
A-1

OVERVIEW

In the first section of this appendix, we describe the instruction

format of the PIC18. Special emphasis is placed on the instructions using

both WREG and file registers. This section includes a list of machine

cycles (clock counts) for each of the PIC18 instructions.

In the second section of this appendix, we describe each instruction

of the PIC18. In many cases, a simple programming example is given to

clarify the instruction.

APPENDIX A

PIC18 INSTRUCTIONS:

FORMAT AND

DESCRIPTION

A-2

This Appendix deals mainly with PIC18 instructions. In Section A.1, we

describe the instruction formats and categories. In Section A.2, we describe each

instruction of PIC18 with some examples.

SECTION A.1: PIC18 INSTRUCTION FORMATS AND CATE-

GORIES
As shown in Figure A-1, the PIC18 instructions fall into five categories:

1. Bit-oriented instructions

2. Intructions using a literal value

3. Byte-oriented instructions

4. Table read and write instructions

5. Control instructions using branch and call

In this section, we describe the format and syntax with special emphasis

placed on byte-oriented instructions. For some of the instructions, the reader

needs to review the concepts of access bank and bank registers in Chapter 6

(Section 6.3).

Bit-oriented instructions
The bit-oriented instructions perform operations on a specific bit of a file

register. After the operation, the result is placed back in the same file register. For

example, the “BCF f,b,a” instruction clears a specific bit of fileReg. See

Table A-1. In these types of instructions, the b is the specific bit of the fileReg,

which can be 0 to 7, representing the D0 to D7 bits of the register. The fileReg

location can be in the bank register called access bank (if a = 0) or a location with-

in other bank registers (if a = 1). Notice that if a = 0, the assembler assumes the

access bank automatically.

Look at the examples that follow for clarification of bit-oriented instruc-

tions:

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF

BSF

BTFSC

BTFSS
BTG

f, b, a

f, b, a

f, b, a

f, b, a
f, d, a

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
Bit Toggle f

1

1

1

1 (2 or 3)
1 (2 or 3)

Mnemonic,

Operands
Description Cycles

Table A-1: Bit-Oriented Instructions (from Microchip datasheet)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION A-3

Byte-oriented File Register operations Example Instructions

15 10 9 8 7 0

OPCODE d a f (FILE #)

d = 0 for result destination to be WREG Register

d = 1 for result destination to be File Register (f)

a = 0 to force Access Bank

a = 1 for BSR to select bank

f = 8-bit File Register address

Byte to Byte move operations (2-word)

OPCODE f (Source FILE #)

15 12 11 0

15 12 11 0

1111 f (Destination FILE #)

f = 12-bit File Register address

Bit-oriented File Register operations

OPCODE b (BIT #) a f (FILE #)

15 12 11 9 8 7 0

b = 3-bit position of bit in File Register (f)

a = 0 to force Access Bank

f = 8-bit File Register address

a = 1 for BSR to select bank

Literal operations

OPCODE k (literal)

15 8 7 0

k = 8-bit immediate value

Control operations

CALL, GOTO, and Branch operations

OPCODE n<7:0> (literal)

15 8 7 0

1111 n<19:8> (literal)

15 12 11 0

n = 20-bit immediate value

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 0x7F

GOTO label

Figure A-1. General Formatting of PIC18 Instructions (From MicroChip)

BCF PORTB,5 ;clear bit D5 of PORTB
BCF TRISB,4 ;clear bit D4 of TRISC reg
BTG PORTC,7 ;toggle bit D7 of PORTC
BTG PORTD,0 ;toggle bit D0 of PORTD
BSF STATUS,C ;set carry flag to one

The following example uses the fileReg in the access bank:

MyReg SET 0x30 ;set aside loc 30H for MyReg
MOVLW 0x0 ;WREG = 0
MOVWF MyReg ;MyReg = 0
BTG MYReg,7 ;toggle bit D7 of MyReg
BTG MYReg,5 ;toggle bit D5 of MyReg

The following example uses the fileReg in the access bank:

MyReg SET 0x50 ;set aside loc. 50H for MyReg
MOVLW 0x0 :WREG = 0
MOVWF MyReg ;MyReg = 0
BTG MYReg,2 ;toggle bit D2 of MyReg
BTG MYReg,4 ;toggle bit D4 of MyReg

As we discuss in Chapter 6, when using a bank other than the access bank,

we must load the BSR (bank select register) with the desired bank number, which

can go from 1 to F (in hex), depending on the family member. We do that by using

the MOVLB instruction. Look at the following examples.

The example below uses a location in Bank 2 (RAM locations 200–2FFH).

YReg SET 0x30 ;set aside loc 30H for YReg
MOVLB 0x2 ;use Bank 2 (address loc 230H)
MOVLW 0x0 :WREG = 0
MOVWF YReg ;YReg = 0
BTG YReg,7,1 ;toggle bit D7 of YReg in bank 2
BTG YReg,5,1 ;toggle bit D5 of YReg in bank 2

The example below uses a location in Bank 4 (RAM locations 400–4FFH).

ZReg SET 0x10 ;set aside loc 10H for ZReg
MOVLB 0x4 ;use Bank 4 (address loc 410H)
MOVWL 0x0 ;WREG = 0
MOVWF ZReg ;ZReg = 0
BSF ZReg,6,1 ;set HIGH bit D6 of ZReg in bank 4
BSF ZReg,1,1 ;set HIGH bit D1 of ZReg in bank 4
Notice that all the bit-oriented instructions start with letter B (bit). The

branch instructions also start with letter B, like “BZ target” for branch if zero, but

they are not bit-oriented.

A-4

Instructions using literal values
In this type of instruction, an operation is performed on the WREG regis-

ter and a fixed value called k. See Table A-2. Because WREG is only 8-bit, the k

value cannot be greater than 8-bit. Therefore, the k value is between 0–255 (00–FF

in hex). After the operation, the result is placed back in WREG. Look at the fol-

lowing examples for clarification:

MOVLW 0x45 ;WREG = 45H
ADDLW 0x24 ;WREG = 45H + 24H = 69H

MOVLW 0x35 ;WREG = 35H
ANDLW 0x0F ;WREG = 35H ANDed with 0FH = 05H

MOVLW 0x55 ;WREG = 55H
XORLW 0xAA ;WREG = 55H EX-ORed with AAH = FFH

Byte-oriented instructions
There are two groups of instructions in this category. In the first group, the

operation is performed on the file register and the result is placed back in the file

register. The instruction “CLRF f,a” is an example in this group. See Table A-3. In

the second group, the operation involves both fileReg and WREG. As a result, we

have the options of placing the result in fileReg or in WREG. As an example in this

group, examine the “ADDWF f,d,a” instruction. The destination for the result can

be WREG (if d = 0) or file register (if d = 1). For the fileReg location, it can be

in the access bank (if a = 0) or in other bank registers (if a = 1). Also notice that

if a = 0, the assembler assumes that automatically.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION A-5

Table A-2: Literal Instructions (from Microchip datasheet)

Mnemonic,

Operands
Description Cycles

LITERAL OPERATIONS

ADDLW k

ANDLW k

IORLW k

LFSR f, k

MOVLB k

MOVLW k

MULLW k

RETLW k

SUBLW k

XORLW

Add Iiteral and WREG

AND Iiteral with WREG

Inclusive OR Iiteral with WREG

Move Iiteral (12-bit)

Move Iiteral to WREG

Multiply Iiteral with WREG

Return with Iiteral in WREG

Subtract WREG from Iiteral

1

1

1

Move Iiteral to BSR <3:0>

1

1

2

1

1

2

k

1st word

 2nd word

to FSRx

Exclusive OR Iiteral with WREG 1

A-6

Mnemonic,

Operands
Description Cycles

BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF f, d, a

ADDWFCf, d, a

ANDWF f, d, a

CLRF f, a,

COMF f, d, a

CPFSEQ f, a,

CPFSGT f, a,

CPFSLT f, a,

DECF f, d, a

DECFSZ f, d, a

DCFSNZ f, d, a

INCF f, d, a

INCFSZ f, d, a

INFSNZ f, d, a

IORWF f, d, a

MOVF f, d, a

MOVFF f , f
sd

MOVWF f, a

MULWF f, a

NEGF f, a

RLCF f, d, a

RLNCF f, d, a

RRCF f, d, a

RRNCF f, d, a

SETF f, a,

SUBFWB f, d, a

SUBWF f, d, a

SUBWFB f, d, a

SWAPF f, d, a

TSTFSZ f, a

XORWF f, d, a

Add WREG and f

Add WREG and Carry bit to f

Add WREG with f

Clear f

Complement f

Compare f with WREG, skip =

Compare f with WREG, skip >

Compare f with WREG, skip <

Decrement f

Decrement f, Skip if 0

Decrement f, Skip if Not 0

Increment f

Increment f, Skip if 0

Increment f, Skip if Not 0

Inclusive OR WREG with f

Move f

Move f (source) to 1st words

f (destination) 2nd wordd

Move WREG to f

Multiply WREG with f

Negate f

Rotate Left f through Carry

Rotate Left f (No Carry)

Rotate Right f through Carry

Rotate Right f (No Carry)

Set f

Subtract f from WREG with

borrow

Subtract WREG from f

Subtract WREG from f with

borrow

Swap nibbles in f

Test f, Skip if 0

Exclusive OR WREG with f

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Table A-3: Byte-Oriented Instructions (from Microchip datasheet)

Look at the following examples.

When d = 0 and a = 0:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H
MOVWF MyReg ;MyReg = 45H
MOVLW 0x23 ;WREG = 23H
ADDWF MyReg ;WREG = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as

“ADDWF MyReg,0,0”.

When d = 1 and a = 0:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H
MOVWF MyReg ;MyReg = 45H
MOVLW 0x23 ;WREG = 23H
ADDWF MyReg,F ;MyReg = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as

“ADDWF MyReg,F,0” or “ADDWF MyReg,1,0”. As far as the MPLAB is con-

cerned, they mean the same thing. Notice that the use of letter F in “ADDWF

MyReg,F” is being used in place of 1.

To use banks other than the access bank, we must load the BSR register

first. The following example uses a location in Bank 2 (RAM location

200–2FFH).

When d = 0 and a = 1:

MyReg SET 0x30 ;set aside location 30H for MyReg
MOVLB0x2 ;use Bank 2 (address loc 230H)
MOVLW 0x45 ;WREG = 45H
MOVWF MyReg,1 ;MyReg = 45H (loc 230H)
MOVLW 0x23 ;WREG = 23H
ADDWF MyReg,1 ;WREG = 68H (add loc 230H to W)

When d = 1 and a = 1:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLB 0x4 ;use bank 4
MOVLW 0x45 ;WREG = 45H
MOVWF MyReg ;MyReg = 45H (loc 420H)
MOVLW 0x23 ;WREG = 23H
ADDWF MyReg,F,1 ;MyReg = 68H (loc 420)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION A-7

Register-indirect addressing mode uses FSRx as a pointer to RAM loca-

tion. We have three registers, FSR0, FSR1, and FSR2, that can be used for

pointers.

Examples:

ADDWF POSTINC0 ;add to W data pointed to by FSR0,
;also increment FSR0

ADDWF POSTINC1 ;add to W data pointed to by FSR1
;also increment FSR1

See Example 6-6 in Chapter 6.

Table processing instructions
The table processing instructions allow us to read fixed data located in

the program ROM of the PIC18. See Table A-4. They also allow us to write into

the program ROM if it is Flash memory. Chapter 14 discusses the TBLRD and

TBLWRT instructions in detail. It also shows how to use table read and write to

access the EEPROM.

Control instructions
The control instructions such as branch and call deal mainly with flow

control. See Table A-5. We must pay special attention to the target address of

the control instructions. The target address for some of the branch instructions

such as BZ (branch if zero) cannot be farther than 128 bytes away from the cur-

rent instruction. The CALL instruction allows us to call a subroutine located

anywhere in the 2M ROM space of the PIC18. See the individual instructions in

the next section for further discussion on this issue.

A-8

Table A-4: Table Processing Instructions (from Microchip datasheet)

TBLRD*

TBLRD*+

TBLRD*-

TBLWT*

TBLWT*+

TBLWT*-

TBLWT+*

Table Read

Table Write

2

2

2

2

2

TBLRD+*

Table Read with post -increment

2

DATA PROGRAM MEMORY OPERATIONS

Table Read with post -decrement

Table Read with pre -increment

Table Write with post -increment

Table Write with post -decrement

Table Write with pre -increment

2

2

Mnemonic,

Operands
Description Cycles

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION A-9

Mnemonic,

Operands
Description Cycles

CONTROL OPERATIONS

BC n

BN n

BNC n

BNN n

BNOV n

BNZ n

BOV n

BRA n

BZ n

CALL n, s

CLRWDT

DAW

GOTO n

NOP

NOP

PUSH

RCALL n

RESET

RETFIE s

RETLW k

RETURN s

SLEEP

Branch if Carry

Branch if Negative

Branch if Not Carry

Branch if Not Negative

Branch if Not Overflow

Branch if Overflow

Branch Unconditionally

Branch if Zero

Call subroutine 1
2

Clear Watchdog Timer

Decimal Adjust WREG

Go to address

No Operation

No Operation

Pop top of return stack (TOS)

Relative Call

Software device RESET

Return from interrupt enable

Return with Iiteral in WREG

Return from Subroutine

Go into standby mode

1

2

2

1

2

1

1

1

2

1

2

2

2

1

POP

Branch if Not Zero

st word
nd word

st word
nd word

 1
2

Push top of return stack (TOS)

1

1

1

1

1

1

1

1

1

Table A-5: Control Instructions (from Microchip datasheet)

SECTION A.2: THE PIC18 INSTRUCTION SET

In this section we provide a brief description of each instruction with some

examples.

ADDLW K Add Literal to WREG

Function: ADD literal value of k to WREG

Syntax: ADDLW k

This adds the literal value of k to the WREG register, and places the result

back into WREG. Because register WREG is one byte in size, the operand k must

also be one byte.

The ADD instruction is used for both signed and unsigned numbers. Each

one is discussed separately. See Chapter 5 for discussion of signed numbers.

Unsigned addition
In the addition of unsigned numbers, the status of C, DC, Z, N, and OV

may change. The most important of these flags is C. It becomes 1 when there is a

carry from D7 out in 8-bit (D0–D7) operations.

Example:
MOVLW 0x45 ;WREG = 45H
ADDLW 0x4F ;WREG = 94H (45H + 4FH = 94H)

;C = 0
Example:

MOVLW 0xFE ;WREG = FEH
ADDLW 0x75 ;WREG = FE + 75 = 73H

;C = 1
Example:

MOVLW 0x25 ;WREG = 25H
ADDLW 0x42 ;WREG = 67H (25H + 42H = 67H)

;C = 0
Notice that in all the above examples we ignored the status of the OV flag.

Although ADD instructions do affect OV, it is in the context of signed numbers

that the OV flag has any significance. This is discussed next.

Signed addition and negative numbers
In the addition of signed numbers, special attention should be given to the

overflow flag (OV) because this indicates if there is an error in the result of the

addition. There are two rules for setting OV in signed number operation. The

overflow flag is set to 1:

1. If there is a carry from D6 to D7 and no carry from D7 out.

2. If there is a carry from D7 out and no carry from D6 to D7.

Notice that if there is a carry both from D7 out and from D6 to D7, OV = 0.

A-10

Example:
MOVLW +D'8' ;W = 0000 1000
ADDLW +D'4' ;W = 0000 1100 OV = 0,

;C = 0, N = 0
Notice that N = D7 = 0 because the result is positive, and OV = 0 because

there is neither a carry from D6 to D7 nor any carry beyond D7. Because OV =

0, the result is correct [(+8) + (+4) = (+12)].

Example:
MOVLW +D'66' ;W = 0100 0010
ADDLW +D'69' ;W = 1000 0101 = -121
ADDWF ;W = 1000 0111 = -121

;(INCORRECT) C = 0, N = D7 = 1, OV = 1

In the above example, the correct result is +135 [(+66) + (+69) = (+135)],

but the result was −121. OV = 1 is an indication of this error. Notice that N = 1

because the result is negative; OV = 1 because there is a carry from D6 to D7 and

C = 0.

Example:
MOVLW -D'12' ;W = 1111 0100
ADDLW +D'18' ;W = W + (+0001 0010)

;W = 0000 0110 (+6) correct
;N = 0, OV = 0, and C = 1

Notice above that the result is correct (OV = 0), because there is a carry

from D6 to D7 and a carry from D7 out.

Example:
MOVLW -D'30' ;W = 1110 0010
ADDLW +D'14' ;W = W + 0000 1110

;W = 1111 0000 (-16, CORRECT)
;N = D7 = 1, OV = 0, C = 0

OV = 0 because there is no carry from D7 out nor any carry from D6 to

D7.

Example:
MOVLW -D'126' ;W = 1000 0010
ADDLW -D'127' ;W = W + 1000 0001

;W = 0000 0011 (+3, INCORRECT)
;D7 = N = 0, OV = 1

C = 1 because there is a carry from D7 out but no carry from D6 to D7.

From the above discussion we conclude that while Carry is important in

any addition, OV is extremely important in signed number addition because it is

used to indicate whether or not the result is valid. As we will see in instruction

"DAW", the DC flag is used in the addition of BCD numbers.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

ADDWF Add WREG and f

Function: ADD WREG and fileReg

Syntax: ADDWF f,d,a

This adds the fileReg value to the WREG register, and places the result in

WREG (if d = 0) or fileReg (if d = 1).

The ADDWF instruction is used for both signed and unsigned numbers.

(See ADDLW instruction.)

Example:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H
MOVWF MyReg ;MyReg = 45H
MOVLW 0x4F ;WREG = 4FH
ADDWF MyReg ;WREG = 94H (45H + 4FH = 94H)

;C = 0
We can place the result in fileReg, as shown in the following example:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H
MOVWF MyReg ;MyReg = 45H
MOVLW 0x4F ;WREG = 4FH
ADDWF MyReg,F ;MyReg = 94H

;(45H + 4FH = 94H), C = 0
For cases of a = 0 and a = 1, see Section A.1 in this chapter.

ADDWFC Add WREG and Carry flag to fileReg

Function: ADD WREG and Carry bit to fileReg

Syntax: ADDWFC f,d,a

This will add WREG and the C flag to fileReg (Destination = WREG +

fileReg + C). If C = 1 prior to this instruction, 1 is also added to destination. If C

= 0 prior to the instruction, source is added to destination plus 0. This instruction

is used in multibyte additions. In the addition of 25F2H to 3189H, for example, we

use the ADDWFC instruction as shown below.

Example when d = 0:

Assume we have the following data in RAM locations 0x10 and 0x11

0x10 = (F2)

0x11 = (25)

Reg_L SET 0x10 ;loc 0x10 for Reg_L
Reg_H SET 0x11 ;loc 0x11 for Reg_H
BCF STATUS,C ;make carry = 0
MOVLW 89H ;WREG = 89H
ADDWFC Reg_L,1 ;Reg_L = 89H + F2H + 0 = 7BH

A-12

;and C = 1
MOVLW 0x31 ;WREG = 31H
ADDWFC Reg_2,1 ;Reg_H = 31H + 25H + 1 = 57H

Therefore the result is:
25F2H

+3189H
577BH

ANDLW AND Literal byte with WREG

Function: Logical AND literal value k with WREG

Syntax: ANDLW k

This performs a logical AND on the WREG and

the Literal byte operand, bit by bit, storing the result in

the WREG.

Example:
MOVLW 0x39 ;W = 39H
ANDLW 0x09 ;W = 39H ANDed with 09

39H 0011 1001
09H 0000 1001
09H 0000 1001

Example:
MOVLW 32H ;W = 32H 32H 0011 0010
ANDLW 50H ;AND W with 50H 0101 0000

;(W = 10H) 10H 0001 0000

ANDWF AND WREG with fileReg

Function: Logical AND for byte variables

Syntax: ANDWF f,d,a

This performs a logical AND on the fileReg value and the WREG register,

bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x09
ANDWF MyReg ;39H ANDed with 09 (W = 09)

39H 0011 1001
09H 0000 1001
09H 0000 1001

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

A B A AND B

0 0 0
0 1 0
1 0 0
1 1 1

Example:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x32 ;W = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW 0x0F ;WREG = 0FH
ANDLW MyReg ;32H ANDed with 0FH (W = 02)

32H 0011 0010
0FH 0000 1111
02H 0000 0010

We can place the result in fileReg as shown in the examples below:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x32 ;W = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW 0x50 ;WREG = 50H
ANDLW MyReg,F ;MyReg = 09, WREG = 50H

The instructions below clear (mask) certain bits of the output ports, assum-

ing the ports are configured as output ports:

MOVLW 0xFE
ANDWF PORTB,F ;mask PORTB.0 (D0 of Port B)
MOVLW 0x7F
ANDWF PORTC,F ;mask PORTC.7 (D7 of Port C)
MOVLW 0xF7
ANDWF PORTD,F ;mask PORTD.3 (D3 of Port D)

Branch Condition

Function: Conditional Branch (jump)

In this type of Branch (jump), control is transferred to a target address if

certain conditions are met. The following is list of branch instructions dealing

with the flags:

BC Branch if carry jump if C = 1

BNC Branch if no carry jump if C = 0

BZ Branch if zero jump if Z = 1

BNZ Branch if no zero jump if Z = 0

BN Branch if negative jump if N = 1

BNN Branch if no negative jump if N = 0

BOV Branch if overflow jump if OV = 1

BNOV Branch if no overflow jump if OV = 0

Notice that all “Branch condition” instructions are short jumps, meaning

that the target address cannot be more than −128 bytes backward or +127 bytes for-

ward of the PC of the instruction following the jump. In other words, the target

address cannot be more than −128 to +127 bytes away from the current PC. What

A-14

happens if a programmer needs to use a “Branch condition” to go to a target

address beyond the −128 to +127 range? The solution is to use the “Branch con-

dition” along with the unconditional GOTO instruction, as shown below.

ORG 0x100
MOVLW 0x87 ;WREG = 87H
ADDLW 0x95 ;C = 1 after addition
BNC NEXT ;branch if C = 0
GOTO OVER ;target more than 128 bytes away

NEXT: ...
...
...
ORG 0x5000

OVER: MOVWF PORTD

BC Branch if C = 1

Function: Branch if Carry flag bit = 1

Syntax: BC target_address

This instruction branches if C = 1.

Example:

MOLW 0x0 ;WREG = 0
BACK ADDLW 0x1 ;add 1 to WREG

BC EXIT ;exit if C = 1
BRA BACK ;keep doing it

EXIT
.....

Notice that this is a 2-byte instruction; therefore, the target address cannot

be more than −128 to +127 bytes away from the program counter. See Branch

Condition for further discussion on this issue.

BCF Bit Clear fileReg

Function: Clear bit of a fileReg

Syntax: BCF f,b,a

This instruction clears a single bit of a given file register. The bit can be

the directly addressable bit of a port, register, or RAM location. Here are some

examples of its format:

BCF STATUS,C ;C = 0
BCF PORTB,5 ;CLEAR PORTB.5 (PORTB.5 = 0)
BCF PORTC,7 ;CLEAR PORTC.7 (PORTC.7 = 0)
BCF MyReg,1 ;CLEAR D1 OF File Register MyFile

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

BN Branch if N = 1

Function: Jump if Negative flag bit = 1

Syntax: BN target_address

This instruction branches if N = 1. It is used in signed number addition.

See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-

get address cannot be more than −128 to +127 bytes away from the program count-

er. See Branch Condition for further discussion on this issue.

BNC Branch if no Carry

Function: Branch if Carry flag is 0

Syntax: BNC target_address

This instruction examines the C flag, and if it is zero it will jump (branch)

to the target address.

Example: Find the total sum of the bytes F6H, 98H, and 8AH. Save the car-

ries in register C_Reg.

C_Reg SET 0x20 ;set aside loc 0x20 for carries

MOVLW 0x0 ;W = 0
MOVWF C_Reg ;C_Reg = 0
ADDLW 0xF6
BNC OVER1
INCF C_Reg,F

OVER1: ADDLW 0x98
BNC OVER2
INCF C_Reg,F

OVER2: ADDWF 0x8A
BNC OVER3
INCF C_Reg

OVER3:

Notice that this is a 2-byte instruction; therefore, the target address cannot

be more than −128 to +127 bytes away from the program counter. See Branch

Condition for further discussion on this.

BNN Branch if Not Negative

Function: Branch if Negative flag bit = 0

Syntax: BNN target_address

This instruction branches if N = 0. It is used in signed number addition.

See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-

get address cannot be more than −128 to +127 bytes away from the program count-

er. See Branch Condition for further discussion on this issue.

A-16

BNOV Branch if No Overflow

Function: Jump if overflow flag bit = 0

Syntax: BNOV target_address

This instruction branches if OV = 0. It is used in signed number addition.

See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-

get address cannot be more than −128 to +127 bytes away from the program count-

er. See Branch Condition for further discussion on this issue.

BNZ Branch if No Zero

Function: Jump if Zero flag is 0

Syntax: BNZ target_address

This instruction branches if Z = 0.

Example:

CLRF TRISB ;PORTB as output
CLRF PORTB ;clear PORTB

OVER INCF PORTB,F ;INC PORTB
BNZ OVER ;do it until it becomes zero

Example: Add value 7 to WREG five times.

COUNTER SET 0x20 ;loc 20H for COUNTER
MOVLW 0x5 ;WREG = 5
MOVWF COUNTER ;COUNTER = 05
MOVLW 0x0 ;WREG = 0

OVER ADDLW 0x7 ;add 7 to WREG
DECF COUNTER,F ;decrement counter
BNZ OVER ;do it until counter is zero

Notice that this is a 2-byte instruction; therefore, the target address cannot

be more than −128 to +127 bytes away from the program counter. See Branch

Condition for further discussion on this issue.

BOV Branch if Overflow

Function: Jump if Overflow flag = 1

Syntax: BOV target_address

This instruction jumps if OV = 1. It is used in signed number addition. See

ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target

address cannot be more than −128 to +127 bytes away from the program counter.

See Branch Condition for further discussion on this issue.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

BRA Branch unconditional

Function: Branch unconditionally

Syntax: BRA target_address

BRA stands for “Branch.” It transfers program execution to the target

address unconditionally. The target address for this instruction must be within 1K

of program memory. This is a 2-byte instruction. The first 5 bits is the opcode and

the rest is the signed number displacement, which is added to the PC (program

counter) of the instruction following the BRA to get the target address. Therefore,

in this branch, the target address must be within −1024 to +1023 bytes of the PC

(program counter) of the instruction after the BRA because the 11-bit address can

take values of +1024 to −1023. This address is often referred to as a relative
address because the target address is −1024 to +1023 bytes relative to the program

counter (PC).

BSF Bit Set fileReg

Function: Set bit

Syntax: BSF f, b, a

This sets HIGH the indicated bit of a file register. The bit can be any direct-

ly addressable bit of a port, register, or RAM location.

Examples:
BSF PORTB,3 ;make PORTB.3 = 1
BSF PORTC,6 ;make PORTC.6 = 1
BSF MyReg,2 ;make bit D2 of MyReg = 1
BSF STATUS,C ;set Carry Flag C = 1

BTFSC Bit Test fileReg, Skip if Clear

Function: Skip the next instruction if bit is 0

Syntax: BTFSC f, b,a

This instruction is used to test a given bit and skip the next instruction if

the bit is low. The given bit can be any of the bit-addressable bits of RAM, ports,

or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and, when it becomes low, put

55H in WREG.

BSF TRISB,5 ;make PORTB.5 an input bit
HERE BTFSC PORTB,5 ;skip if PORTB.5 = 0

BRA HERE
MOVLW 0x55 ;because PORTB.5 = 0,

;put 55H in WREG

A-18

Example: See if WREG has an even number. If so, make it odd.

BTFSC WREG,0 ;skip if it is odd
BRA NEXT
ADDLW 0x1 ;it is even, make it odd

NEXT: ...

BTFSS Bit Test fileReg, Skip if Set

Function: Skip the next instruction if bit is 1

Syntax: BTFSS f, b, a

This instruction is used to test a given bit and skip the next instruction if

the bit is HIGH. The given bit can be any of the bit-addressable bits of RAM,

ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and when it becomes

HIGH, put 55H in WREG.
BSF TRISB,5 ;make PORTB.5 an input bit

HERE BTFSS PORTB,5 ;skip if PORTB.5 = 1
BRA HERE
MOVLW 55H ;because PORTB.5 = 0 WREG = 55H

Example: See if WREG has an odd number. If so, make it even.

BTFSS WREG,0 ;skip if it is even
BRA NEXT
ADDLW 0x01 ;it is even, make it odd

NEXT: ...

BTG Bit Toggle fileReg

Function: Toggle (Complement) bit

Syntax: BTG f, b, a

This instruction complements a single bit. The bit can be any bit-address-

able location in the PIC18.

Example:
BCF TRISB,0 ;make PORTB.0 an output

AGAIN BTG PORTB,0 ;complement PORTB.0 bit
BRA AGAIN ;continuously forever

Example: Toggle PORTB.7 a total of 150 times.

COUNTER SET 0x20 ;loc 20H for COUNTER
MOVLW ‘D’150 ;WREG = 150
MOVWF COUNTER ;COUNTER = 150
BCF TRISB,7 ;make PORTB.7 an output

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

OVER BTG PORTB.7 ;toggle PORTB.7
DECF COUNTER,F ;decrement and put it in

;COUNTER
BNZ OVER ;do it 150 times

BZ Branch if Zero

Function: Branch if Z = 1

Syntax: BZ target_address

Example: Keep checking PORTB for value 99H.
SETF TRISB ;port B as input

BACK MOVFW PORTB ;get PORTB into WREG
SUBLW 0x99 ;subtract 99H from it
BZ EXIT ;if 0x99, exit
BRA BACK ;keep checking
...

EXIT: ...

Example: Toggle PORTB 150 times.
MyReg SET 0x40 ;loc 40H for MyReg

SETF TRISB ;port B as output
MOVLW D'150' ;WREG = 150
MOVWF MyReg

BACK COMF PORTB ;toggle PORTB
DECF MyReg,F ;decrement MyReg
BZ EXIT ;if MyReg = 0, exit
BRA BACK ;keep toggling
...

EXIT: ...
Notice that this is a 2-byte instruction; therefore, the target address cannot

be more than −128 to +127 bytes away from the program counter. See Branch

Condition for further discussion on this.

CALL

Function: Transfers control to a subroutine

Syntax: CALL k,s ;s is used for fast context switching

The Call intruction is a 4-byte instruction. The first 12 bits are used for the

opcode and the rest (20 bits) are set aside for the address. A 20-bit address allows

us to reach the target address anywhere in the 2M ROM space of the PIC18. If

calling a subroutine, the PC register (which has the address of the instruction after

the CALL) is pushed onto the stack and the stack pointer (SP) is incremented by

1. Then the program counter is loaded with the new address and control is trans-

ferred to the subroutine. At the end of the procedure, when RETURN is executed,

PC is popped off the stack, which returns control to the instruction after the CALL.

Notice that CALL is a 4-byte instruction, in which 12 bits are the opcode,

and the other 20 bits are the 20-bit address of an even address location. Because

A-20

all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is auto-

matically set to zero to make sure that the CALL instruction will not land at the

middle of the targeted instruction. The 20-bit address of the CALL provides the

A20–A1 part of the address and with the A0 = 0, we have the 21-bit address need-

ed to go anywhere in the 2M address space of the PIC18.

We have two options for the “CALL k,s” instruction. They are s = 0, and

s = 1. When s = 0, it is simply calling a subroutine. With s = 1, we are calling a

subroutine and we are also asking the CPU to save the three major registers of

WREG, STATUS, and BSR in internal buffers (shadow registers) for the purpose

of context-switching. This fast context-switching can be used only in the main

subroutine because the depth of the shadow registers is only one. That means no

nested call with the s = 1. Look at the following case:

ORG 0x0

MAIN

.....

.....

CALL M_SUB,1 ;call and save the registers

MOVLW 0x55 ;address of this instruction is saved on stack

....

;-------------------------

ORG 0x2000

M_SUB

.....

CALL Y_SUB ;we cannot use CALL Y_SUB,1

MOVLW 0xAA;address of this instruction is saved on stack

.....

.....

RETURN,1 ;return to caller and restore the registers

;notice the s = 1 for RETURN

;-----------------------------------

ORG 0x3000

Y_SUB

.....

.....

RETURN

;-------------------------------

END

As shown in RETURN instruction, we also have two options for the

RETURN: s = 0 and s = 1. If we use s = 1 for the CALL, we must also use s = 1

for the RETURN. Notice that “CALL Target” with no number after it is interpret-

ed as s = 0 by the assembler. Likewise, the “RETURN” with no number after it is

interpreted as s = 0 by the assembler.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

CLRF Clear fileReg

Function: Clear

Syntax: CLRF f, a

This instruction clears the entire byte in the fileReg. All bits of the register

are cleared to 0.

Example:

MyReg SET 0x20 ;loc 20H for MyReg
CLRF MyReg ;clear MyReg
CLRF TRISB ;clear TRISB (make PORTB output)
CLRF PORTB ;clear PORTB
CLRF TMR01L ;TMR0L = 0

Notice that in this instruction the result can be placed in fileReg only and

there is no option for the WREG to be used as the destination.

CLRWDT

Function: Clear Watchdog Timer

Syntax: CLRWDT

This instruction clears the Watchdog Timer.

COMF Complement the fileReg

Function: Complement a fileReg

Syntax: COMF f, d, a

This complements the contents of a given fileReg. The result is the 1's

complement of the register; that is, 0s become 1s and 1s become 0s. The result

can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:

MOVLW 0x0 ;WREG = 0
MOVWF TRISB ;Make PORTB an output port
MOVLW 0x55 ;WREG = 01010101
MOVWF PORTB

AGAIN COMF PORTB,F ;complement (toggle) PORTB
CALL DELAY
BRA AGAIN ;continuously (notice WREG = 55H)

Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg ;MyReg = 39H
COMPF MyReg,F ;MyReg = C6H and WREG = 39H

Where 39H (0011 1001 bin) becomes C6H (1100 0110).

A-22

Example:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x55 ;W = 55H
MOVWF MyReg ;MyReg = 55H
COMPF MyReg,F ;MyReg AAH, WREG = 55H

where 55H (0101 0101) becomes AAH (1010 1010).

Example: Toggle PORTB 150 times.

COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;port B as output
MOVLW D'150' ;WREG = 150
MOVWF COUNTER ;COUNTER = 150
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ;decrement COUNTER
BNZ BACK ;toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg ;MyReg = 39H
COMPF MyReg ;MyReg = 39H and WREG = C6H

Example:

MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x55 ;W = 55H
MOVWF MyReg ;MyReg = 55H
COMPF MyReg ;WREG = AA and MyReg 55H SETF

CPFSEQ Compare FileReg with WREG and skip if equal (F = W)

Function: Compare fileReg and WREG and skip if they are equal

Syntax: CPFSEQ f, a

The magnitudes of the fileReg byte and WREG byte are compared. If they

are equal, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get

out only when PORTB has the value 99H.

SETF TRISB ;PORTB an input port
MOVLW 0x99 ;WREG = 99h

BACK CPFSEQ PORTB ;skip if PORTB has 0x99
BRA BACK ;keep monitoring

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Notice that CPFSEQ skips only when fileReg and WREG have equal val-

ues.

CPFSGT Compare FileReg with WREG and skip if greater (F > W)

Function: Compare fileReg and WREG and skip if fileReg > WREG.

Syntax: CPFSGT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If

fileReg is larger than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get

out only when PORTB has a value greater than 99H.

SETF TRISB ;PORTB an input port
MOVLW 0x99 ;WREG = 99H

BACK CPFSGT PORTB ;skip if PORTB > 99H
BRA BACK ;keep monitoring

Notice that CPFSGT skips only if FileReg is greater than WREG.

CPFSLT Compare FileReg with WREG and skip if less than (F < W)

Function: Compare fileReg and WREG and skip if fileReg < WREG.

Syntax: CPFSLT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If

fileReg is less than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get

out only when PORTB has a value less than 99H.

SETF TRISB ;PORTB an input port
MOVLW 0x99 ;WREG = 99H

BACK: CPFSEQ PORTB ;skip if PORTB < 99H
BRA BACK ;keep monitoring

Notice that CPFSLT skips only if FileReg < WREG.

DAW

Function: Decimal-adjust WREG after addition

Syntax: DAW

This instruction is used after addition of BCD numbers to convert the result

back to BCD. The data is adjusted in the following two possible cases:

1. It adds 6 to the lower 4 bits of WREG if it is greater than 9 or if DC = 1.

2. It also adds 6 to the upper 4 bits of WREG if it is greater than 9 or if C = 1.

A-24

Example:
MOVLW 0x47 ;WREG = 0100 0111
ADDLW 0x38 ;WREG = 47H + 38H = 7FH,

;invalid BCD
DAW ;WREG = 1000 0101 = 85H, valid BCD

47H
+ 38H
7FH (invalid BCD)

+ 6H (after DAW)
85H (valid BCD)

In the above example, because the lower nibble was greater than 9, DAW

added 6 to WREG. If the lower nibble is less than 9 but DC = 1, it also adds 6 to

the lower nibble. See the following example:

MOVLW 0x29 ;WREG = 0010 1001
ADDLW 0x18 ;WREG = 0100 0001 INCORRECT
DAW ;WREG = 0100 0111 = 47H VALID BCD

29H
+ 18H
41H (incorrect result in BCD)

+ 6H
47H correct result in BCD

The same thing can happen for the upper nibble. See the following example:

MOVLW 0x52 ;WREG = 0101 0010
ADDLW 0x91 ;WREG = 1110 0011 INVALID BCD
DAW ;WREG = 0100 0011 AND C = 1

52H
+ 91H
E3H (invalid BCD)

+ 6 (after DAW, adding to upper nibble)
143H valid BCD

Similarly, if the upper nibble is less than 9 and C = 1, it must be corrected.

See the following example:

MOVLW 0x94 ;W = 1001 0100
ADDLW 0x91 ;W = 0010 0101 INCORRECT
DAW ;W = 1000 0101, VALID BCD

;FOR 85, C = 1

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

94H
+ 91H
1 25H (incorrect BCD)
+ 6 (after DAW, adding to upper nibble)
1 8 5

It is possible that 6 is added to both the high and low nibbles. See the fol-

lowing example:

MOVLW 0x54 ;WREG = 0101 0100
ADDLW 0x87 ;WREG = 1101 1011 INVALID BCD
DAW ;WREG = 0100 0001, C = 1 (BCD 141)

54H
+ 8 7 H
DBH (invalid result in BCD)

+ 6 6H
1 4 1H valid BCD

DECF Decrement fileReg

Function: Decrement fileReg

Syntax: DECF f, d, a

This instruction subtracts 1 from the byte operand in fileReg. The result

can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40 ;set aside loc 40H for MyReg
MOVLW 0x99 ;WREG = 99H
MOVWF MyReg ;MyReg = 99H
DECF MyReg,F ;MyReg = 98H, WREG 99H
DECF MyReg,F ;MyReg = 97H, WREG 99H
DECF MyReg,F ;MyReg = 96H, WREG 99H

Example: Toggle PORTB 250 times.

COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'250' ;WREG = 250
MOVWF COUNTER ;COUNTER = 250
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ;decrement COUNTER
BNZ BACK ;toggle until counter becomes 0

A-26

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set aside loc for MyReg
MOVLW 0x99 ;WREG = 99H
MOVWF MyReg ;MyReg = 99H
DECF MyReg ;WREG = 98H, MyReg = 99H
DECF MyReg ;WREG = 97H, MyReg = 99H
DECF MyReg ;WREG = 96H, MyReg = 99H

Example:
MyReg SET 0x50 ;set MyReg loc at 0x50
MOVLW 0x39 ;W = 39H
MOVWF MyReg ;MyReg = 39H
DECF MyReg ;WREG = 38H and MyReg = 39H
DECF MyReg ;WREG = 37H and MyReg = 39H
DECF MyReg ;WREG = 36H and MyReg = 39H
DECF MyReg ;WREG = 35H and MyReg = 39H

DECFSZ Decrement fileReg and Skip if zero

Function: Decrement fileReg and skip if fileReg has zero in it

Syntax: DECFSZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result

is zero, then it skips execution of the next instruction.

Example: Toggle PORTB 250 times.

COUNT SET 0x40 ;loc 40H for COUNT
CLRF TRISB ;PORTB an output
MOVLW D'250' ;WREG = 250
MOVWF COUNT ;COUNT = 250
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECFSZ COUNT,F ;decrement COUNT and

;skip if zero
BRA BACK ;toggle until counter becomes 0
....

DECFSNZ Decrement fileReg and skip if not zero

Function: Decrement fileReg and skip if fileReg has other than zero

Syntax: DECFSNZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result

is not zero, then it skips execution of the next instruction.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example: Toggle PORTB 250 times continuously.

COUNT SET 0x40 ;loc 40H for COUNT
CLRF TRISB ;PORTB an output

OVER MOVLW D'250' ;WREG = 250
MOVWF COUNT ;COUNT = 250
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECFSNZ COUNT,F ;decrement COUNT and

;skip if zero
BRA OVER ;start over
BRA BACK ;toggle until counter becomes 0

GOTO Unconditional Branch

Function: Transfers control unconditionally to a new address.

Syntax: GOTO k

In the PIC18 there are two unconditional branches (jumps): GOTO (long

jump) and BRA (short jump). Each is described next.

1. GOTO (long jump): This is a 4-byte instruction. The first 12 bits are the

opcode, and the next 20 bits are an even address of the target location. Because

all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is

automatically set to zero to make sure that the GOTO instruction will not land

at the middle of the targeted instruction. The 20-bit address of the GOTO pro-

vides the A20–A1 part of the address and with A0 = 0, we have the 21-bit

address needed to go anywhere in the 2M address space of the PIC18.

2. BRA: This is a 2-byte instruction. The first 5 bits are the opcode and the

remaining 11 bits are the signed number displacement, which is added to the

PC (program counter) of the instruction following the BRA to get the target

address. Therefore, for the BRA instruction the target address must be

within −1023 to +1024 bytes of the PC of the instruction after the BRA because

a 11-bit address can take values of +1023 to −1024.

While GOTO is used to jump to any address location within the 2M code

space of the PIC18, BRA is used to jump to a location within the 1K ROM

space. The advantage of BRA is the fact that it takes 2 bytes of program ROM,

while GOTO takes 4 bytes. BRA is widely used in chips with a small amount

of program ROM and a limited number of pins.

Notice that the difference between GOTO and CALL is that the CALL

instruction will return and continue execution with the instruction following

the CALL, whereas GOTO will not return.

A-28

INCF Increment fileReg

Function: Increment

Syntax: INCF f, d, a

This instruction adds 1 to the byte operand in fileReg. The result can be

placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40 ;set aside loc 40H for MyReg
MOVLW 0x99 ;WREG = 99H
MOVWF MyReg
INCF MyReg,F ;MyReg = 9AH, WREG 99H
INCF MyReg,F ;MyReg = 9BH, WREG 99H
DECF MyReg,F ;MyReg = 9CH, WREG 99H

Example: Toggle PORTB 5 times.

COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D’251’ ;WREG = 251
MOVWF COUNTER ;COUNTER = 251
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
INCF COUNTER,F ;INC COUNTER
BNC BACK ;toggle until counter becomes 0

We can place the result in fileReg as shown in the examples below:

MyReg SET 0x40 ;set aside loc for MyReg
MOVLW 0x99 ;WREG = 99H
MOVWF MyReg ;MyReg = 99H
INCF MyReg ;WREG = 9AH, MyReg = 99H
INCF MyReg ;WREG = 9BH, MyReg = 99H

Example:
MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x5 ;W = 05H
MOVWF MyReg ;MyReg = 05H
INCF MyReg ;WREG = 06H and MyReg = 05H

INCFSZ Increment fileReg and skip if zero

Function: Increment

Syntax: INCFSZ f, d, a

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

This instruction adds 1 to fileReg and if the result is zero it skips the next

instruction.

Example: Toggle PORTB 156 times.

COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'156' ;WREG = 156
MOVWF COUNTER ;COUNTER = 156
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
INCFSZ COUNTER,F ;INC COUNTER and skip if 0
BRA BACK ;toggle until counter becomes 0
.....

INCFSNZ Increment fileReg and skip if not zero

Function: Increment

Syntax: INFSNZ f, d, a

This instruction adds 1 to the register or memory location specified by the

operand. If the result is not zero, it skips the next instruction.

Example: Toggle PORTB 156 times continuously.

COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output

OVER MOVLW D'156' ;WREG = 156
MOVWF COUNTER ;COUNTER = 156
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
INCFSNZ COUNTER,F;INC COUNTER, skip if not 0
BRA OVER ;start over
BRA BACK ;toggle until counter becomes 0

IORLW OR K value with WREG

Function: Logical-OR WREG with value k

Syntax: IORLW k

This performs a logical OR on the WREG register and k value, bit by bit,

and stores the result in WREG.

Example:
MOVLW 0x30 ;W = 30H
IORLW 0x09 ;now W = 39H

A-30

A B A OR B

0 0 0
0 1 1
1 0 1
1 1 1

39H 0011 0000
09H 0000 1001
39 0011 1001

Example:
MOVLW 0x32 ;W = 32H
IORLW 0x50 ;(W = 72H)

32H 0011 0010
50H 0101 0000
72H 0111 0010

IORWF OR FileReg with WREG

Function: Logical-OR fileReg and WREG

Syntax: IORWF f, d, a

This performs a logical OR on the fileReg value and the WREG register,

bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x07
IORWF MyReg ;39H ORed with 07 (W = 3F)

39 0011 1001
07 0000 0111
3F 0011 1111

Example:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x5 ;WREG = 05H
MOVWF MyReg ;MyReg = 05H
MOVLW 0x30
IORWF MyReg ;30H ORed with 05 (W = 35H)

05 0000 0101
30 0011 0000
35 0011 0101

We can place the result in fileReg as shown in the examples below:

MOVLW 0x30 ;W = 30H
IORWF PORTB,F ;W and PORTB are ORed and result

;goes to PORTB

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example:

MyReg SET 0x20
MOVLW 0x54 ;WREG = 54H
MOVWF MyReg
MOVLW 0x67 ;WREG = 67H
IORWF MyReg,F ;OR WREG and MyReg
;after the operation MyReg = 77H

44H 0101 0100
67H 0110 0111
77H 0111 0111 Therefore MyReg will have 77H, WREG = 54H.

LFSR Load FSR

Function: Load into FSR registers a 12-bit value of k

Syntax: LFSR f,k ;k is between 000 and FFFH

This loads a 12-bit value into one of the FSR registers of FSR0, FSR1, or

FSR2.
LFSR 0 , 0x200 ;FSR0 = 200H
LFSR 1 , 0x050 ;FSR1 = 050H
LFSR 2 , 0x160 ;FSR2 = 160H

This is widely used in register indirect addressing mode. See Chapter 6.

MOVF (or MOVFW) Move fileReg to WREG

Function: Copy byte from fileReg to WREG

Syntax MOVF f, d, a:

This instruction is widely used for moving data from a fileReg to WREG. Look

at the following examples:

CLRF TRISC ;PORTC output
SETF TRISB ;PORTB as input
MOVFW PORTB ;copy PORTB to WREG
ANDLW 0x0F ;mask the upper 4 bits
MOVWF PORTC ;put it in PORTC

Example:
CLRF TRISD ;PORTD as output
SETF TRISB ;PORTB as input
MOVFW PORTB ;copy PORTB to WREG
IORW 0x30 ;OR it with 30H
MOVWF PORTD ;put it in PORTD

This instruction can be used to copy the fileReg to itself in order to get the status

of the N and Z flags. Look at the following example.

A-32

Example:
MyReg SET 0x20 ;set aside loc 0x20 to MyReg
MOVLW 0x54 ;W = 54H
MOVWF MyReg ;MyReg = 54H
MOVFW MyReg,F ;My Reg = 54, also N = 0 and Z = 0

MOVFF Move FileReg to Filereg

Function: Copy byte from one fileReg to another fileReg

Syntax: MOVFF fs, fd

This copies a byte from the source location to the destination. The source

and destination locations can be any of the file register locations, SFRs, or ports.
MOVFF PORTB,MyReg
MOVFF PORTC,PORTD
MOVFF RCREG,PORTC
MOVFF Reg1,REG2
Notice that this a 4-byte instruction because the source and destination

address each take 12 bits of the instruction. That means the 24 bits of the instruc-

tion are used for the source and destination addresses. The 12-bit address allows

data to be moved from any source location to any destination location within the

4K RAM space of the PIC18.

MOVLB Move Literal 4-bit value to lower 4-bit of the BSR

Function: Move 4-bit value k to lower 4 bits of the BSR registers

Syntax: MOVLB k ;k is between 0 and 15 (0–F in hex)

We use this instruction to select a register bank other than the access bank.

With this instruction we can load into the BSR (bank selector register) a 4-bit value

representing one of 16 banks supported by the PIC18. That means the values

between 0000 and 1111 (0–F in hex). For examples of the MOVLB instruction,

see Chapter 6 and Section A.1 in this chapter.

MOVLW K Move Literal to WREG

Function: Move 8-bit value k to WREG

Syntax: MOVLW k ;k is between 0 and 255 (0–FF in hex)

Example:
MOVLW 0x55 ;WREG = 55H
MOVLW 0x0 ;clear WREG (WREG = 0)
MOVLW 0xC2 ;WREG = C2H
MOVLW 0x7F ;WREG = 7FH

This instruction, along with the MOVWF, is widely used to load fixed val-

ues into any port, SFR, or fileReg location. See the next instruction to see how it

is used.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

MOVWF Move WREG to a fileReg

Function: Copy the WREG contents to a fileReg

Syntax: MOVWF f, a

This copies a byte from WREG to fileReg. This instruction is widely used

along with the MOVLW instruction to load any of the fileReg locations, SFRs, or

PORTs with a fixed value. See the following examples:

Example: Toggle PORTB.
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB
MOVLW 0xAA ;WREG = AAH
MOVWF PORTB
BRA OVER ;keep toggling the PORTB

Example: Load RAM location 20H with value 50H.
MyReg SET 0x20 ;set aside the loc 0x20 for MyReg
MOVLW 0x50
MOVWF MyReg ;MyReg = 50H (loc 20H has 50H)

Example: Initialize the Timer0 low and high registers.
MOVLW 0x05 ;WREG = 05H
MOVWF TMR0H ;TMR0H = 0x5
MOVLW 0x30 ;WREG = 30H
MOVWF TMR0L ;TMR0L = 0x30

MULLW Multiply Literal with WREG

Function: Multiply k × WREG

Syntax: MULLW k

This multiplies an unsigned byte k by an unsigned byte in register WREG

and the 16-bit result is placed in registers PRODH and PRODL, where PRODL

has the lower byte and PRODH has the higher byte.

Example:
MOVLW 0x5 ;WREG = 5H
MULLW 0x07 ;PRODL = 35 = 23H, PRODH = 00

Example:
MOVLW 0x0A ;WREG = 10
MULLW 0x0F ;PRODL = 10 x 15 = 150 = 96H

;PRODH = 00

Example:
MOVLW 0x25
MULLW 0x78 ;PRODL = 58H, PRODH = 11H
;because 25H x 78H = 1158H

A-34

Example:
MOVLW D'100' ;WREG = 100
MULLW D'200' ;PRODL = 20H, PRODH = 4EH

;(100 x 200 = 20,000 = 4E20H)

MULWF Multiply WREG with fileReg

Function: Multiply WREG × fileReg and place the result in

PRODH:PROFDL registers

Syntax: MULWF f, a

This multiplies an unsigned byte in WREG by an unsigned byte in the

fileReg register and the result is placed in PRODL and PRODH, where PRODL

has the lower byte and PRODH has the higher byte.

Example:
MyReg SET 0x20 ;MyReg has location of 0x20

MOVLW 0x5
MOVWF MyReg ;MyReg has 0x5
MOVLW 0x7 ;WREG = 0x7
MULWF MyReg ;PRODL = 35 = 23H, PRODH = 00

Example:
MOVLW 0x0A
MOVWF MyReg ;MyReg = 10
MOVLW 0x0F ;WREG = 15
MULFW MyReg ;PRODL = 150 = 96H, PRODH = 00

Example:
MOVLW 0x25
MOVWF MyReg ;MyReg = 0x25
MOVLW 0x78 ;WREG 78H
MULWF Myreg ;PRODL = 58H, PRODH = 11H

;(25H x 78H = 1158H)
Example:

MOVLW D'100' ;WREG = 100
MOVWF MyReg ;MyReg = 100
MOVLW D'200' ;WREG = 200
MULWF MyReg ;PRODL = 20H, PRODH = 4EH

;(100 x 200 = 20,000 = 4E20H)

NEGF Negate fileReg

Function: No operation

Syntax: NEGF f, a

This performs 2’s complement on the value stored in fileReg and places it

back in fileReg.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example:
MyReg SET 0x30
MOVLW 0x98 ;WREG = 0x98
MOVWF MyReg ;MyReg = 0x98
NEGF ;2’s complement fileReg

98H 10011000
01100111 1’s complement

+ 1
01101000 Now FileReg = 68H

Example:
MyReg SET 0x10
MOVLW 0x75 ;WREG = 0x75
MOVWF MyReg ;MyReg = 0x75
NEGF ;2’s complement fileReg

75H 01110101
10001010 1’s complement

+ 1
10001011 Now FileReg = 7AH

Notice that in this instruction we cannot place the result in the WREG

register.

NOP No Operation

Function: No operation

Syntax: NOP

This performs no operation and execution continues with the next instruc-

tion. It is sometimes used for timing delays to waste clock cyles. This instruction

only updates the PC (program counter) to point to the next instruction following

NOP. In PIC18, this a 2-byte instruction.

POP POP Top of Stack

Function: Pop from the stack

Syntax: POP

This takes out the top of stack (TOS) pointed to by SP (stack pointer) and

discards it. It also decrements SP by 1. After the operation, the top of the stack will

be the value pushed onto the stack previously.

PUSH PUSH Top of the Stack

Function: Push the PC onto the stack

Syntax: PUSH

This copies the program counter (PC) onto the stack and increments SP by

1, which means the previous top of the stack is pushed down.

A-36

RCALL Relative Call

Function: Transfers control to a subroutine within 1K space

Syntax: RCALL target_address

There are two types of CALLs: RCALL and CALL. In RCALL, the target

address is within 1K of the current PC (program counter). To reach the target

address in the 2M ROM space of the PIC18, we must use CALL. In calling a sub-

routine, the PC register (which has the address of the instruction after the RCALL)

is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the

program counter is loaded with the new address and control is transferred to the

subroutine. At the end of the procedure, when RETURN is executed, PC is popped

off the stack, which returns control to the instruction after the RCALL.

Notice that RCALL is a 2-byte instruction, in which 5 bits are used for the

opcode and the remaining 11 bits are used for the target subroutine address. An 11-

bit address limits the range to –1024 to +1023. See the CALL instruction for dis-

cussion of the target address being anywhere in the 2M ROM space of the PIC18.

Notice that RCALL is a 2-byte instruction while CALL is a 4-byte instruction.

Also notice that the RCALL does not have the option of context saving, as CALL

has.

RESET Reset (by software)

Function: Reset by software

Syntax: RESET

This instruction is used to reset the PIC18 by way of software. After

execution of this instruction, all the registers and flags are forced to their reset con-

dition. The reset condition is created by activating the hardware pin MCLR. In

other words, the RESET instruction is the software version of the MCLR pin.

RETFIE Return from Interrupt Exit

Function: Return from interrupt

Syntax: RETFIE s

This is used at the end of an interrupt service routine (interrupt handler).

The top of the stack is popped into the program counter and program execution

continues at this new address. After popping the top of the stack into the program

counter (PC), the stack pointer (SP) is decremented by 1.

Notice that while the RETURN instruction is used at the end of a subrou-

tine associated with the CALL and RCALL instructions, RETFIE must be used for

the interrupt service routines (ISRs).

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

RETLW Return with Literal in WREG

Function: The k value is placed in WREG and the top of the stack is

the placed in PC (program counter)

Syntax: RETLW k

After execution of this instruction, the k value is loaded into WREG and

the top of the stack is popped into the program counter (PC). After popping the

top of the stack into the program counter, the stack pointer (SP) is decremented by

1. This instruction is used for the implementation of a look-up table. See Section

6.3 in Chapter 6.

RETURN Return

Function: Return from subroutine

Syntax: RETURN s ;where s = 0 or s = 1

This instruction is used to return from a subroutine previously entered by

instructions CALL or RCALL. The top of the stack is popped into the program

counter (PC) and program execution continues at this new address. After popping

the top of the stack into the program counter, the stack pointer (SP) is decrement-

ed by 1. For the case of “RETURN s” where s = 1, the RETURN will also

restore the context registers. See the CALL instruction for the case of s = 1. Notice

that “RETURN 1” cannot be used for subroutines associated with RCALL.

RLCF Rotate Left Through Carry the fileReg

Function: Rotate fileReg left through carry

Syntax: RLCF f, d, a

This rotates the bits of a

fileReg register left. The bits rotated

out of fileReg are rotated into C, and

the C bit is rotated into the opposite

end of the fileReg register.

Example:
MyReg SET 0x30 ;set aside loc 30H for MyReg

BCF STATUS,C ;C = 0
MOVLW 0x99 ;WREG = 99H
MOVWF MyReg ;MyReg = 99H = 10011001
RLCF MyReg,F ;now MyReg = 00110010 and

;C = 1
RLCF MyReg,F ;now MyReg = 01100101 and

;C = 0

A-38

MSB LSBCY

RLNCF Rotate left not through Carry

Function: Rotate left the fileReg

Syntax: RLNCF f, d, a

This rotates the bits of a fileReg

register left. The bits rotated out of

fileReg are rotated back into fileReg at

the opposite end.

Example:
MyReg SET 0x20 ;set aside loc 20 for MyReg
MOVLW 0x69 ;WREG = 01101001
MOVWF MyReg ;MyReg = 69H = 01101001
RLNCF MyReg,F ;now MyReg = 11010010
RLNCF MyReg,F ;now MyReg = 10100101
RLNCF MyReg,F ;now MyReg = 01001011
RLNCF MyReg,F ;now MyReg = 10010110

Notice that after four rotations, the upper and lower nibbles are swapped.

RRCF Rotate Right through Carry

Function: Rotate fileReg right through carry

Syntax: RRCF f, d, a

This rotates the bits of a

fileReg register right. The bits rotated

out of the register are rotated into C,

and the C bit is rotated into the

opposite end of the register.

Example:

MyReg SET 0x20 ;set aside loc 20 for MyReg
BSF STATUS,C ;C = 1
MOVLW 0x99 ;WREG = 10011001
MOVWF MyReg ;MyReg = 99H = 10011001
RRCF MyReg,F ;now MyReg = 11001100, C = 1
RRCF MyReg,F ;now MyReg = 11100110, C = 0

RRNCF Rotate Right not through Carry

Function: Rotate fileReg right

Syntax: RRNCF f, d, a

This rotates the bits of a fileReg reg-

ister right. The bits rotated out of the register

are rotated back into fileReg at the opposite

end.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

MSB LSB

MSB LSB CY

MSB LSB

Example:

MyReg SET 0x20 ;set aside loc 20H for MyReg
MOVLW 0x66 ;WREG = 66H = 01100110
MOVWF MyReg ;MyReg = 66H = 01100110
RRNCF MyReg,F ;now MyReg = 00110011
RRNCF MyReg,F ;now MyReg = 10011001
RRNCF MyReg,F ;now MyReg = 11001100
RRNCF MyReg,F ;now MyReg = 01100110

Example: We can use this instruction to swap the upper and lower nibbles.

MyReg SET 0x20 ;set aside loc 20H for MyReg
MOVLW 0x36 ;WREG = 36H = 00110110
MOVWF MyReg ;MyReg = 36H = 00110110
RRNCF MyReg,F ;now MyReg = 00011011
RRNCF MyReg,F ;now MyReg = 10001101
RRNCF MyReg,F ;now MyReg = 11000110
RRNCF MyReg,F ;now MyReg = 01100011 = 63H

SETF Set fileReg

Function: Set

Syntax: SETF f, a

This instruction sets the entire byte in fileReg to HIGH. All bits of the reg-

ister are set to 1.

Examples:
SETF MyReg ;MyReg = 11111111
SETF TRISB ;TRISB = FFH,(makes PORTB input)
SETF PORTC ;PORTC = 1111 1111

Notice that in this instruction, the result can be placed in fileReg only and

there is no option for WREG to be used as the destination for the result.

SLEEP Enter Sleep mode

Function: Put the CPU into sleep mode

Syntax: SLEEP

This instruction stops the oscillator and puts the CPU into sleep mode. It

also resets the Watchdog Timer (WDT). The WDT is used mainly with the SLEEP

instruction. Upon execution of the SLEEP instruction, the entire microcontroller

goes into sleep mode by shutting down the main oscillator and by stopping the

Program Counter from fetching the next instruction after SLEEP. There are two

ways to get out of sleep mode: (a) an external event via hardware interrupt, (b) the

internal WDT interrupt. Upon wake-up from a WDT interrupt, the microcontroller

resumes operation by executing the next instruction after SLEEP.

Check the Microchip Corp. website for application notes on WDT.

A-40

SUBFWB Subtract fileReg from WREG with borrow

Function: WREG – fileReg – #borrow ;#borrow is inverted carry

Syntax: SUBFWB f, d, a

This subtracts fileReg and the Carry (borrow) flag from WREG and puts

the result in WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed

by the internal hardware of the CPU are as follows:

1. Take the 2's complement of the fileReg byte.

2. Add this to register WREG.

3. Add the inverted Carry (borrow) flag to the result.

4. Ignore the Carry.

5. Examine the N (negative) flag for positive or negative result.

Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
BSF STATUS,C ;make Carry = 1
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23
SUBWF MyReg ;WREG = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2’s comp + 1101 1101

Inverted carry + 0
------- ------------
+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

N

WREG > (fileReg + #C) 0 the result is positive

WREG = (fileReg + #C) 0 the result is 0

WREG < (fileReg + #C) 1 the result is negative and in 2's comp

SUBLW Subtract WREG from Literal value

Function: Subtract WREG from literal value k (WREG = k – WREG)

Syntax: SUBLW k

This subtracts the WREG value from the literal value k and puts the result

in WREG. The steps for subtraction performed by the internal hardware of the

CPU are as follows:

1. Take the 2's complement of the WREG value.

2. Add it to literal value k.

3. Ignore the Carry.

4. Examine the N (negative) flag for positive or negative result.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

MOVLW 0x23 ;WREG 23H
SUBLW 0x45 ;WREG = 45H - 23H = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2’s comp +1101 1101
------- ------------------

+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

N

Literal value k > WREG 0 the result is positive

Literal value k = WREG 0 the result is 0

Literal value < WREG 1 the result is negative and in 2's comp

Example:
MOVLW 0x98 ;WREG 98H
SUBLW 0x66 ;WREG = 66H - 98H = CEH

66H 0110 0110 0110 0110
-98H 1001 1000 2’s comp +0110 1000
------ ----------------

CEH 1100 1110
Because D7 (the N flag) is 1, the result is
negative and in 2’s comp.

SUBWF Subtract WREG from fileReg

Function: Subtract WREG from fileReg (Dest = fileReg – WREG)

Syntax: SUBWF f, d, a

This subtracts the WREG value from the fileReg value and puts the result

in either WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed by

the internal hardware of the CPU are as follows:

1. Take the 2's complement of the WREG byte.

2. Add this to the fileReg register.

3. Ignore the carry.

4. Examine the N (negative) flag for positive or negative result.

Example:

MyReg SET 0x20 ;set aside loc 0x20 for MyReg
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H
SUBWF MyReg,F ;MyReg = 45H - 23H = 22H

A-42

45H 0100 0101 0100 0101
-23H 0010 0011 2’s comp +1101 1101
------- ------------------

+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

N

fileReg > WREG 0 the result is positive

fileReg = WREG 0 the result is 0

fileReg < WREG 1 the result is negative and in 2's comp

SUBWFB Subtract WREG from fileReg with borrow

Function: Dest = fileReg – WREG – #borrow ;#borrow is inverted carry

Syntax: SUBWFB f, d, a

This subtracts the WREG value and the inverted borrow (carry) flag from

the fileReg value and puts the result in WREG (if d = 0), or fileReg (if d = 1). The

steps for subtraction performed by the internal hardware of the CPU are as fol-

lows:

1. Take the 2's complement of WREG.

2. Add this to fileReg.

3. Add the inverted Carry flag to the result.

4. Ignore the carry.

5. Examine the N (negative) flag for positive or negative result.

Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
BSF STATUS,C ;C = 1
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H
SUBWFB MyReg,F ;MyReg = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2’s comp +1101 1101

Inverted carry + 0
----- ------------
+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

This instruction sets the negative flag according to the following:

N

fileReg > (WREG + #C) 0 the result is positive

fileReg = (WREG + #C) 0 the result is 0

fileReg < (WREG + #C) 1 the result is negative and in 2's comp

SWAPF Swap Nibbles in fileReg

Function: Swap nibbles within fileReg

Syntax: SAWPF f, d, a

The SWAPF instruction interchanges the lower nibble (D0–D3) with the

upper nibble (D4–D7) inside fileReg. The result is placed in WREG (d = 0) or

fileReg (d = 1).

Example:

MyReg SET 0X20 ;set aside loc 20H for MyReg
MOVLW 0x59H ;W = 59H (0101 1001 in binary)
MOVWF MyReg ;MyReg = 59H (0101 1001)
SWAPF MyReg,F ;MyReg = 95H (1001 0101)

TBLRD Table Read

Function: Read a byte from ROM to the TABLAT register

Syntax: TBLRD *

TBLRD *+

TBLRD *-

TBLRD +*

This instruction moves (copies) a byte of data located in program (code)

ROM into the TableLatch (TABLAT) register. This allows us to put strings of data,

such as look-up table elements, in the code space and read them into the CPU. The

address of the desired byte in the program space (on-chip ROM) is held by the

TBLPTR register. Table A-6 shows the auto-increment feature of the TBLRD

instruction.

Example: Assume that an ASCII character string is stored in the on-chip

ROM program memory starting at address 500H. Write a program to bring each

character into the CPU and send it to PORTB.

A-44

Table A-6: PIC18 Table Read Instructions

Instruction Function

TBLRD* Table Read After read, TBLPTR stays the same

TBLRD*+ Table Read with post-increment (Read and increment TBLPTR)

TBLRD*- Table Read with post-decrement (Read and decrement TBLPTR)

TBLRD+* Table Read with pre-increment (increment TBLPTR and read)

Note: A byte of data is read into the TABLAT register from code space pointed to by

TBLPTR.

ORG 0000H ;burn into ROM starting at 0
MOVLW LOW(MESSAGE) ;WREG = 00 low-byte addr.
MOVWF TBLPTRL ;look-up table low-byte addr
MOVLW HIGH(MESSAGE) ;WREG = 05 = high-byte addr
MOVWF TBLPTRH ;look-up table high-byte addr
CLRF TBLPTRU ;clear upper 5 bits

B8 TBLRD*+ ;read the table,then increment TBLPTR
MOVF TABLAT,W ;copy to WREG (Z = 1 if null)
BZ EXIT ;exit if end of string
MOVWF PORTB ;copy WREG to PORTB
BRA B8

EXIT GOTO EXIT
;---------------------message

ORG 0x500 ;data burned starting at 0x500
ORG 0x500

MESSAGE DB "The earth is but one country and "
DB "mankind its citizens","Baha'u'llah",0
END

In the program above, the TBLPTR holds the address of the desired byte.

After the execution of the TBLRD*+ instruction, register TABLAT has the char-

acter. Notice that TBLPTR is incremented automatically to point to the next char-

acter in the MRESSAGE table.

TBLWT Table Write

Function: Write to Flash a block of data

Syntax: TBLWT*

TBLWT*+

TBLWT*-

TBLWT+*

This instruction writes a block of data to the program (code) space assum-

ing that the on-chip program ROM is of Flash type. The address of the desired

location in Flash ROM is held by the TBLPTR register. The process of writing to

Flash ROM using the TBLWT instruction is discussed in Section 14.3 of Chapter

14.

TSTFSZ Test fileReg, Skip if Zero

Function: Test fileReg for zero value and skip if it is zero

Syntax: TSTFSZ f, a

This instruction tests the entire contents of fileReg for value zero and skips

the next instruction if fileReg has zero in it.

Example: Test PORTB for zero continuously.
SETF TRISB ;make PORTB an input

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

CLRF TRISD ;make PORTD an output
BACK TSTFSZ PORTB

BRA BACK
MOVFF PORTB,PORTD

Example: Toggle PORTB 250 times.

COUNTER SET 0x40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'250' ;WREG = 250
MOVWF COUNTER ;COUNTER = 250
MOVLW 0x55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ;decrement COUNTER
TSTFSZ COUNTER ;test counter for 0
BRA BACK ;keep doing it
......

XORLW Ex-Or Literal with WREG

Function: Logical exclusive-OR Literal k and WREG

Syntax: XORLW k

This performs a logical exclusive-OR on the

Literal value and WREG operands, bit by bit, storing

the result in WREG.

Example:
MOVLW 0x39 ;WREG = 39H
XORLW 0x09 ;WREG = 39H ORed with 09

;now, WREG = 30H
39H 0011 1001
09H 0000 1001
30 0011 0000

Example:
MOVLW 0x32 ;WREG = 32H
XORLW 0x50 ;(now, WREG = 62H)

32H 0011 0010
50H 0101 0000
62H 0110 0010

XORWF Ex-Or WREG with fileReg

Function: Logical exclusive-OR fileReg and WREG

Syntax: XORWF f, d, a

A-46

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

This performs a logical exclusive-OR on the operands, bit by bit, storing

the result in the destination. The destination can be WREG (d = 0), or fileReg

(d = 1).

Example:
MyReg SET 0x20 ;set aside loc 20h for MyReg
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x09 ;WREG = 09H
XORWF MyReg,F ;MyReg = 39H ORed with 09

;MyReg = 30H

39H 0011 1001
09H 0000 1001
30 0011 0000

Example:
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW 0x32 ;WREG = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW 0x50 ;WREG = 50H
XORWF MyReg,F ;now W = 62H

32H 0011 0010
50H 0101 0000
62H 0110 0010.

We can place the result in WREG.

Example:
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW 0x44 ;WREG = 44H
MOVWF MyReg ;MyReg = 44H
MOVLW 0x67 ;WREG = 67H
XORWF MyReg ;now W = 23H, and MyReg = 44H

44H 0100 0100
67H 0110 0111
23H 0010 0011

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

A-48

OVERVIEW

This appendix shows the basics of wire wrapping.

APPENDIX B

BASICS OF

WIRE WRAPPING

BASICS OF WIRE WRAPPING

Note: For this tutorial appendix, you will need the following:

Wire-wrapping tool (Radio Shack part number 276-1570)

30-gauge (30-AWG) wire for wire wrapping

(Thanks to Shannon Looper and Greg Boyle for their assistance on this section.)

The following describes the basics of wire wrapping:

1. There are several different types of wire-wrap tools available. The best one is

available from Radio Shack for less than $10. The part number for the Radio

Shack model is 276-1570. This tool combines the wrap and unwrap functions

in the same end of the tool and includes a separate stripper. We found this to

be much easier to use than the tools that combined all these features on one

two-ended shaft. There are also wire-wrap guns, which are, of course, more

expensive.

2. Wire-wrapping wire is available prestripped in various lengths or in bulk on a

spool. The prestripped wire is usually more expensive and you are restricted to

the different wire lengths you can afford to buy. Bulk wire can be cut to any

length you wish, which allows each wire to be custom fit.

3. Serveral different types of wire-wrap boards are available. These are usually

called perfboards or wire-wrap boards. These types of boards are sold at many

electronics stores (such as Radio Shack). The best type of board has plating

around the holes on the bottom of the board. These boards are better because

the sockets and pins can be soldered to the board, which makes the circuit more

mechanically stable.

4. Choose a board that is large enough to accommodate all the parts in your

design with room to spare so that the wiring does not become too cluttered. If

you wish to expand your project in the future, you should be sure to include

enough room on the original board for the complete circuit. Also, if possible,

the layout of the IC on the board needs to be such that signals go from left to

right just like the schematics.

5. To make the wiring easier and to keep pressure off the pins, install one stand-

off on each corner of the board. You may also wish to put standoffs on the top

of the board to add stability when the board is on its back.

6. For power hook-up, use some type of standard binding post. Solder a few sin-

gle wire-wrap pins to each power post to make circuit connections (to at least

one pin for each IC in the circuit).

7. To further reduce problems with power, each IC must have its own connection

to the main power of the board. If your perfboard does not have built-in power

buses, run a separate power and ground wire from each IC to the main power.

In other words, DO NOT daisy chain (chip-to-chip connection is called daisy

chain) power connections, as each connection down the line will have more

wire and more resistance to get power through. See Figure B-1. However,

daisy chaining is acceptable for other connections such as data, address, and

control buses.

8. You must use wire-wrap sockets. These sockets have long square pins whose

edges will cut into the wire as it is wrapped around the pin.

A-50

9. Wire wrapping will not work on round legs. If you need to wrap to compo-

nents, such as capacitors, that have round legs, you must also solder these con-

nections. The best way to connect single components is to install individual

wire-wrap pins into the board and then solder the components to the pins. An

alternate method is to use an empty IC socket to hold small components such

as resistors and wrap them to the socket.

10. The wire should be stripped about 1 inch. This will allow 7 to 10 turns for each

connection. The first turn or turn-and-a-half should be insulated. This prevents

stripped wire from coming in contact with other pins. This can be accom-

plished by inserting the wire as far as it will go into the tool before making the

connection.

11. Try to keep wire lengths to a minimum. This prevents the circuit from looking

like a bird nest. Be neat and use color coding as much as possible. Use only

red wires for VCC and black wires for ground connections. Also use different

colors for data, address, and control signal connections. These suggestions will

make troubleshooting much easier.

12. It is standard practice to connect all power lines first and check them for con-

tinuity. This will eliminate trouble later on.

13. It's also a good idea to mark the pin orientation on the bottom of the board.

Plastic templates are available with pin numbers preprinted on them specifical-

ly for this purpose, or you can make your own from paper. Forgetting to

reverse pin order when looking at the bottom of the board is a very common

mistake when wire wrapping circuits.

14. To prevent damage to your circuit, place a diode (such as IN5338) in reverse

bias across the power supply. If the power gets hooked up backwards, the

diode will be forward biased and will act as a short, keeping the reversed volt-

age from your circuit.

15. In digital circuits, there can be a problem with current demand on the power

supply. To filter the noise on the power supply, a 100 μF electrolytic capacitor

and a 0.1 μF monolithic capacitor are connected from VCC to ground, in par-

allel with each other, at the entry point of the power supply to the board. These

two together will filter both the high- and the low-frequency noises. Instead of

using two capacitors in parallel, you can use a single 20–100 μF tantalum

capacitor. Remember that the long lead is the positive one.

16. To filter the transient current, use a 0.1 μF monolithic capacitor for each IC.

Place the 0.1 μF monolithic capacitor between VCC and ground of each IC.

Make sure the leads are as short as possible.

APPENDIX B: BASICS OF WIRE WRAPPING

IC #1 IC #2 IC #3 IC #4

Figure B-1. Daisy Chain Connection (not recommended for power lines)

A-52

OVERVIEW

This appendix provides an overview of IC technology and PIC18

interfacing. In addition, we look at the microcontroller-based system as a

whole and examine some general issues in system design.

First, in Section C.1, we provide an overview of IC technology.

Then, in Section C.2, the internal details of PIC18 I/O ports and interfac-

ing are discussed. Section C.3 examines system design issues.

APPENDIX C

IC TECHNOLOGY AND

SYSTEM DESIGN ISSUES

A-54

C.1: OVERVIEW OF IC TECHNOLOGY

In this section we examine IC technology and discuss some major devel-

opments in advanced logic families. Because this is an overview, it is assumed that

the reader is familiar with logic families on the level presented in basic digital

electronics books.

Transistors

The transistor was invented in 1947 by three scientists at Bell Laboratory.

In the 1950s, transistors replaced vacuum tubes in many electronics systems,

including computers. It was not until 1959 that the first integrated circuit was suc-

cessfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the

invention of the IC, the use of transistors, along with other discrete components

such as capacitors and resistors, was common in computer design. Early transis-

tors were made of germanium, which was later abandoned in favor of silicon. This

was because the slightest rise in temperature resulted in massive current flows in

germanium-based transistors. In semiconductor terms, it is because the band gap

of germanium is much smaller than that of silicon, resulting in a massive flow of

electrons from the valence band to the conduction band when the temperature rises

even slightly. By the late 1960s and early 1970s, the use of the silicon-based IC

was widespread in mainframes and minicomputers. Transistors and ICs at first

were based on P-type materials. Later on, because the speed of electrons is much

higher (about two-and-a-half times) than the speed of holes, N-type devices

replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had

replaced the slower PNP and PMOS transistors in every sector of the electronics

industry, including in the design of microprocessors and computers. Since the

early 1980s, CMOS (complementary MOS) has become the dominant technology

of IC design. Next we provide an overview of differences between MOS and bipo-

lar transistors. See Figure C-1.

N

P

N

C

B

E

D

G

S

B

C

E

Bipolar NPN Transistor NMOS Transistor

N

N

P G

S

D

Oxide

Figure C-1. Bipolar vs. MOS Transistors

MOS vs. bipolar transistors

There are two types of transistors: bipolar and MOS (metal-oxide semicon-

ductor). Both have three leads. In bipolar transistors, the three leads are referred to

as the emitter, base, and collector, while in MOS transistors they are named

source, gate, and drain. In bipolar transistors, the carrier flows from the emitter to

the collector, and the base is used as a flow controller. In MOS transistors, the car-

rier flows from the source to the drain, and the gate is used as a flow controller. In

NPN-type bipolar transistors, the electron carrier leaving the emitter must over-

come two voltage barriers before it reaches the collector (see Figure C-1). One is

the N-P junction of the emitter-base and the other is the P-N junction of the base-

collector. The voltage barrier of the base-collector is the most difficult one for the

electrons to overcome (because it is reverse-biased) and it causes the most power

dissipation. This led to the design of the unipolar type transistor called MOS. In

N-channel MOS transistors, the electrons leave the source and reach the drain

without going through any voltage barrier. The absence of any voltage barrier in

the path of the carrier is one reason why MOS dissipates much less power than

bipolar transistors. The low power dissipation of MOS allows millions of transis-

tors to fit on a single IC chip. In today's technology, putting 10 million transistors

into an IC is common, and it is all because of MOS technology. Without the MOS

transistor, the advent of desktop personal computers would not have been possi-

ble, at least not so soon. The bipolar transistors in both the mainframes and mini-

computers of the 1960s and 1970s were bulky and required expensive cooling sys-

tems and large rooms. MOS transistors do have one major drawback: They are

slower than bipolar transistors. This is due partly to the gate capacitance of the

MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes

time to charge up to the turn-on (threshold) voltage, leading to a longer propaga-

tion delay.

Overview of logic families

Logic families are judged according to (1) speed, (2) power dissipation, (3)

noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable

qualities are high speed, low power dissipation, and high noise immunity (because

it prevents the occurrence of false logic signals during switching transition). In

interfacing logic families, the more inputs that can be driven by a single output,

the better. This means that high-driving-capability outputs are desired. This, plus

the fact that the input and output voltage levels of MOS and bipolar transistors are

not compatible mean that one must be concerned with the ability of one logic fam-

ily to drive the other one. In terms of the cost of a given logic family, it is high dur-

ing the early years of its introduction but it declines as production and use rise.

The case of inverters

As an example of logic gates, we look at a simple inverter. In a one-tran-

sistor inverter, the transistor plays the role of a switch, and R is the pull-up resis-

tor. See Figure C-2. For this inverter to work most effectively in digital circuits,

however, the R value must be high when the transistor is “on” to limit the current

flow from VCC to ground in order to have low power dissipation (P = VI, where V

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

= 5 V). In other words, the lower the I, the lower the power dissipation. On the

other hand, when the transistor is “off”, R must be a small value to limit the volt-

age drop across R, thereby making sure that VOUT is close to VCC. This is a con-

tradictory demand on R. This is one reason that logic gate designers use active

components (transistors) instead of passive components (resistors) to implement

the pull-up resistor R.

The case of a TTL inverter with totem-pole output is shown in Figure C-3.

In Figure C-3, Q3 plays the role of a pull-up resistor.

CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to con-

struct a CMOS (complementary MOS) inverter as shown in Figure C-4. In CMOS

inverters, when the PMOS transistor is off, it provides a very high impedance path,

making leakage current almost zero (about 10 nA); when the PMOS is on, it pro-

vides a low resistance on the path of VDD to load. Because the speed of the hole is

slower than that of the electron, the PMOS transistor is wider to compensate for

this disparity; therefore, PMOS transistors take more space than NMOS transistors

in the CMOS gates. At the end of this section we will see an open-collector gate

in which the pull-up resistor is provided externally, thereby allowing system

designers to choose the value of the pull-up resistor.

A-56

Vcc

Out
In

Rc

Vcc

Low
High

Rc must be a

very high value.

Rc must be a

very low value.

Rc

Vcc

High
Low

Rc

Figure C-2. One-Transistor Inverter with Pull-up Resistor

Vcc

Low

High

On

Out

Off

OffInput

Q1

Q2

Q3

Q4

Figure C-3. TTL Inverter with Totem-Pole Output

Vcc

Vcc

High

Low
On

On

Out

Off

Input

Input/output characteristics of some logic families

In 1968 the first logic family made of bipolar transistors was marketed. It

was commonly referred to as the standard TTL (transistor-transistor logic) family.

The first MOS-based logic family, the CD4000/74C series, was marketed in 1970.

The addition of the Schottky diode to the base-collector of bipolar transistors in

the early 1970s gave rise to the S family. The Schottky diode shortens the propa-

gation delay of the TTL family by preventing the collector from going into what

is called deep saturation. Table C-1 lists major characteristics of some logic fami-

lies. In Table C-1, note that as the CMOS circuit's operating frequency rises, the

power dissipation also increases. This is not the case for bipolar-based TTL.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

OutputInput
0 V5 V

PMOS

“on”

“off”

NMOS

VDD

VSS

OutputInput
5 V0 V

PMOS

“off”

“on”

NMOS

VDD

VSS

Figure C-4. CMOS Inverter

Table C-1: Characteristics of Some Logic Families

Characteristic STD TTL LSTTL ALSTTL HCMOS

VCC 5 V 5 V 5 V 5 V

VIH 2.0 V 2.0 V 2.0 V 3.15 V

VIL 0.8 V 0.8 V 0.8 V 1.1 V

VOH 2.4 V 2.7 V 2.7 V 3.7 V

VOL 0.4 V 0.5 V 0.4 V 0.4 V

IIL
−1.6 mA −0.36 mA −0.2 mA −1 μA

IIH 40 μA 20 μA 20 μA 1 μA

IOL 16 mA 8 mA 4 mA 4 mA

IOH
−400 μA −400 μA −400 μA 4 mA

Propagation delay 10 ns 9.5 ns 4 ns 9 ns

Static power dissipation (f = 0) 10 mW 2 mW 1 mW 0.0025 nW

Dynamic power dissipation

at f = 100 kHz 10 mW 2 mW 1 mW 0.17 mW

History of logic families

Early logic families and microprocessors required both positive and nega-

tive power voltages. In the mid-1970s, 5 V VCC became standard. In the late

1970s, advances in IC technology allowed combining the speed and drive of the S

family with the lower power of LS to form a new logic family called FAST

(Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced CMOS

Technology), a much higher speed version of HCMOS, was introduced. With the

introduction of FCT (Fast CMOS Technology) in 1986, the speed gap between

CMOS and TTL at last was closed. Because FCT is the CMOS version of FAST,

it has the low power consumption of CMOS but the speed is comparable with

TTL. Table C-2 provides an overview of logic families up to FCT.

Recent advances in logic families

As the speed of high-performance microprocessors reached 25 MHz, it

shortened the CPU's cycle time, leaving less time for the path delay. Designers

normally allocate no more than 25% of a CPU's cycle time budget to path delay.

Following this rule means that there must be a corresponding decline in the prop-

agation delay of logic families used in the address and data path as the system fre-

quency is increased. In recent years, many semiconductor manufacturers have

responded to this need by providing logic families that have high speed, low noise,

and high drive I/O. Table C-3 provides the characteristics of high-performance

logic families introduced in recent years. ACQ/ACTQ are the second-generation

advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS

input level, ACTQ is equipped with TTL-level input. The FCTx and FCTx-T are

second-generation FCT with much higher speed. The “x” in the FCTx and FCTx-

T refers to various speed grades, such as A, B, and C, where A means low speed

and C means high speed. For designers who are well versed in using the FAST

logic family, FASTr is an ideal choice because it is faster than FAST, has higher

driving capability (IOL, IOH), and produces much lower noise than FAST. At the

time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the

fastest logic family in the market (with the 5 V VCC), but the power consumption

is high relative to other logic families, as shown in Table C-3. The combining of

A-58

Table C-2: Logic Family Overview

Year Static Supply High/Low Family
Product Introduced Speed (ns) Current (mA) Drive (mA)

Std TTL 1968 40 30 −2/32

CD4K/74C 1970 70 0.3 −0.48/6.4

LS/S 1971 18 54 −15/24

HC/HCT 1977 25 0.08 −6/−6

FAST 1978 6.5 90 −15/64

AS 1980 6.2 90 −15/64

ALS 1980 10 27 −15/64

AC/ACT 1985 10 0.08 −24/24

FCT 1986 6.5 1.5 −15/64

Reprinted by permission of Electronic Design Magazine, c. 1991.

high-speed bipolar TTL and the low power consumption of CMOS has given birth

to what is called BICMOS. Although BICMOS seems to be the future trend in IC

design, at this time it is expensive due to extra steps required in BICMOS IC fab-

rication, but in some cases there is no other choice. (For example, Intel's Pentium

microprocessor, a BICMOS product, had to use high-speed bipolar transistors to

speed up some of the internal functions.) Table C-3 provides advanced logic char-

acteristics. The “x” is for different speeds designated as A, B, and C. A is the slow-

est one while C is the fastest one. The above data is for the 74244 buffer.

Since the late 70s, the use of a +5 V power supply has become standard in

all microprocessors and microcontrollers. To reduce power consumption, 3.3 V

VCC is being embraced by many designers. The lowering of VCC to 3.3 V has two

major advantages: (1) it lowers the

power consumption, prolonging

the life of the battery in systems

using a battery, and (2) it allows a

further reduction of line size

(design rule) to submicron dimen-

sions. This reduction results in put-

ting more transistors in a given die

size. As fabrication processes

improve, the decline in the line size

is reaching submicron level and

transistor densities are approaching

1 billion transistors.

Open-collector and open-drain

gates

To allow multiple outputs to be connect-

ed together, we use open-collector logic gates.

In such cases, an external resistor will serve as

load. This is shown in Figures C-5 and C-6.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Table C-3: Advanced Logic General Characteristics

Number Tech Static
Family Year Suppliers Base I/O Level Speed (ns) Current IOH/IOL

ACQ 1989 2 CMOS CMOS/CMOS 6.0 80 μA −24/24 mA

ACTQ 1989 2 CMOS TTL/CMOS 7.5 80 μA −24/24 mA

FCTx 1987 3 CMOS TTL/CMOS 4.1–4.8 1.5 mA −15/64 mA

FCTxT 1990 2 CMOS TTL/TTL 4.1–4.8 1.5 mA −15/64 mA

FASTr 1990 1 Bipolar TTL/TTL 3.9 50 mA −15/64 mA

BCT 1987 2 BICMOS TTL/TTL 5.5 10 mA −15/64 mA
Reprinted by permission of Electronic Design Magazine, c. 1991.

Figure C-5. Open Collector

Vcc

Input

Output

External

pull-up

resistor

External

pull-up

resistor

Figure C-6. Open Drain

SECTION C.2: PIC18 I/O PORT STRUCTURE AND INTERFACING

In interfacing the PIC18 microcontroller with other IC chips or devices,

fan-out is the most important issue. To understand the PIC18 fan-out we must first

understand the port structure of the PIC18. This section provides a detailed discus-

sion of the PIC18 port structure and its fan-out. It is very critical that we under-

stand the I/O port structure of the PIC18 lest we damage it while trying to inter-

face it with an external device.

IC fan-out

When connecting IC chips together, we need to find out how many input

pins can be driven by a single output pin. This is a very important issue and

involves the discussion of what is called IC fan-out. The IC fan-out must be

addressed for both logic “0” and logic “1” outputs. See Example C-1. Fan-out for

logic LOW and fan-out for logic HIGH are defined as follows:

Of the above two values, the lower number is used to ensure the proper

noise margin. Figure C-7 shows the sinking and sourcing of current when ICs are

connected together.

Notice that in Figure C-7, as the number of input pins connected to a sin-

gle output increases, IOL rises, which causes VOL to rise. If this continues, the rise

of VOL makes the noise margin smaller, and this results in the occurrence of false

logic due to the slightest noise.

A-60

fan-out (of LOW) =
IOL

IIL
fan-out (of HIGH) =

IOH

IIH

“On”

“Off”

IIL IIL IIL

IOL

IOL = Σ IIL
VOL = RON (transistor) × IOL

“Off”

HIGH LOW

“On”

IIH IIH IIH

IOH

IOH = Σ IIH

IOH
IOL

Figure C-7. Current Sinking and Sourcing in TTL

74LS244 and 74LS245 buffers/drivers

In cases where the receiver current requirements exceed the driver’s capa-

bility, we must use buffers/drivers such as the 74LS245 and 74LS244. Figure C-8

shows the internal gates for the 74LS244 and 74LS245. The 74LS245 is used for

bidirectional data buses, and the 74LS244 is used for unidirectional address buses.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Find how many unit loads (UL) can be driven by the output of the LS logic family.

Solution:

The unit load is defined as IIL = 1.6 mA and IIH = 40 μA. Table C-1 shows IOH = 400

μA and IOL = 8 mA for the LS family. Therefore, we have

This means that the fan-out is 5. In other words, the LS output must not be connected

to more than 5 inputs with unit load characteristics.

Example C-1

fan-out (LOW) = = = 5

= 10=

IOL

IIL

fan-out (HIGH) =
IOH

IIH

8 mA

1.6 mA

400 μA

40 μA

1A-1

1A-2

1A-3

1A-4

2A-1

2A-2

2A-3

2A-4

2Y-1

2Y-2

2Y-3

2Y-4

GND

1GVcc

1Y-1

1Y-2

1Y-3

1Y-4

1G

Figure C-8 (a). 74LS244 Octal Buffer
(Reprinted by permission of Texas Instruments, Copyright

Texas Instruments, 1988)

Direction control

Enable G DIR Operation

L L B Data to A Bus

L H A Data to B Bus

H X Isolation

Function Table

A1

A2

B1

B2

B3

B4

B5

B6

B7

B8

GDIR

Direction

control
Enable

Vcc GND

A3

A4

A5

A6

A7

A8

Figure C-8 (b). 74LS245 Bidirectional Buffer
(Reprinted by permission of Texas Instruments, Copyright

Texas Instruments, 1988)

Tri-state buffer

Notice that the

74LS244 is simply 8 tri-

state buffers in a single

chip. As shown in Figure

C-9 a tri-state buffer has a

single input, a single out-

put, and the enable control

input. By activating the

enable, data at the input is

transferred to the output.

The enable can be an

active-LOW or an active-

HIGH. Notice that the

enable input for the

74LS244 is an active-LOW

whereas the enable input

pin for Figure C-9 is active-HIGH.

74LS245 and 74LS244 fan-out

It must be noted that the output of the 74LS245 and 74LS244 can sink and

source a much larger amount of current than that of other LS gates. See Table

C-4. That is the reason we use these buffers for driver when a signal is travelling

a long distance through a cable or it has to drive many inputs.

After this background on the fan-out, next we discuss the structure of

PIC18 ports.

PIC18 port structure and operation

Because all the ports of the PIC18 are bidirectional they all have the fol-

lowing four components in their structure:

1. Data latch

2. Output driver

3. Input buffer

4. TRIS latch

Figure C-10 shows the structure of a port and its four components. Notice

that in Figure C-10, the PIC18 ports have both the latch and buffer. Now the ques-

tion is, in reading the port, are we reading the status of the input pin or are we read-

A-62

Table C-4: Electrical Specifications for Buffers/Drivers

IOH (mA) IOL (mA)

74LS244 3 12

74LS245 3 12

In
(a)

Out

Tri-state
control
(active high)

L
(b)

L

H

H
(c)

H

H

(d)

Low

High-impedence
(open-circuit)

Figure C-9. Tri-State Buffer

ing the status of the latch? That is an extremely important question and its answer

depends on which instruction we are using. Therefore, when reading the ports

there are two possibilities: (1) reading the input pin, or (2) reading the latch. The

above distinction is very important and must be understood lest you damage the

PIC18 port. Each is described next.

Reading the pin when TRIS = 1 (Input)

As we stated in Chapter 4, to make any bits of any port of the PIC18 an

input port, we first must write a 1 (logic HIGH) to the TRIS bit. Look at the fol-

lowing sequence of events to see why:

1. As can be seen from Figure C-10, a 1 written to the TRIS latch has “HIGH”

on its Q. Therefore, Q = 1 and
_
Q = 0. Because Q = 1, it turns off the P transis-

tor.

2. Because
_
Q = 0 and is connected to the gate of the N transistor, the N transistor

is off.

3. When both transistors are off, they block any path to the ground or VCC for

any signal connected to the input pin, and the input signal is directed to the

buffer.

4. When reading the input port in instructions such as “MOVFW PORTB” we are

really reading the data present at the pin. In other words, it is bringing into the

CPU the status of the external pin. This instruction activates the read pin of

buffer and lets data at the pins flow into the CPU’s internal bus. Figures C-10

and C-11 show HIGH and LOW signals at the input, respectively.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Figure C-10. Inputting (Reading) 1 from a Pin in the PIC18

P

N

Q D

En

QD

Q

RD TRIS

RD PORT

WR TRIS

WR PORT

DATA BUS

RD LAT

VDD

VSSTRIS LATCH

DATA LATCH

CLK

QD

QCLK

TTL or

SCHMITT

TRIGGER

ONE

OFF

OFF

0

1

X

0

1

X

1

1 X

1

0

1

X

1

111

1

TRIS=1

Writing to pin when TRIS = 0 (Output)

The above discussion showed why we must write a “HIGH” to a port’s

TRIS bits in order to make it an input port. What happens if we write a “0” to TRIS

that was configured as an input port? From Figure C-12 we see that when

TRIS = 0, if we write a 0 to the Data latch, then Q = 0 and
_
Q = 1. As a result of

_
Q

= 1, the N transistor is “on” and the P transistor is “off.” If N is “on,” it provides

the path to ground for the input pin. Therefore, any attempt to read the input pin

will always get the “LOW” ground signal. Figure C-13 shows what happens when

we write “HIGH” to output port (Data latch) when TRIS = 0. Writing 1 to the Data

latch makes
_
Q = 0. As a result of that, the P transistor is “on” and the N transistor

is “off,” which allows a 1 to be provided to the output pin. Therefore, any attempt

to read the input pin will always get the “HIGH” signal.

Avoid damaging the port

The following methods can be used as precautions to prevent damage to

the PIC18 ports:

1. Have a 10k ohms resistor on the VCC path to limit current flow.

2. Connect any input switch to a 74LS244 tri-state buffer before it is fed to the

PIC18 pin.

The above points are extremely important and must be emphasized

because many people damage their ports and afterwards wonder how it happened.

We must also use the right instruction when we want to read the status of an input

pin. Table C-5 shows the list of instructions in which reading the port reads the sta-

tus of the input pin.

A-64

Figure C-11. Inputting (Reading) 0 from a Pin in the PIC18

P

N

Q D

En

QD

Q

RD TRIS

RD PORT

WR TRIS

WR PORT

DATA BUS

RD LAT

VDD

VSSTRIS LATCH

DATA LATCH

CLK

QD

QCLK

ZERO

OFF

OFF

0

1

X

0

1

X

1

0 X

1

0

0

X

0

000

0

TRIS=1

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Figure C-13. Outputting (Writing) 1 to a Pin in the PIC18

P

N

Q D

En

QD

Q

RD TRIS

RD PORT

WR TRIS

WR PORT

DATA BUS

RD LAT

VDD

VSSTRIS LATCH

DATA LATCH

CLK

QD

QCLK

TTL or

SCHMITT

TRIGGER

ONE

OFF

ON

0

0

0

1

0

0

0

1 1

0

1

1

0

TRIS=0

Figure C-12. Outputting (Writing) 0 to a Pin in the PIC18

P

N

Q D

En

QD

Q

RD TRIS

RD PORT

WR TRIS

WR PORT

DATA BUS

RD LAT

VDD

VSSTRIS LATCH

DATA LATCH

CLK

QD

QCLK

TTL or

SCHMITT

TRIGGER

ZERO

ON

OFF

1

1

1

1

0

1

0

0 0

0

1

0

1

TRIS=0

PIC18 port fan-out

Now that we are familiar with the port structure of the PIC18, we need to

examine the fan-out for the PIC18 microconctroller. While the early chips were

based on NMOS IC technology, today's PIC18 microcontrollers are all based on

CMOS technology. Note, however, that while the core of the PIC18 microcon-

troller is CMOS, the circuitry driv-

ing its pins is all TTL compatible.

That is, the PIC18 is a CMOS-based

product with TTL-compatible pins.

All the ports of the PIC18 have the

same I/O structure, and therefore the

same fan-out. Table C-6 provides the

I/O characteristics of PIC18F458

ports.

74LS244 driving an output
pin

In some cases, when an

PIC18 port is driving multiple inputs,

or driving a single input via a long

wire or cable (e.g., printer cable), we

can use the 74LS244 as a driver.

When driving an off-board circuit,

placing the 74LS244 buffer between

your PIC18 and the circuit is essen-

tial because the PIC18 lacks suffi-

cient current. See Figure C-14.

A-66

Table C-5: Some of the Instructions Reading the Status of Input Port

Mnemonics Examples

MOVFW PORTx MOVFW PORTB
TSTFSZ f TSTFSZ PORTC
BTFSS f,b BTFSS PORTD,0
BTFSC f,b BTFSC PORTB,7
CPFSEQ f CPFSEQ PORTB

Table C-6: PIC18 Fan-out for PORTS

Pin Fan-out

IOL 8.5 mA

IOH –3 mA

IIL 1 μA

IIH 1 μA
Note: Negative current is defined as current

sourced by the pin.

Figure C-14. PIC18 Connection to

Printer Signals

PORTB

RD0

RD1

RD2

PIC18 74LS244

74LS244

D0 Printer

data

portD7

STROBE

ACK

BUSY

SECTION C.3: SYSTEM DESIGN ISSUES

In addition to fan-out, the other issues related to system design are power

dissipation, ground bounce, VCC bounce, crosstalk, and transmission lines. In this

section we provide an overview of these topics.

Power dissipation considerations

Power dissipation of a system is a major concern of system designers,

especially for laptop and hand-held systems in which batteries provide the power.

Power dissipation is a function of frequency and voltage as shown below:

In the above equations, the effects of frequency and VCC voltage should be

noted. While the power dissipation goes up linearly with frequency, the impact of

the power supply voltage is much more pronounced (squared). See Example C-2.

Dynamic and static currents

Two major types of currents flow through an IC: dynamic and static. A

dynamic current is I = CVF. It is a function of the frequency under which the com-

ponent is working. This means that as the frequency goes up, the dynamic current

and power dissipation go up. The static current, also called DC, is the current con-

sumption of the component when it is inactive (not selected). The dynamic cur-

rent dissipation is much higher than the static current consumption. To reduce

power consumption, many microcontrollers, including the PIC18, have power-

saving modes. In the PIC18, the power saving mode is called sleep mode. We

describe the sleep mode next.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Compare the power consumption of two microcontroller-based systems. One uses 5 V

and the other uses 3 V for VCC.

Solution:

Because P = VI, by substituting I = V/R we have P = V2/R. Assuming that R = 1, we

have P = 52 = 25 W and P = 32 = 9 W. This results in using 16 W less power, which

means power saving of 64%. (16/25 × 100) for systems using 3 V for power source.

Example C-2

Q = CV

I = CVF

P = VI = CV2F

Q
T

1

T
Q
TF = I =since

now

and

CV
T=

Sleep mode
In sleep mode the on-chip oscillator is frozen, which cuts off frequency to

the CPU and peripheral functions, such as serial ports, interrupts, and timers.

Notice that while this mode brings power consumption down to an absolute mini-

mum, the contents of RAM and the SFR registers are saved and remain

unchanged.

Ground bounce

One of the major issues that designers of high-frequency systems must

grapple with is ground bounce. Before we define ground bounce, we will discuss

lead inductance of IC pins. There is a certain amount of capacitance, resistance,

and inductance associated with each pin of the IC. The size of these elements

varies depending on many factors such as length, area, and so on.

The inductance of the pins is commonly referred to as self-inductance
because there is also what is called mutual inductance, as we will show below. Of

the three components of capacitor, resistor, and inductor, the property of self-

inductance is the one that causes the most problems in high-frequency system

design because it can result in ground bounce. Ground bounce occurs when a mas-

sive amount of current flows through the ground pin caused by many outputs

changing from HIGH to LOW all at the same time. See Figure C-15(a). The volt-

age is related to the inductance of the ground lead as follows:

As we increase the system frequency, the rate of dynamic current, di/dt, is

also increased, resulting in an increase in the inductance voltage L (di/dt) of the

ground pin. Because the LOW state (ground) has a small noise margin, any extra

voltage due to the inductance can cause a false signal. To reduce the effect of

ground bounce, the following steps must be taken where possible:

1. The VCC and ground pins of the chip must be located in the middle rather than

at opposite ends of the IC chip (the 14-pin TTL logic IC uses pins 14 and 7 for

ground and VCC). This is exactly what we see in high-performance logic gates

such as Texas Instruments' advanced logic AC11000 and ACT11000 families.

For example, the ACT11013 is a 14-pin DIP chip in which pin numbers 4 and

11 are used for the ground and VCC, instead of 7 and 14 as in the traditional

TTL family. We can also use the SOIC packages instead of DIP.

2. Another solution is to use as many pins for ground and VCC as possible to

reduce the lead length. This is exactly why all high-performance microproces-

sors and logic families use many pins for VCC and ground instead of the tradi-

tional single pin for VCC and single pin for GND. For example, in the case of

Intel's Pentium processor there are over 50 pins for ground, and another 50

pins for VCC.

A-68

di
dtV = L

The above discussion of ground bounce is also applicable to VCC when a

large number of outputs changes from the LOW to the HIGH state; this is referred

to as VCC bounce. However, the effect of VCC bounce is not as severe as ground

bounce because the HIGH (“1”) state has a wider noise margin than the LOW

(“0”) state.

Filtering the transient currents using decoupling capacitors

In the TTL family, the change of the output from LOW to HIGH can cause

what is called transient current. In a totem-pole output in which the output is

LOW, Q4 is on and saturated, whereas Q3 is off. By changing the output from the

LOW to the HIGH state, Q3 turns on and Q4 turns off. This means that there is a

time when both transistors are on and drawing current from VCC. The amount of

current depends on the RON values of the two transistors, which in turn depend on

the internal parameters of the transistors. The net effect of this, however, is a large

amount of current in the form of a spike for the output current, as shown in Figure

C-15(b). To filter the transient current, a 0.01 μF or 0.1 μF ceramic disk capacitor

can be placed between the VCC and ground for each TTL IC. The lead for this

capacitor, however, should be as small as possible because a long lead results in a

large self-inductance, and that results in a spike on the VCC line [V = L (di/dt)].

This spike is called VCC bounce. The ceramic capacitor for each IC is referred to

as a decoupling capacitor. There is also a bulk decoupling capacitor, as described

next.

Bulk decoupling capacitor

If many IC chips change state at the same time, the combined currents

drawn from the board's VCC power supply can be massive and may cause a fluc-

tuation of VCC on the board where all the ICs are mounted. To eliminate this, a rel-

atively large decoupling tantalum capacitor is placed between the VCC and ground

lines. The size and location of this tantalum capacitor varies depending on the

number of ICs on the board and the amount of current drawn by each IC, but it is

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

D0

D1

D2

D3

Ground

Time

Vout

ICCL ICCH

Ground bounce occurs when data

switches from all 1s to all 0s

Transient current going from 0 to 1

Figure C-15. (a) Ground Bounce (b) Transient Current

common to have a single 22 μF to 47 μF capacitor for each of the 16 devices,

placed between the VCC and ground lines.

Crosstalk

Crosstalk is due to mutual inductance.

See Figure C-16. Previously, we discussed self-

inductance, which is inherent in a piece of con-

ductor. Mutual inductance is caused by two

electric lines running parallel to each other. The

mutual inductance is a function of l, the length

of two conductors running in parallel, d, the

distance between them, and the medium mate-

rial placed between them. The effect of crosstalk can be reduced by increasing the

distance between the parallel or adjacent lines (in printed circuit boards, they will

be traces). In many cases, such as printer and disk drive cables, there is a dedicat-

ed ground for each signal. Placing ground lines (traces) between signal lines

reduces the effect of crosstalk. This method is used even in some ACT logic fam-

ilies where a VCC and a GND pin are next to each other. Crosstalk is also called

EMI (electromagnetic interference). This is in contrast to ESI (electrostatic inter-

ference), which is caused by capacitive coupling between two adjacent conduc-

tors.

Transmission line ringing

The square wave used in digital circuits is in

reality made of a single fundamental pulse and

many harmonics of various amplitudes. When this

signal travels on the line, not all the harmonics

respond in the same way to the capacitance, induc-

tance, and resistance of the line. This causes what is

called ringing, which depends on the thickness and

the length of the line driver, among other factors. To

reduce the effect of ringing, the line drivers are ter-

minated by putting a resistor at the end of the line.

See Figure C-17. There are three major methods of

line driver termination: parallel, serial, and

Thevenin.

In serial termination, resistors of 30–50

ohms are used to terminate the line. The parallel and

Thevenin methods are used in cases where there is

a need to match the impedance of the line with the

load impedance. This requires a detailed analysis of the signal traces and load

impedance, which is beyond the scope of this book. In high-frequency systems,

wire traces on the printed circuit board (PCB) behave like transmission lines, caus-

ing ringing. The severity of this ringing depends on the speed and the logic fami-

ly used. Table C-7 provides the length of the traces, beyond which the traces must

be looked at as transmission lines.

A-70

Figure C-16. Crosstalk (EMI)

L0

L0

Figure C-17. Reducing

Transmission Line Ringing

Ringing

Buffer

Series termination

Parallel termination

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Table C-7: Line Length Beyond Which

Traces Behave Like Transmission Lines

Logic Family Line Length (in.)

LS 25

S, AS 11

F, ACT 8

AS, ECL 6

FCT, FCTA 5
(Reprinted by permission of Integrated Device Technology,

copyright IDT 1991)

A-72

OVERVIEW

This appendix provides an introduction to writing flowcharts and

pseudocode.

APPENDIX D

FLOWCHARTS AND

PSEUDOCODE

Flowcharts

If you have taken any previous

programming courses, you are probably

familiar with flowcharting. Flowcharts

use graphic symbols to represent differ-

ent types of program operations. These

symbols are connected together into a

flowchart to show the flow of execution

of a program. Figure D-1 shows some of

the more commonly used symbols.

Flowchart templates are available to help

you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard

practice in industry for decades.

However, some find limitations in using

flowcharts, such as the fact that you can't

write much in the little boxes, and it is

hard to get the “big picture” of what the

program does without getting bogged

down in the details. An alternative to

using flowcharts is pseudocode, which

involves writing brief descriptions of the

flow of the code. Figures D-2 through

D-6 show flowcharts and pseudocode for

commonly used control structures.

Structured programming uses

A-74

Terminal

Process

Input/

Output

Subroutine

Decision

Figure D-1. Commonly Used

Flowchart Symbols

Connector

Figure D-2. SEQUENCE Pseudocode versus Flowchart

Statement 1

Statement 2

Statement 1
Statement 2

three basic types of program control structures: sequence, control, and iteration.

Sequence is simply executing instructions one after another. Figure D-2 shows

how sequence can be represented in pseudocode and flowcharts.

Figures D-3 and D-4 show two control programming structures: IF-THEN-

ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that “statement” can indicate one state-

ment or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT

UNTIL and WHILE DO. Both structures execute a statement or group of state-

ments repeatedly. The difference between them is that the REPEAT UNTIL struc-

ture always executes the statement(s) at least once, and checks the condition after

each iteration, whereas the WHILE DO may not execute the statement(s) at all

because the condition is checked at the beginning of each iteration.

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

Statement 1 Statement 2

IF (condition) THEN
Statement 1

ELSE
Statement 2

Condition

?

Figure D-4. IF THEN Pseudocode versus Flowchart

Statement

IF (condition) THEN
Statement

Condition

?

Yes

No

Program D-1 finds the sum of a series of bytes. Compare the flowchart ver-

sus the pseudocode for Program D-1 (shown in Figure D-7). In this example, more

program details are given than one usually finds. For example, this shows steps for

initializing and decrementing counters. Another programmer may not include

these steps in the flowchart or pseudocode. It is important to remember that the

purpose of flowcharts or pseudocode is to show the flow of the program and what

the program does, not the specific Assembly language instructions that accomplish

the program's objectives. Notice also that the pseudocode gives the same informa-

tion in a much more compact form than does the flowchart. It is important to note

that sometimes pseudocode is written in layers, so that the outer level or layer

shows the flow of the program and subsequent levels show more details of how

the program accomplishes its assigned tasks.

A-76

Figure D-6. WHILE DO Pseudocode versus Flowchart

WHILE (condition) DO
Statement

Statement

Condition

?

Yes

No

Figure D-5. REPEAT UNTIL Pseudocode versus Flowchart

Statement

REPEAT
Statement

UNTIL (condition)

Condition

?

Yes

No

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

Start

Stop

Count = 5

Address = 40H

Add one byte

Increment address

pointer

Decrement counter

Store sum

Count

= 0?

Figure D-7. Pseudocode versus Flowchart for Program D-1

Program D-1

Count = 5
Address = 40H
Repeat

Add next byte
Increment address
Decrement counter

Until Count = 0

Store Sum

No

Yes

COUNTVAL EQU 5 ;COUNT = 5
COUNTREG SET 0x20 ;set aside location 20H for counter
SUM SET 0x30 ;set aside location 30H for sum

MOVLW COUNTVAL ;WREG = 5
MOVWF COUNTREG ;load the counter
LFSR 0,0x40 ;load pointer. FSR0 = 40H, RAM address
CLRF WREG ;clear WREG

B5 ADDWF POSTINC0, W ;add RAM to WREG and increment FSR0
DECF COUNTREG,F ;decrement counter
BNZ B5 ;loop until counter = zero
MOVWF SUM ;store WREG in SUM

A-78

APPENDIX E.1

PIC18 PRIMER FOR

x86 PROGRAMMERS
x86 PIC18

8-bit registers: AL, AH, BL, BH, WREG and up to

CL, CH, DL, DH 256 RAM locations in Access Bank

16-bit (data pointer): BX, SI, DI TBLPTR

Program Counter: IP (16-bit) PC (21-bit)

Input:
MOV DX,port addr MOVFW PORTx ;(x = A,B,..G)
IN AL,DX

Output:
MOV DX,port addr MOVWF PORTx ;(x = A,B,..G)
OUT DX,AL

Loop:
DEC CL DECF MyReg,F
JNZ TARGET BNZ TARGET

Stack pointer: SP (16-bit) SP (21-bit)

As we PUSH data onto the Push increments the SP.

stack, it decrements the SP. (Used exclusively for saving PC)

As we POP data from the stack, Pop decrements the SP.

it increments the SP. (Used exclusively for retrieving PC)

Data movement:

From the code segment:
MOV AL,CS:[SI] TBLRD

From the data segment:
MOV AL,[SI] MOVFW FSRx

From RAM:
MOV AL,[SI] MOVFW FSRx
(Use SI, DI, or BX only.)

To RAM: MOV [SI],AL MOVWF FSRx

APPENDIX E: PIC18 PRIMER FOR X86 AND 8051 PROGRAMMERS

8051 PIC18

8-bit registers: A, B, R0, R1,R7 WREG and up to 256 RAM

locations in Access Bank

16-bit (data pointer): DPTR TBLPTR

Program Counter: PC (16-bit) PC (21-bit)

Input:
MOV A,Pn ; (n=0 - 3) MOVFW PORTx ;(x = A,B,..G)

Output:
MOV Pn,A ; (n=0 - 3) MOVWF PORTx ;(x = A,B,..G)

Loop:
DJNZ R3, TARGET DECF MyReg,F
(Using R0-R7) BNZ TARGET

Stack pointer: SP (8-bit) SP (21-bit)

As we PUSH data onto the Push increments the SP.

stack, it increments the SP. (Used exclusively for saving PC)

As we POP data from the Pop decrements the SP.

stack, it decrements the SP. (Used exclusively for retrieving PC)

Data movement:

From the code segment:
MOVC A,@A+PC TBLRD

From the data segment:
MOVX A,@DPTR MOVFW FSRx

From RAM:
MOV A, @R0 MOVFW FSRx
(Use R0 or R1 only)

To RAM:

MOV @R0,A MOVWF FSRx
(Use R0 or R1 only)

APPENDIX E.2

PIC18 PRIMER FOR

8051 PROGRAMMERS

A-80

APPENDIX F

ASCII CODES

APPENDIX F: ASCII CODES

This appendix provides various

sources for PIC18 assemblers and trainers.

In addition, it lists some suppliers for chips

and other hardware needs. While these are

all established products from well-known

companies, neither the authors nor the pub-

lisher assumes responsibility for any prob-

lem that may arise with any of them. You

are neither encouraged nor discouraged

from purchasing any of the products men-

tioned; you must make your own judgment

in evaluating the products. This list is sim-

ply provided as a service to the reader. It

also must be noted that the list of products

is by no means complete or exhaustive.

PIC18 assemblers

The PIC18 assembler is provided by

Microchip and other companies. Some of

the companies provide shareware versions

of their products, which you can download

from their Web sites. However, the size of

code for these shareware versions is limited

to a few KB. Figure G-1 lists some suppli-

ers of assemblers.

PIC18 trainers

There are many companies that pro-

duce and market PIC18 trainers. Figure

G-2 provides a list of some of them.

A-82

APPENDIX G

ASSEMBLERS, DEVELOPMENT

RESOURCES, AND SUPPLIERS

Microchip Corp.

www.microchip.com

Custom Computer Services Inc

www.ccsinfo.com

Figure G-1. Suppliers of

Assemblers and Compilers

Microchip Corp.

www.microchip.com

www.MicroDigitalEd.com

Custom Computer Services Inc.

www.ccsinfo.com

RSR Electronics

www.elexp.com

Figure G-2. Trainer Suppliers

Parts Suppliers

Figure G-3 provides a list of suppliers for many electronics parts.

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES, AND SUPPLIERS

RSR Electronics

Electronix Express

365 Blair Road

Avenel, NJ 07001

Fax: (732) 381-1572

Mail Order: 1-800-972-2225

In New Jersey: (732) 381-8020

www.elexp.com

Altex Electronics

11342 IH-35 North

San Antonio, TX 78233

Fax: (210) 637-3264

Mail Order: 1-800-531-5369

www.altex.com

Digi-Key

1-800-344-4539 (1-800-DIGI-KEY)

Fax: (218) 681-3380

www.digikey.com

Radio Shack

www.radioshack.com

JDR Microdevices

1850 South 10th St.

San Jose, CA 95112-4108

Sales 1-800-538-5000

(408) 494-1400

Fax: 1-800-538-5005

Fax: (408) 494-1420

www.jdr.com

Mouser Electronics

958 N. Main St.

Mansfield, TX 76063

1-800-346-6873

www.mouser.com

Jameco Electronic

1355 Shoreway Road

Belmont, CA 94002-4100

1-800-831-4242

(415) 592-8097

Fax: 1-800-237-6948

Fax: (415) 592-2503

www.jameco.com

B. G. Micro

P. O. Box 280298

Dallas, TX 75228

1-800-276-2206 (orders only)

(972) 271-5546

Fax: (972) 271-2462

This is an excellent source of LCDs, ICs,

keypads, etc.

www.bgmicro.com

Tanner Electronics

1100 Valwood Parkway, Suite #100

Carrollton, TX 75006

(972) 242-8702

www.tannerelectronics.com

Figure G-3. Electronics Suppliers

A-84

APPENDIX H

DATA SHEETS

APPENDIX H: DATA SHEETS

A-86

APPENDIX H: DATA SHEETS

A-88

APPENDIX H: DATA SHEETS

A-90

APPENDIX H: DATA SHEETS

A-92

APPENDIX H: DATA SHEETS

A-94

APPENDIX H: DATA SHEETS

A-96

APPENDIX H: DATA SHEETS

A-98

APPENDIX H: DATA SHEETS

A-100

APPENDIX H: DATA SHEETS

A-102

APPENDIX H: DATA SHEETS

A-104

APPENDIX H: DATA SHEETS

A-106

APPENDIX H: DATA SHEETS

A-108

APPENDIX H: DATA SHEETS

A-110

APPENDIX H: DATA SHEETS

A-112

APPENDIX H: DATA SHEETS

A-114

APPENDIX H: DATA SHEETS

A-116

APPENDIX H: DATA SHEETS

A-118

APPENDIX H: DATA SHEETS

A-120

APPENDIX H: DATA SHEETS

A-122

APPENDIX H: DATA SHEETS

A-124

APPENDIX H: DATA SHEETS

A-126

APPENDIX H: DATA SHEETS

A-128

APPENDIX H: DATA SHEETS

A-130

APPENDIX H: DATA SHEETS

A-132

APPENDIX H: DATA SHEETS

A-134

	PIC18 - 1st Edition - Appendices.pdf
	PIC18 - 1st Edition - Appendix B.pdf
	PIC18 - 1st Edition - Appendix C.pdf
	PIC18 - 1st Edition - Appendix D-H.pdf
	PIC18 - 1st Edition - Datasheets.pdf

