). If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the Access Bank is selected. If 'a' is 'o', the BSR is used to select the OPR bank (default). If 'a' is 'o' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f < 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Words.	1	set Mode" for	detalla.				
Cycles:	1						
Q Cycle Activity							
Q1	Q2	Q3	Q1				
Decode	Read	Process	Write to				
	register 'f'	Data	destination				
Example: Refore Instruct REG W After Instructio REG W	fion - AFh - B5h	NBC, 1, 0					

25.2 Extended Instruction Set

In addition to the standard /5 instructions of the PIC18 instruction set, PIC18F2480/2580/4480/4580 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features are disabled by default to enable them, users must set the XINST configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers or use them for indexed addressing. Two of the instructions, ADDEER and SUBERR, each have an additional special instantiation for using FSR2. These versions (ADDEEN and SUBULINK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and de-allocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in Section 25.2.2 "Extended Instruction Set". The opcode field descriptions in Table 25-1 apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimi∠ing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the Lile Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASM™ Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands"

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{}").

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Mnemonic, Operands		Deneviation	Description Cycles			16-Bit Instruction Word			
		Description	Cycles	MSb			LSb	Affected	
ADDFSR	f, k	Add literal to FSR	1	1110	1000	ffkk	kkkk	None	
ADDULNK	k	Add literal to FSR2 and return	2	1110	1000	TIRK	kkkk	None	
CALLW		Call subroutine using WREG	2	0000	0000	0001	0100	None	
MOVSF	z _s , f _d	Move z ₅ (source) to 1st word	2	1110	1011	02.22	2222	None	
		Id (destination) 2nd word		1111	titi	tttt	tttt		
MOVSS	z _s , z _d	Move z ₅ (source) to 1st word	2	1110	1011	1222	2.2.2.2	None	
		Zd (destination)2nd word		1111	XXXX	XZZZ	ZZZZ		
PUSHL	k	Store literal at FSR2,	1	1110	1010	kkkk	kkkk	None	
		decrement LSR2							
SUBFSR	f, k	Subtract literal from FSR	1	1110	1001	ffkk	kkkk	None	
SUBUENK	k	Subtract literal from LSI22 and	2	1110	1001	11 kk	k k k k	None	
		return							

ಟ 2004 Microchip Technology Inc.

25.2.2 EXTENDED INSTRUCTION SET

ADDFSR Add Literal to FSR						
Syntax:	ADDESR	ADDESR 1, k				
Operands.	0 < k < 63					
	t∈ [0, 1,	t∈ [0, 1, 2]				
Operation.	FSR(I) +	$FSR(I) + k \rightarrow FSR(I)$				
Status Affected:	None					
Encoding.	1110	1000	ttkk	kkkk		
Description:		interal 'K' i of the FSF				
Words:	1					
Cycles:	1					
Q Cycle Activity						
Q1	Q2	Q3		Q-1		
Decode	Read	Proces	ss 🛛 V	Mrite to		
	literal 'k'	Deta		FSR		

Example: ADDIVER 2, 2.0

Before Instruction FSR2 = 03FFh After Instruction FSR2 = 0422h

ADDUL	NN	Add Literal	to FSR2 and	a Return		
Syntax:		ADDULNK k				
Operand	5.	0 < k < 63				
Operatio	n:	$FSR2 + k \rightarrow FSR2$, PC - (TOS)				
Status Af	flected:	None				
Encoding	j .	1110 11	100 likk	kkkk		
Description	on:	The 6-bit litera contents of FS executed by la TOS.		t is then		
		The instruction takes two cycles to execute; a stop is performed during the second cycle.				
		I his may be th of the ADDPSP (binary '11'); #		here (- 3		
Words.		1				
Cycles:		2				
Q Cycle	Activity:					
	Q1	Q2	QS	Q4		
U U)ecode	Read literal 'k'	Process Data	White to FSR		
	No	No	No	No		
0	peration	Operation	Operation	Operation		
Example		ADDULNK :	2.3h			
•	ore instruc	atta a				

Before Instru	ction	
FSR2	-	03FFh
PC	=	0100h
TOS	-	02/\Fh
After Instruct	ion	
FSR2	-	0422h
PC	=	02AFh
TOS	-	TOS - 1

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

Preliminary

© 2004 Microchip Technology Inc.

CAL	LW	Subroutin	e Call Using	WREG		
Synta	1X.	CALLW				
Opera	ands:	None				
Opera	ation:	(W) → PCL (PCLATH)	$\begin{array}{l} (\text{PC}+2) \rightarrow \text{TOS},\\ (\text{W}) \rightarrow \text{PCL},\\ (\text{PCLATH}) \rightarrow \text{PCH},\\ (\text{PCLATU}) \rightarrow \text{PCU} \end{array}$			
Statu	s Affected.	None				
Enco	ding:	0000	0000 000	0100		
Desc	ription	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are willen to PCL, the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is tetched. Unlike CALL, there is no option to update W, Status or BSR.				
Word	k	1				
Cycle		2				
	vole Activity	-				
	Q1	Q2	Q3	Q1		
1	Decode	Read	Push PC to	No		
		WREC	stack	operation		
	No	No	No	No		
	operation	operation	operation	operation		
Exam	nple:	HERE	CALLW			
	PC PC PCLATII	 addresa 	(HERE)			

Synta	MOVSF Move Indexed to f							
Syna	ex.	MOVSE [.	د <u>م],</u> آرا					
Oper	ands:	0 ≤ z _s ≤ 12 0 ≤ (_d ≤ 409						
Oper	ation:	((ESR2) + ;	$z_s) \rightarrow t_d$					
Statu	s Affected:	None						
Enco	ding:							
1st w	ord (source)	1110	1011	II x x x	xxxx			
2nd v	vord (destin.)	1111	1111 1111 1111 1111					
		The contents of the source register are moved to destination register 't _d '. The actual address of the source register is determined by adding the <i>/</i> -bit iteral offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal ' t_d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSP instruction cannot use the PCL, TOSU, TOSI for TOSL as the destination register. If the resultant source address points to an indirect addressing register, the						
		value return	ned will be	00h.				
Word	5	2						
Cycle	·s.	2						
QC	ycle Activity:							
	Q1	02	_ Q3		04			
	Decode	Determine source addr	Determi source a		Read			
	Decode	No	No		urce reg Write			
	Decore	operation	operatio		glater 'f			
		No dummy			(desf)			
		read						
Exam	nple.	MOVER	[05h], T	27632				
	Before Instruc	tion						
	ESR2 Contents	- 80	h					
	of 85h	- 33						
	REG2 Attes lests str	- 11	h					
	After Instruction FSR2		h					
FSR2 – 80h Contents								
		= 33h						
	of 85h REG2	- 33						

& 2004 Microchip Technology Inc.

MOVSS	Move Indexed to In	dexed	PUSHL	Store Literal at	FSR2, Decr	ement FSR2
Syntax.	MOVSS [z _s], [z _d]		Syntax.	PUSHL k		
Operands:	$0 \le z_g \le 127$		Operands:	$0 \le k \le 255$		
	0 < ∠ _d < 127		Operation:	$k \rightarrow (FSR2)$,		
Operation:	$((FSR2) + Z_g) \rightarrow ((FSR)$	2) + z _d)		$FSR2 = 1 \rightarrow FSR2$	2	
Status Affected.	None		Status Affected	None		
Encoding:			Encoding:	1111 10	10 kkkk	J.K.K.K
1sl word (source)		777 777 ₈	Description	The 8-bit literal '	is written to t	he data
2nd word (dest.)		uzz zzzzd		memory address		
Description	The contents of the sou moved to the destination	~		decremented by		
	addresses of the source			This instruction a onto a software s		puah valuea
	registers are determine				stack.	
	7-bit literal offsets 'z,' o		Worda:	1		
	respectively, to the valu registers can be locate		Cycles:	1		
	the 4096 byte data mer		Q Cycle Activi	ty:		
	(000h to FFFh).		Q1	02	Q3	Q4
	The MOVSS instruction		Decode	e Read 'k'	Process data	Write to destination
	PCI, TOSU, TOSH or destination register.	IOSE as the	1	1	Cara	ocsnination
	If the resultant source a	ddress points to				
	an indirect addressing		Example:	PUSHL 0	вh	
	value returned will be 0		Before Ins			
	resultant destination ad an indirect addressing i			2H:FSR2L wry (01ECh)	= 01ECh - 00h	1
	instruction will execute	· ·				
Worda:	2		After Instr	uction 211.FSR2L	- 01CBh	
Cycles:	2			ory (01FCh)	= 06h	1
O Cycle Activity.						
Q1	Q2 Q3	Q4				
Decode	Determine Determine					
	source addr source add	Ir source reg				
Decode	Determine Determine					
	dest addr dest addr	to dest reg				
Example:	MOVSS [USh], [U6	hl				
Before Instruc	tion					
FSR2 Contents	= 80h					
of 85h	= 33h					
Content: of 86h	; - 11h					
After Instructi						

Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow$ (FSR2) FSR2 − 1→				
Status Affected:	None				
Encoding:	1111	1010	kkkk	kkkk	
Description:	The 8-bit liferal 'k' is written to the data memory address specified by FSR2. FSR2 decremented by 1 after the operation This instruction allows users to push values onlo a software stack.				
Words:	1				
Cycles:	1				
Q Cycle Activit	iy:				
Q1	02		Q3	Q4	
Decode	Read	к' г	rocess data	Write to destination	
Example:	PUSHL	osh			
Before Ins	Iruction				
1.071.07		=			
	2H:FSR2L ory (01ECh)	-	01ECh 00h	1	
Mem Atter Instr	ory (01ECh) uction	-	00h		
Mem Atter Instr FSR3	ory (01ECh)	-			

DS39637A page 406

After Instruction

FSR2 Contents of 85h Contents of 86h

-80h = 33h -33h

Preliminary

to 2004 Microchip Technology Inc.

SUBFSR Subtract Literal from FSR							
Synta	5X.	SUBESR	SUBESR (, k				
Oper	ands:		0 ≤ k ≤ 63 f ⊂ [0, 1, 2]				
Oper	ation:	$FSRf - k \rightarrow FSRf$					
Status Affected: None							
Fnco	ding:	1111	1001	LUY)	kkkk		
Desc	ription:	The 6-bit i the conter by 'f'.			acted from specified		
Word	ls:	1					
Cycle	88:	1					
QQ	yele Activity						
	Q1	Q2	Q3		Q4		
	Decode	Read	Proce	ss	Write to		
		register 'f'	Data	a	destination		

Example. SUBPER 2, 23h

Before Instruction

FSR2 -	03FFh
After Instruction	
FSR2 -	03DCh

SUBULNK	Subtract	iteral fror	n FSR2	and Return	
Synlax.	SUBULNK k				
Operands:	$0 \le k \le 63$				
Operation.	$FSR2 = k \rightarrow FSR2$ (TOS) $\rightarrow PC$				
Status Affected:	None				
Encoding:	1110	1001	11kk	kkkk	
Description:	The 6-bit literal 'K' is subtracted from the contents of the FSR2_A viccours is then				
	executed by loading the PC with the TOS. The instruction takes two cycles to execute:				
				s to execute; second cycle.	
		~		ecial case of t = 3 (binary	
		rates only o			
Words:	1				
Cycles.	2				
Q Cycle Activit	-				
01	,. 02		03	04	
		1			
Decode			Cess	Write to	
	registe	ם הי	ala	destination	
No	No		No	No	
Operatio	n Operat	ion Ope	ration	Operation	

Example. SUBULNE 235

Before Instruc	ction	
ESR2	-	03FFh
PC.	=	0100h
After Instructi	on	
DOD2	-	03DCh

FSR2 = 03DCh PC - (TOS)

ಟ 2004 Microchip Technology Inc.

25.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	I nabling the PIC18	instruction set
	extension may cause leg	acy applications
	to behave erratically or fa	il entirely

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations, either as a location in the Access Bank (a = 0), or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Lh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between 'C' and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying it a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

25.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM TM Assembler

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be 'o'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/\gamma$, or the PE directive in the source listing

25.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F2480/2580/ 4/480/4580, it is very important to consider the type of code. A large, re-entrant application that is written in "C" and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

DS39637A page 408

ADDWF	ADD W to Indexed (Indexed Literal Offset mode)				
Syntax:	ADDWF k {,d}				
Operands.	0 < k < 95 d ∈ [0,1] a = ≎				
Operation:	$(W) + ((FSR2) + k) \rightarrow dest$				
Status Affected.	N, OV, C, DC, Z				
Encoding:	0010 01d0	kkkk kkkk			
Description:	of the register indicated by FSR2, offset by the value 'k'.				
	If 'd' is 'v', the result is a the result is stored back				
Words:	1				
Cycles.	1				
Q Cycle Activity:					
Q1		Q3 Q4			
Decode		cess Write to ala destination			
Example.	ADDWP LOFST	1,0			
Betore Inst W OFST FSR2 Conte of 0A Atter Instru W Conte of 0A	- 17h = 2Ch = 0A0 2Ch = 20h iction = 37h ents	n 100h			

BSF	Bit Set Indexed (Indexed Literal Offset mode)			
Syntax:	BSF [k], b			
Operands.	0 < (<95 0 ≤ b ≤ / a = 0			
Operation:	$1 \rightarrow ((FSR2 + k)) \le b \ge$			
Status Affected.	None			
Encoding:	1000 bbb0 kkkk kkkk			
Description:	Bit 'b' of the register indicated by FSR2, offset by the value 'K', is set.			
Words:	1			
Cycles:	1			
Q Cycle Activity				
01	Q2	03	04	
Decode	Read register 'f'	Process Data	Write to destination	
Example:	BSF (FLAC_OFET]	, 7	
Before Instruct FLAC OF FSR2 Contents	-51 =	0Ah 0A00h		
of 0A0Ah After Instructio Contents of 0A0Ah	en	55h DSh		
of UAUAn	-	Den		

SETF	Sct Index (Indexed		Offset m	ode)	
Syntax.	SETF [k]				
Operands:	$0 \le k \le 95$	0 ≤ k ≤ 95			
Operation:	$FFh \rightarrow ((F)$	$FFh \rightarrow ((FSR2) + k)$			
Status Affected:	None	None			
Encoding ¹	0110	11111	kkkk	kkkk	
Description.	The contents of the register indicated by ESR2, offset by 'k', are set to EFh				
Words.	1				
Cycles:	1				
Q Cycle Activity.					
Q1	Q2	Q3	l	Q4	
Decode	Read 'k'	Proce Data		Write egister	
Example: SETE [OPST]					
Before Instruct OFST FSR2 Contents of 0A2Ch After Instructio Contents	= 20 - 04 = 00	400h			

🕸 2004 Microchip Technology Inc.

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB® IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18F2480/2580/4480/4580 family of devices. This includes the MPL/AB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLABIDE will automatically set default config uration bits for that device. The default setting for the XINST configuration bit is 'o', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming. To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways.

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

DS39637A page 410