
CHAP T E R 5

PIC18 Development Tools

The development of a microcontroller-based system is a complex process. Development

tools are hardware and software tools designed to help programmers develop and test

systems in a relatively short time. There are many such tools, and a discussion of all of

them is beyond the scope of this book. This chapter offers a brief review of the most

common tools.

The tools for developing software and hardware for microcontroller-based systems

include editors, assemblers, compilers, debuggers, simulators, emulators, and device

programmers. A typical development cycle starts with writing the application

program using a text editor. The program is then translated into an executable code

with the help of an assembler or compiler. If the program has several modules, a

linker is used to combine them into a single application. Any syntax errors are

detected by the assembler or compiler and must be corrected before the executable

code can be generated. Next, a simulator is used to test the application program

without the target hardware. Simulators are helpful in checking the correctness of an

algorithm or a program with limited or no input-outputs, and most errors can be

removed during simulation. Once the program seems to be working and the

programmer is happy with it, the executable code is loaded to the target

microcontroller chip using a device programmer, and the system logic is tested.

Software and hardware tools such as in-circuit debuggers and in-circuit emulators can

analyze the program’s operation and display the variables and registers in real time

with the help of breakpoints set in the program.

www.newnespress.com

5.1 Software Development Tools

Software development tools are computer programs, usually run on personal computers,

that allow the programmer (or system developer) to create, modify, and test applications

programs. Some common software development tools are:

� Text editors

� Assemblers/compilers

� Simulators

� High-level language simulators

� Integrated development environments (IDEs)

5.1.1 Text Editors

A text editor is used to create or edit programs and text files. The Windows operating

system comes with a text editor program called Notepad. Using Notepad, we can create

a new program file, modify an existing file, or display or print the contents of a file. It is

important to realize that programs used for word processing, such as Microsoft Word,

cannot be used for this purpose, since they embed word formatting characters such as

bold, italic, and underline within the text.

Most assemblers and compilers come with built-in text editors, making it possible

to create a program and then assemble or compile it without having to exit from the

editor. These editors provide additional features as well, such as automatic keyword

highlighting, syntax checking, parenthesis matching, and comment line identification.

Different parts of a program can be shown in different colors to make the program

more readable (e.g., comments in one color and keywords in another). Such features

help to eliminate syntax errors during the programming stage, thus speeding up the

development process.

5.1.2 Assemblers and Compilers

Assemblers generate executable code from assembly language programs, and that

generated code can then be loaded into the flash program memory of a PIC18-based

microcontroller. Compilers generate executable code from high-level language programs.

The compilers used most often for PIC18 microcontrollers are BASIC, C, and PASCAL.

www.newnespress.com

222 Chapter 5

Assembly language is used in applications where processing speed is critical and the

microcontroller must respond to external and internal events in the shortest possible

time. However, it is difficult to develop complex programs using assembly language,

and assembly language programs are not easy to maintain.

High-level languages, on the other hand, are easier to learn, and complex programs can

be developed and tested in a much shorter time. High-level programs are also

maintained more easily than assembly language programs.

Discussions of programming in this book are limited to the C language. Many different

C language compilers are available for developing PIC18 microcontroller-based

programs. Some of the popular ones are:

� CCS C (http://www.ccsinfo.com)

� Hi-Tech C (http://htsoft.com)

� C18 C (http://www.microchip.com)

� mikroC C (http://www.mikroe.com)

� Wiz-C C (http://www.fored.co.uk)

Although most C compilers are essentially the same, each one has its own additions or

modifications to the standard language. The C compiler used in this book is mikroC,

developed by mikroElektronika.

5.1.3 Simulators

A simulator is a computer program that runs on a PC without the microcontroller

hardware. It simulates the behavior of the target microcontroller by interpreting

the user program instructions using the microcontroller instruction set. Simulators can

display the contents of registers, memory, and the status of input-output ports as

the user program is interpreted. Breakpoints can be set to stop the program and

check the contents of various registers at desired locations. In addition, the user

program can be executed in a single-step mode, so the memory and registers

can be examined as the program executes one instruction at a time as a key is

pressed.

Some assembler programs contain built-in simulators. Three popular PIC18

microcontroller assemblers with built-in simulators are:

www.newnespress.com

223PIC18 Development Tools

� MPLAB IDE (http://www.microchip.com)

� Oshon Software PIC18 simulator (http://www.oshonsoft.com)

� Forest Electronics PIC18 assembler (http://www.fored.co.uk)

5.1.4 High-Level Language Simulators

High-level language simulators, also known as source-level debuggers, are programs that

run on a PC and locate errors in high-level programs. The programmer can set breakpoints

in high-level statements, execute the program up to a breakpoint, and then view the values

of program variables, the contents of registers, and memory locations at that breakpoint.

A source-level debugger can also invoke hardware-based debugging using a hardware

debugger device. For example, the user program on the target microcontroller can be

stopped and the values of various variables and registers can be examined.

Some high-level language compilers, including the following three, have built-in

source-level debuggers:

� C18 C

� Hi-Tech PIC18 C

� mikroC C

5.1.5 Integrated Development Environments (IDEs)

Integrated development environments (IDEs) are powerful PC-based programs which

include everything to edit, assemble, compile, link, simulate, and source-level debug

a program, and then download the generated executable code to the physical

microcontroller chip using a programmer device. These programs are in graphical user

interface (GUI), where the user can select various options from the program without

having to exit it. IDEs can be extremely useful when developing microcontroller-based

systems. Most PIC18 high-level language compilers are IDEs, thus enabling the

programmer to do most tasks within a single software development tool.

5.2 Hardware Development Tools

Numerous hardware development tools are available for the PIC18 microcontrollers.

Some of these products are manufactured by Microchip Inc., and some by third-party

companies. The most ones are:

www.newnespress.com

224 Chapter 5

� Development boards

� Device programmers

� In-circuit debuggers

� In-circuit emulators

� Breadboards

5.2.1 Development Boards

Development boards are invaluable microcontroller development tools. Simple

development boards contain just a microcontroller and the necessary clock circuitry.

Some sophisticated development boards contain LEDs, LCD, push buttons, serial

ports, USB port, power supply circuit, device programming hardware, and so on.

This section is a survey of various commercially available PIC18 microcontroller

development boards and their specifications.

LAB-XUSB Experimenter Board

The LAB-XUSB Experimenter board (see Figure 5.1), manufactured by

microEngineering Labs Inc., can be used in 40-pin PIC18-based project development.

The board is available either assembled or as a bare board.

The board contains:

� 40-pin ZIF socket for PIC microcontroller

� 5-volt regulator

� 20MHz oscillator

� Reset button

� 16-switch keypad

� Two potentiometers

� Four LEDs

� 2-line by 20-character LCD module

� Speaker

www.newnespress.com

225PIC18 Development Tools

� RC servo connector

� RS232 interface

� USB connector

� Socket for digital-to-analog converter (device not included)

� Socket for I2C serial EEPROM (device not included)

� Socket for Dallas DS1307 real-time clock (device not included)

� Pads for Dallas DS18S20 temperature sensors (device not included)

� In-circuit programming connector

� Prototyping area for additional circuits

PICDEM 2 Plus

Th PICDEM 2 Plus kit (see Figure 5.2), manufactured by Microchip Inc., can be used in

the development of PIC18 microcontroller-based projects.

Figure 5.1: LAB-XUSB Experimenter board

www.newnespress.com

226 Chapter 5

The board contains:

� 2 � 16 LCD display

� Piezo sounder driven by PWM signal

� Active RS 232 port

� On-board temperature sensor

� Four LEDs

� Two push-button switches and master reset

� Sample PIC18F4520 and PIC16F877A flash microcontrollers

� MPLAB REAL ICE/MPLAB ICD 2 connector

� Source code for all programs

� Demonstration program displaying a real-time clock and ambient

temperature

� Generous prototyping area

� Works off of a 9V battery or DC power pack

Figure 5.2: PICDEM 2 Plus development board

www.newnespress.com

227PIC18 Development Tools

PICDEM 4

The PICDEM 4 kit (see Figure 5.3), manufactured by Microchip Inc., can be used in the

development of PIC18 microcontroller-based projects.

The board contains:

� Three different sockets supporting 8-, 14-, and 18-pin DIP devices

� On-board þ5V regulator for direct input from 9V, 100 mA AC/DC wall adapter

� Active RS-232 port

� Eight LEDs

� 2 � 16 LCD display

� Three push-button switches and master reset

� Generous prototyping area

� I/O expander

� Supercapacitor circuitry

� Area for an LIN transceiver

Figure 5.3: PICDEM 4 development board

www.newnespress.com

228 Chapter 5

� Area for a motor driver

� MPLAB ICD 2 connector

PICDEM HPC Explorer Board

The PICDEM HPC Explorer development board (see Figure 5.4), manufactured by

Microchip Inc., can be used in the development of high pin count PIC18-series

microcontroller-based projects.

The main features of this board are:

� PIC18F8722, 128K flash, 80-pin TQFP microcontroller

� Supports PIC18 J-series devices with plug-in modules

� 10MHz crystal oscillator (to be used with internal PLL to provide 40MHz

operation)

� Power supply connector and programmable voltage regulator, capable of

operation from 2.0 to 5.5V

� Potentiometer (connected to 10-bit A/D, analog input channel)

� Temperature sensor demo included

Figure 5.4: PICDEM HPC Explorer development board

www.newnespress.com

229PIC18 Development Tools

� Eight LEDs (connected to PORTD with jumper disable)

� RS-232 port (9-pin D-type connector, UART1)

� Reset button

� 32KHz crystal for real-time clock demonstration

MK-1 Universal PIC Development Board

The MK-1 Universal PIC development board (see Figure 5.5), manufactured by Baji

Labs, can be used for developing PIC microcontroller-based projects with up to 40 pins.

The board has a key mechanism which allows any peripheral device to be mapped to

any pin of the processor, making the board very flexible. A small breadboard area is

also provided, enabling users to design and test their own circuits.

Figure 5.5: MK-1 Universal PIC development board

www.newnespress.com

230 Chapter 5

The board has the following features:

� On-board selectable 3.3V or 5V

� 16 � 2 LCD character display (8- or 4-bit mode supported)

� 4-digit multiplexed 7-segment display

� Ten LED bar graph (can be used as individual LEDs)

� Eight-position dip switch

� Socketed oscillator for easy change of oscillators

� Stepper motor driver with integrated driver

� I2C real-time clock with crystal and battery backup support

� I2C temperature sensor with 0.5 degree C precision

� Three potentiometers for direct A/D development

� 16-button telephone keypad wired as 4 � 4 matrix

� RS232 driver with standard DB9 connector

� Socketed SPI and I2C EEPROM

� RF Xmit and receive sockets

� IR Xmit and receive

� External drive buzzer

� Easy access to pull up resistors

� AC adapter included

SSE452 Development Board

The SSE452 development board (see Figure 5.6), manufactured by Shuan Shizu Electronic

Laboratory, can be used for developing PIC18-based microcontroller projects, especially

the PIC18FXX2 series of microcontrollers, and also for programming the microcontrollers.

The main features of this board are:

� One PCB suitable for any 28- or 40-pin PIC18 devices

� Three external interrupt pins

www.newnespress.com

231PIC18 Development Tools

� Two input-capture/output-compare/pulse-width modulation modules (CCP)

� Support SPI, I2C functions

� 10-bit analog-to-digital converter

� RS-232 connector

� Two debounced push-button switches

� An 8-bit DIP-switch for digital input

� 4 � 4 keypad connector

� Rotary encoder with push button

� TC77 SPI temperature sensor

� EEPROM (24LC04B)

� 2 � 20 bus expansion port

� ICD2 connector

� On-board multiple digital signals from 1Hz to 8MHz

� Optional devices are 2 � 20 character LCD, 48/28-pin ZIF socket

Figure 5.6: SSE452 development board

www.newnespress.com

232 Chapter 5

SSE8720 Development Board

The SSE8720 development board (see Figure 5.7), manufactured by Shuan Shizu

Electronic Laboratory, can be used for the development of PIC18-based microcontroller

projects. A large amount of memory and I/O interface is provided, and the board can

also be used to program microcontrollers.

The main features of this board are:

� 20MHz oscillator with socket

� One DB9 connector provides EIA232 interface

� In-circuit debugger (ICD) connector

� Four debounced switches, and one reset switch

� 4 � 4 keypad connector

� One potentiometer for analog-to-digital conversion

� Eight red LEDs

� 8-bit DIP switch for digital inputs

� 2 � 20 character LCD module

� Twenty-four different digital signals, from 1Hz to 16MHz

Figure 5.7: SSE8720 development board

www.newnespress.com

233PIC18 Development Tools

� On-board 5V regulator

� One I2C EEPROM with socket

� SPI-compatible digital temperature sensor

� SPI-compatible real-time clock

� CCP1 output via an NPN transistor

SSE8680 Development Board

The SSE8680 development board (see Figure 5.8), manufactured by Shuan Shizu

Electronic Laboratory, can be used for developing PIC18-based microcontroller

projects. The board supports CAN network, and a large amount of memory and I/O

interface is provided. The board can also be used to program microcontrollers.

The main features of this board are:

� 20MHz oscillator with socket

� One DB9 connector provides EIA232 interface

� In-circuit debugger (ICD) connector

� Four debounced switches, and one reset switch

� 4 � 4 keypad connector

Figure 5.8: SSE8680 development board

www.newnespress.com

234 Chapter 5

� One potentiometer for analog-to-digital conversion

� 8 red LEDs

� 8-bit DIP switch for digital inputs

� 2 � 20 character LCD module

� Twenty-four different digital signals, from 1Hz to 16MHz

� On-board 5V regulator

� One I2C EPROM with socket

� SPI-compatible digital temperature sensor

� SPI-compatible real-time clock

� CCP1 output via an NPN transistor

� Rotary encoder

� CAN transceiver

PIC18F4520 Development Kit

The PIC18F4520 development kit (see Figure 5.9), manufactured by Custom Computer

Services Inc., includes a C compiler (PCWH), a prototyping board with PIC18F4520

microcontroller, an in-circuit debugger, and a programmer.

Figure 5.9: PIC18F4520 development kit

www.newnespress.com

235PIC18 Development Tools

The main features of this development kit are:

� PCWH compiler

� PIC18F4520 prototyping board

� Breadboard area

� 93LC56 serial EEPROM chip

� DS1631 digital thermometer chip

� NJU6355 real-time clock IC with attached 32.768KHz crystal

� Two-digit 7-segment LED module

� In-circuit debugger/programmer

� DC adapter and cables

Custom Computer Services manufactures a number of other PIC18microcontroller-based

development kits and prototyping boards, such as development kits for CAN, Ethernet,

Internet, USB, and serial buses. More information is available on the company’s web site.

BIGPIC4 Development Kit

The BIGPIC4 is a sophisticated development kit (Figure 5.10) that supports the

latest 80-pin PIC18 microcontrollers. The kit comes already assembled, with a

Figure 5.10: BIGPIC4 development kit

www.newnespress.com

236 Chapter 5

PIC18F8520 microcontroller installed and working at 10MHz. It includes an

on-board USB port, an on-board programmer, and an in-circuit debugger. The

microcontroller on the board can be replaced easily.

The main features of this development kit are:

� Forty-six buttons

� Forty-six LEDs

� USB connector

� External or USB power supply

� Two potentiometers

� Graphics LCD

� 2 � 16 text LCD

� MMC/SD memory card slot

� Two serial RS232 ports

� In-circuit debugger

� Programmer

� PS2 connector

� Digital thermometer chip (DS1820)

� Analog inputs

� Reset button

The BIGPIC4 is used in some of the projects in this book.

FUTURLEC PIC18F458 Training Board

The FUTURLEC PIC18F458 training board is a very powerful development kit

(see Figure 5.11) based on the PIC18F458 microcontroller and developed by

Futurlec (www.futurlec.com). The kit comes already assembled and tested. One

of its biggest advantages is its low cost, at under $45.

www.newnespress.com

237PIC18 Development Tools

Its main features are:

� PIC18F458 microcontroller with 10MHz crystal

� RS232 communication

� Test LED

� Optional real-time clock chip with battery backup

� LCD connection

� Optional RS485/RS422 with optional chip

� CAN and SPI controller

� I2C expansion

� In-circuit programming

� Reset button

� Speaker

� Relay socket

� All port pins are available at connectors

Figure 5.11: FUTURLEC PIC18F458 training board

www.newnespress.com

238 Chapter 5

5.2.2 Device Programmers

After the program is written and translated into executable code, the resulting HEX

file is loaded to the target microcontroller’s program memory with the help of a

device programmer. The type of device programmer depends on the type of

microcontroller to be programmed. For example, some device programmers can

only program PIC16 series, some can program both PIC16 and PIC18 series,

while some are designed to program other microcontroller models (e.g., the Intel

8051 series).

Some microcontroller development kits include on-board device programmers, so

the microcontroller chip does not need to be removed and inserted into a separate

programming device. This section describes some of the popular device programmers

used to program PIC18 series of microcontrollers.

Forest Electronics USB Programmer

The USB programmer, manufactured by Forest Electronics (see Figure 5.12), can be used

to program most PIC microcontrollers with up to 40 pins, including the PIC18 series. The

device is connected to the USB port of a PC and takes its power from this port.

Figure 5.12: Forest Electronics USB programmer

www.newnespress.com

239PIC18 Development Tools

Mach X Programmer

The Mach X programmer (Figure 5.13), manufactured by Custom Computer Services

Inc., can program microcontrollers of the PIC12, PIC14, PIC16, and PIC18 series

ranging from 8 to 40 pins. It can also read the program inside a microcontroller and then

generate a HEX file. In-circuit debugging is also supported by this programmer.

Melabs U2 Programmer

The Melabs U2 device programmer (see Figure 5.14), manufactured by

microEngineering Labs Inc., can be used to program most PIC microcontroller

chips having from 8 to 40 pins. The device is USB-based and receives its power

from the USB port of a PC.

Figure 5.13: Mach X programmer

www.newnespress.com

240 Chapter 5

EasyProg PIC Programmer

The EasyProg PIC is a low-cost programmer (Figure 5.15) used with microcontrollers

of the PIC16 and PIC18 series having up to 40 pins. It connects to a PC via a 9-pin

serial cable.

Figure 5.14: Melabs U2 programmer

Figure 5.15: EasyProg programmer

www.newnespress.com

241PIC18 Development Tools

PIC Prog Plus Programmer

The PIC Prog Plus is another low-cost programmer (Figure 5.16) that can be used to

program most PIC microcontrollers. The device is powered from an external 12V DC

supply.

5.2.3 In-Circuit Debuggers

An in-circuit debugger is hardware connected between a PC and the target

microcontroller test system used to debug real-time applications quickly and easily.

With in-circuit debugging, a monitor program runs in the PIC microcontroller in the test

circuit. The programmer can set breakpoints on the PIC, run code, single-step the

program, and examine variables and registers on the real device and, if required, change

their values. An in-circuit debugger uses some memory and I/O pins of the target PIC

microcontroller during debugging operations. Some in-circuit debuggers only debug

assembly language programs. Other, more powerful debuggers can debug high-level

language programs.

Figure 5.16: PIC Prog Plus programmer

www.newnespress.com

242 Chapter 5

This section discusses some of the popular in-circuit debuggers used in PIC18

microcontroller-based system applications.

ICD2

The ICD2, a low-cost in-circuit debugger (see Figure 5.17) manufactured by Microchip

Inc., can debug most PIC microcontroller-based systems. With the ICD2, programs are

downloaded to the target microcontroller chip and executed in real time. This debugger

supports both assembly language and C language programs.

The ICD2 connects to a PC through either a serial RS232 or a USB interface. The

device acts like an intelligent interface between the PC and the test system, allowing

the programmer to set breakpoints, look into the test system, view registers and

variables at breakpoints, and single-step through the user program. It can also be

used to program the target PIC microcontroller.

ICD-U40

The ICD-U40 is an in-circuit debugger (see Figure 5.18) manufactured by Custom

Computer Services Inc. to debug programs developed with their CCS C compiler.

The device operates with a 40MHz clock frequency, is connected to a PC via the

USB interface, and is powered from the USB port. The company also manufactures

Figure 5.17: ICD2 in-circuit debugger

www.newnespress.com

243PIC18 Development Tools

a serial-port version of this debugger called ICD-S40, which is powered from the

target test system.

PICFlash 2

The PICFlash 2 in-circuit debugger (see Figure 5.19) is manufactured by

mikroElektronika and can be used to debug programs developed in mikroBasic,

mikroC, or mikroPascal languages. The device is connected to a PC through its USB

Figure 5.18: ICD-U40 in-circuit debugger

Figure 5.19: PICFlash 2 in-circuit debugger

www.newnespress.com

244 Chapter 5

interface. Power is drawn from the USB port so the debugger requires no external

power supply. The PICFlash 2 is included in the BIGPIC4 development kit. Details

on the use of this in-circuit debugger are discussed later in this chapter.

5.2.4 In-Circuit Emulators

The in-circuit emulator (ICE) is one of the oldest and the most powerful devices for

debugging a microcontroller system. It is also the only tool that substitutes its own

internal processor for the one in the target system. Like all in-circuit debuggers, the

emulator’s primary function is target access—the ability to examine and change the

contents of registers, memory, and I/O. Since the emulator replaces the CPU, it does not

require a working CPU in the target system. This makes the in-circuit emulator by far

the best tool for troubleshooting new or defective systems.

In general, each microcontroller family has its own set of in-circuit emulators. For

example, an in-circuit emulator designed for the PIC16 microcontrollers cannot be

used for PIC18 microcontrollers. Moreover, the cost of in-circuit emulators is usually

quite high. To keep costs down, emulator manufacturers provide a base board which

can be used with most microcontrollers in a given family, for example, with all PIC

microcontrollers, and also make available probe cards for individual microcontrollers.

To emulate a new microcontroller in the same family, then, only the specific probe

card has to be purchased.

Several models of in-circuit emulators are available on the market. The following four

are some of the more popular ones.

MPLAB ICE 4000

The MPLAB ICE 4000 in-circuit emulator (Figure 5.20), manufactured by Microchip

Inc., can be used to emulate microcontrollers in the PIC18 series. It consists of

an emulator pod connected with a flex cable to device adapters for the specific

microcontroller. The pod is connected to the PC via its parallel port or USB

port. Users can insert an unlimited number of breakpoints in order to examine

register values.

RICE3000

The RICE3000 is a powerful in-circuit emulator (Figure 5.21), manufactured by

Smart Communications Ltd, for the PIC16 and PIC18 series of microcontrollers.

www.newnespress.com

245PIC18 Development Tools

Figure 5.20: MPLAB ICE 4000

Figure 5.21: RICE3000 in-circuit emulator

www.newnespress.com

246 Chapter 5

The device consists of a base unit with different probe cards for the various members

of the PIC microcontroller family. It provides full-speed real-time emulation up to

40MHz, supports observation of floating point variables and complex variables such

as arrays and structures, and provides source level and symbolic debugging in

both assembly and high-level languages.

ICEPIC 3

The ICEPIC 3 is a modular in-circuit emulator (see Figure 5.22), manufactured by RF

Solutions, for the PIC12/16 and PIC18 series of microcontrollers. It connects to the PC

via its USB port and consists of a mother board with additional daughter boards for each

microcontroller type. The daughter boards are connected to the target system with

device adapters. A trace board can be added to capture and analyze execution addresses,

opcodes, and external memory read/writes.

PICE-MC

The PICE-MC, a highly sophisticated emulator (see Figure 5.23) manufactured by

Phyton Inc., supports most PIC microcontrollers and consists of a main board, pod,

and adapters. The main board contains the emulator logic, memory, and an interface

to the PC. The pod contains a slave processor that emulates the target microcontroller.

The adapters are the mechanical parts that physically connect to the microcontroller

sockets of the target system. The PICE-MC provides source-level debugging of

Figure 5.22: ICEPIC 3 in-circuit emulator

www.newnespress.com

247PIC18 Development Tools

programs written in both assembly and high-level languages. A large memory is

provided to capture target system data. The user can set up a large number of

breakpoints and can access the program and data memories to display or change

their contents.

5.2.5 Breadboards

Building an electronic circuit requires connecting the components as shown

in the relevant circuit diagram, usually by soldering the components together

on a strip board or a printed circuit board (PCB). This approach is appropriate

for circuits that have been tested and are functioning as desired, and also

when the circuit is being made permanent. However, making a PCB design for

just a few applications—for instance, while still developing the circuit—is not

economical.

Instead, while the circuit is still under development, the components are usually

assembled on a solderless breadboard. A typical breadboard (see Figure 5.24)

consists of rows and columns of holes spaced so that integrated circuits and other

components can be fitted inside them. The holes have spring actions so the

component leads are held tightly in place. There are various types and sizes of

breadboards, suitable for circuits of different complexities. Breadboards can also be

Figure 5.23: PICE-MC in-circuit emulator

www.newnespress.com

248 Chapter 5

stacked together to make larger boards for very complex circuits. Figure 5.25 shows

the internal connection layout of the breadboard in Figure 5.24.

The top and bottom halves of the breadboard are entirely separate. Columns 1 to 20

in rows A to F are connected to each other on a column basis. Rows G to L in

columns 1 to 20 are likewise connected to each other on a column basis. Integrated

circuits are placed such that the legs on one side are on the top half of the breadboard,

and the legs on the other side are on the bottom half. The two columns on the

far left of the board are usually reserved for the power and ground connections.

Connections between components are usually made with stranded (or solid) wires

plugged into the holes to be connected.

Figure 5.26 shows a breadboard holding two integrated circuits and a number of

resistors and capacitors.

BA C D E F HG I J K L
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 5.24: A typical breadboard layout

www.newnespress.com

249PIC18 Development Tools

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A B C D E F G H I J K L

Figure 5.25: Internal wiring of the breadboard in Figure 5.24

Figure 5.26: Picture of a breadboard with some components

www.newnespress.com

The nice thing about breadboard design is that the circuit can be modified

easily and quickly, and ideas can be tested without having to solder the

components. Once a circuit has been tested and is working satisfactorily,

the components are easily removed and the breadboard can be used for other

projects.

5.3 mikroC Integrated Development
Environment (IDE)

In this book we are using the mikroC compiler developed by mikroElektronika.

Before using this compiler, we need to know how the mikroC integrated

development environment (IDE) is organized and how to write, compile, and

simulate a program in the mikroC language. In this section we will look at the

operation of the mikroC IDE in detail.

A free 2K program size limited version of the mikroC IDE, available on the

mikroElektronika web site (www.mikroe.com), is adequate for most small or medium-

sized applications. Alternatively, you can purchase a license and turn the limited

version into a fully working, unlimited IDE to use for projects of any size

and complexity.

After installing the mikroC IDE, a new icon should appear by default on your

desktop. Double-click this icon to start the IDE.

5.3.1 mikroC IDE Screen

After the mikroC icon is double-clicked to start the IDE, the screen shown in

Figure 5.27 is displayed by default.

The screen is divided into four areas: the top-left section, the bottom-left section, the

middle section, and the bottom section.

Top-Left Section

The top left, the Code Explorer section, displays every declared item in the source

code. In the example in Figure 5.28, main is listed under Functions and variables

Sum and i are listed under main.

www.newnespress.com

251PIC18 Development Tools

There are two additional tabs in the Code Explorer. As shown in Figure 5.29, the

QHelp tab lists all the available built-in functions and library functions for a quick

reference.

The Keyboard tab lists all the available keyboard shortcuts in mikroC IDE (see

Figure 5.30).

Bottom-Left Section

In the bottom-left section, called Project Setup (see Figure 5.31), the microcontroller

device type, clock rate, and build type are specified. The build type can be either

Code Explorer

Project Setup Message
Window

Code
Editor

Figure 5.27: mikroC IDE screen

www.newnespress.com

252 Chapter 5

Release, which is the normal compiler operating mode, or ICD debug, if the program is

to be debugged using the in-circuit debugger.

The Project Setup section has a tab called Project Summary which lists all the types of

files used in the project, as shown in Figure 5.32.

Middle Section

The middle section is the Code Editor, an advanced text editor. Programs are written in

this section of the screen. The Code Editor supports:

� Code Assistant

� Parameter Assistant

� Code Template

� Auto Correct

� Bookmarks

Figure 5.28: Code Explorer form

www.newnespress.com

253PIC18 Development Tools

The Code Assistant is useful when writing a program. Type the first few letters of

an identifier and then press the CTRLþSPACE keys to list all valid identifiers

beginning with those letters. In Figure 5.33, for example, to locate identifier strlen,

the letters str are typed and CTRLþSPACE is pressed. strlen can be selected from

the displayed list of matching valid words by using keyboard arrows and pressing

ENTER.

Figure 5.29: QHelp form

www.newnespress.com

254 Chapter 5

The Parameter Assistant is invoked when a parenthesis is opened after a function or a

procedure name. The expected parameters are listed in a small window just above the

parenthesis. In Figure 5.34, function strlen has been entered, and unsigned char *s

appears in a small window when a parenthesis is opened.

Code Template is used to generate code in the program. For example, as shown in

Figure 5.35, typing switch and pressing CTRLþJ automatically generates code for the

Figure 5.30: Keyboard form

www.newnespress.com

255PIC18 Development Tools

switch statement. We can add our own templates by selecting Tools -> Options -> Auto

Complete. Some of the available templates are array, switch, for, and if.

Auto Correct corrects typing mistakes automatically. A new list of recognized words

can be added by selecting Tools -> Options -> Auto Correct Tab.

Figure 5.31: Project setup form

Figure 5.32: Project summary form

www.newnespress.com

256 Chapter 5

Figure 5.33: Using the Code Assistant

Figure 5.34: Using the Parameter Assistant

Figure 5.35: Using the Code Template

www.newnespress.com

257PIC18 Development Tools

Bookmarks make the navigation easier in large code. We can set bookmarks by

entering CTRLþSHIFTþnumber, and can then jump to the bookmark by pressing

CTRLþnumber, where number is the bookmark number.

Bottom Section

The bottom section of the screen, also called the Message Window, consists of three

tabs: Messages, Find, and QConverter. Compilation errors and warnings are reported

under the Messages tab. Double-clicking on a message line highlights the line where

the error occurred. A HEX file can be generated only if the source file contains

no errors. Figure 5.36 shows the results of a successful compilation listed in the

Message Window. The QConverter tab can be used to convert decimal numbers

into binary or hexadecimal, and vice versa.

5.3.2 Creating and Compiling a New File

mikroC files are organized into projects, and all files for a single project are stored in

the same folder. By default, a project file has the extension “.ppc”. A project file

contains the project name, the target microcontroller device, device configuration flags,

the device clock, and list of source files with their paths. C source files have the

extension “.c”.

The following example illustrates step-by-step how to create and compile a program

source file.

Example 5.1

Write a C program to calculate the sum of the integer numbers 1 to 10 and then send the

result to PORTC of a PIC18F452-type microcontroller. Assume that eight LEDs are

connected to the microcontroller’s PORTC via current limiting resistors. Draw the

circuit diagram and show the steps involved in creating and compiling the program.

Figure 5.36: Display of a successful compilation

www.newnespress.com

258 Chapter 5

Solution 5.1

Figure 5.37 shows the circuit diagram of the project. The LEDs are connected to

PORTC using 390 ohm current limiting resistors. The microcontroller is operated

from a 4MHz resonator.

The program is created and compiled as follows:

Step 1 Double-click the mikroC icon to start the IDE.

Step 2 Create a new project called EXAMPLE. Click Project -> New Project and

fill in the form, as shown in Figure 5.38, by selecting the device type, the clock, and

the configuration fuse.

Figure 5.37: Circuit diagram of the project

www.newnespress.com

259PIC18 Development Tools

Step 3 Enter the following program into the Code Editor section of the IDE:

/**

EXAMPLE PROGRAM

8 LEDs are connected to a PIC18F452 type microcontroller.

This program calculates the sum of integer numbers from 1 to 10

And then displays the sum on PORTC of the microcontroller.

Author: Dogan Ibrahim

File: EXAMPLE.C

**/

Figure 5.38: Creating a new project

www.newnespress.com

260 Chapter 5

void main()
{

unsigned int Sum,i;
TRISC ¼ 0;

Sum ¼ 0;
for(i¼1; i<¼ 10; iþþ)
{

Sum ¼ Sum þ i;
}

PORTC ¼ Sum;
}

Step 4 Save the program with the name EXAMPLE by clicking File -> Save As. The

program will be saved with the name EXAMPLE.C.

Step 5 Compile the project by pressing CTRLþF9 or by clicking the Build Project

button (see Figure 5.39).

Step 6 If the compilation is successful, a Success message will appear in the Message

Window as shown in Figure 5.36. Any program errors will appear in the Message

Window and should be corrected before the project proceeds further.

The compiler generates a number of output files, which can be selected by clicking

Tools -> Options -> Output. The various output files include:

.ASM file This is the assembly file of the program. Figure 5.40 shows the EXAMPLE.

ASM file.

Build Project
button

Figure 5.39: Build Project button

www.newnespress.com

261PIC18 Development Tools

.LST file This is the listing file of the program. Figure 5.41 shows the EXAMPLE.LST

file.

; ASM code generated by mikroVirtualMachine for PIC - V. 6.2.1.0
; Date/Time: 07/07/2007 16:46:12
; Info: http://www.mikroelektronika.co.yu

; ADDRESS OPCODE ASM
; --
$0000 $EF04 F000 GOTO _main
$0008 $ _main:
;EXAMPLE.c,14 :: void main()
;EXAMPLE.c,18 :: TRISC = 0;
$0008 $6A94 CLRF TRISC, 0
;EXAMPLES.c,20 :: Sum = 0;
$000A $6A15 CLRF main_Sum_L0, 0
$000C $6A16 CLRF main_Sum_L0+1, 0
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$000E $0E01 MOVLW 1
$0010 $6E17 MOVWF main_i_L0, 0
$0012 $0E00 MOVLW 0
$0014 $6E18 MOVWF main_i_L0+1, 0
$0016 $ L_main_0:
$0016 $0E00 MOVLW 0
$0018 $6E00 MOVWF STACK_0, 0
$001A $5018 MOVF main_i_L0+1, 0, 0
$001C $5C00 SUBWF STACK_0, 0, 0
$001E $E102 BNZ L_main_3
$0020 $5017 MOVF main_i_L0, 0, 0
$0022 $080A SUBLW 10
$0024 $ L_main_3:
$0024 $E307 BNC L_main_1
;EXAMPLE.c,23 :: SUM = Sum + i;
$0026 $5017 MOVF main_i_L0, 0, 0
$0028 $2615 ADDWF main_Sum_L0, 1, 0
$002A $5018 MOVF main_i_L0+1, 0, 0
$002C $2216 ADDWFC main_Sum_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$002E $ L_main_2:
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$002E $4A17 INFSNZ main_i_L0, 1, 0
$0030 $2A18 INCF main_i_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$0032 $D7F1 BRA L_main_0
$0034 $ L_main_1:
;EXAMPLE.c,26 :: PORTC = Sum;
$0034 $C015 FF82 MOVFF main_Sum_L0, PORTC
;EXAMPLE.c,27 :: }
$0038 $D7FF BRA $

Figure 5.40: EXAMPLE.ASM

www.newnespress.com

262 Chapter 5

; ASM code generated by mikroVirtualMachine for PIC - V. 6.2.1.0
; Date/Time: 07/07/2007 17:07:12
; Info: http://www.mikroelektronika.co.yu

; ADDRESS OPCODE ASM
; --
$0000 $EF04 F000 GOTO _main
$0008 $ _main:
;EXAMPLE.c,14 :: void main()
;EXAMPLE.c,18 :: TRISC = 0;
$0008 $6A94 CLRF TRISC, 0
;EXAMPLE.c,20 :: Sum = 0;
$000A $6A15 CLRF main_Sum_L0, 0
$000C $6A16 CLRF main_Sum_L0+1, 0
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$000E $0E01 MOVLW 1
$0010 $6E17 MOVWF main_i_L0, 0
$0012 $0E00 MOVLW 0
$0014 $6E18 MOVWF main_i_L0+1, 0
$0016 $ L_main_0:
$0016 $0E00 MOVLW 0
$0018 $6E00 MOVWF STACK_0, 0
$001A $5018 MOVF main_i_L0+1, 0, 0
$001C $5C00 SUBWF STACK_0, 0, 0
$001E $E102 BNZ L_main_3
$0020 $5017 MOVF main_i_L0, 0, 0
$0022 $080A SUBLW 10
$0024 $ L_main_3:
$0024 $E307 BNC L_main_1
;EXAMPLE.c,23 :: SUM = Sum + i;
$0026 $5017 MOVF main_i_L0, 0, 0
$0028 $2615 ADDWF main_Sum_L0, 1, 0
$002A $5018 MOVF main_i_L0+1, 0, 0
$002C $2216 ADDWFC main_Sum_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$002E $ L_main_2:
;EXAMPLE.c,21 :: for(i=1; i<= 10; i++)
$002E $4A17 INFSNZ main_i_L0, 1, 0
$0030 $2A18 INCF main_i_L0+1, 1, 0
;EXAMPLE.c,24 :: }
$0032 $D7F1 BRA L_main_0
$0034 $ L_main_1:
;EXAMPLE.c,26 :: PORTC = Sum;
$0034 $C015 FF82 MOVFF main_Sum_L0, PORTC
;EXAMPLE.c,27 :: }
$0038 $D7FF BRA $

//** Procedures locations **
//ADDRESS PROCEDURE
//--
$0008 main

//** Labels locations **
//ADDRESS LABEL
//--

$0008 _main:
$0016 L_main_0:
$0024 L_main_3:
$002E L_main_2:
$0034 L_main_1:

Figure 5.41: EXAMPLE.LST
(Continued)

www.newnespress.com

//** Variables locations **
//ADDRESS VARIABLE
//--
$0000 STACK_0
$0001 STACK_1
$0002 STACK_2
$0003 STACK_3
$0004 STACK_4
$0005 STACK_5
$0006 STACK_6
$0007 STACK_7
$0008 STACK_8
$0009 STACK_9
$000A STACK_10
$000B STACK_11
$000C STACK_12
$000D STACK_13
$000E STACK_14
$000F STACK_15
$0010 STACK_16
$0011 STACK_17
$0012 STACK_18
$0013 STACK_19
$0014 STACK_20
$0015 main_Sum_L0
$0017 main_i_L0
$0F82 PORTC
$0F94 TRISC
$0FD8 STATUS
$0FD9 FSR2L
$0FDA FSR2H
$0FDB PLUSW2
$0FDC PREINC2
$0FDD POSTDEC2
$0FDE POSTINC2
$0FDF INDF2
$0FE0 BSR
$0FE1 FSR1L
$0FE2 FSR1H
$0FE3 PLUSW1
$0FE4 PREINC1
$0FE5 POSTDEC1
$0FE6 POSTINC1
$0FE7 INDF1
$0FE8 WREG
$0FE9 FSR0L
$0FEA FSR0H
$0FEB PLUSW0
$0FEC PREINC0
$0FED POSTDEC0
$0FEE POSTINC0
$0FEF INDF0
$0FF3 PRODL
$0FF4 PRODH
$0FF5 TABLAT
$0FF6 TBLPTRL
$0FF7 TBLPTRH
$0FF8 TBLPTRU
$0FF9 PCL
$0FFA PCLATH
$0FFB PCLATU
$0FFD TOSL
$0FFE TOSH
$0FFF TOSU

Figure 5.41: (Cont’d)

www.newnespress.com

.HEX file This is the most important output file as it is the one sent to the

programming device to program the microcontroller. Figure 5.42 shows the

EXAMPLE.HEX file.

5.3.3 Using the Simulator

The program developed in Section 5.3.2 is simulated following the steps given

here, using the simulator in software (release mode). That is, no hardware is used in this

simulation.

Example 5.2

Describe the steps for simulating the program developed in Example 5.1. Display

the values of various variables and PORTC during the simulation while

single-stepping the program. What is the final value displayed on PORTC?

Solution 5.2

The steps are as follows:

Step 1 Start the mikroC IDE, making sure the program developed in Example 5.1 is

displayed in the Code Editor window.

Step 2 From the drop-down menu select Debugger -> Select Debugger ->

Software PIC Simulator, as shown in Figure 5.43.

Step 3 From the drop-down menu select Run -> Start Debugger. The debugger

form shown in Figure 5.44 will appear.

Step 4 Select the variables we want to see during the simulation. Assuming we

want to display the values of variables Sum, i, and PORTC:

� Click on Select from variable list and then find and click on the variable

name Sum

:1000000004EF00F0FFFFFFFF946A156A166A010E05
:10001000176E000E186E000E006E1850005C02E1A4
:1000200017500A0807E31750152618501622174ACA
:10003000182AF1D715C082FFFFD7FFFFFFFFFFFF90
:020000040030CA
:0E000000FFF9FFFEFFFFFBFFFFFFFFFFFFFF0B
:00000001FF

Figure 5.42: EXAMPLE.HEX

www.newnespress.com

265PIC18 Development Tools

� Click Add to add this variable to the Watch list

� Repeat these steps for variable i and PORTC

The debugger window should now look like Figure 5.45.

Step 5 We can now single-step the program and see the variables changing.

Press the F8 key on the keyboard. You should see a blue line to move down.

This shows the line where the program is currently executing. Keep pressing

F8 until you are inside the loop and you will see that variables Sum and i have

become 1, as shown in Figure 5.46. Recently changed items appear in red.

Double-clicking an item in the Watch window opens the Edit Value window,

where you can change the value of a variable or register, or display the value

in other bases such as decimal, hexadecimal, binary, or as a floating point or

character.

Step 6 Keep pressing F8 until the program comes out of the for loop and

executes the line that sends data to PORTC. A this point, as shown in Figure 5.47,

i ¼ 11 and Sum ¼ 55.

Step 7 Press F8 again to send the value of variable Sum to PORTC. As shown in

Figure 5.48, in this case PORTC will have the decimal value 55, which is the sum of

numbers from 1 to 10.

This is the end of the simulation. Select from drop-down menu Run -> Stop

Debugger.

In the above simulation example, we single-stepped through the program to the end

and then we could see the final value of PORTC. The next example shows how to set

breakpoints in the program and then execute up to a breakpoint.

Figure 5.43: Selecting the debugger

www.newnespress.com

266 Chapter 5

Figure 5.44: Starting the debugger

www.newnespress.com

267PIC18 Development Tools

Figure 5.45: Selecting variables to be displayed

www.newnespress.com

268 Chapter 5

Figure 5.46: Single-stepping through the program

Figure 5.47: Single-stepping through the program

www.newnespress.com

Example 5.3

Describe the steps involved in simulating the program developed in Example 5.1.

Set a breakpoint at the end of the program and run the debugger up to this

breakpoint. Display the values of various variables and PORTC at this point.

What is the final value displayed on PORTC?

Solution 5.3

The steps are as follows:

Step 1 Start the mikroC IDE, making sure the program developed in Example 5.1 is

displayed in the Code Editor window.

Step 2 From the drop-down menu select Debugger -> Select Debugger ->

Software PIC Simulator.

Figure 5.48: PORTC has the value 55

www.newnespress.com

270 Chapter 5

Step 3 From the drop-down menu select Run -> Start Debugger.

Step 4 Select variables Sum, i, and PORTC from the Watch window as described in

Example 5.2.

Step 5 To set a breakpoint at the end of the program, click the mouse at the last

closing bracket of the program, which is at line 27, and press F5. As shown in

Figure 5.49, you should see a red line at the breakpoint and a little marker in the

left column of the Code Editor window.

Step 6 Now, start the debugger, and press F6 key to run the program. The program

will stop at the breakpoint, displaying variables as shown in Figure 5.48.

This is the end of the simulation. Select from drop-down menu Run -> Stop

Debugger.

To clear a breakpoint, move the cursor over the line where the breakpoint is and then

press F5. To clear all breakpoints in a program, press the SHIFTþCTRLþF5 keys.

To display the breakpoints in a program, press the SHIFTþF4 keys.

The following are some other useful debugger commands:

Step Into [F7] Executes the current instruction and then halts. If the

instruction is a call to a routine, the program enters the routine and halts at

the first instruction.

Figure 5.49: Setting a breakpoint at line 27

www.newnespress.com

271PIC18 Development Tools

Step Over [F8] Executes the current instruction and then halts. If the

instruction is a call to a routine, it skips it and halts at the first instruction

following the call.

Step Out [CTRLþF8] Executes the current instruction and then halts. If the

instruction is within a routine, it executes the instruction and halts at the first

instruction following the call.

Run to Cursor [F4] Executes all instructions between the current instruction

and the cursor position.

Jump to Interrupt [F2] Jumps to the interrupt service routine address (address

0x08 for PIC18 microcontrollers) and executes the procedure located at that

address.

5.3.4 Using the mikroICD In-Circuit Debugger

This section discusses how to use the mikroICD in-circuit debugger (also called

the PICFlash 2 programmer) to debug the program developed in Example 5.1.

First of all, we have to build the hardware and then connect the in-circuit debugger

device. In this example, the hardware is built on a breadboard, and a PICFlash

2 mikroICD in-circuit debugger is used to debug the system. Note that pins RB6

and RB7 are used by the mikroICD and are not available for I/O while mikroICD

is active.

The Circuit Diagram

The project’s circuit diagram is shown in Figure 5.50. The mikroICD in-circuit

debugger is connected to the development circuit using the following pins of the

microcontroller:

� MCLR

� RB6

� RB7

� þ5V

� GND

www.newnespress.com

272 Chapter 5

The mikroICD has two modes of operation. In inactive mode all lines from the

microcontroller used by the debugger device are connected to the development

system. In active mode the MCLR, RB6, and RB7 pins are disconnected from

the development system and used to program the microcontroller. After the

programming, these lines are restored.

The mikroICD debugger device has a 10-way IDC connector and can be connected to

the target system with a 10-way IDC header. Once the development is finished and the

mikroICD debugger is removed, opposite pairs of the IDC header can be connected

with jumpers. Figure 5.51 shows the system built on a breadboard.

Debugging

After building the hardware we are ready to program the microcontroller and test the

system’s operation with the in-circuit debugger. The steps are as follows:

Step 1 Start the mikroC IDE, making sure the program developed in Example 5.1 is

displayed in the Code Editor window.

Figure 5.50: Circuit diagram of the project

www.newnespress.com

273PIC18 Development Tools

Step 2 Click the Edit Project button (Figure 5.52) and set DEBUG_ON as shown in

Figure 5.53.

Step 3 Select ICD Debug in the Project Setup window as shown in Figure 5.54.

Step 4 Click the Build Project icon to compile the program with the debugger.

After a successful compilation you should see the message Success (ICD Build) in

the Message Window.

Figure 5.51: System built on a breadboard

Edit Project
button

Figure 5.52: Edit Project button

www.newnespress.com

274 Chapter 5

Step 5 Make sure the mikroICD debugger device is connected as in Figure 5.50,

and select Tools -> PicFlash Programmer from the drop-down menu to program

the microcontroller.

Step 6 From the drop-down menu select Debugger -> Select Debugger ->

mikroICD Debugger as shown in Figure 5.55.

Figure 5.53: Set the DEBUG_ON

www.newnespress.com

275PIC18 Development Tools

Step 7 From the drop-down menu select Run -> Start Debugger. The debugger

form will pop up and select variables Sum, i, and PORTC as described in

Example 5.2.

Step 8 Single-step through the program by pressing the F8 key. You should

see the values of variables changing. At the end of the program, decimal value

55 will be sent to PORTC, and LEDs 0,1,2,4, and 5 should be turned ON, as

shown in Figure 5.56, corresponding to this number.

Figure 5.54: Select the ICD Debug

Figure 5.55: Selecting the mikroICD debugger

Figure 5.56: Decimal number 55 shown in LEDs

www.newnespress.com

276 Chapter 5

Step 9 Stop the debugger.

In routines that contain delays, the Step Into [F7] and Step Over [F8]

commands can take a long time. Run to Cursor [F4] and breakpoints should

be used instead.

5.3.5 Using a Development Board

It is easy to develop microcontroller-based applications with the help of a development

board. This section explains how to use the development board BIGPIC4, described

earlier in this chapter. The program written in Example 5.1 is compiled and then loaded

to the microcontroller using the on-board mikroICD in-circuit emulator. Then the

program runs and displays the sum of the numbers 1 to 10 on the LEDs connected to

PORTC.

However, before using the development board we need to know how the BIGPIC4 is

organized and how to use the various devices on the board.

BIGPIC4 Development Board

Figure 5.57 shows the BIGPIC4 development board with the functions of various

devices identified with arrows. The board can be powered either from an external

power supply (8- to 16-C AC/DC) or from the USB port of a computer, using a

jumper. In this application, the board is powered from a USB port.

A 2-row by 16-column LCD can be connected in the board’s upper left corner. The

contrast of the LCD can be adjusted with a small potentiometer.

The forty-six LEDs on the board can be connected to the output ports of the

microcontroller, selected by switch S2. Figure 5.58 shows how to select the LEDs,

using PORTC as an example. 1K resistors are used in series with the LEDs to limit

the current. For example, to connect eight LEDs to PORTC we have to set the

switch arm marked PORTC of switch S2 to the ON position.

The forty-six push-button switches on the board can be used to program digital

inputs to the microcontroller. There is also a push-button switch that acts as the

RESET. Jumper J12 determines whether a button press will bring logical 0 or

logical 1 to the microcontroller. When the button is not pressed, the pin state is

determined by jumper J5.

www.newnespress.com

277PIC18 Development Tools

Figure 5.58: LED and push-button switch connections

External
Power
supply

USB

LEDs

Push-button
switches

Graphics
LCD

MMC/SD
slot

RS232
ports PC

keyboard mikroICD

Reset

Processor

Port
connectors

LCD

Contrast

Figure 5.57: BIGPIC4 development board

www.newnespress.com

278 Chapter 5

At the bottom central position, a 128 � 64 pixel graphics LCD can be connected

to the board. The contrast of the LCD can be adjusted by a small potentiometer.

The MMC/SD card slot at the bottom right-hand corner of the board supports

cards up to 2GB storage capacity.

The RESET button is located just above the MMC/SD card slot.

Above the RESET button are two potentiometers for analog-to-digital converter

applications.

All of the microcontroller port pins are available at the connectors situated along

the right-hand side of the board. In the top middle portion of the board are two

RS232 ports and a connection to a PC keyboard.

The board supports both 64-pin and 80-pin microcontrollers. The board comes with

a PIC18F8520 microcontroller connected to the board, operating with a 10MHz crystal.

Further details about the operation of the board can be found in the BIGPIC4

user’s manual.

The steps in developing an application using the BIGPIC4 board are as follows:

Step 1 Double-click the mikroC icon to start the IDE.

Step 2 Create a new project called EXAMPLE2 (see Figure 5.59) and select the

microcontroller type as PIC18F8520, the clock as 10MHz, and device flags as:

� _OSC_HS_1H

� _WDT_OFF_2H

� _LVP_OFF_4L

� _DEBUG_ON_4L

www.newnespress.com

279PIC18 Development Tools

Step 3 Enter the following program into the Code Editor section of the IDE:

/**

EXAMPLE PROGRAM

This program uses the PICBIG4 Development Board. 8 LEDs are connected

To PORTC of the microcontroller which is a PIC18F8520 operating at 10MHz.

This program calculates the sum of integer numbers from 1 to 10

And then displays the sum on PORTC of the microcontroller.

Figure 5.59: Creating a new project

www.newnespress.com

280 Chapter 5

Author: Dogan Ibrahim

File: EXAMPLE2.C

**/
void main()
{

unsigned int Sum,i;
TRISC ¼ 0;

Sum ¼ 0;
for(i¼1; i<¼ 10; iþþ)
{

Sum ¼ Sum þ i;
}

PORTC ¼ Sum;
}

Step 4 Save the program with the name EXAMPLE2 by clicking File -> Save As.

Step 5 Tick option ICD Debug in the Project Setup window. Compile the project by

pressing CTRLþF9 or by clicking the Build Project button.

Step 6 Connect the BIGPIC4 development board to the USB port on the computer.

Configure the development board by routing eight LEDs to PORTC: Set the arm

marked PORTC on switch S2 to the ON position.

Step 7 Select Tools -> PicFlash Programmer from the drop-down menu to

program the microcontroller.

Step 8 Select Debugger -> Select Debugger -> mikroICD Debugger.

Step 9 Start the debugger by clicking Run -> Start Debugger and select variables

Sum, i, and PORTC from the Watch window.

Step 10 Single-step through the program until the end by repeatedly pressing F8. At

the end of the program, the PORTC LEDs will turn ON to display decimal 55 (i.e.,

LEDs 0,1,2,4, and 5 will turn ON).

Step 11 Stop the debugger.

View the EEPROM Window The mikroICD EEPROM window is invoked from the

mikroC IDE drop-down menu when the mikroICD debug mode is selected and

started, and it displays contents of the PIC internal EEPROM memory. To view the

www.newnespress.com

281PIC18 Development Tools

memory, click View -> Debug Windows -> View EEPROM. Figure 5.60 shows an

example EEPROM window display.

View the RAM Window The mikroICD RAM window is invoked from the mikroC

IDE drop-down menu when the mikroICD debug mode is selected and started, and it

displays contents of the PIC internal RAM memory. To view the memory, click View

-> Debug Windows -> View RAM. Figure 5.61 shows an example RAM window

display.

View the Code Window The mikroICD Code window is invoked from the

mikroC IDE drop-down menu when the mikroICD debug mode is selected and

started, and it displays the contents of the PIC internal code memory. To view

Figure 5.60: Display of EEPROM memory

www.newnespress.com

282 Chapter 5

the memory, click View -> Debug Windows -> View Code. Figure 5.62 shows

an example Code window display.

View the Statistics The Statistics window is invoked from the mikroC IDE drop-

down menu and it displays various statistical data about our program. To view the

statistics window, click View -> View Statistics. Figure 5.63 shows an example

Statistics window, which consists of several tabs. The Memory Usage tab displays

the amount of RAM (data memory) and ROM (code memory) used. The Procedures

tabs display information about the size and locations of the procedures. The RAM

and ROM tabs display memory usage in detail.

Figure 5.61: Display of RAM memory

www.newnespress.com

283PIC18 Development Tools

Figure 5.63: Display of Statistics window

Figure 5.62: Display of Code memory

www.newnespress.com

5.4 Summary

This chapter has described the PIC microcontroller software development tools (such as

text editors, assemblers, compilers, and simulators) and hardware development tools

(including development boards and kits, programming devices, in-circuit debuggers, and

in-circuit emulators). The mikroC compiler was used in the examples and projects. The

steps in developing and testing a mikroC-based C program were presented both with and

without a hardware in-circuit debugger, followed by an example of how to use the

BIGPIC4 development board, with the on-board in-circuit debugger enabled.

5.5 Exercises

1. Describe the phases of the microcontroller-based system development cycle.

2. Describe briefly the microcontroller development tools.

3. Explain the advantages and disadvantages of assemblers and compilers.

4. Explain why a simulator can be a useful tool while developing a microcontroller-

based product.

5. Explain in detail what a device programmer is. Give some examples of device

programmers for the PIC18 series of microcontrollers.

6. Describe briefly the differences between in-circuit debuggers and in-circuit

emulators. List the advantages and disadvantages of both debugging tools.

7. Enter the following program into the mikroC IDE and compile the program,

correcting any syntax errors. Then, using the software ICD, simulate the operation

of the program by single-stepping through the code, and observe the values of the

variables during the simulation.

/*¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
A SIMPLE LED PROJECT

This program flashes the 8 LEDs connected to PORTC of a PIC18F452

microcontroller.

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼*/

void main()
{

TRISC ¼ 0; // PORTC is output

www.newnespress.com

285PIC18 Development Tools

do
{

PORTC ¼ 0xFF; // Turn ON LEDs on PORTC
PORTC ¼ 0; // Turn OFF LEDs on PORTC
} while(1); // Endless loop

}

8. Describe the steps in using the mikroICD in-circuit debugger.

9. The following C program contains some deliberately introduced errors. Compile

the program to find and correct the errors.

void main()
{

unsigned char i,j,k
i ¼ 10;
j ¼ i þ 1;

for(i ¼ 0; i < 10; iþþ)
{

Sum ¼ Sum þ i;
jþþ

}
}

}

10. The following C program contains some deliberately introduced errors. Compile

the program to find and correct the errors.

int add(int a, int b)
{

result ¼ a þ b
}

void main()
{

int p,q;
p ¼ 12;
q ¼ 10;
z ¼ add(p, q)
zþþ;
for(i ¼ 0; i < z; iþþ)pþþ

}
}

www.newnespress.com

286 Chapter 5

