
CHAP T E R 2

PIC18F Microcontroller Series

PIC16-series microcontrollers have been around for many years. Although these are

excellent general purpose microcontrollers, they have certain limitations. For example,

the program and data memory capacities are limited, the stack is small, and the interrupt

structure is primitive, all interrupt sources sharing the same interrupt vector. PIC16-

series microcontrollers also do not provide direct support for advanced peripheral

interfaces such as USB, CAN bus, etc., and interfacing with such devices is not easy.

The instruction set for these microcontrollers is also limited. For example, there are no

multiplication or division instructions, and branching is rather simple, being a

combination of skip and goto instructions.

Microchip Inc. has developed the PIC18 series of microcontrollers for use in high-pin-

count, high-density, and complex applications. The PIC18F microcontrollers offer cost-

efficient solutions for general purpose applications written in C that use a real-time

operating system (RTOS) and require a complex communication protocol stack such as

TCP/IP, CAN, USB, or ZigBee. PIC18F devices provide flash program memory in sizes

from 8 to 128Kbytes and data memory from 256 to 4Kbytes, operating at a range of

2.0 to 5.0 volts, at speeds from DC to 40MHz.

The basic features of PIC18F-series microcontrollers are:

� 77 instructions

� PIC16 source code compatible

� Program memory addressing up to 2Mbytes

� Data memory addressing up to 4Kbytes

www.newnespress.com

� DC to 40MHz operation

� 8 � 8 hardware multiplier

� Interrupt priority levels

� 16-bit-wide instructions, 8-bit-wide data path

� Up to two 8-bit timers/counters

� Up to three 16-bit timers/counters

� Up to four external interrupts

� High current (25mA) sink/source capability

� Up to five capture/compare/PWM modules

� Master synchronous serial port module (SPI and I2C modes)

� Up to two USART modules

� Parallel slave port (PSP)

� Fast 10-bit analog-to-digital converter

� Programmable low-voltage detection (LVD) module

� Power-on reset (POR), power-up timer (PWRT), and oscillator start-up timer (OST)

� Watchdog timer (WDT) with on-chip RC oscillator

� In-circuit programming

In addition, some microcontrollers in the PIC18F family offer the following special

features:

� Direct CAN 2.0 bus interface

� Direct USB 2.0 bus interface

� Direct LCD control interface

� TCP/IP interface

� ZigBee interface

� Direct motor control interface

www.newnespress.com

44 Chapter 2

Most devices in the PIC18F family are source compatible with each other. Table 2.1

gives the characteristics of some of the popular devices in this family. This chapter

offers a detailed study of the PIC18FXX2 microcontrollers. The architectures of most of

the other microcontrollers in the PIC18F family are similar.

The reader may be familiar with the programming and applications of the PIC16F

series. Before going into the details of the PIC18F series, it is worthwhile to compare

the features of the PIC18F series with those of the PIC16F series.

The following are similarities between PIC16F and PIC18F:

� Similar packages and pinouts

� Similar special function register (SFR) names and functions

� Similar peripheral devices

Table 2.1: The 18FXX2 microcontroller family

Feature PIC18F242 PIC18F252 PIC18F442 PIC18F452

Program memory
(Bytes)

16K 32K 16K 32K

Data memory (Bytes) 768 1536 768 1536

EEPROM (Bytes) 256 256 256 256

I/O Ports A,B,C A,B,C A,B,C,D,E A,B,C,D,E

Timers 4 4 4 4

Interrupt sources 17 17 18 18

Capture/compare/PWM 2 2 2 2

Serial communication MSSP
USART

MSSP
USART

MSSP
USART

MSSP
USART

A/D converter (10-bit) 5 channels 5 channels 8 channels 8 channels

Low-voltage detect yes yes yes yes

Brown-out reset yes yes yes yes

Packages 28-pin DIP

28-pin SOIC

28-pin DIP

28-pin SOIC

40-pin DIP

44-pin PLCC

44-pin TQFP

40-pin DIP

44-pin PLCC

44-pin TQFP

www.newnespress.com

45PIC18F Microcontroller Series

� Subset of PIC18F instruction set

� Similar development tools

The following are new with the PIC18F series:

� Number of instructions doubled

� 16-bit instruction word

� Hardware 8 � 8 multiplier

� More external interrupts

� Priority-based interrupts

� Enhanced status register

� Increased program and data memory size

� Bigger stack

� Phase-locked loop (PLL) clock generator

� Enhanced input-output port architecture

� Set of configuration registers

� Higher speed of operation

� Lower power operation

2.1 PIC18FXX2 Architecture

As shown in Table 2.1, the PIC18FXX2 series consists of four devices. PIC18F2X2

microcontrollers are 28-pin devices, while PIC18F4X2 microcontrollers are 40-pin devices.

The architectures of the two groups are almost identical except that the larger devices have

more input-output ports and more A/D converter channels. In this section we shall be looking

at the architecture of the PIC18F452 microcontroller in detail. The architectures of other

standard PIC18F-series microcontrollers are similar, and the knowledge gained in this section

should be enough to understand the operation of other PIC18F-series microcontrollers.

The pin configuration of the PIC18F452 microcontroller (DIP package) is shown in

Figure 2.1. This is a 40-pin microcontroller housed in a DIL package, with a pin

configuration similar to the popular PIC16F877.

www.newnespress.com

46 Chapter 2

Figure 2.2 shows the internal block diagram of the PIC18F452 microcontroller. The

CPU is at the center of the diagram and consists of an 8-bit ALU, an 8-bit working

accumulator register (WREG), and an 8 � 8 hardware multiplier. The higher byte and

the lower byte of a multiplication are stored in two 8-bit registers called PRODH and

PRODL respectively.

The program counter and program memory are shown in the upper left portion of

the diagram. Program memory addresses consist of 21 bits, capable of accessing

2Mbytes of program memory locations. The PIC18F452 has only 32Kbytes of program

memory, which requires only 15 bits. The remaining 6 address bits are redundant and

not used. A table pointer provides access to tables and to the data stored in program

memory. The program memory contains a 31-level stack which is normally used to

store the interrupt and subroutine return addresses.

The data memory can be seen at the top center of the diagram. The data memory bus

is 12 bits wide, capable of accessing 4Kbytes of data memory locations. As we shall

see later, the data memory consists of special function registers (SFR) and general

purpose registers, all organized in banks.

Figure 2.1: PIC18F452 microcontroller DIP pin configuration

www.newnespress.com

47PIC18F Microcontroller Series

Figure 2.2: Block diagram of the PIC18F452 microcontroller

www.newnespress.com

48 Chapter 2

The bottom portion of the diagram shows the timers/counters, capture/compare/PWM

registers, USART, A/D converter, and EEPROM data memory. The PIC18F452

consists of:

� 4 timers/counters

� 2 capture/compare/PWM modules

� 2 serial communication modules

� 8 10-bit A/D converter channels

� 256 bytes EEPROM

The oscillator circuit, located at the left side of the diagram, consists of:

� Power-up timer

� Oscillator start-up timer

� Power-on reset

� Watchdog timer

� Brown-out reset

� Low-voltage programming

� In-circuit debugger

� PLL circuit

� Timing generation circuit

The PLL circuit is new to the PIC18F series and provides the option of multiplying up the

oscillator frequency to speed up the overall operation. The watchdog timer can be used to

force a restart of the microcontroller in the event of a program crash. The in-circuit

debugger is useful during program development and can be used to return diagnostic data,

including the register values, as the microcontroller is executing a program.

The input-output ports are located at the right side of the diagram. The PIC18F452

has five parallel ports named PORTA, PORTB, PORTC, PORTD, and PORTE. Most

port pins have multiple functions. For example, PORTA pins can be used as parallel

inputs-outputs or analog inputs. PORTB pins can be used as parallel inputs-outputs or

as interrupt inputs.

www.newnespress.com

49PIC18F Microcontroller Series

2.1.1 Program Memory Organization

The program memory map is shown in Figure 2.3. All PIC18F devices have a 21-bit

program counter and hence are capable of addressing 2Mbytes of memory space. User

memory space on the PIC18F452 microcontroller is 00000H to 7FFFH. Accessing a

nonexistent memory location (8000H to 1FFFFFH) will cause a read of all 0s. The reset

vector, where the program starts after a reset, is at address 0000. Addresses 0008H and

Figure 2.3: Program memory map of PIC18F452

www.newnespress.com

50 Chapter 2

0018H are reserved for the vectors of high-priority and low-priority interrupts

respectively, and interrupt service routines must be written to start at one of these

locations.

The PIC18F microcontroller has a 31-entry stack that is used to hold the return

addresses for subroutine calls and interrupt processing. The stack is not part of the

program or the data memory space. The stack is controlled by a 5-bit stack pointer

which is initialized to 00000 after a reset. During a subroutine call (or interrupt) the

stack pointer is first incremented, and the memory location it points to is written with

the contents of the program counter. During the return from a subroutine call (or

interrupt), the memory location the stack pointer has pointed to is decremented. The

projects in this book are based on using the C language. Since subroutine and interrupt

call/return operations are handled automatically by the C language compiler, their

operation is not described here in more detail.

Program memory is addressed in bytes, and instructions are stored as two bytes or four

bytes in program memory. The least significant byte of an instruction word is always

stored in an even address of the program memory.

An instruction cycle consists of four cycles: A fetch cycle begins with the program

counter incrementing in Q1. In the execution cycle, the fetched instruction is latched

into the instruction register in cycle Q1. This instruction is decoded and executed during

cycles Q2, Q3, and Q4. A data memory location is read during the Q2 cycle and written

during the Q4 cycle.

2.1.2 Data Memory Organization

The data memory map of the PIC18F452 microcontroller is shown in Figure 2.4. The

data memory address bus is 12 bits with the capability to address up to 4Mbytes.

The memory in general consists of sixteen banks, each of 256 bytes, where only 6 banks

are used. The PIC18F452 has 1536 bytes of data memory (6 banks � 256 bytes each)

occupying the lower end of the data memory. Bank switching happens automatically

when a high-level language compiler is used, and thus the user need not worry about

selecting memory banks during programming.

The special function register (SFR) occupies the upper half of the top memory bank.

SFR contains registers which control operations such as peripheral devices, timers/

counters, A/D converter, interrupts, and USART. Figure 2.5 shows the SFR registers of

the PIC18F452 microcontroller.

www.newnespress.com

51PIC18F Microcontroller Series

2.1.3 The Configuration Registers

PIC18F452 microcontrollers have a set of configuration registers (PIC16-series

microcontrollers had only one configuration register). Configuration registers

are programmed during the programming of the flash program memory by the

programming device. These registers are shown in Table 2.2. Descriptions of

Figure 2.4: The PIC18F452 data memory map

www.newnespress.com

52 Chapter 2

these registers are given in Table 2.3. Some of the more important configuration

registers are described in this section in detail.

CONFIG1H

The CONFIG1H configuration register is at address 300001H and is used to select the

microcontroller clock sources. The bit patterns are shown in Figure 2.6.

Figure 2.5: The PIC18F452 SFR registers

www.newnespress.com

53PIC18F Microcontroller Series

Table 2.2: PIC18F452 configuration registers

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Default/
Unprogrammed
Value

300001h CONFIG1H — — OSCSEN — — FOSC2 FOSC1 FOSC0 --1- -111

300002h CONFIG2L — — — — BORV1 BORV0 BOREN PWRTEN ---- 1111

300003h CONFIG2H — — — — WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111

300005h CONFIG3H — — — — — — — CCP2MX ---- ---1

300006h CONFIG4L DEBUG — — — — LVP — STVREN 1--- -1-1

300008h CONFIG5L — — — — CP3 CP2 CP1 CP0 ---- 1111

300009h CONFIG5H CPD CPB — — — — — — 11-- ----

30000Ah CONFIG6L — — — — WRT3 WRT2 WRT1 WRT0 ---- 1111

30000Bh CONFIG6H WRTD WRTB WRTC — — — — — 111- ----

30000Ch CONFIG7L — — — — EBTR3 EBTR2 EBTR1 EBTR0 ---- 1111

30000Dh CONFIG7H — EBTRB — — — — — — -1-- ----

3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 (1)

3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 0100

Legend: x ¼ unknown, u ¼ unchanged, – ¼ unimplemented, q ¼ value depends on condition. Shaded cells are unimplemented,
read as ‘0’.

w
w
w
.n

e
w
n
e
s
p
re

s
s
.c
o
m

5
4

C
h
ap

ter
2

Table 2.3: PIC18F452 configuration register descriptions

Configuration bits Description

OSCSEN Clock source switching enable

FOSC2:FOSC0 Oscillator modes

BORV1:BORV0 Brown-out reset voltage

BOREN Brown-out reset enable

PWRTEN Power-up timer enable

WDTPS2:WDTPS0 Watchdog timer postscale bits

WDTEN Watchdog timer enable

CCP2MX CCP2 multiplex

DEBUG Debug enable

LVP Low-voltage program enable

STVREN Stack full/underflow reset enable

CP3:CP0 Code protection

CPD EEPROM code protection

CPB Boot block code protection

WRT3:WRT0 Program memory write protection

WRTD EPROM write protection

WRTB Boot block write protection

WRTC Configuration register write protection

EBTR3:EBTR0 Table read protection

EBTRB Boot block table read protection

DEV2:DEV0 Device ID bits (001 = 18F452)

REV4:REV0 Revision ID bits

DEV10:DEV3 Device ID bits

www.newnespress.com

55PIC18F Microcontroller Series

CONFIG2L

The CONFIG2L configuration register is at address 300002H and is used to select the

brown-out voltage bits. The bit patterns are shown in Figure 2.7.

Figure 2.6: CONFIG1H register bits

Figure 2.7: CONFIG2L register bits

www.newnespress.com

56 Chapter 2

CONFIG2H

The CONFIG2H configuration register is at address 300003H and is used to select the

watchdog operations. The bit patterns are shown in Figure 2.8.

2.1.4 The Power Supply

The power supply requirements of the PIC18F452 microcontroller are shown in

Figure 2.9. As shown in Figure 2.10, PIC18F452 can operate with a supply voltage

of 4.2V to 5.5V at the full speed of 40MHz. The lower power version, PIC18LF452,

can operate from 2.0 to 5.5 volts. At lower voltages the maximum clock frequency is

4MHz, which rises to 40MHz at 4.2V. The RAM data retention voltage is specified as

1.5V and will be lost if the power supply voltage is lowered below this value. In

practice, most microcontroller-based systems are operated with a single þ5V supply

derived from a suitable voltage regulator.

2.1.5 The Reset

The reset action puts the microcontroller into a known state. Resetting a PIC18F

microcontroller starts execution of the program from address 0000H of the

Figure 2.8: CONFIG2H register bits

www.newnespress.com

57PIC18F Microcontroller Series

program memory. The microcontroller can be reset during one of the following

operations:

� Power-on reset (POR)

� MCLR reset

� Watchdog timer (WDT) reset

� Brown-out reset (BOR)

� Reset instruction

Figure 2.9: The PIC8F452 power supply parameters

www.newnespress.com

58 Chapter 2

� Stack full reset

� Stack underflow reset

Two types of resets are commonly used: power-on reset and external reset using the

MCLR pin.

Power-on Reset

The power-on reset is generated automatically when power supply voltage is applied to

the chip. The MCLR pin should be tied to the supply voltage directly or, preferably,

through a 10K resistor. Figure 2.11 shows a typical reset circuit.

For applications where the rise time of the voltage is slow, it is recommended to use a

diode, a capacitor, and a series resistor as shown in Figure 2.12.

In some applications the microcontroller may have to be reset externally by pressing a

button. Figure 2.13 shows the circuit that can be used to reset the microcontroller

externally. Normally the MCLR input is at logic 1. When the RESET button is pressed,

this pin goes to logic 0 and resets the microcontroller.

Figure 2.10: Operation of PIC18LF452 at different voltages

www.newnespress.com

59PIC18F Microcontroller Series

2.1.6 The Clock Sources

The PIC18F452 microcontroller can be operated from an external crystal or ceramic

resonator connected to the microcontroller’s OSC1 and OSC2 pins. In addition, an

external resistor and capacitor, an external clock source, and in some models internal

oscillators can be used to provide clock pulses to the microcontroller. There are eight

clock sources on the PIC18F452 microcontroller, selected by the configuration register

CONFIG1H. These are:

� Low-power crystal (LP)

� Crystal or ceramic resonator (XT)

Figure 2.12: Reset circuit for slow-rising voltages

Figure 2.11: Typical reset circuit

www.newnespress.com

60 Chapter 2

� High-speed crystal or ceramic resonator (HS)

� High-speed crystal or ceramic resonator with PLL (HSPLL)

� External clock with FOSC/4 on OSC2 (EC)

� External clock with I/O on OSC2 (port RA6) (ECIO)

� External resistor/capacitor with FOSC/4 output on OSC2 (RC)

� External resistor/capacitor with I/O on OSC2 (port RA6) (RCIO)

Crystal or Ceramic Resonator Operation

The first several clock sources listed use an external crystal or ceramic resonator that is

connected to the OSC1 and OSC2 pins. For applications where accuracy of timing is

important, a crystal should be used. And if a crystal is used, a parallel resonant crystal

must be chosen, since series resonant crystals do not oscillate when the system is first

powered.

Figure 2.14 shows how a crystal is connected to the microcontroller. The capacitor

values depend on the mode of the crystal and the selected frequency. Table 2.4 gives the

recommended values. For example, for a 4MHz crystal frequency, use 15pF capacitors.

Higher capacitance increases the oscillator stability but also increases the start-up time.

Resonators should be used in low-cost applications where high accuracy in timing is not

required. Figure 2.15 shows how a resonator is connected to the microcontroller.

Figure 2.13: External reset circuit

www.newnespress.com

61PIC18F Microcontroller Series

The LP (low-power) oscillator mode is advised in applications to up to 200KHz clock.

The XT mode is advised to up to 4MHz, and the HS (high-speed) mode is advised in

applications where the clock frequency is between 4MHz to 25MHz.

An external clock source may also be connected to the OSC1 pin in the LP, XT, or HS

modes as shown in Figure 2.16.

Figure 2.14: Using a crystal as the clock input

Table 2.4: Capacitor values

Mode Frequency C1,C2 (pF)

LP 32 KHz 33

200 KHz 15

XT 200 KHz 22–68

1.0 MHz 15

4.0 MHz 15

HS 4.0 MHz 15

8.0 MHz 15–33

20.0 MHz 15–33

25.0 MHz 15–33

www.newnespress.com

62 Chapter 2

External Clock Operation

An external clock source can be connected to the OSC1 input of the microcontroller in

EC and ECIO modes. No oscillator start-up time is required after a power-on reset.

Figure 2.17 shows the operation with the external clock in EC mode. Timing pulses at

the frequency FOSC/4 are available on the OSC2 pin. These pulses can be used for test

purposes or to provide pulses to external devices.

The ECIO mode is similar to the EC mode, except that the OSC2 pin can be used as a

general purpose digital I/O pin. As shown in Figure 2.18, this pin becomes bit 6 of

PORTA (i.e., pin RA6).

Figure 2.15: Using a resonator as the clock input

Figure 2.16: Connecting an external clock in LP, XT, or HS modes

www.newnespress.com

63PIC18F Microcontroller Series

Resistor/Capacitor Operation

In the many applications where accurate timing is not required we can use an external

resistor and a capacitor to provide clock pulses. The clock frequency is a function of the

resistor, the capacitor, the power supply voltage, and the temperature. The clock frequency

is not accurate and can vary from unit to unit due to manufacturing and component

tolerances. Table 2.5 gives the approximate clock frequency with various resistor and

capacitor combinations. A close approximation of the clock frequency is 1/(4.2RC),

where R should be between 3K and 100K and C should be greater than 20pF.

In RC mode, the oscillator frequency divided by 4 (FOSC/4) is available on pin OSC2

of the microcontroller. Figure 2.19 shows the operation at a clock frequency of

approximately 2MHz, where R ¼ 3.9K and C ¼ 30pF. In this application the clock

frequency at the output of OSC2 is 2MHz/4 ¼ 500KHz.

Figure 2.17: External clock in EC mode

Figure 2.18: External clock in ECIO mode

www.newnespress.com

64 Chapter 2

RCIO mode is similar to RC mode, except that the OSC2 pin can be used as a

general purpose digital I/O pin. As shown in Figure 2.20, this pin becomes bit 6 of

PORTA (i.e., pin RA6).

Crystal or Resonator with PLL

One of the problems with using high-frequency crystals or resonators is electromagnetic

interference. A Phase Locked Loop (PLL) circuit is provided that can be enabled to

multiply the clock frequency by 4. Thus, for a crystal clock frequency of 10MHz, the

Table 2.5: Clock frequency with RC

C (pF) R (K) Frequency (MHz)

22 3.3 3.3

4.7 2.3

10 1.08

30 3.3 2.4

4.7 1.7

10 0.793

Figure 2.19: 2MHz clock in RC mode

www.newnespress.com

65PIC18F Microcontroller Series

internal operation frequency will be multiplied to 40MHz. The PLL mode is enabled

when the oscillator configuration bits are programmed for HS mode.

Internal Clock

Some devices in the PIC18F family have internal clock modes (although the PIC18F452

does not). In this mode, OSC1 and OSC2 pins are available for general purpose I/O

(RA6 and RA7) or as FOSC/4 and RA7. An internal clock can be from 31KHz to 8MHz

and is selected by registers OSCCON and OSCTUNE. Figure 2.21 shows the bits of

internal clock control registers.

Clock Switching

It is possible to switch the clock from the main oscillator to a low-frequency clock

source. For example, the clock can be allowed to run fast in periods of intense activity

and slower when there is less activity. In the PIC18F452 microcontroller this is

controlled by bit SCS of the OSCCON register. In microcontrollers of the PIC18F

family that do support an internal clock, clock switching is controlled by bits SCS0 and

SCS1 of OSCCON. It is important to ensure that during clock switching unwanted

glitches do not occur in the clock signal. PIC18F microcontrollers contain circuitry to

ensure error-free switching from one frequency to another.

Figure 2.20: 2MHz clock in RCIO mode

www.newnespress.com

66 Chapter 2

2.1.7 Watchdog Timer

In PIC18F-series microcontrollers family members the watchdog timer (WDT) is a free-

running on-chip RC-based oscillator and does not require any external components.

When the WDT times out, a device RESET is generated. If the device is in SLEEP

mode, the WDT time-out will wake it up and continue with normal operation.

The watchdog is enabled/disabled by bit SWDTEN of register WDTCON. Setting

SWDTEN = 1 enables the WDT, and clearing this bit turns off the WDT. On the

PIC18F452 microcontroller an 8-bit postscaler is used to multiply the basic time-out

OSCCON register

IDLEN

31 KHz
125 KHz
250 KHz
500 KHz
1 MHz
2 MHz
4 MHz
8 MHz

Oscillator start-up timer running
Oscillator start-up timer expired

Internal oscillator unstable
Internal oscillator stable

Primary oscillator
01 Timer 1 oscillator
10 Internal oscillator
11 Internal oscillator

OSCTUNE register

Maximum frequency

XX000001
Center frequency

XX111111

Minimum frequency

IDLEN

IDLEN

IRCF2 IRCF1 IRCF0 OSTS I0FS SCSI SCS0

0
1

0
1

0
1

Run mode enabled
Idle mode enabled

IRCF2:IRCF0 000
001
010
011
100
101
110
111

OSTS

IOFS

SCSI:SCS0 00

XX011111

XX000000

XX100000

X X T5 T4 T3 T2 T1 T0

Figure 2.21: Internal clock control registers

www.newnespress.com

67PIC18F Microcontroller Series

period from 1 to 128 in powers of 2. This postscaler is controlled from configuration

register CONFIG2H. The typical basic WDT time-out period is 18ms for a postscaler

value of 1.

2.1.8 Parallel I/O Ports

The parallel ports in PIC18F microcontrollers are very similar to those of the PIC16

series. The number of I/O ports and port pins varies depending on which PIC18F

microcontroller is used, but all of them have at least PORTA and PORTB. The pins of a

port are labeled as RPn, where P is the port letter and n is the port bit number. For

example, PORTA pins are labeled RA0 to RA7, PORTB pins are labeled RB0 to RB7,

and so on.

When working with a port we may want to:

� Set port direction

� Set an output value

� Read an input value

� Set an output value and then read back the output value

The first three operations are the same in the PIC16 and the PIC18F series. In some

applications we may want to send a value to the port and then read back the value just

sent. The PIC16 series has a weakness in the port design such that the value read from

a port may be different from the value just written to it. This is because the reading

is the actual port bit pin value, and this value can be changed by external devices

connected to the port pin. In the PIC18F series, a latch register (e.g., LATA for

PORTA) is introduced to the I/O ports to hold the actual value sent to a port pin.

Reading from the port reads the latched value, which is not affected by any external

device.

In this section we shall be looking at the general structure of I/O ports.

PORTA

In the PIC18F452 microcontroller PORTA is 7 bits wide and port pins are shared with

other functions. Table 2.6 shows the PORTA pin functions.

www.newnespress.com

68 Chapter 2

Table 2.6: PIC18F452 PORTA pin functions

Pin Description

RA0/AN0

RA0 Digital I/O

AN0 Analog input 0

RA1/AN1

RA1 Digital I/O

AN1 Analog input 1

RA2/AN2/VREF�
RA2 Digital I/O

AN2 Analog input 2

VREF� A/D reference voltage (low) input

RA3/AN3/VREFþ
RA3 Digital I/O

AN3 Analog input 3

VREFþ A/D reference voltage (high) input

RA4/T0CKI

RA4 Digital I/O

T0CKI Timer 0 external clock input

RA5/AN4/SS/LVDIN

RA5 Digital I/O

AN4 Analog input 4

SS SPI Slave Select input

RA6 Digital I/O

www.newnespress.com

69PIC18F Microcontroller Series

The architecture of PORTA is shown in Figure 2.22. There are three registers associated

with PORTA:

� Port data register—PORTA

� Port direction register—TRISA

� Port latch register—LATA

Figure 2.22: PIC18F452 PORTA RA0–RA3 and RA5 pins

www.newnespress.com

70 Chapter 2

PORTA is the name of the port data register. The TRISA register defines the direction

of PORTA pins, where a logic 1 in a bit position defines the pin as an input pin, and a

0 in a bit position defines it as an output pin. LATA is the output latch register which

shares the same data latch as PORTA. Writing to one is equivalent to writing to the

other. But reading from LATA activates the buffer at the top of the diagram, and the

value held in the PORTA/LATA data latch is transferred to the data bus independent of

the state of the actual output pin of the microcontroller.

Bits 0 through 3 and 5 of PORTA are also used as analog inputs. After a device

reset, these pins are programmed as analog inputs and RA4 and RA6 are configured

as digital inputs. To program the analog inputs as digital I/O, the ADCON1 register

(A/D register) must be programmed accordingly. Writing 7 to ADCON1 configures

all PORTA pins as digital I/O.

The RA4 pin is multiplexed with the Timer 0 clock input (T0CKI). This is a Schmitt

trigger input and an open drain output.

RA6 can be used as a general purpose I/O pin, as the OSC2 clock input, or as a clock

output providing FOSC/4 clock pulses.

PORTB

In PIC18F452 microcontroller PORTB is an 8-bit bidirectional port shared with

interrupt pins and serial device programming pins. Table 2.7 gives the PORTB bit

functions.

PORTB is controlled by three registers:

� Port data register—PORTB

� Port direction register—TRISB

� Port latch register—LATB

The general operation of PORTB is similar to that of PORTA. Figure 2.23 shows

the architecture of PORTB. Each port pin has a weak internal pull-up which can

be enabled by clearing bit RBPU of register INTCON2. These pull-ups are disabled

on a power-on reset and when the port pin is configured as an output. On a power-on

reset, PORTB pins are configured as digital inputs. Internal pull-ups allow input devices

such as switches to be connected to PORTB pins without the use of external pull-up

resistors. This saves costs because the component count and wiring requirements are

reduced.

www.newnespress.com

71PIC18F Microcontroller Series

Table 2.7: PIC18F452 PORTB pin functions

Pin Description

RB0/INT0

RB0 Digital I/O

INT0 External interrupt 0

RB1/INT1

RB1 Digital I/O

INT1 External interrupt 1

RB2/INT2

RB2 Digital I/O

INT2 External interrupt 2

RB3/
CCP2

RB3 Digital I/O

CCP2 Capture 2 input, compare 2, and PWM2 output

RB4 Digital I/O, interrupt on change pin

RB5/PGM

RB5 Digital I/O, interrupt on change pin

PGM Low-voltage ICSP programming pin

RB6/PGC

RB6 Digital I/O, interrupt on change pin

PGC In-circuit debugger and ICSP programming pin

RB7/PGD

RB7 Digital I/O, interrupt on change pin

PGD In-circuit debugger and ICSP programming pin

www.newnespress.com

72 Chapter 2

Port pins RB4–RB7 can be used as interrupt-on-change inputs, whereby a change on

any of pins 4 through 7 causes an interrupt flag to be set. The interrupt enable and flag

bits RBIE and RBIF are in register INTCON.

PORTC, PORTD, PORTE, and Beyond

In addition to PORTA and PORTB, the PIC18F452 has 8-bit bidirectional ports PORTC

and PORTD, and 3-bit PORTE. Each port has its own data register (e.g., PORTC), data

Figure 2.23: PIC18F452 PORTB RB4–RB7 pins

www.newnespress.com

73PIC18F Microcontroller Series

direction register (e.g., TRISC), and data latch register (e.g., LATC). The general

operation of these ports is similar to that of PORTA.2.1.

In the PIC18F452 microcontroller PORTC is multiplexed with several peripheral

functions as shown in Table 2.8. On a power-on reset, PORTC pins are configured as

digital inputs.

In the PIC18F452 microcontroller, PORTD has Schmitt trigger input buffers. On a

power-on reset, PORTD is configured as digital input. PORTD can be configured as an

8-bit parallel slave port (i.e., a microprocessor port) by setting bit 4 of the TRISE

register. Table 2.9 shows functions of PORTD pins.

In the PIC18F452 microcontroller, PORTE is only 3 bits wide. As shown in Table 2.10,

port pins are shared with analog inputs and with parallel slave port read/write control

bits. On a power-on reset, PORTE pins are configured as analog inputs and register

ADCON1 must be programmed to change these pins to digital I/O.

2.1.9 Timers

The PIC18F452 microcontroller has four programmable timers which can be used in

many tasks, such as generating timing signals, causing interrupts to be generated at

specific time intervals, measuring frequency and time intervals, and so on.

This section introduces the timers available in the PIC18F452 microcontroller.

Timer 0

Timer 0 is similar to the PIC16 series Timer 0, except that it can operate either in 8-bit

or in 16-bit mode. Timer 0 has the following basic features:

� 8-bit or 16-bit operation

� 8-bit programmable prescaler

� External or internal clock source

� Interupt generation on overflow

Timer 0 control register is T0CON, shown in Figure 2.24. The lower 6 bits of this

register have similar functions to the PIC16-series OPTION register. The top two

bits are used to select the 8-bit or 16-bit mode of operation and to enable/disable

the timer.

www.newnespress.com

74 Chapter 2

Table 2.8: PIC18F452 PORTC pin functions

Pin Description

RC0/T1OSO/T1CKI

RC0 Digital I/O

T1OSO Timer 1 oscillator output

T1CKI Timer 1/Timer 3 external clock input

RC1/T1OSI/CCP2

RC1 Digital I/O

T1OSI Timer 1 oscillator input

CCP2 Capture 2 input, Compare 2 and PWM2 output

RC2/CCP1

RC2 Digital I/O

CCP1 Capture 1 input, Compare 1 and PWM1 output

RC3/SCK/SCL

RC3 Digital I/O

SCK Synchronous serial clock input/output for SPI

SCL Synchronous serial clock input/output for I2C

RC4/SDI/SDA

RC4 Digital I/O

SDI SPI data in

SDA I2C data I/O

RC5/SDO

RC5 Digital I/O

SDO SPI data output

RC6/TX/CK

RC6 Digital I/O

TX USART transmit pin

CK USART synchronous clock pin

RC7/RX/DT

RC7 Digital I/O

RX USART receive pin

DT USART synchronous data pin

www.newnespress.com

Table 2.9: PIC18F452 PORTD pin functions

Pin Description

RD0/PSP0

RD0 Digital I/O

PSP0 Parallel slave port bit 0

RD1/PSP1

RD1 Digital I/O

PSP1 Parallel slave port bit 1

RD2/PSP2

RD2 Digital I/O

PSP2 Parallel slave port bit 2

RD3/PSP3

RD3 Digital I/O

PSP3 Parallel slave port bit 3

RD4/PSP4

RD4 Digital I/O

PSP4 Parallel slave port bit 4

RD5/PSP5

RD5 Digital I/O

PSP5 Parallel slave port bit 5

RD6/PSP6

RD6 Digital I/O

PSP6 Parallel slave port bit 6

RD7/PSP7

RD7 Digital I/O

PSP7 Parallel slave port bit 7

www.newnespress.com

76 Chapter 2

Timer 0 can be operated either as a timer or as a counter. Timer mode is selected by

clearing the T0CS bit, and in this mode the clock to the timer is derived from FOSC/4.

Counter mode is selected by setting the T0CS bit, and in this mode Timer 0 is

incremented on the rising or falling edge of input RA4/T0CKI. Bit T0SE of T0CON

selects the edge triggering mode.

An 8-bit prescaler can be used to change the timer clock rate by a factor of up to 256.

The prescaler is selected by bits PSA and T0PS2:T0PS0 of register T0CON.

8-Bit Mode Figure 2.25 shows Timer 0 in 8-bit mode. The following operations are

normally carried out in a timer application:

� Clear T0CS to select clock FOSC/4

� Use bits T0PS2:T0PS0 to select a suitable prescaler value

� Clear PSA to select the prescaler

Table 2.10: PIC18F452 PORTE pin functions

Pin Description

RE0/RD/AN5

RE0 Digital I/O

RD Parallel slave port read control pin

AN5 Analog input 5

RE1/WR/
AN6

RE1 Digital I/O

WR Parallel slave port write control pin

AN6 Analog input 6

RE2/CS/AN7

RE2 Digital I/O

CS Parallel slave port CS

AN7 Analog input 7

www.newnespress.com

77PIC18F Microcontroller Series

Figure 2.24: Timer 0 control register, T0CON

Figure 2.25: Timer 0 in 8-bit mode

www.newnespress.com

78 Chapter 2

� Load timer register TMR0L

� Optionally enable Timer 0 interrupts

� The timer counts up and an interrupt is generated when the timer value

overflows from FFH to 00H in 8-bit mode (or from FFFFH to 0000H in

16-bit mode)

By loading a value into the TMR0 register we can control the count until an overflow

occurs. The formula that follows can be used to calculate the time it will take for the

timer to overflow (or to generate an interrupt) given the oscillator period, the value

loaded into the timer, and the prescaler value:

Overflow time ¼ 4� TOSC � Prescaler� 256� TMR0ð Þ ð2:1Þ

where

Overflow time is in ms

TOSC is the oscillator period in ms

Prescaler is the prescaler value

TMR0 is the value loaded into TMR0 register

For example, assume that we are using a 4MHz crystal, and the prescaler is chosen as

1:8 by setting bits PS2:PS0 to 010. Also assume that the value loaded into the timer

register TMR0 is decimal 100. The overflow time is then given by:

4MHZ clock has a period;T ¼ 1=f ¼ 0:25ms

using the above formula

Overflow time ¼ 4� 0:25� 8� 256� 100ð Þ ¼ 1248ms

Thus, the timer will overflow after 1.248msec, and a timer interrupt will be generated if

the timer interrupt and global interrupts are enabled.

What we normally want is to know what value to load into the TMR0 register for a

required overflow time. This can be calculated by modifying Equation (2.1) as follows:

TMR0 ¼ 256� Overflow timeð Þ= 4� TOSC � Prescalerð Þ ð2:2Þ

www.newnespress.com

79PIC18F Microcontroller Series

For example, suppose we want an interrupt to be generated after 500ms and the clock

and the prescaler values are as before. The value to be loaded into the TMR0 register

can be calculated using Equation (2.2) as follows:

TMR0 ¼ 256� 500= 4� 0:25� 8ð Þ ¼ 193:5

The closest number we can load into TMR0 register is 193.

16-Bit Mode The Timer 0 in 16-bit mode is shown in Figure 2.26. Here, two timer

registers named TMR0L and TMR0 are used to store the 16-bit timer value. The low

byte TMR0L is directly loadable from the data bus. The high byte TMR0 can be loaded

through a buffer called TMR0H. During a read of TMR0L, the high byte of the timer

(TMR0) is also loaded into TMR0H, and thus all 16 bits of the timer value can be read.

To read the 16-bit timer value, first we have to read TMR0L, and then read TMR0H

in a later instruction. Similarly, during a write to TMR0L, the high byte of the timer

is also updated with the contents of TMR0H, allowing all 16 bits to be written to the

timer. Thus, to write to the timer the program should first write the required high

byte to TMR0H. When the low byte is written to TMR0L, then the value stored in

TMR0H is automatically transferred to TMR0, thus causing all 16 bits to be written

to the timer.

Timer 1

PIC18F452 Timer 1 is a 16-bit timer controlled by register T1CON, as shown in

Figure 2.27. Figure 2.28 shows the internal structure of Timer 1.

Figure 2.26: Timer 0 in 16-bit mode

www.newnespress.com

80 Chapter 2

Timer 1 can be operated as either a timer or a counter. When bit TMR1CS of register

T1CON is low, clock FOSC/4 is selected for the timer. When TMR1CS is high, the

module operates as a counter clocked from input T1OSI. A crystal oscillator circuit,

enabled from bit T1OSCEN of T1CON, is built between pins T1OSI and T1OSO

where a crystal up to 200KHz can be connected between these pins. This oscillator

is primarily intended for a 32KHz crystal operation in real-time clock applications.

A prescaler is used in Timer 1 that can change the timing rate as a factor of

1, 2, 4, or 8.

Figure 2.27: Timer 1 control register, T1CON

www.newnespress.com

81PIC18F Microcontroller Series

Timer 1 can be configured so that read/write can be performed either in 16-bit mode or

in two 8-bit modes. Bit RD16 of register T1CON controls the mode. When RD16 is

low, timer read and write operations are performed as two 8-bit operations. When RD16

is high, the timer read and write operations are as in Timer 0 16-bit mode (i.e., a buffer

is used between the timer register and the data bus) (see Figure 2.29).

If the Timer 1 interrupts are enabled, an interrupt will be generated when the timer

value rolls over from FFFFH to 0000H.

Timer 2

Timer 2 is an 8-bit timer with the following features:

� 8-bit timer (TMR2)

� 8-bit period register (PR2)

� Programmable prescaler

� Programmable postscaler

� Interrupt when TM2 matches PR2

Timer 2 is controlled from register T2CON, as shown in Figure 2.30. Bits T2CKPS1:

T2CKPS0 set the prescaler for a scaling of 1, 4, and 16. Bits TOUTPS3:TOUTPS0 set

Figure 2.28: Internal structure of Timer 1

www.newnespress.com

82 Chapter 2

Figure 2.29: Timer 1 in 16-bit mode

Figure 2.30: Timer 2 control register, T2CON

www.newnespress.com

83PIC18F Microcontroller Series

the postscaler for a scaling of 1:1 to 1:16. The timer can be turned on or off by setting or

clearing bit TMR2ON.

The block diagram of Timer 2 is shown in Figure 2.31. Timer 2 can be used for the

PWM mode of the CCP module. The output of Timer 2 can be software selected by the

SSP module as a baud clock. Timer 2 increments from 00H until it matches PR2 and

sets the interrupt flag. It then resets to 00H on the next cycle.

Timer 3

The structure and operation of Timer 3 is the same as for Timer 1, having registers

TMR3H and TMR3L. This timer is controlled from register T3CON as shown in

Figure 2.32.

The block diagram of Timer 3 is shown in Figure 2.33.

2.1.10 Capture/Compare/PWM Modules (CCP)

The PIC18F452 microcontroller has two capture/compare/PWM (CCP) modules, and

they work with Timers 1, 2, and 3 to provide capture, compare, and pulse width

modulation (PWM) operations. Each module has two 8-bit registers. Module 1 registers

are CCPR1L and CCPR1H, and module 2 registers are CCPR2L and CCPR2H.

Together, each register pair forms a 16-bit register and can be used to capture, compare,

or generate waveforms with a specified duty cycle. Module 1 is controlled by register

Figure 2.31: Timer 2 block diagram

www.newnespress.com

84 Chapter 2

CCP1CON, and module 2 is controlled by CCP2CON. Figure 2.34 shows the bit

allocations of the CCP control registers.

Capture Mode

In capture mode, the registers operate like a stopwatch. When an event occurs, the time

of the event is recorded, although the clock continues running (a stopwatch, on the other

hand, stops when the event time is recorded).

Figure 2.32: Timer 3 control register, T3CON

www.newnespress.com

85PIC18F Microcontroller Series

Figure 2.35 shows the capture mode of operation. Here, CCP1 will be considered,

but the operation of CCP2 is identical with the register and port names changed

accordingly. In this mode CCPR1H:CCPR1L captures the 16-bit value of the TMR1 or

TMR3 registers when an event occurs on pin RC2/CCP1 (pin RC2/CCP1 must be

configured as an input pin using TRISC). An external signal can be prescaled by 4 or

16. The event is selected by control bits CCP1M3:CCP1M0, and any of the following

events can be selected:

� Every falling edge

� Every rising edge

� Every fourth rising edge

� Every sixteenth rising edge

If the capture interrupt is enabled, the occurrence of an event causes an interrupt to be

generated in software. If another capture occurs before the value in register CCPR1 is

read, the old captured value is overwritten by the new captured value.

Either Timer 1 or Timer 3 can be used in capture mode. They must be running in timer

mode, or in synchronized counter mode, selected by register T3CON.

Figure 2.33: Block diagram of Timer 3

www.newnespress.com

86 Chapter 2

Compare Mode

In compare mode, a digital comparator is used to compare the value of Timer 1 or

Timer 3 to the value in a 16-bit register pair. When a match occurs, the output state of a

pin is changed. Figure 2.36 shows the block diagram of compare mode in operation.

Here only module CCP1 is considered, but the operation of module CCP2 is

identical.

The value of the 16-bit register pair CCPR1H:CCPR1L is continuously compared

against the Timer 1 or Timer 3 value. When a match occurs, the state of the RC2/CCP1

Figure 2.34: CCPxCON register bit allocations

www.newnespress.com

87PIC18F Microcontroller Series

pin is changed depending on the programming of bits CCP1M2:CCP1M0 of register

CCP1CON. The following changes can be programmed:

� Force RC2/CCP1 high

� Force RC2/CCP1 low

� Toggle RC2/CCP1 pin (low to high or high to low)

� Generate interrupt when a match occurs

� No change

Timer 1 or Timer 3 must be running in timer mode or in synchronized counter mode,

selected by register T3CON.

Figure 2.35: Capture mode of operation

www.newnespress.com

88 Chapter 2

PWM Module

The pulse width modulation (PWM) mode produces a PWM output at 10-bit resolution.

A PWM output is basically a square waveform with a specified period and duty cycle.

Figure 2.37 shows a typical PWM waveform.

Figure 2.36: Compare mode of operation

Period

Duty Cycle

Figure 2.37: Typical PWM waveform

www.newnespress.com

89PIC18F Microcontroller Series

Figure 2.38 shows the PWM module block diagram. The module is controlled by

Timer 2. The PWM period is given by:

PWM period ¼ PR2þ 1ð Þ�TMR2PS�4�TOSC ð2:3Þ

or

PR2 ¼ PWM period

TMR2PS�4�TOSC

� 1 ð2:4Þ

where

PR2 is the value loaded into Timer 2 register

TMR2PS is the Timer 2 prescaler value

TOSC is the clock oscillator period (seconds)

The PWM frequency is defined as 1/(PWM period).

The resolution of the PWM duty cycle is 10 bits. The PWM duty cycle is selected by

writing the eight most significant bits into the CCPR1L register and the two least

Figure 2.38: PWM module block diagram

www.newnespress.com

90 Chapter 2

significant bits into bits 4 and 5 of CCP1CON register. The duty cycle (in seconds) is

given by:

PWM duty cycle ¼ CCPR1L :CCP1CON < 5 :4 >ð Þ�TMR2PS�TOSC ð2:5Þ

or

CCPR1L :CCP1CON < 5 :4 >¼ PWM duty cycle

TMR2PS�TOSC

ð2:6Þ

The steps to configure the PWM are as follows:

� Specify the required period and duty cycle.

� Choose a value for the Timer 2 prescaler (TMR2PS).

� Calculate the value to be written into the PR2 register using Equation (2.2).

� Calculate the value to be loaded into the CCPR1L and CCP1CON registers

using Equation (2.6).

� Clear bit 2 of TRISC to make CCP1 pin an output pin.

� Configure the CCP1 module for PWM operation using register CCP1CON.

The following example shows how the PWM can be set up.

Example 2.1

PWM pulses must be generated from pin CCP1 of a PIC18F452 microcontroller. The

required pulse period is 44ms and the required duty cycle is 50%. Assuming that the

microcontroller operates with a 4MHz crystal, calculate the values to be loaded into the

various registers.

Solution 2.1

Using a 4MHz crystal;TOSC ¼ 1=4 ¼ 0:25� 10�6

The required PWM duty cycle is 44/2 = 22ms.

From Equation (2.4), assuming a timer prescaler factor of 4, we have:

PR2 ¼ PWM period

TMR2PS�4�TOSC

� 1

www.newnespress.com

91PIC18F Microcontroller Series

or

PR2 ¼ 44�10�6

4�4�0:25�10�6
� 1 ¼ 10 i:e:; 0AH

and from Equation (2.6)

CCPR1L :CCP1CON < 5 :4 >¼ PWM duty cycle

TMR2PS�TOSC

or

CCPR1L :CCP1CON < 5 :4 >¼ 22�10�6

4�0:25�10�6
¼ 22

But the equivalent of number 22 in 10-bit binary is:

“00 00010110”

Therefore, the value to be loaded into bits 4 and 5 of CCP1CON is “00.” Bits 2 and 3 of

CCP1CON must be set to high for PWM operation. Therefore, CCP1CON must be set

to bit pattern (“X” is “don’t care”):

XX001100

Taking the don’t-care entries as 0, we can set CCP1CON to hexadecimal 0CH.

The value to be loaded into CCPR1L is “00010110” (i.e., hexadecimal number 16H).

The required steps are summarized as follows:

� Load Timer 2 with prescaler of 4 (i.e., load T2CON) with 00000101 (i.e., 05H).

� Load 0AH into PR2.

� Load 16H into CCPR1L.

� Load 0 into TRISC (make CCP1 pin output).

� Load 0CH into CCP1CON.

One period of the generated PWM waveform is shown in Figure 2.39.

www.newnespress.com

92 Chapter 2

2.1.11 Analog-to-Digital Converter (A/D) Module

An analog-to-digital converter (A/D) is another important peripheral component of a

microcontroller. The A/D converts an analog input voltage into a digital number so it

can be processed by a microcontroller or any other digital system. There are many

analog-to-digital converter chips available on the market, and an embedded systems

designer should understand the characteristics of such chips so they can be used

efficiently.

As far as the input and output voltage are concerned A/D converters can be classified as

either unipolar and bipolar. Unipolar A/D converters accept unipolar input voltages in

the range 0 to þ0V, and bipolar A/D converters accept bipolar input voltages in the

range �V. Bipolar converters are frequently used in signal processing applications,

where the signals by nature are bipolar. Unipolar converters are usually cheaper, and

they are used in many control and instrumentation applications.

Figure 2.40 shows the typical steps involved in reading and converting an analog signal

into digital form, a process also known as signal conditioning. Signals received from

sensors usually need to be processed before being fed to an A/D converter. This

44µs

22µs 22µs

Figure 2.39: Generated PWM waveform

Analog
signal

Scaling Filter
Sample

&
Hold

Mux.
A/D

Converter

Figure 2.40: Signal conditioning and A/D conversion process

www.newnespress.com

93PIC18F Microcontroller Series

processing usually begins with scaling the signal to the correct value. Unwanted signal

components are then removed by filtering the signal using classical filters (e.g., a low-

pass filter). Finally, before feeding the signal to an A/D converter, the signal is passed

through a sample-and-hold device. This is particularly important with fast real-time

signals whose value may be changing between the sampling instants. A sample-and-

hold device ensures that the signal stays at a constant value during the actual conversion

process. Many applications required more than one A/D, which normally involves using

an analog multiplexer at the input of the A/D. The multiplexer selects only one signal at

any time and presents this signal to the A/D converter. An A/D converter usually has a

single analog input and a digital parallel output. The conversion process is as follows:

� Apply the processed signal to the A/D input

� Start the conversion

� Wait until conversion is complete

� Read the converted digital data

The A/D conversion starts by triggering the converter. Depending on the speed of the

converter, the conversion process itself can take several microseconds. At the end of

the conversion, the converter either raises a flag or generates an interrupt to indicate

that the conversion is complete. The converted parallel output data can then be read

by the digital device connected to the A/D converter.

Most members of the PIC18F family contain a 10-bit A/D converter. If the chosen

voltage reference is +5V, the voltage step value is:

5V

1023

� �
¼ 0:00489V or 4:89mV

Therefore, for example, if the input voltage is 1.0V, the converter will generate a digital

output of 1.0/0.00489 = 205 decimal. Similarly, if the input voltage is 3.0V, the

converter will generate 3.0/0.00489 = 613.

The A/D converter used by the PIC18F452 microcontroller has eight channels, named

AN0–AN7, which are shared by the PORTA and PORTE pins. Figure 2.41 shows the

block diagram of the A/D converter.

www.newnespress.com

94 Chapter 2

The A/D converter has four registers. Registers ADRESH and ADRESL store the

higher and lower results of the conversion respectively. Register ADCON0, shown in

Figure 2.42, controls the operation of the A/D module, such as selecting the conversion

clock together with register ADCON1, selecting an input channel, starting a conversion,

and powering up and shutting down the A/D converter.

Register ADCON1 (see Figure 2.43) is used for selecting the conversion format,

configuring the A/D channels for analog input, selecting the reference voltage, and

selecting the conversion clock together with register ADCON0.

A/D conversion starts by setting the GO/DONE bit of ADCON0. When the conversion

is complete, the 2 bits of the converted data is written into register ADRESH, and the

remaining 8 bits are written into register ADRESL. At the same time the GO/DONE bit

is cleared to indicate the end of conversion. If required, interrupts can be enabled so that

a software interrupt is generated when the conversion is complete.

Figure 2.41: Block diagram of the PIC18F452 A/D converter

www.newnespress.com

95PIC18F Microcontroller Series

Figure 2.42: ADCON0 register

www.newnespress.com

96 Chapter 2

Figure 2.43: ADCON1 register

www.newnespress.com

97PIC18F Microcontroller Series

The steps in carrying out an A/D conversion are as follows:

� Use ADCON1 to configure required channels as analog and configure the

reference voltage.

� Set the TRISA or TRISE bits so the required channel is an input port.

� Use ADCON0 to select the required analog input channel.

� Use ADCON0 and ADCON1 to select the conversion clock.

� Use ADCON0 to turn on the A/D module.

� Configure the A/D interrupt (if desired).

� Set the GO/DONE bit to start conversion.

� Wait until the GO/DONE bit is cleared, or until a conversion complete interrupt

is generated.

� Read the converted data from ADRESH and ADRESL.

� Repeat these steps as required.

For correct A/D conversion, the A/D conversion clock must be selected to ensure a

minimum bit conversion time of 1.6ms. Table 2.11 gives the recommended A/D clock

sources for various microcontroller operating frequencies. For example, if the

Table 2.11: A/D conversion clock selection

A/D clock source

Operation ADCS2:ADCS0 Maximum microcontroller frequency

2 TOSC 000 1.25 MHz

4 TOSC 100 2.50 MHz

8 TOSC 001 5.0 MHz

16 TOSC 101 10.0 MHz

32 TOSC 010 20.0 MHz

64 TOSC 110 40.0 MHz

RC 011 –

www.newnespress.com

98 Chapter 2

microcontroller is operated from a 10MHz clock, the A/D clock source should be

FOSC/16 or higher (e.g., FOSC/32).

Bit ADFM of register ADCON1 controls the format of a conversion. When ADFM is

cleared, the 10-bit result is left justified (see Figure 2.44) and lower 6 bits of ADRESL

are cleared to 0. When ADFM is set to 1 the result is right justified and the upper 6 bits

of ADRESH are cleared to 0. This is the mode most commonly used, in which

ADRESL contains the lower 8 bits, and bits 0 and 1 of ADRESH contain the upper

2 bits of the 10-bit result.

Analog Input Model and Acquisition Time

An understanding of the A/D analog input model is necessary to interface the A/D to

external devices. Figure 2.45 shows the analog input model of the A/D. The analog

input voltage VAIN and the source resistance RS are shown on the left side of the

diagram. It is recommended that the source resistance be no greater than 2.5K. The

analog signal is applied to the pin labeled ANx. There is a small capacitance (5pF) and

a leakage current to the ground of approximately 500nA. RIC is the interconnect

resistance, which has a value of less than 1K. The sampling process is shown with

switch SS having a resistance RSS whose value depends on the voltage as shown in the

Figure 2.44: Formatting the A/D conversion result

www.newnespress.com

99PIC18F Microcontroller Series

small graph at the bottom of Figure 2.45. The value of RSS is approximately 7K at 5V

supply voltage.

The A/D converter is based on a switched capacitor principle, and capacitor CHOLD

shown in Figure 2.45 must be charged fully before the start of a conversion. This is a

120pF capacitor which is disconnected from the input pin once the conversion is started.

The acquisition time can be calculated by using Equation (2.7), provided by Microchip

Inc:

TACQ ¼ Amplifier settling timeþ Holding capacitor charging time

þ temperature coefficient
ð2:7Þ

The amplifier settling time is specified as a fixed 2ms. The temperature coefficient,

which is only applicable if the temperature is above 25�C, is specified as:

Temperature coefficient ¼ Temperature� 25�Cð Þ 0:05ms=�Cð Þ ð2:8Þ

Equation (2.8) shows that the effect of the temperature is very small, creating about

0.5ms delay for every 10�C above 25�C. Thus, assuming a working environment

Figure 2.45: Analog input model of the A/D converter

www.newnespress.com

100 Chapter 2

between 25�C and 35�C, the maximum delay due to temperature will be 0.5ms, which
can be ignored for most practical applications.

The holding capacitor charging time as specified by Microchip Inc is:

Holding capacitor charging time ¼ � 120pFð Þ 1Kþ RSS þRSð ÞLn 1=2048ð Þ ð2:9Þ

Assuming that RSS ¼ 7K, RS ¼ 2.5K, Equation (2.9) gives the holding capacitor

charging time as 9.6ms.

The acquisition time is then calculated as:

TACQ ¼ 2þ 9:6þ 0:5 ¼ 12:1ms

A full 10-bit conversion takes 12 A/D cycles, and each A/D cycle is specified at a

minimum of 1.6ms. Thus, the fastest conversion time is 19.2ms. Adding this to the

best possible acquisition time gives a total time to complete a conversion of 19.2 þ 12.1

¼ 31.3ms.

When a conversion is complete, it is specified that the converter should wait for two

conversion periods before starting a new conversion. This corresponds to 2� 1.6¼ 3.2ms.
Adding this to the best possible conversion time of 31.3ms gives a complete conversion

time of 34.5ms. Assuming the A/D converter is used successively, and ignoring the

software overheads, this implies a maximum sampling frequency of about 29KHz.

2.1.12 Interrupts

An interrupt is an event that requires the CPU to stop normal program execution and

then execute a program code related to the event causing the interrupt. Interrupts can

be generated internally (by some event inside the chip) or externally (by some external

event). An example of an internal interrupt is a timer overflowing or the A/D completing a

conversion. An example of an external interrupt is an I/O pin changing state.

Interrupts can be useful in many applications such as:

� Time critical applications. Applications which require the immediate attention

of the CPU can use interrupts. For example, in an emergency such as a power

failure or fire in a plant the CPU may have to shut down the system immediately

in an orderly manner. In such applications an external interrupt can force the

CPU to stop whatever it is doing and take immediate action.

www.newnespress.com

101PIC18F Microcontroller Series

� Performing routine tasks. Many applications require the CPU to perform routine

work at precise times, such as checking the state of a peripheral device exactly

every millisecond. A timer interrupt scheduled with the required timing can

divert the CPU from normal program execution to accomplish the task at the

precise time required.

� Task switching in multi-tasking applications. In multi-tasking applications, each

task may have a finite time to execute its code. Interrupt mechanisms can be

used to stop a task should it consume more than its allocated time.

� To service peripheral devices quickly. Some applications may need to know

when a task, such as an A/D conversion, is completed. This can be

accomplished by continuously checking the completion flag of the A/D

converter. A more elegant solution would be to enable the A/D completion

interrupt so the CPU is forced to read the converted data as soon as it becomes

available.

The PIC18F452 microcontroller has both core and peripheral interrupt sources. The

core interrupt sources are:

� External edge-triggered interrupt on INT0, INT1, and INT2 pins.

� PORTB pins change interrupts (any one of the RB4–RB7 pins changing state)

� Timer 0 overflow interrupt

The peripheral interrupt sources are:

� Parallel slave port read/write interrupt

� A/D conversion complete interrupt

� USART receive interrupt

� USART transmit interrupt

� Synchronous serial port interrupt

� CCP1 interrupt

� TMR1 overflow interrupt

� TMR2 overflow interrupt

� Comparator interrupt

www.newnespress.com

102 Chapter 2

� EEPROM/FLASH write interrupt

� Bus collision interrupt

� Low-voltage detect interrupt

� Timer 3 overflow interrupt

� CCP2 interrupt

Interrupts in the PIC18F family can be divided into two groups: high priority and low

priority. Applications that require more attention can be placed in the higher priority

group. A high-priority interrupt can stop a low-priority interrupt that is in progress

and gain access to the CPU. However, high-priority interrupts cannot be stopped by

low-priority interrupts. If the application does not need to set priorities for interrupts,

the user can choose to disable the priority scheme so all interrupts are at the same

priority level. High-priority interrupts are vectored to address 00008H and low-priority

ones to address 000018H of the program memory. Normally, a user program code

(interrupt service routine, ISR) should be at the interrupt vector address to service

the interrupting device.

In the PIC18F452 microcontroller there are ten registers that control interrupt

operations. These are:

� RCON

� INTCON

� INTCON2

� INTCON3

� PIR1, PIR2

� PIE1, PIE2

� IPR1, IPR2

Every interrupt source (except INT0) has three bits to control its operation. These

bits are:

� A flag bit to indicate whether an interrupt has occurred. This bit has a name

ending in . . .IF

www.newnespress.com

103PIC18F Microcontroller Series

� An interrupt enable bit to enable or disable the interrupt source. This bit has the

name ending in . . .IE

� A priority bit to select high or low priority. This bit has a name ending in . . .IP

RCON Register

The top bit of the RCON register, called IPEN, is used to enable the interrupt priority

scheme. When IPEN ¼ 0, interrupt priority levels are disabled and the microcontroller

interrupt structure is similar to that of the PIC16 series. When IPEN ¼ 1, interrupt

priority levels are enabled. Figure 2.46 shows the bits of register RCON.

Enabling/Disabling Interrupts—No Priority Structure

When the IPEN bit is cleared, the priority feature is disabled. All interrupts branch

to address 00008H of the program memory. In this mode, bit PEIE of register

INTCON enables/disables all peripheral interrupt sources. Similarly, bit GIE of

INTCON enables/disables all interrupt sources. Figure 2.47 shows the bits of

register INTCON.

Figure 2.46: RCON register bits

www.newnespress.com

104 Chapter 2

Figure 2.47: INTCON register bits

www.newnespress.com

105PIC18F Microcontroller Series

For an interrupt to be accepted by the CPU the following conditions must be

satisfied:

� The interrupt enable bit of the interrupt source must be enabled. For example, if

the interrupt source is external interrupt pin INT0, then bit INT0IE of register

INTCON must be set to 1.

� The interrupt flag of the interrupt source must be cleared. For example, if the

interrupt source is external interrupt pin INT0, then bit INT0IF of register

INTCON must be cleared to 0.

� The peripheral interrupt enable/disable bit PEIE of INTCON must be set to 1 if

the interrupt source is a peripheral.

� The global interrupt enable/disable bit GIE of INTCON must be set to 1.

With an external interrupt source we normally have to define whether the interrupt

should occur on the low-to-high or high-to-low transition of the interrupt source.

With INT0 interrupts, for example, this is done by setting/clearing bit INTEDG0 of

register INTCON2.

When an interrupt occurs, the CPU stops its normal flow of execution, pushes the return

address onto the stack, and jumps to address 00008H in the program memory where the

user interrupt service routine program resides. Once the CPU is in the interrupt service

routine, the global interrupt enable bit (GIE) is cleared to disable further interrupts.

When multiple interrupt sources are enabled, the source of the interrupt can be

determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in

the software before reenabling interrupts to avoid recursive interrupts. When the CPU

has returned from the interrupt service routine, the global interrupt bit GIE is

automatically set by the software.

Enabling/Disabling Interrupts—Priority Structure

When the IPEN bit is set to 1, the priority feature is enabled and the interrupts

are grouped into two: low priority and high priority. Low-priority interrupts branch

to address 00008H and high-priority interrupts branch to address 000018H of the

program memory. Setting the priority bit makes the interrupt source a high-priority

interrupt, and clearing this bit makes the interrupt source a low-priority interrupt.

www.newnespress.com

106 Chapter 2

Setting the GIEH bit of INTCON enables all high-priority interrupts that have the

priority bit set. Similarly, setting the GIEL bit of INTCON enables all low-priority

interrupts (the priority is bit cleared).

For a high-priority interrupt to be accepted by the CPU, the following conditions must

be satisfied:

� The interrupt enable bit of the interrupt source must be enabled. For example, if

the interrupt source is external interrupt pin INT1, then bit INT1IE of register

INTCON3 must be set to 1.

� The interrupt flag of the interrupt source must be cleared. For example, if the

interrupt source is external interrupt pin INT1, then bit INT1IF of register

INTCON3 must be cleared to 0.

� The priority bit must be set to 1. For example, if the interrupt source is external

interrupt INT1, then bit INT1P of register INTCON3 must be set to 1.

� The global interrupt enable/disable bit GIEH of INTCON must be set to 1.

For a low-priority interrupt to be accepted by the CPU, the following conditions must

be satisfied:

� The interrupt enable bit of the interrupt source must be enabled. For example, if

the interrupt source is external interrupt pin INT1, then bit INT1IE of register

INTCON3 must be set to 1.

� The interrupt flag of the interrupt source must be cleared. For example, if the

interrupt source is external interrupt pin INT1, then bit INT1IF of register

INTCON3 must be cleared to 0.

� The priority bit must be cleared to 0. For example, if the interrupt source

is external interrupt INT1, then bit INT1P of register INTCON3 must be

cleared to 0.

� Low-priority interrupts must be enabled by setting bit GIEL of INTCON to 1.

� The global interrupt enable/disable bit GIEH of INTCON must be set to 1.

Table 2.12 gives a listing of the PIC18F452 microcontroller interrupt bit names and

register names for every interrupt source.

www.newnespress.com

107PIC18F Microcontroller Series

Table 2.12: PIC18F452 interrupt bits and registers

Interrupt source Flag bit Enable bit Priority bit

INT0 external INT0IF INT0IE –

INT1 external INT1IF INT1IE INT1IP

INT2 external INT2IF INT2IE INT2IP

RB port change RBIF RBIE RBIP

TMR0 overflow TMR0IF TMR0IE TMR0IP

TMR1overflow TMR1IF TMR1IE TMR1IP

TMR2 match PR2 TMR2IF TMR2IE TMR2IP

TMR3 overflow TMR3IF TMR3IE TMR3IP

A/D complete ADIF ADIE ADIP

CCP1 CCP1IF CCP1IE CCP1IP

CCP2 CCP2IF CCP2IE CCP2IP

USART RCV RCIF RCIE RCIP

USART TX TXIF TXIE TXIP

Parallel slave port PSPIF PSPIE PSPIP

Sync serial port SSPIF SSPIE SSPIP

Low-voltage detect LVDIF LVDIE LVDIP

Bus collision BCLIF BCLIE BCLIP

EEPROM/FLASH write EEIF EEIE EEIP

www.newnespress.com

108 Chapter 2

Figures 2.48 to 2.55 show the bit definitions of interrupt registers INTCON2,

INTCON3, PIR1, PIR2, PIE1, PIE2, IPR1, and IPR2.

Examples are given in this section to illustrate how the CPU can be programmed for an

interrupt.

Example 2.2

Set up INT1 as a falling-edge triggered interrupt input having low priority.

Solution 2.2

The following bits should be set up before the INT1 falling-edge triggered interrupts

can be accepted by the CPU in low-priority mode:

Figure 2.48: INTCON2 bit definitions

www.newnespress.com

109PIC18F Microcontroller Series

� Enable the priority structure. Set IPEN ¼ 1

� Make INT1 an input pin. Set TRISB ¼ 1

� Set INT1 interrupts for falling edge. SET INTEDG1 ¼ 0

� Enable INT1 interrupts. Set INT1IE ¼ 1

� Enable low priority. Set INT1IP ¼ 0

� Clear INT1 flag. Set INT1IF ¼ 0

� Enable low-priority interrupts. Set GIEL ¼ 1

� Enable all interrupts. Set GIEH ¼ 1

Figure 2.49: INTCON3 bit definitions

www.newnespress.com

110 Chapter 2

Figure 2.50: PIR1 bit definitions

www.newnespress.com

111PIC18F Microcontroller Series

When an interrupt occurs, the CPU jumps to address 00008H in the program memory

to execute the user program at the interrupt service routine.

Example 2.3

Set up INT1 as a rising-edge triggered interrupt input having high priority.

Solution 2.3

The following bits should be set up before the INT1 rising-edge triggered interrupts can

be accepted by the CPU in high-priority mode:

� Enable the priority structure. Set IPEN ¼ 1

� Make INT1 an input pin. Set TRISB ¼ 1

Figure 2.51: PIR2 bit definitions

www.newnespress.com

112 Chapter 2

� Set INT1 interrupts for rising edge. SET INTEDG1 ¼ 1

� Enable INT1 interrupts. Set INT1IE ¼ 1

� Enable high priority. Set INT1IP ¼ 1

� Clear INT1 flag. Set INT1IF ¼ 0

� Enable all interrupts. Set GIEH ¼ 1

When an interrupt occurs, the CPU jumps to address 000018H of the program memory

to execute the user program at the interrupt service routine.

Figure 2.52: PIE1 bit definitions

www.newnespress.com

113PIC18F Microcontroller Series

Figure 2.53: PIE2 bit definitions

Figure 2.54: IPR1 bit definitions

www.newnespress.com

114 Chapter 2

2.2 Summary

This chapter has described the architecture of the PIC18F family of microcontrollers. The

PIC18F452 was used as a typical sample microcontroller in this family. Other members of

the same family, such as the PIC18F242, have smaller pin counts and less functionality.

And some, such as the PIC18F6680, have larger pin counts and more functionality.

Important parts and peripheral circuits of the PIC18F series have been described,

including data memory, program memory, clock circuits, reset circuits, watchdog timer,

general purpose timers, capture and compare module, PWM module, A/D converter,

and the interrupt structure.

2.3 Exercises

1. Describe the data memory structure of the PIC18F452 microcontroller. What is a

bank? How many banks are there?

2. Explain the differences between a general purpose register (GPR) and a special

function register (SFR).

Figure 2.55: IPR2 bit definitions

www.newnespress.com

115PIC18F Microcontroller Series

3. Explain the various ways the PIC18F microcontroller can be reset. Draw a circuit

diagram to show how an external push-button switch can be used to reset the

microcontroller.

4. Describe the various clock sources that can be used to provide a clock to a

PIC18F452 microcontroller. Draw a circuit diagram to show how a 10MHz crystal

can be connected to the microcontroller.

5. Draw a circuit diagram to show how a resonator can be connected to a PIC18F

microcontroller.

6. In a non-time-critical application a clock must be provided for a PIC18F452

microcontroller using an external resistor and a capacitor. Draw a circuit diagram

to show how this can be done and find the component values for a required clock

frequency of 5MHz.

7. Explain how an external clock can provide clock pulses to a PIC18F

microcontroller.

8. What are the registers of PORTA? Explain the operation of the port by drawing

the port block diagram.

9. The watchdog timer must be set to provide an automatic reset every 0.5 seconds.

Describe how to do this, including the appropriate register bits.

10. PWM pulses must be generated from pin CCP1 of a PIC18F452 microcontroller.

The required pulse period is 100ms, and the required duty cycle is 50%. Assuming

the microcontroller is operating with a 4MHz crystal, calculate the values to be

loaded into the various registers.

11. Again, with regard to PWM pulses generated from pin CCP1 of a PIC18F452

microcontroller: If the required pulse frequency is 40KHz, and the required duty

cycle is 50%, and assuming the microcontroller is operating with a 4MHz crystal,

calculate the values to be loaded into the various registers.

12. An LM35DZ-type analog temperature sensor is connected to analog port AN0 of a

PIC18F452 microcontroller. The sensor provides an analog output voltage

proportional to the temperature (i.e., V0 = 10 mV/�C). Show the steps required to

read the temperature.

13. Explain the difference between a priority interrupt and a nonpriority interrupt.

www.newnespress.com

116 Chapter 2

14. Show the steps required to set up INT2 as a falling-edge triggered interrupt input

having low priority. What is the interrupt vector address?

15. Show the steps required to set up both INT1 and INT2 as falling-edge triggered

interrupt inputs having low priority.

16. Show the steps required to set up INT1 as falling-edge triggered and INT2 as

rising-edge triggered interrupt inputs having high priorities. Explain how to find

the source of the interrupt when an interrupt occurs.

17. Show the steps required to set up Timer 0 to generate interrupts every millisecond

with a high priority. What is the interrupt vector address?

18. In an application the CPU registers have been configured to accept interrupts from

external sources INT0, INT1, and INT2. An interrupt has been detected. Explain

how to find the source of the interrupt.

www.newnespress.com

117PIC18F Microcontroller Series

This page intentionally left blank

