

© 2007 Microchip Technology Inc. Page 1 of
71

PICKIT™ 2
PIC18F46K20 Starter Kit

C18 LESSONS

1 Introduction

The following series of lessons covers the basics of developing applications for the Microchip PIC18
series of microcontrollers. Working with the MPLAB IDE, MPLAB C18 compiler, and the PICkit 2
Development Programmer/Debugger is introduced in a series of lessons that cover fundamental
microcontroller operations, from simply turning on an LED to creating interrupt service routines.

All lessons can be completed with the freely available MPLAB C18 Student Edition compiler in the
freely available Microchip MPLAB Integrated Development Environment. The lesson files may be
installed from the included CDROM.

Please note that these lessons are not intended to teach the C programming language itself, and prior
familiarity with the C language is a prerequisite for these lessons.

PIC18F46K20 Starter Kit C18 Lessons

• Lesson 1: Hello LED (Turn on LED)
• Lesson 2: Blink LED
• Lesson 3: Rotate LED (Turn on in sequence)
• Lesson 4: Switch Input
• Lesson 5: Using Timer0
• Lesson 6: Using PICkit 2 Debug Express
• Lesson 7: Analog-to-Digital Converter (ADC)
• Lesson 8: Interrupts
• Lesson 9: Internal Oscillator
• Lesson 10: Using Internal EEPROM
• Lesson 11: Program Memory Operations
• Lesson 12: Using the CPP Module PWM

Appendix A contains the PIC18F46K20 Starter Kit Demo Board Schematic diagram.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 2 of 71

1.1 Before Beginning the Lessons

Please ensure the following files and software has been installed on your PC before beginning:

1. MPLAB IDE version 8.01 or later.

2. MPLAB C18 compiler v3.13 or later. The Student Edition may be used.

When Installing MPLAB C18, please be sure to select the following options, as shown in
Figure 1-1.
 Add header file path to MCC_INCLUDE environment variable
 Update MPLAB IDE to use this MPLAB C18
 Place Link to documentation for this compiler in MPLAB IDE Help Topics

3. The PIC18F46K20 Starter Kit Demo Board C18 Lessons files.

FIGURE 1-1: MPLAB C18 INSTALLATION CONFIGURATION OP TIONS

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 3 of 71

2 PIC18FXXXX Microcontroller Architectural Overview

This section provides a simple overview of the PIC18FXXXX microcontroller architecture.

2.1 Memory Organization

The PIC18FXXXX microcontrollers are “Harvard Architecture” microprocessors, meaning that program
memory and data memory are in separate spaces. This allows faster execution as the program and data
busses are separate and dedicated, so one bus does not have to be used for both memory types. The
return address stack also has its own dedicated memory.

2.1.1 Program Memory

The program memory space is addressed by a 12-bit Program Counter, allowing a 2 Mb program
memory space. Typically, PIC18FXXXX microcontrollers have on-chip program memory in the range
of 4K to 128K bytes. Some devices allow external memory expansion.

At Reset, the Program Counter is set to zero and the first instruction is fetched. Interrupt vectors are at
locations 0x000008 and 0x000018, so a GOTO instruction is usually placed at address zero to jump over
the interrupt vectors.

Most instructions are 16 bits, but some are double word 32-bit instructions. Instructions cannot be
executed on odd numbered bytes.

These are some important characteristics of the PIC18C architecture and MPLAB C18 capabilities with
reference to program memory:

 MPLAB C18 Implementation
 Refer to the MPLAB C18 C Compiler User’s Guide for more information on these features.

• Instructions are typically stored in program memory with the section attribute code .
• Data can be stored in program memory with the section attribute romdata in conjunction

with the rom keyword.
• MPLAB C18 can be configured to generate code for two memory models, small and large.

When using the small memory model, pointers to program memory use16 bits. The large
model uses 24-bit pointers.

 PIC18 Architecture

• In some PIC18XXXX devices, program memory or portions of program memory can be
code-protected. Code will execute properly but it cannot be read out or copied.

• Program memory can be read using table read instructions, and can be written through a
special code sequence using the table write instruction.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 4 of 71

2.1.2 Data Memory

Data memory is called “file register” memory in the PIC18XXXX family. It consists of up to 4096 bytes
of 8-bit RAM. Upon power-up, the values in data memory are random. Data is organized in banks of
256 bytes, requiring that a bank (the upper 4 bits of the register address) be selected with the Bank
Select Register (BSR). Special areas in Bank 0 and in Bank 15 can be accessed directly without concern
for banking. These special data areas are called Access RAM. The high Access RAM area is where most
of the Special Function Registers are located.

When using MPLAB C18, this banking is usually transparent, but the use of the #pragma varlocate

directive tells the compiler where variables are stored, resulting in more efficient code.

Uninitialized data memory variables, arrays and structures are usually stored in memory with the section
attribute, udata . Initialized data can be defined in MPLAB C18 so that variables will have correct
values when the compiler initialization executes. This means that the values are stored in program
memory, then moved to data memory on start-up. Depending upon how much initialized memory is
required for the application, the use of initialized data (rather than simply setting the data values at run
time) may adversely affect the efficient use of program memory. Since file registers are 8 bits, when
using variables consideration should be made on what is the best datatype to define them as. For
example, when a variable value is not expected to exceed 255, defining it as a char instead of an int
will result in smaller, faster code.

2.1.3 Special Function Registers

Special Function Registers (SFRs) are CPU core registers (such as the Stack Pointer, STATUS register
and Program Counter) and include the registers for the peripheral modules on the microprocessor. The
peripherals include such things as input and output pins, timers, USARTs and registers to read and write
the EEDATA areas of the device. MPLAB C18 can access these registers by name, and they can be read
and written like a variable defined in the application. Use caution, though, because some of the Special
Function Registers have characteristics different from variables. Some have only certain bits available,
some are read-only and some may affect other registers or device operation when accessed. These
registers are mapped to addresses in Bank 15 of the data memory.

2.1.4 Return Address Stack

CALL and RETURN instructions push and pop the Program Counter on the return address stack. The return
stack is a separate area of memory, allowing 31 levels of subroutines.

The CALL/RETURN stack is distinct from the software stack maintained by MPLAB C18. The software
stack is used for automatic parameters and local variables and resides in file register memory as defined
in the linker script.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 5 of 71

3 PIC18F46K20 Starter Kit Demo Board Lessons

Connect the PICkit 2 Programmer/Debugger to a PC USB port, and connect the Demo Board to the
PICkit via header P1 labeled ICSP.

3.1 Lesson 1: Hello LED

This first lesson shows how to create a C18 project in the MPLAB IDE and turn on a demo board LED
using the PIC18F46K20.

3.1.1 Creating the Lesson 1 Project in the MPLAB ID E

Begin by opening the MPLAB IDE from the desktop shortcut icon:

To create project, use the MPLAB IDE Project Wizard by selecting the menu Project > Project
Wizard…. The Project Wizard “Welcome!” dialog is shown. Click Next to continue.

Step One: Select a device: In the Project Wizard dialog, select the <PIC18F46K20> as the target
device in the dropdown box as shown in Figure 3-2 and click Next to continue.

Key Concepts
• Use the MPLAB IDE Project Wizard to create a new project for a microcontroller.
• The TRISx Special Function Registers (SFRs) are used to set microcontroller port I/O pin

directions as inputs or outputs.
• The LATx SFRs are used to set microcontroller port Output pins to a high or low state.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 6 of 71

FIGURE 3-1: WIZARD STEP ONE: SELECT PIC18F46K 20 DEVICE

Step Two: Select a language toolsuite: This PIC18F microcontroller project will be in C, so select the
<Microchip C18 Toolsuite> from the “Active Toolsuite:” dropdown box, as shown in Figure 3-2. Click
Next to continue.

FIGURE 3-2: WIZARD STEP TWO: SELECT TOOLSUITE

Step Three: Create a new project: Create the project file in the existing directory for lesson 1.
Browse to the directory folder C:\Lessons\PIC18F46K20 Starter Kit Lessons\01 Hello LED and
name the project Lesson 1 LED . Save the project and then click Next to continue.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 7 of 71

FIGURE 3-3: WIZARD STEP THREE: CREATE A NEW P ROJECT

Step Four: Add existing files to your project: This dialog allows any existing source or other files to
be added to the project. Note it is also possible to add new files to project after it has been created. In
the left pane, select the 01 Hello LED.c file in the project directory from Step Three and click Add>>.
The file will now show up the right pane of the dialog as show in Figure 3-4. Click Next to continue.

FIGURE 3-4: WIZARD STEP FOUR: ADD EXISTING FILES

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 8 of 71

Summary: In the final wizard dialog, verify the Project Parameters FIGURE 3-5: PROJECT WINDOW
and click Finish. To view the Project Window in the MPLAB IDE,
select menu View > Project.

The Project Window (see Figure 3-5) shows the workspace file name
(Lesson 1 LED.mcw) in the title bar, and the project file (Lesson 1

LED.mcp) at the top of the file tree view. A workspace file keeps
track of what files and windows are open, where the windows are
located in the MPLAB IDE workspace, what programmer or
debugger tools are selected and how they are configured, and other
information on how the MPLAB IDE environment is set up. A
project file keeps track of all the necessary files to build a project ,
including source and header files, library files, linker scripts, and
other files. As shown in Figure 3-5, the Lesson 1 LED project
currently only contains one source file, 01 Hello LED.c , which was
added in the Project Wizard.

To complete the project setup, we will add a linker script and microcontroller header file to the project.
A linker script is required to build the project. It is a command file for the linker, and defines options
that describe the available memories on the target microcontroller. There are four example linker files
for the microcontroller:
 18f46k20.lkr Basic linker script file for compiling a memory image in non-extended

processor mode. (More on the extended mode in a later lesson.)
 18f46k20_e.lkr Linker script file for compiling using extended mode.
 18f46k20i.lkr Linker script file for use when debugging. These linker scripts prevent
 application code from the using the small areas of memory reserved for
 the debugger.
 18f46k20i_e.lkr Linker script file for debugging in extended mode.

Add the linker script by selecting menu Project > Add files to project…. In the “Files of type” dropdown
box, select “Linker Scripts (*.lkr)” as shown in Figure 3-6. Browse to the linker scripts directory
C:\MCC18\lkr and open the 18f46k20i.lkr file as the debugger will be used in later lessons.

Files can also be added by right-clicking in the Project Window. Right-click on the “Header Files”
folder and select Add Files… from the pop-up menu. Browse to the MPLAB C18 header file directory
C:\MCC18\h and open the p18f46k20.h header file. The project window now looks like Figure 3-7.

It is important to note that the file selected in the directory it resides in will be added to be project, so
modifying it will modify the original file. If this is not desired, open the file and use File > Save As… to
save a new copy in the current project directory and then add the new file to the project.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 9 of 71

FIGURE 3-6: ADD FILES TO PROJECT FIGURE 3-7: NEW P ROJECT FILES

Select Project > Save Project to save the new project configuration.

3.1.2 Exploring the Lesson 1 Source Code

Double-click the 01 Hello LED.c source file name to open the lesson source code file in an MPLAB
IDE editor window.

FIGURE 3-8: LESSON 1 “HELLO LED” SOURCE CODE

/** C O N F I G U R A T I O N B I T S *********** *******************/

#pragma config FOSC = INTIO67
#pragma config WDTEN = OFF, LVP = OFF

/** I N C L U D E S ******************************* *******************/
#include "p18f46K20.h"

/** D E C L A R A T I O N S *********************** ********************/

void main (void)
{

 TRISD = 0b01111111; // PORTD bit 7 to output (0); bits 6:0 are inputs (1)

 LATDbits.LATD7 = 1; // Set LAT register bit 7 to turn on LED

 while (1)
 ;

}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 10 of 71

When this code is built, programmed into the PIC18F46K20 microcontroller, and executed it will turn
on the LED connected to I/O pin RD7 by driving the pin high. Let’s discuss the elements of the code
that makes this happen:

 #pragma config Pragma is a directive that has meaning for a specific compiler. It is used
 in MPLAB C18 with attributes to convey implementation-dependent
 information to the compiler. Here it is used with the config directive,
 which defines the states of the PIC18FXXXX Configuration bits. This

will be discussed in more detail in Lesson 2.
 #include The “p18f46k20.h” file is included as this device-specific header file
 contains definitions for the variables used to access the Special Function
 Registers (SFRs) of the microcontroller. Some useful macros such as
 Nop() and ClrWdt() are also defined in this header.

TRISD This variable is used to access the SFR of the same name, and is defined in
the included microcontroller header file p18f46k20.h . The TRIS (tri-
state) registers are used to set the directions of the pins in the associated
I/O port, in this case pins RD0 to RD7. A TRISD bit value of ‘0’ sets the
pin to an output. A value of ‘1’ sets a pin to be an input. With the binary
value of 0b01111111 we set RD7 to an output and RD6-RD0 to inputs.

 LATDbits.LATD7 The LATDbits struct is also defined in p18f46k20.h , and gives access to
 the individual bits in the LATD SFR. (There is also a TRISDbits struct,
 for accessing bits of TRISD, and a LATD variable defined to access the

entire byte-wide register.) The LATD (latch) register is used to set the
output state of the RD7-RD0 pins. A bit value of ‘1’ sets an output pin
to a high state. Bits for pins defined in the TRIS register as inputs do not
have an effect. Setting LATDbits.LATD7 = 1 will output a high level on
RD7, turning on LED 7 on the demo board.

 while(1) In this case of code running on an embedded microcontroller, there is no
 operating system to return to when the code finished executing. Therefore
 an infinite C while loop is used to keep the microcontroller running and
 prevent it from exiting main() and trying to execute undefined memory

locations.

3.1.3 Building and Programming the Lesson 1 Code

Build the lesson code in an executable memory image by selecting Project > Build All in the MPLAB
IDE. The memory image is stored in a .hex file in the project directory.

The results of the build will be shown in the Output Window in the MPLAB IDE workspace under the
“Build” tab. The calls to the MCC18 compiler and Linker are shown, along with any errors that may
occur. If the build is successful, the Output Window will show BUILD SUCCEEDED as in Figure 3-9.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 11 of 71

FIGURE 3-9: MPLAB IDE OUTPUT WINDOW BUILD RESULTS

To program the code into the PIC18F46K20 microcontroller, the PICkit 2 Programmer/Debugger is
used. Select the PICkit 2 as a programmer in the MPLAB IDE with Programmer > Select Programmer
> 4 PICkit 2.

This will create a new tab in the Output Window for the PICkit 2 programmer, where messages from the
programmer are displayed. The PICkit 2 will be initialized and should report finding the PIC18F46K20
microcontroller on the demo board as shown in Figure 3-10.

FIGURE 3-10: OUTPUT WINDOW PICKIT 2 PROGRAMMER

Program the built code into the PIC microcontroller by selecting menu Programmer > Program. The
results of the programming operation will appear in the Output Window as shown in Figure 3-11.

Note: If an error that the include file “p18f46k20.h” cannot be found is generated, this usually
means that MPLAB C18 was installed without checking the Add header file path to
MCC_INCLUDE environment variable option during setup. It is recommended to re-install
MPLAB C18 with this option checked.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 12 of 71

To allow the code to run, the PICkit 2 must release the microcontroller /MCLR pin. The device is held
in reset after programming. This means that the /MCLR pin of the microcontroller is left asserted (low)
by the programmer after programming. Select Programmer > Release from Reset. The project code
will now execute and light LED 7 on the demo board.

Congratulations! You have created, built, programmed, and executed your first Microchip PIC18F
project!

FIGURE 3-11: OUTPUT WINDOW PICKIT 2 PROGRAMMING RE SULTS

Note: If an error occurs during programming, consult the PICkit 2 help file in the MPLAB IDE.
Select Help > Topics… then under the “Programmers” heading select “PICkit 2 Programmer”
and click OK. On the “Contents” tab, select the “Troubleshooting” section for information.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 13 of 71

3.2 Lesson 2: Blink LED

This lesson discusses the Configuration bits of the PIC18FXXXX microcontrollers, and how to set them
in an MPLAB C18 source file. It also presents using a library function and shows how delays can be
used to blink an LED on the demo board.

3.2.1 Opening the Lesson 2 Project & Workspace in t he MPLAB IDE

This and the remaining lessons already have a project and workspace defined. To open the workspace
for Lesson 2, select menu File > Open Workspace… in the MPLAB IDE. Browse to the directory
C:\Pk2 Lessons\PIC18F46K20 Demo\02 Blink LED and open the 02 Blink LED.mcw file.

Before opening the new workspace, the MPLAB IDE will prompt you to save the current workspace. It
is generally a good idea to click Yes. Afterwards, the new workspace and project for Lesson 2 will
open.

3.2.2 Defining Configuration Bit Settings in the So urce Code

Configuration bits are fuses in the PIC18FXXXX microcontrollers that are programmed along with the
application code to set up or “configure” different microcontroller operating modes and enabled or
disable certain microcontroller features. For example, in the PIC18F46K20 the configuration bits select
such features which oscillator option to use, whether the processor runs in traditional or extended mode,
whether to use the Brown-Out-Reset circuit and which voltage to trip at, whether the Watchdog Timer is
enabled or disabled and which options to use, and if the Flash memory Code Protect feature is enabled
among many other options.

Note that some features, such as the Watchdog Timer, can be configured so that it may be enabled or
disabled by software in the Special Function Registers while the application code is executing. For
detailed descriptions and information on the PIC18F46K20 Configuration bits, see section 23.1
Configuration Bits in the datasheet, under the section heading 23.0 Special Features of the CPU.

In the Lesson 2 source code, all configuration bits are defined at the top of the 02 Blink LED.c file, as
shown in Figure 3-12.

Key Concepts
• Open existing project workspaces by selecting File > Open Workspace… in the MPLAB IDE
• Configuration bits are special purpose fuse bits that set PIC microcontroller modes of operation

and enable or disable microcontroller features.
• A number of libraries are included with the MPLAB C18 compiler with predefined and compiled

functions. The MPLAB C18 C Compiler Libraries document (DS51297) provides detailed
information on all included libraries.

• Delays can be created to time events by using software loops.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 14 of 71

FIGURE 3-12: LESSON 2 “BLINK LED” CONFIGURATION BIT DEFINITIONS

The Configuration bits are defined using the #pragma config directive for each configuration word.
The MPLAB C18 attributes used to reference each bit or bit field setting (i.e. “OSC = INTIO67 ”) may
differ from one PIC18FXXXX microcontroller to another, depending the features supported by a
particular microcontroller. All the attributes available for a particular microcontroller may be found in
the MPLAB IDE help. Let’s find the attributes for the PIC18F46K20:

1. Select MPLAB IDE menu Help > Topics…

2. In the “MPLAB Help Topics” dialog, find the “Language Tools” category and select the
“PIC18 Config Settings” topic as shown in Figure 3-13. Click OK.

3. When the Help window opens, select the “Contents” tab, and expand the “Configuration
Settings” section.

4. Select the PIC18F46K20 microcontroller to display all the configuration bit setting

attributes that can be used with the #pragma config directive, as shown in Figure 3-14.

FIGURE 3-13: MPLAB HELP TOPICS FIGURE 3-14: PIC18 F46K20 CONFIGURATION

The configuration bit settings that are important for this lesson project and are different from the default
values are:

/** C O N F I G U R A T I O N B I T S *********** *******************/

#pragma config FOSC = INTIO67, FCMEN = OFF, IESO = OFF // CONFIG1H
#pragma config PWRT = OFF, BOREN = SBORDIS, BORV = 30 // CONFIG2L
#pragma config WDTEN = OFF, WDTPS = 32768 // CONFIG2H
#pragma config MCLRE = ON, LPT1OSC = OFF, PBADEN = ON, CCP2MX = PORTC // CONFIG3H
#pragma config STVREN = ON, LVP = OFF, XINST = OFF // CONFIG4L
#pragma config CP0 = OFF, CP1 = OFF, CP2 = OFF, CP3 = OFF // CONFIG5L
#pragma config CPB = OFF, CPD = OFF // CONFIG5H
#pragma config WRT0 = OFF, WRT1 = OFF, WRT2 = OFF, WRT3 = OFF // CONFIG6L
#pragma config WRTB = OFF, WRTC = OFF, WRTD = OFF // CONFIG6H
#pragma config EBTR0 = OFF, EBTR1 = OFF, EBTR2 = OF F, EBTR3 = OFF // CONFIG7L
#pragma config EBTRB = OFF // CONFIG7H

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 15 of 71

FOSC = INTIO67 This sets the PIC18F46K20 to run using the internal oscillator, so no crystal
 or external oscillator is needed. The default frequency is 1 MHz. The
 oscillator is covered in more detail in Lesson 9. It also sets OSC1 and
 OSC 2 pins to be used as the RA7 and RA7 I/O port pins as the OSC
 pin functions are not needed.
WDTEN = OFF This turns off the Watchdog Timer, as it is not used in this lesson. When
 the Watchdog Timer is enabled, it must be cleared periodically in the code
 or it will reset the microcontroller.
LVP = OFF This turns off Low-Voltage-Programming, and frees the PGM pin to be
 used as the RB5 I/O port pin. (LVP mode is not used by the PICkit 2

programmer.)

Even though all other bit settings are left as default, it is strongly recommended to define them all in the
source as is done in the Lesson 2 source code. This ensures that the program memory image in the .hex

file built by the compiler contains all the configuration settings intended for the target application. The
one exception is the DEBUG bit, as this is defined by the MPLAB IDE environment depending on
whether the target microcontroller is running in debug mode or not.

3.2.3 Exploring the Lesson 2 Source Code

Open the lesson 2 source code file 02 Blink LED.c in an MPLAB IDE editor window if it is not open
already.

FIGURE 3-15: LESSON 2 “BLINK LED” SOURCE CODE

/** I N C L U D E S ******************************* *******************/
#include "p18f46k20.h"
#include "delays.h"

/** D E C L A R A T I O N S *********************** ********************/

void main (void)
{

 TRISD = 0b01111111; // PORTD bit 7 to output (0) ; bits 6:0 are inputs (1)

 while (1)
 {
 LATDbits.LATD7 = ~LATDbits.LATD7; // toggle LATD

 Delay1KTCYx(50); // Delay 50 x 1000 = 50,000 cycl es; 200ms @ 1MHz
 }

}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 16 of 71

This source code contains a couple of new lines of interest. The first is a new include file:

#include "delays.h"

This is header file for the MCC18 “delays” library, which provides functions used to create program
delays of a certain number of processor cycles. The MPLAB C18 compiler comes with a number of
useful libraries. These include the standard C libraries stdio & stdlib , and function libraries such as
ctype , delays , math , & string . There are also libraries for using hardware peripheral functions such
as adc , i2c , pwm, spi , usart , and timers as well as for software emulation of peripherals like sw_i2c ,
sw_uart , and sw_spi .

Headers for the libraries can be found in the MCC18 header directory C:\MCC18\h . The source code for
most of the libraries can be found in C:\MCC18\src , and the libraries themselves are in C:\MCC18\lib .
For more detailed information on the included library functions see the MPLAB C18 C Compiler
Libraries document (DS51297).

The other new line of special interest is a function call to a function in the delays library:

Delay1KTCYx(50);

This function creates a time delay with a software of 1000 (1k) instruction cycles (TCY) times the
argument value. In this case, the argument is 50 so this function will delay for 50 x 1000 = 50,000
instruction cycles. The instruction rate on PIC18FXXXX microcontrollers is equal to 1/4th the oscillator
clock; in other words, it takes 4 clocks to execute an instruction. In this case the clock is the internal
oscillator at 1MHz, so the instruction rate is 250kHz, or TCY = 4us per instruction. The total delay is
50,000 x 4us = 200ms, which is slow enough for the human eye to see the LED turning on and off.

The lesson 2 program runs this delay inside an indefinite while loop, which sets the RD7 I/O pin to the
complement of its current value (the effect is to switch it back and forth between high and low) with a
200ms delay in between each RD7 output level change. This blinks the demo board LED 7.

3.2.4 Build and Program the Lesson 2 Code

In the MPLAB IDE, build the lesson 2 project and program the code into the demo board PIC18F46K20
using the PICkit 2 Programmer as we did in lesson 1. Don’t forget to release the microcontroller from
reset!

The demo board LED 7 will blink continuously at 200ms on and 200ms off.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 17 of 71

3.3 Lesson 3: Rotate LED

This lesson builds on the previous two lessons to introduce defining global variables and code sections,
and to add rotation to the LED display. It will light up LED 0, then shift it to LED 1, then to LED 2 and
on up to LED 7, and back to LED 0.

In this and following lessons, please open the lesson workspace in the MPLAB IDE upon starting the
lesson.

3.3.1 Allocating File Register Memory

In the source code file 03 Rotate LED.c for lesson 3 the global variable, LED_Number, is declared as
in Figure 3-16.

FIGURE 3-16 LESSON 3 GLOBAL VARIABLE DECLARATION

The directive #pragma udata is used prior to declaring the variable LED_Number to indicate to the
compiler that the following declarations are data variables that should be placed in the PIC18FXXXX
file registers. This differs from PC compilers where instructions and variables share the same memory
space due to the Harvard architecture of the PIC18FXXXX as discussed in section 2.1 of this document.

There are two directives for use with #pragma when defining variables:

 udata Uninitialized data. The following data is stored uninitialized in the file

register space.
 idata Initialized data. The following data is stored in the file register space.
 The initialization values are stored in program memory, and then moved
 by the startup initialization code into file registers before program

execution begins.

Data declarations can also be given a section name. The section name may be used with a linker script
SECTION entry to place it in a particular area of memory. See section 2.9 of the MPLAB C18 C
Compiler User’s Guide for more information on using sections with linker scripts. Even without a
linker script section, the #pragma udata directive may be used to specify the starting address of the data

/** V A R I A B L E S ***************************** ********************/
#pragma udata // declare statically allocated uninitialized vari ables
unsigned char LED_Number; // 8-bit variable

Key Concepts
• The directives #pragma udata and #pragma idata are used to allocate memory for static

variables in the file registers.
• The directive #pragma code is used to indicate a section of instructions to be compiled into the

program memory of the PIC18FXXXX.
• The directive #pragma romdata is used for constant (read-only) data stored in the program

memory. This is used with the keyword rom.
• Constant data can be stored in program memory so as not to use up file register RAM.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 18 of 71

in the file registers. For example, to place LED_Number at the start of file register bank 3 declare the
udata section as

#pragma udata mysection = 0x300
unsigned char LED_Number; // 8-bit variable
unsigned int AnotherVariable;

Other variables declared in a udata or idata section will be placed at subsequent addresses. For
instance, the 16-bit integer AnotherVariable above would occupy address 0x301 an d 0x302.

Note that function local variables will be placed on the software stack.

For a list of data types supported by MPLAB C18, their sizes and limits, see section 2.1 of the MPLAB
C18 C Compiler User’s Guide (DS51288).

3.3.2 Allocating Program Memory

Program memory will most often be used for program instructions and constant data. The source code
for lesson 3 includes examples of both, as shown in Figure 3-17.

FIGURE 3-17: LESSON 3 CONSTANT DATA AND PROGRAM COD E

There are two basic directives for defining program memory sections:

 code Program Memory Instructions. Compiles all subsequent instructions into

the program memory space of the target PIC18FXXXX.
romdata Data stored in program memory. Used in conjuction with the rom

keyword, the following constant data is compiled into the program
memory space.

In this lesson, we use a constant array LED_LookupTable to convert a number representing LEDs 0-7 to
a bit pattern for setting the appropriate PORTD pin to turn on the corresponding LED. This constant is
declared in a romdata section and uses the rom keyword so it will be placed in program memory. As the
program never needs to change these array values, this saves file registers to be used for true variables.

Note that the romdata section was also declared with a section name and absolute address:

#pragma romdata Lesson3_Table = 0x180

/** D E C L A R A T I O N S *********************** ********************/
// declare constant data in program memory starting at address 0x180
#pragma romdata Lesson3_Table = 0x180
const rom unsigned char LED_LookupTable[8] = {0x01, 0x02, 0x 04, 0x08,
 0x10, 0x20, 0x40, 0x80};

#pragma code // declare executable instructions

void main (void)
{

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 19 of 71

These optional attributes will force the compiler to place the 8 – byte char array at program memory
address 0x0180. If an address is not specified, the code or romdata section may not always be placed at
a deterministic address by the linker.

Select MPLAB IDE men Project > Build All to build the lesson 3 code, then select View > Program
Memory to display the compiled contents of program memory. The instructions to execute the lesson
program code are contained within addresses 0x0000 and 0x0146. Note that the array values have been
compiled to program memory starting at the specified address of 0x180 through address 0x186 as shown
in Figure 3-18.

FIGURE 3-18: PROGRAM MEMORY “LED_LOOKUPTABLE” ARRAY VALUES

The directive #pragma code is then used to specify the following section, beginning with the main ()
declaration, will be executable instructions to place in program memory. Since an optional section name
and address are not specified, the code instructions will be placed at the first available address by the
linker. As with data directives, a section name may used with a SECTION entry in the linker script to
allocated a range of program memory for a section.

3.3.3 Exploring the Lesson 3 Source Code

Open the lesson source code file 03 Rotate LED.c in an editor window if it is not open already.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 20 of 71

FIGURE 3-19: LESSON 3 “ROTATE LED” SOURCE CODE

Here is the basic flow of our Rotate LED program:

 Initialize Variables & I/O Port
 The global variable LED_Number, which holds the number of the LED we currently

want on, is set to ‘0’ for the first LED.
The TRISD register bits are all set to ‘0’, so that all 8 port D pins RD0 – RD7 are outputs.

 Loop Forever with the while(1) statement:
 Set the I/O Port to turn on an LED.
 The number of the LED to turn on, LED_Number, is used an index to the array

LED_LookupTable which returns a value with a bit set corresponding to the LED to
be turned on. This value is written to the LATD register to turn on the one LED.

 Rotate the LED number
 The LED number is incremented to the next LED. The if statement checks to see

if it has been incremented past the last LED. If so, it is reset to the first LED,
number 0.

 Delay 200ms
 As in Lesson 2, a “delays” library function is used to create a time delay.
 (Loop End)

/** V A R I A B L E S ***************************** ********************/
#pragma udata // declare statically allocated unini tialized variables
unsigned char LED_Number; // 8-bit variable

/** D E C L A R A T I O N S *********************** ********************/
// declare constant data in program memory starting at address 0x180
#pragma romdata Lesson3_Table = 0x180
const rom unsigned char LED_LookupTable[8] = {0x01, 0x02, 0x04, 0x08,
 0x10, 0x20, 0x40, 0x80};

#pragma code // declare executable instructions

void main (void)
{
 LED_Number = 0; // initialize

 TRISD = 0b00000000; // PORTD bits 7:0 are all outputs (0)

 while (1)
 {
 // use lookup table to output one LED on based on LED_Number value
 LATD = LED_LookupTable[LED_Number];

 LED_Number++; // rotate display by 1

 if (LED_Number == 8)
 LED_Number = 0; // go back to LED 0.

 Delay1KTCYx(50); // Delay 50 x 1000 = 5 0,000 cycles; 200ms @ 1MHz
 }
}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 21 of 71

3.3.4 Build and Program the Lesson 3 Code

In the MPLAB IDE, build the lesson 3 project and program the code into the demo board using the
PICkit 2 Programmer. Don’t forget to release the microcontroller from reset!

The demo board LEDs will rotate from LED 0 up to LED 7 and then back to LED 0.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 22 of 71

3.4 Lesson 4: Switch Input

The demo board switch is used in the lesson to rotate the LEDs once on each press.

3.4.1 Header Files and the #define Directive

This lesson has added a header file to the project named FIGURE 3-20 HEADER FILE
04 Switch Input.h as shown in Figure 3-20.

While it is assumed that the reader is familiar with C language header files, we’ll note that in the 04

Switch Input.h header file the #define directive has been used to give more meaningful names to the
switch I/O pin variable and a constant value.

#define Switch_Pin PORTBbits.RB0
#define DetectsInARow 5

As with other C compilers use of #define , MPLAB C18 will replace all instances of the text
“Switch_Pin” with the text “PORTBbits.RB0” at compile time.

Remember, for the compiler to know about the #define definitions, the header file must be included in
the C file, as is done in 04 Switch Input.c :

Key Concepts
• The directive #define can be used to give SFR registers and bits more meaningful names.
• I/O pins that share an analog input channel must be configured as digital pins if used as digital

inputs using SFR ADCON1, or they will always read ‘0’.
• The PORTx SFRs are used to read the logic state on an input port pin.
• Mechanical switch debouncing can be handled in software to eliminate external components that

may be otherwise required.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 23 of 71

#include "04 Switch Input.h" // header file

3.4.2 Switch Debouncing

Mechanical switches are frequently encountered in embedded processor applications, and are
inexpensive, simple, and reliable. However, such switches are also often very electrically noisy. This
noise is known as switch bounce, whereby the connection between the switch contacts makes and breaks
several, perhaps even hundreds, of times before settling to the final switch state. This can cause a single
switch push to be detected as several distinct switch pushes by a fast device, especially with an edge-
sensitive input. Think of advancing the TV channel, but instead of getting the next channel, the
selection skips ahead two or three.

Classic solutions to switch bounce involved filtering out the fast switch bounce transitions with a
resistor-capacitor circuit, or using re-settable logic shift registers. While effective, these methods add
additional cost and increase circuit board real estate. Debouncing a switch in software eliminates these
issues.

A simple way to debounce a switch is to sample the switch until the signal is stable. How long to
sample requires some investigation of the switch characteristics, but usually 5ms is sufficiently long.

This lesson code demonstrates sampling the switch input every 1mS, waiting for 5 consecutive samples
of the same value before determining that the switch was pressed. Note that the switch on the 44-Pin
Demo Board doesn’t bounce much, but it is good practice to debounce all system switches.

FIGURE 3-21: SWITCH DEBOUNCING PROGRAM FLOW

3.4.3 Exploring the Lesson 4 Source Code

Switch in
pressed state?

Increment Counter Clear Counter

Yes No

Counter = 5?

Switch Pressed!

Yes

Delay 1ms No

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 24 of 71

Open the lesson source code file 04 Switch Input.c in an editor window if it is not open already.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 25 of 71

FIGURE 3-22: LESSON 4 “SWITCH INPUT” SOURCE CODE

Variables

This program has 2 declared variables, the global variable LED_Display and the local variable
Switch_Count . A global variable will be placed in a dedicated location in the file register space
as discussed in lesson 3. A local variable is placed on the software stack, and is created when a
function is entered, and destroyed (removed from the stack) when the function exits.

Switch Input

The demo board switch is connected to I/O pin RB0, which is normally pulled up to VDD
internally. When the switch is pressed, it pulls RB0 to ground (low state).

/** V A R I A B L E S ***************************** ********************/
#pragma udata // declare statically allocated uin itialized variables
unsigned char LED_Display; // 8-bit variable

/** D E C L A R A T I O N S *********************** ********************/
#pragma code // declare executable instructions

void main (void)
{
 unsigned char Switch_Count = 0;

 LED_Display = 1; // initialize

 TRISD = 0b00000000; // PORTD bits 7:0 are all outputs (0)

 INTCON2bits.RBPU = 0; // enable PORTB internal pullups
 WPUBbits.WPUB0 = 1; // enable pull up on RB0
 ANSELH = 0x00; // AN8-12 are digit al inputs (AN12 on RB0)
 TRISBbits.TRISB0 = 1; // PORTB bit 0 (con nected to switch) is input (1)

 while (1)
 {
 LATD = LED_Display; // output LED_Displ ay value to PORTD LEDs

 LED_Display <<= 1; // rotate display b y 1

 if (LED_Display == 0)
 LED_Display = 1; // rotated bit out, so set bit 0

 while (Switch_Pin != 1);// wait for switch to be released

 Switch_Count = 5;
 do
 { // monitor switch input for 5 lows in a r ow to debounce
 if (Switch_Pin == 0)
 { // pressed state detected
 Switch_Count++;
 }
 else
 {
 Switch_Count = 0;
 }
 Delay10TCYx(25); // delay 250 cycles or 1ms.
 } while (Switch_Count < DetectsInARow);
 }

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 26 of 71

The PORTx special function registers are used to read the state of an input pin. Therefore,
reading PORTBbits.RB0 will give the value of the signal on the RB0 pin. Don’t forget – in the
header file, this was defined as Switch_Pin , which is what the code uses to read the pin value:

#define Switch_Pin PORTBbits.RB0

In the PIC18F46K20, the RB0 pin is shared with analog input AN12. Such pins must be
configured as either digital or analog inputs. This is important because RB0 will be used as a
digital input pin to read the state of the switch in register PORTB. If RB0 is configured as an
analog input, it will always read ‘0’ and not the actual state of the switch. Pins are configured as
analog or digital in the SFRs ANSEL and ANSELH.

FIGURE 3-23: ANSELH: ANALOG REGISTER 1

We clear ANSELH to set all pins to digital functionality:

ANSELH = 0x00;

Now we can use RB0 as a digital input, so the TRISB bit is set to configure it as an input:

TRISBbits.TRISB0 = 1;

Rotating the LEDs

This program uses a simpler method of rotating the LEDs than lesson 3, which used the lookup
table for demonstration purposes. 04 Switch Input.c uses a single set bit in the LED_Display
variable which is written to LATD and shifted each time the display is updated. The bit will

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 27 of 71

eventually be shifted out of the most significant bit of LED_Display, so the code checks for this,
and sets LED_Display to ‘1’ again.

For more information on I/O port pins, see Section 10 I/O Ports of the PIC18F46K20 datasheet.

3.4.4 Build and Program the Lesson 4 Code

Build the lesson 4 project and program the code into the demo board using the PICkit 2 Programmer.
Don’t forget to release the microcontroller from reset!

Press the demo board switch button to rotate the LEDs. The LEDs will advance once for each button
press.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 28 of 71

3.5 Lesson 5: Using Timer0

Timer0 is used to time delays while rotating the demo board LEDs, instead of using program loop
delays. The demo board switch reverses the direction of the rotation.

3.5.1 The PIC18F46K20 Timer0 Module

The Timer0 module is timer/counter peripheral of the PIC18FXXXX microcontroller that may be used
to count oscillator clock cycles or external events on the T0CKI pin. It can be configured as an 8-bit or
16-bit timer, which means it can count from 0 to 255 or 0 to 65535. A bit flag is set when the counter
rolls over from the maximum value back to zero.

The Timer0 module also includes an optional prescaler, which may be configured to divide the timer
clock source before it reaches the timer/counter itself. For example, with a 1:1 prescaler, the timer
would increment once every instruction clock cycle. (Remember that the instruction clock cycle TCY is
the Fosc oscillator clock/4.) With a 1:8 prescaler, the timer would increment once every eight clock
cycles. The prescaler is cleared on every write to the timer.

FIGURE 3-23: SIMPLIFIED 16-BIT TIMER0 BLOCK DIAGRAM

When Timer0 is configured as a 16-bit timer, care must be taken when reading and writing the timer
value. The lower byte of the timer is directly readable and writable as the SFR TMR0L. However, the
high byte is not directly accessible. Instead, it is buffered through the SFR TMR0H. TMR0H is
updated with the value of timer high byte when TMR0L is read. A write of TMR0L also writes the
contents of TMR0H to the Timer0 high byte. This allows the entire 16-bit timer to be read or written at
once.

Therefore, to read the timer, always read TMR0L first, then TMR0H. To write the timer, always write
TMR0H first then TMR0L.

Key Concepts
• Timer0 is hardware counter implemented in the microcontroller that can count clock cycles or

external events.
• Using a timer instead of processor delay loops frees up the processor to do useful work instead of

counting cycles.
• A timer “prescaler” sets the number of clock cycles or events required to increment the timer by 1,

allowing it to be run faster or slower off the same frequency clock.

TCY (Fosc / 4)

or T0CKI Pin
Prescaler TMR0L

TMR0H

TMR0
High Byte

INTCON
TMR0IF Bit

Prescaler may be set to
divide by 2, 4, 8, 16, 32,
64, 128, or 256.

Timer high byte is buffered into TMR0H on a read of TMR0L.
TMR0H is written to timer high byte on TMR0L write.

Flag bit set when TMR0
overflows, and must be
cleared in software.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 29 of 71

Timer0 operation is controlled by the T0CON SFR, shown in Figure 3-24.

FIGURE 3-24: T0CON: TIMER0 CONTROL REGISTER

To use Timer0 to replace the software delay Delay1KTCYx(50) it should be set up so it overflows about
every 200 to 300ms. Let’s go over the T0CON bit settings to make this happen:

 T08BIT = 0
 Timer0 is configured as a 16-bit timer/counter to illustrate the buffering of TMR0H.

 T0CS = 0

Timer0 runs off the internal instruction clock. At Fosc = 1MHz, the instruction clock is
250kHz.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 30 of 71

T0SE = 0
If Timer0 was running off the T0CKI pin, this bit would determine whether it
incremented on the falling edge or rising edge of the T0CKI pin signal. Since we are
running off the instruction clock, this bit is a “don’t care.” This means operation is not
affected by either setting of this bit.

 PSA = 1

The timer will overflow in 65536 counts. At the instruction clock rate of 250kHz, the
timer overflow will occur every 65536 x (1 / 250,000) = 262ms. This is a time in the
range we want, so the prescaler is not assigned to Timer0. It runs directly off the
instruction clock.

 T0PS2:T0PS0 = 000
 Since the prescaler is not assigned, these bits are “don’t care.”

And finally:

TMR0ON = 0
This bits turns the timer and off. It’s set to zero now as the timer will be turned on once it
is has been set up.

To configure Timer 0 with these settings, the binary value 0b0000100 is written to T0CON.

The PIC18F46K20 has 3 other configurable timers: Timer1, Timer2, and Timer3. More information on
all four timer modules can be found in the PIC18F46K20 datasheeet sections 11 through 14.

3.5.2 Exploring the Lesson 5 Source Code

Open the lesson source code file 05 Timer.c and header file 05 Timer.h in editor windows if they are
not open already.

Note that in 05 Timer.h two custom enumerated variable types have been defined:

typedef enum { LEFT2RIGHT,
 RIGHT2LEFT} LEDDirections;

typedef enum {FALSE, TRUE} BOOL;

This allows us to declare variables using these types and initialize them in main() :

LEDDirections Direction = LEFT2RIGHT;
BOOL SwitchPressed = FALSE;

The Direction variable keeps track of which direction the LEDs are rotating in, and SwitchPressed

remembers if the switch has been pressed or not, as the LED rotation direction should only be changed
once when it is pressed.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 31 of 71

The following code before the while(1) loop sets up the Timer0 module as discussed in previously.

// Init Timer
INTCONbits.TMR0IF = 0; // line 1
T0CON = 0b00001000; // line 2
// T0CON = 0b00000001; (ignore commented line for no w)
TMR0H = 0; // line 3
TMR0L = 0; // line 4
T0CONbits.TMR0ON = 1; // line 5

Using the line numbers in the comments as references, let’s discuss the function of each line in setting
up the timer.

Line 1 clears the TMR0IF flag in the INTCON SFR. This bit flag is set whenever the timer overflows
(rolls over), so the program will poll it to know when the LED rotation delay it up. However, the flag
will not reset by hardware, it must be reset in software so the program makes sure it is clear before
starting the timer.

Line 2 loads the settings into T0CON to configure the timer as discuss previously in this lesson.

Line 3 clears the TMR0H buffer. Remember that TMR0H only buffers the high byte of the timer. The
‘0’ value will not actually be written to the timer upper byte until TMR0L is written.

Line 4 clears TMR0L, which also causes TMR0H to be written to the high byte of the timer. Thus, the
entire 16-bit timer is loaded with the hex value 0x0000.

Line 5 sets bit 7, TMR0ON, of the T0CON register to turn on the timer so it begins incrementing. Using
one of the SFR unions to access bits, like T0CONbits.TMR0ON , can change bits without affecting the
other bits.

Moving on the rest of the lesson code: In the while(1) loop, the LED_Display global variable is
updated to rotate the ‘1’ bit based on the Direction variable value, and then LATD is updated.

The do{…}while() loop then polls the switch looking for a switch press while it waits for the timer to
overflow and set the TMR0IF flag bit. This is a simplistic example of how using a timer allows the
microcontroller to do work while waiting on a time delay, instead of wasting processing time counting
cycles in an instruction loop.

Note: Be aware that some cases using an SFR union to access a bit may affect other bits. What
actually happens during this instruction execution is the register is read, the bit is modified,
and the entire register is re-written. This operation is called Read-Modify-Write. If a bit
reads a different value than what it was last set as, this operation may affect register bits other
than the intended one. Check the SFR bit definitions carefully. In the case of T0CON, all
bits are Read/Write and all are set by software only; the hardware will not affect any bit
setting.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 32 of 71

Once the switch it pressed, the Direction variable value is reversed. Follow the if – else if logic
flow in the do{…}while() loop to see how once the switch is pressed, the direction is reversed only
once until it is released and pressed again.

Lastly, once Timer0 overflows and sets the TMR0IF flag the do{…}while() loop is exited. TMR0IF is
then cleared in the software program so the next timer overflow can be detected.

3.5.3 Build and Program the Lesson 5 Code

Build and program the lesson 5 project. The LEDs will rotate, and pressing the demo board button will
reverse them.

3.5.4 Assigning the Timer0 Prescaler

Now we’ll go back to that commented-out line of code in the Timer0 setup statements. Comment out
the T0CON assignment statement, and un-comment the other statement so the Timer0 setup code looks
like this:

INTCONbits.TMR0IF = 0;
//T0CON = 0b00001000;
T0CON = 0b00000001;
TMR0H = 0;
TMR0L = 0;
T0CONbits.TMR0ON = 1;

Take a look at what this changes:

 PSA = 0

The prescaler is now assigned to Timer0, and the values of T0PSx will set the prescaler
clock divider ratio.

 T0PS2:T0PS0 = 001

This value sets the prescale value to 1:4, which means Timer0 will now increment once
every 4 instruction cycles, instead of once every instruction cycle. It now takes 4 times
as long for it count up to 65536 – just over 1 second!

Rebuild and re-program the lesson 5 project with change in the source code. The LEDs will rotate more
slowly, 4 times slower to be exact, than before.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 33 of 71

3.6 Lesson 6: Using PICkit 2 Debug Express

This lesson covers using the PICkit 2 as an In-Circuit-Debugger (ICD). It uses the same MPLAB IDE
workspace and project as lesson 5. Set T0CON assignment back to the “no prescale” statement if it was
changed in the last lesson.

3.6.1 Resources Reserved by the PICkit 2 Debug Expr ess

Note that “PICkit 2 Debug Express” simply refers to using the PICkit 2 as a debugger.

The PICkit 2 Debug Express uses some on-chip resources to enable debugging. The resources are not
available to the user application code.

 General Resources

• MCLR pin reserved for debugging; this pin cannot be used as digital I/O while
debugging.

• The PGD and PGC port pins are reserved for programming and in-circuit
debugging. Therefore, other functions multiplexed on these pins will not be
available during debug.

• One stack level is used by the debugger and not available.

Program and Data Memory Resources
The PICkit™ 2 Debug Express uses program memory and file register locations in
the target device during debugging. These locations are not available for use by user
code. In the MPLAB IDE, registers marked with an “R” in register displays represent
reserved registers, as shown in Figure 3-25.

For device specific reserved locations, see MPLAB® IDE help for the MPLAB®
ICD 2. In the MPLAB® IDE, select menu Help > Topics… . In the Help Topics
dialog under “Debuggers”, select “MPLAB® ICD 2” and click OK. In the MPLAB®
ICD 2 Help dialog under the “Contents” tab, select “MPLAB® ICD 2 Overview”
then “Resources Used By MPLAB® ICD 2”. A list of device families will be
presented. Select the device family of interest for more information on reserved
device resources.

Note: This lesson uses the project and source code from Lesson 5: Using Timer0.

Key Concepts
• An In-Circuit-Debugger like PICkit 2 or MPLAB ICD 2 uses some on-chip resources to enabled

debugging. These reserved file registers and program memory locations are marked ‘R’ in the
MPLAB IDE views, and are not available for use by the user application.

• Debugging also reserves one level of the hardware return address stack and two I/O pins.
• Debugging allows the program to be run, halted, stepped-through statement by statement, and for

breakpoints to be set on program statements.
• The number of available breakpoints depends on the PIC microcontroller being used.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 34 of 71

FIGURE 3-25: RESERVED ICD FILE REGISTER LOCATIONS IN THE PIC18F46K20

3.6.2 Selecting PICkit 2 as a debugger in the MPLAB IDE

The PICkit 2 cannot be used as a programmer and debugger at the same time, so if PICkit 2 is currently
selected as a programmer, selecting it as a debugger will cause it to be disabled as a programmer.

To enable the PICkit 2 as a debugger in the MPLAB IDE select Debugger > Select Tool > 6 PICkit 2.
the Output window will display the connection to the target microcontroller as in Figure 3-10.

 To Begin Debugging

• Build the project: Project > Build All
• Program the target microcontroller: Debugger > Program

After programming the target, the Output window will display
“Debug mode entered, DE Version = 1.0.3” if debug mode is successfully
entered.

• Select Debugger > Run to begin program execution.

The lesson 5 code is now running in debug mode. The LEDs will rotate and the button may be pressed
to reverse them, as the target microcontroller will operate in debug mode just as it normally would.

3.6.3 Basic Debug Operations

Halt
The PIC18F46K20 on the demo board is now running the lesson program code. Code execution can be
halted (stopped) at any time by selecting Debugger > Halt <F5>. A green arrow on the left margin of
the MPLAB IDE editor window will show the next statement to be executed. Your code will probably
have stopped in a different place than that shown in Figure 3-26.

Note: An ICD ‘i’ Linker Script must be used when debugging, as discussed in Section 3.1.1 of this
document. The lesson projects already use the correct linker script, “18f46k20i.lkr”.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 35 of 71

FIGURE 3-26: GREEN ARROW POINTS TO NEXT STATEMENT TO EXECUTE

Step
Stepping, also known as single-stepping, allows the code to be executed one statement at a time. There
are three step options:
 Step Into

This will step through statements one at a time, until a function call is reached. When
Step Into is selected on a function call, the debugger will step to the first statement in the
called function. Shortcut key is <F7>

FIGURE 3-27: STEP INTO FUNCTION

 Step Over
This will step through statements one at a time. When a statement includes a function
call, the entire function will executed and the debugger will step to the next statement
after the function call. It will not step into the function. Shortcut key is <F8>

{
r = 2;
x = square(r);
area = 3.14 * x;

}

int square(int r)
{

return r*r;
}

Before Step Into

After Step Into

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 36 of 71

FIGURE 3-28: STEP OVER FUNCTION

{
r = 2;
x = square(r);
area = 3.14 * x;

}

int square(int r)
{

return r*r;
}

Before Step Into
After Step Into

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 37 of 71

Step Out
This completes execution of the current function and steps to the next statement after the
function call.

You can step through lesson code by using the shortcut key for Debugger > Step Over, <F8>.

Run
Debugger > Run <F9> will begin code execution until it is halted by the user or encounters a
breakpoint.

Reset
Debugger > Reset > Processor Reset will perform a full reset of the target microcontroller, so
execution can begin again from the start of the program code. This is only available when the
target is halted.

Halt the demo board PIC18F46K20 if it is currently running, and select Debugger > Reset >
Processor Reset <F6> This will open up a new file in the MPLAB IDE called c018i.c . This is
the Start-Up Code, part of the MPLAB C18 library. This library code initializes the C software
stack, assigns appropriate data values to any initialized data variables, and jumps to the start of
the application function main() .

FIGURE 3-29: C018 START-UP LIBRARY CODE

3.6.4 Using Breakpoints

When debugging code, a “breakpoint” can be added to a program statement. When running the
program, the debugger will halt the target upon reaching the breakpoint statement.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 38 of 71

In the MPLAB IDE 05 Timer.c source code, place the editor cursor on line 111, SwitchPressed =

TRUE;, and right-click to open the contextual menu. Select Set Breakpoint as shown in Figure 3-30. A
red octagon with the letter ‘B’ will appear in the editor margin to indicate a breakpoint has been set on
that line.

FIGURE 3-30: SET BREAKPOINT ON LINE 111

FIGURE 3-30: BREAKPOINT SET

The statement we’ve placed the breakpoint on will be executed when the demo board switch button is
pressed. Select Debugger > Run to begin program execution. The demo board LEDs will rotate as the
code runs since the breakpoint statement has been executed yet.

Press the demo board switch button. The program will halt on the breakpoint statement, as shown in
Figure 3-31. <F8> can now be used to step through the code.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 39 of 71

FIGURE 3-31: BREAKPOINT HALT

The number of breakpoints that can be set at once in a program depends on the PIC18FXXXX device
being debugged. Select menu Debugger > Breakpoints…. This will open a dialogue box to show the
currently set breakpoints, the total number available in “Active Breakpoint Limit:” and the number of
unused breakpoints that are still available as “Available Breakpoints:”. The PIC18F46K20 can have up
to 3 breakpoints set at once, and has 2 currently available since one is already set on line 111 of 05

Timer.c .

FIGURE 3-32: BREAKPOINTS DIALOGUE

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 40 of 71

3.6.5 Watching Variables and Special Function Regis ters.

All the values in the File Registers can be seen by opening View > File Registers, and the values in the
Special Function Registers can be seen by opening View > Special Function Registers. However,
keeping these windows open is not recommend. This is because the entire file memory and all SFRs
must be read from the target device whenever it is Run, Halted, and on each Step. Reading all of this
data over the ICD bus can take a significant amount of time. The actual time it takes depends on how
much memory the target PIC18FXXXX has, and how fast the target oscillator is. The slower the target
oscillator, the longer it will take as the oscillator speed directly affects the ICD bus speed.

If you have opened either of these windows, please close them now.

The best way to watch variables and SFRs is to use a Watch Window. This way, only the variables and
registers that are of interest are updated. To open a Watch Window, select View > Watch.

FIGURE 3-33: WATCH WINDOW

SFRs may be added to the watch window by selecting them in the dropdown box on the upper left, and
clicking the Add SFR button. Go ahead and add PORTB, which used to read the switch state, and
LATD, which our program uses to set the LEDs.

User variables are added using the dropdown on the upper right, and clicking the Add Symbol button.
Add the LED_Display , SwitchPressed , and Direction variables now.

Note: The number of active breakpoints can affect using the Step Into and Step Over functions.
When these functions are used, a breakpoint is set at the next statement to step to. If all
breakpoints are currently used and none are available, the MPLAB IDE is not able to set a
breakpoint on the next C statement. Instead, it must step through each assembly instruction
until the next statement is reached. If using Step Over, it may take some time to step over all
the assembly functions in the compiled function. Free up a breakpoint to avoid this issue.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 41 of 71

FIGURE 3-34: WATCH VARIABLES

For each watch variable, the Watch Window displays the File Register Address, the Symbol Name
(variable name), and current Value. The value display format can be changed by right-clicking on a
value and selecting Properties from the pop-up menu. Note that our two enumerated type variables,
SwitchPressed and Direction will display the enumeration value, and not the mnemonic.

The Watch Window can also be used to edit variable values. Select the LATD value by clicking on it,
and type in the hex value ‘AA’. Press enter to set the value. Look at the demo board; note that every
other LED is now turned on. This is because through the Watch Window, we just directly wrote to the
LATD register the value 0xAA, which is binary 0b10101010!

Select the PORTB symbol, right-click and select Properties. In the properties dialogue, go to the
dropdown box for “Format:” and select “Binary”. Click OK to close the dialogue. The PORTB value is
now displayed in a binary format, with bit 7 on the left.

Step through the code once using <F8>. Note the value for PORTB bit 4, which is pin RB4 and
connected to the demo board switch. The bit value should now be set (‘1’). While pressing down the
demo board button, step again with <F8>. Note that PORTB bit 4 is now low since the switch is
pressed!

Take some time to play with the lesson code, stepping through it and watching variables and the demo
board LEDs. You can also press the button and step through the switch detection statements. Set
different breakpoints to experiment using them.

Add TMR0L and TMR0H SFRs to the watch window, and observe them counting while you step
through the code. Note that they don’t increment once per step, as each C statement may be compiled
into more than one assembly instruction and Timer0 is incremented once per assembly (machine)
instruction.

Note: The “Value” fields in the Watch Window, File Register Window, and Special Function
Register windows may not be valid immediately after first being opened. Step the code once
to update the values.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 42 of 71

3.7 Lesson 7: Analog-to-Digital Converter (ADC)

Lesson 7 builds on the previous lesson by using the on-chip ADC to read the demo potentiometer
voltage. The result is used to vary the LED rotation time delay so that the potentiometer controls the
LED rotation speed.

3.7.1 PIC18F46K20 ADC Basics

Simply put, an ADC takes the ratio of an input voltage to a reference voltage and represents it as a
number. This number is dependent on the bits of resolution of the ADC. For example, the 10-bit
resolution of the PIC18F46K20 ADC means that 1024 numbers from 0 – 1023 are available to represent
the voltage ratio. In mathematical terms,

ADC Value = (Vin / Vref) * 1023

If Vin = 2.5Volts, and Vref = 5.0Volts, then the ADC Value is (2.5/5)*1023 = 511. This makes sense
in that Vin is half of Vref, so the ADC value is half of 1023.

Knowing the reference voltage and solving the equation for Vin allows the ADC Value to be converted
back into a voltage:

 Vin = (ADC Value / 1023) * Vref

The PIC18F46K20 ADC may be referenced to the device VDD voltage or an external voltage reference.
In this lesson, the ADC is referenced to the PIC18F46K20 Starter Kit Demo Board VDD, which is
supplied by PICkit 2. This voltage is typically around 3.3V for this device.

The ADC can convert the voltage from any one of 13 channels on the PIC18F46K20. These analog
input channels, numbered AN0 up to AN12, are shared with digital microcontroller pins and must be
configured as analog inputs to be used with the ADC.

The ADC is configured and controlled by 5 Special Function Registers: ANSEL, ANSELH, ADCON0,
ADCON1, and ADCON2. These are covered in detail in the next section.

3.7.2 ADC Configuration and Operation

Looking at the schematic of the PIC18F46K20 Starter Kit Demo board in the Appendix, the
potentiometer (RP1) output is connected to the RE0/AN5 pin of the PIC18F46K20.

Key Concepts
• An Analog-to-Digital Converter is used to convert an analog voltage level into a digital number

representing the voltage.
• The ANSEL, ANSELH, ADCON0, ADCON1, & ADCON2 SRFs configure and control the on-chip

ADC.
• A timer register(s) can be written to set the amount of time until it overflows without changing the

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 43 of 71

The basic steps needed to convert the ADC voltage on this pin are:
1. Configure the RE0/AN5 pin as an analog input in ANSEL.
2. Set the ADC voltage references in ADCON1.
3. Set the result justification, ADC clock source, and acquisition time in ADCON2.
4. Select the channel and turn on the ADC in ADCON0.
5. Start the conversion in ADCON0.

#1: To use a pin as an analog input, it must not be used by other peripheral functions multiplexed on the
same pin. The pin TRIS bit must be set to ‘1’ (input) and the ANSEL bit associated with RE0 should be
set to ‘1’ (analog input). However, we still want RB0/AN12 configured as a Digital input to for the
switch. Therefore, we will clear ‘0’ the AN12 bit in ANSELH.

#2: The VCFGx bits in ADCON1 can select the ADC voltage references to use the AN2 and AN3 pins,
VDD and VSS, or some combination. Since the demo board does not have voltage references connected
to AN2 and AN3, the ADC will be referenced to VDD and VSS. This means an ADC result of ‘0’
corresponds to 0 Volts, or VSS. A result of ‘1023’ corresponds to about 3.3 Volts, or VDD. Including
the values from #1, the ADCON1 setting for this lesson is

 ADCON1 = 0;

FIGURE 3-35: ADCON2: A/D CONTROL REGISTER 2

#3: The ADC clock should be set as short as possible but still greater than the minimum period “TAD”
time, datasheet parameter 130. The minimum TAD time for the PIC1846K20 (as of this writing) is

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 44 of 71

1.4us. At a 1 MHz oscillator Fosc, selecting bits ADCS = Fosc/2 gives a 500kHz ADC clock. One
clock period 1/ 500kHz = 2us, which is greater than the minimum TAD = 1.4us. Thus ADCSx = ‘000’.

The ACTQx bits determine the acquisition time, and should take into account the internal acquisition
time Tacq of the ADC, datasheet parameter 132, and the settling time of the application circuit
connected to the ADC pin. From the datasheet, the internal acquisition time Tacq = 1.4us over
temperature. The application circuit is an RC network formed by the potentiometer and capacitor C3,
which has a very long settling time. For this demo lesson, we’ll simply set ACQTx to the largest value,
20TAD or ‘111’. 20 TAD is 20 times the ADC Clock period, or 20 * 2us = 40us.

For result justification, we choose bit ADFM = 0 to the result is left-justified. This makes it easy to get
the 8 most significant bits of the result from ADRESH. Thus the ADCON2 configuration value is

 ADCON2 = 0b00111000

#4: The demo board potentiometer is connected to AN5, so Channel 5 is selected in ADCON0. Bit
ADON is set to ‘1’ to turn on the ADC peripheral. The GO/DONE bit is left clear as we don’t wish to
start a conversion yet.

 ADCON0 = 0b00010101

FIGURE 3-36: ADCON0: A/D CONTROL REGISTER 0

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 45 of 71

#5: To begin an ADC conversion, set bit 1 of ADCON0, the GO/DONE bit. When the conversion is
done the hardware will clear that bit, so the GO/DONE may then be polled to wait for the conversion to
complete. Once the conversion is complete and GO/DONE = 0, the ADC conversion result may be read
from ADRESH and ADRESL.

3.7.3 Exploring the Lesson 7 Source Code

Open the lesson source files 07 ADC.c and 07 ADC.h in an MPLAB editor window if they are not
already open.

Of note is that the Timer0 setup code has been moved into a function and replaced with a function call.
Two new functions were added to support the ADC.

 void Timer0_Init(void)

void ADC_Init(void)
unsigned char ADC_Convert(void)

The function prototypes have also been added to the header file, 07 ADC.h .

In main() before getting to the while(1) loop, the program makes two function calls to set up the
Timer0 and ADC peripherals using Timer0_Init() and ADC_Init() respectively.

To change the LED rotation speed based on the potentiometer, the ADC conversion value is used to set
Timer0 just after it overflows. The higher the value written to Timer0, the less time it takes to overflow
again, as the timer counts up from the written value. This is accomplished with two new statements at
the bottom of the while(1) loop:

 TMR0H = ADC_Convert(); // MSB from ADC
 TMR0L = 0; // LSB = 0

The TMR0H buffer is written with the 8 most significant bits of the ADC conversion, and then is written
with Timer0 with a ‘0’ in the low byte on the TMR0L assignment statement. Recall from lesson 5 that
since TMR0H is actually a buffer and not the upper byte of the timer, and is written to the timer when
TMR0L is written. Thus, it must be written first as it is here.

We can calculate the amount of delay for a given ADC value, knowing that Timer0_Init() sets the
TMR0 prescaler to 1:4, and our Oscillator is 1MHz. Timer 0 will count at 4 * the instruction rate, or
4 * 1/(Fosc/4) = 4 * 1/(1MHz/4) = 4 * 1/250kHz = 16us. The number of counts until overflow occurs is
0x10000 – (start count) where (start count) is the value written to TMR0 – The ADC result in the upper
byte and 0x00 in the lower. The total delay is then the number of counts times the count rate. For an
ADC result of 0x81, the delay is (0x10000 – 0x8100) * 16 us = 0x7F00 * 16us = 32512 * 16us = 0.52
seconds.

3.7.4 Build and Run the Lesson 7 Code with PICkit 2 Debug Express

Build and program the lesson 7 project, then Run the application in the debugger. Turning the demo
board potentiometer will affect the rotation speed of the LEDs. The switch may be pressed to reverse
the rotation.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 46 of 71

Halt the lesson 7 program. Note that several SFRs and variables have already been added to a Watch
Window. Use Breakpoints and Step commands to explore the code. Observe how the ADC result in
ADRESH is affected by the potentiometer voltage, and how this result is copied into TMR0.

See section 19.0 10-Bit Analog-to-Digital Converter (A/D) Module in the PIC18F46K20 for more
information on the ADC peripheral.

Note: If TMR0L is added to the Watch Window, it will cause incorrect operation when stepping
through the following 2 lines of code:

TMR0H = ADC_Convert();
 TMR0L = 0;

This is caused by the buffered nature of TMR0H. When “Stepping Over” the TMR0H
assignment statement, the MPLAB IDE will read the TMR0L register to update the value in
the Watch Window. When TMR0L is read, the upper byte of TMR0 is loaded into the
TMR0H buffer, wiping out the value written in the previous TMR0H assignment statement.

One workaround to be able to add TMR0L to the Watch Window is to make sure not to step
from the TMR0H to the TMR0L statement. Set a breakpoint on the TMR0L assignment
statement, and Run from the TMR0H assignment statement.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 47 of 71

3.8 Lesson 8: Interrupts

This lesson changes the lesson 7 code to use interrupts to act on the switch press and Timer0 events
instead of polling them. The switch uses the RB0/INT0 external interrupt capability.

3.8.1 PIC18FXXXX Interrupt Architecture

When a peripheral requires attention or an event occurs, it sets an interrupt flag. Each flag has an
interrupt enable bit that determines whether it will generate an interrupt to the microcontroller or not. In
the previous lessons, interrupt flags such as TMR0IF were polled, but did not create an interrupt as the
enable bit was not set. The enable bits allow only selected events to cause in interrupt. All interrupts
are ORed together, and then ANDed with a global interrupt enable.

FIGURE 3-37: SIMPLIFIED INTERRUPT LOGIC

When an interrupt occurs and the Master Interrupt signal is asserted, the PIC microcontroller finishes
executing the current instruction, stores the next address on the Return Address Stack, and then jumps to
an interrupt vector. At the interrupt vector it begins executing a function designated as the interrupt
service routine. When this function exits, program execution returns to the address stored on the Return
Address Stack.

Interrupts allow hardware events to be acted upon very quickly and regardless of the state of the main
program because they cause the immediate execution of dedicated code.

The PIC18FXXXX architecture supports up to two levels of interrupt priority, each of which have a
logic structure like that in Figure 3-37. Most interrupts have a Priority bit associated with the interrupt
flag and enable that assigns it to one of the two priority levels. Using priority levels is optional, and the
PIC18FXXXX may be configured to use only one level priority.

Key Concepts
• An interrupt is a hardware based event that “interrupts” the program code to execute a special

function. When the interrupt function exits, program execution returns to where it left off.
• The PIC18FXXXX supports a single interrupt priority or two levels of interrupt priority.
• A Low Priority interrupt can interrupt the main program. A High Priority interrupt can interrupt the

main program or a low priority interrupt.
• The directives #pragma interruptlow and #pragma interrupt are used to define the interrupt

functions.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 48 of 71

When two levels of interrupt priority are used, an interrupt of either priority level may interrupt the main
program. However, only a High Priority Interrupt may interrupt a Low Priority Interrupt, and nothing
may interrupt a High priority Interrupt. As shown in Figure 3-38, when a low priority interrupt event
occurs during execution of statement3 in the main code, the program jumps to begin executing the
Low Priority Interrupt function. During execution of the lo_statement2 , a high priority interrupt event
occurs, causing program execution to jump to the High Priority Interrupt function. When the high
priority function completes and exits, execution is returned to where it left off in the low priority
function. Similarly, when the low priority function completes and exits, program execution returns to
where it left off in the main code, at statement4 .

FIGURE 3-38: PRIORITY INTERRUPT EXECUTION FLOW

The High Priority Interrupt Vector is at Program Memory address 0x0008. The Low Priority Interrupt
Vector is at Program Memory address 0x0018. If interrupt priorities are not used, all interrupts jump to
the high priority vector at 0x0008.

3.8.2 Exploring the Lesson 8 Source Code

The first thing to note is that the Directions variable is now global, so it may be accessed in the
interrupt service routine functions.

When using interrupts, the interrupt vectors must be defined and placed at the appropriate vector
addresses using the #pragma code directives. An inline assembly GOTO statement redirects program
execution to the interrupt functions, whose name serves as the GOTO argument.

{ // main code { //low interrupt 0x18 { //high interrupt 0x08
 statement1; lo_statement1; hi_statement1;
 statement2; lo_statement2; hi_statement2;
 statement3; lo_statement3; hi_statement3;
 statement4; lo_statement4; hi_statement4;
 statement5; lo_statement5; hi_statement5;
 statement6; } hi_statement6;
 statement7; }
 statement8;
}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 49 of 71

FIGURE 3-39: DEFINE INTERRUPT VECTORS

The interrupt service routine functions themselves are then declared with the #pragma interrupt

directive for the high priority vector, and #pragma interruptlow for the low priority. Note the names
must match between the vector GOTO argument, the #pragma attribute, and the function declaration
name. The interrupt functions may call other functions defined elsewhere in the source, though the
lesson source code does not do this.

FIGURE 3-40: INTERRUPT SERVICE FUNCTIONS

As all interrupts of the same priority vector to the same function, it is necessary in the function to
examine which of the enabled interrupt flags caused the interrupt. Once the flag is found so that
peripheral or event may be serviced, the software must clear the interrupt flag bit to reset the interrupt.
In the lesson source code, the high priority interrupt routine looks for the INT0 pin interrupt INT0IF flag
bit. Examples are shown in the source code of how it might check for other enabled interrupts, such as
Timer1 TMR1IF and the ADC ADIF although neither of these interrupts are enabled in the lesson code.
Similarly, the low priority vector checks for the Timer0 flag TMR0IF.

// -------------------- Iterrupt Service Routines - -------------------------
#pragma interrupt InterruptServiceHigh // "inter rupt" pragma for high priority
void InterruptServiceHigh(void)
{
 // function statements

} // return from high-priority interrupt

#pragma interruptlow InterruptServiceLow // "inter ruptlow" pragma for low priority
void InterruptServiceLow(void)
{
 // function statements

} // return from low-priority interrupt

/** I N T E R R U P T S *************************** ********************/

//--- ---------------------------
// High priority interrupt vector

#pragma code InterruptVectorHigh = 0x08
void InterruptVectorHigh (void)
{
 _asm
 goto InterruptServiceHigh //jump to interrupt r outine
 _endasm
}

//--- ---------------------------
// Low priority interrupt vector

#pragma code InterruptVectorLow = 0x18
void InterruptVectorLow (void)
{
 _asm
 goto InterruptServiceLow //jump to interrupt ro utine
 _endasm
}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 50 of 71

Setting Up Interrupts
Now that the source code has defined the interrupt vectors, and has functions to deal with the interrupts,
it must properly setup and configure the interrupting logic and enable the individual interrupts it wants
to use.

Timer0 and external pin interrupts are set up using the INTCONx special function registers. Other
interrupts are setup through a number set of peripheral interrupt SFRs: PIRx, PIEx, and IPRx. The PIRx
registers contain the interrupt flags. The associated interrupt enable bits are in the PIEx registers, and
the IPRx register bits set the interrupt priority as low or high. For detailed information the bits in these
registers, see Section 9.0 Interrupts of the PIC18F46K20 Datasheet.

FIGURE 3-41: LESSON 8 INTERRUPT INITIALIZATIONS

An interrupt is desired when the demo board button is pressed. Therefore, the program utilizes the INT0
functionality of the RB0 pin to use it as an external interrupt input pin. The interrupt is edge triggered,
and we want it to interrupt on the falling edge so the initial switch press is detected. The edge direction
is set with INTCON2bits.INTEDG0 . INT0 is always a high priority interrupt. The flag INT0IF in
INTCON is cleared before enabling the interrupt with INT0IE. Switch debouncing is ignored for the
sake of simplicity here, but would be recommended in a product application.

The interrupt configuration for Timer0 has been added to the Timer0_Init() function. First, we make
sure the flag TMR0IF is cleared, set the priority to low (0) with TMR0IP, and then enable the interrupt
with TMR0IE.

Enabling the individual interrupts has no effect until interrupts are enabled at the global level. First, the
IPEN bit in RCON is used to enable or disable priority interrupts. In lesson 8 it is set to enable priority
interrupts. Low priority interrupts are enabled with GIEL, and microcontroller interrupting is enabled
with GIEH. Note that high and low priority interrupts aren’t individually enabled with the two bits, as
GIEH shuts off both when it is off:

 INTCONbits.GIEH INTCONbits.GIEL Interrupt Functions
 0 0 No Interrupts; all interrupts disabled.
 0 1 No Interrupts; all interrupts disabled.
 1 0 High priority interrupts only enabled.
 1 1 Both priority level interrupts enabled

 // Set up switch interrupt on INT0
 INTCON2bits.INTEDG0 = 0; // interrupt on fal ling edge of INT0 (switch pressed)
 INTCONbits.INT0IF = 0; // ensure flag is c leared
 INTCONbits.INT0IE = 1; // enable INT0 inte rrupt
 // NOTE: INT0 is ALWAYS a high priority interru pt

 // Set up global interrupts
 RCONbits.IPEN = 1; // Enable priority levels on interrupts
 INTCONbits.GIEL = 1; // Low priority int errupts allowed
 INTCONbits.GIEH = 1; // Interrupting ena bled.

void Timer0_Init(void)
{
 // Set up Interrupts for timer
 INTCONbits.TMR0IF = 0; // clear roll-o ver interrupt flag
 INTCON2bits.TMR0IP = 0; // Timer0 is lo w priority interrupt
 INTCONbits.TMR0IE = 1; // enable the T imer0 interrupt.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 51 of 71

In this way, all interrupts may disabled with a single bit, GIEH in INTCON.

FIGURE 3-42: LESSON 8 INTERRUPT SFRS

In the lesson 8 source code, all the statements to change the rotation direction are in the INT0 switch
interrupt function, and the statements to rotate the LED display are in the TMR0 interrupt function. All
that remains in the main program is a while() loop that updates the PORTD register with
LED_Display. This statement could have also been placed in the TMR0 interrupt function, but is left in
the main program to illustrate how the main program runs continuously and interacts with the interrupts.

Single Priority Interrupts
If only a single level of interrupts were used (RCON bit IPEN = 0), then it is only necessary to define
the interrupt vector at 0x0008, and a single interrupt service routine function with #pragma interrupt .
All priority bit settings are ignored. The function of the INTCON bits GIEH and GIEL become GIE and
PEIE respectively, with the following functions:

 INTCONbits.GIE INTCONbits.PIEIE Interrupt Functions
 0 0 No Interrupts; all interrupts disabled.
 0 1 No Interrupts; all interrupts disabled.
 1 0 Only interrupts enabled in INTCONx enabled.
 All PIEx interrupts remain disabled.
 1 1 All interrupts, including those enabled in PIEx
 registers, are enabled.

3.8.3 Build and Run the Lesson 8 Code with PICkit 2 Debug Express

Build and program the lesson 8 project, then Run the application in the debugger. Turning the demo
board potentiometer will affect the rotation speed of the LEDs. The switch may be pressed to reverse
the rotation. Use breakpoints to explore the interrupting functions.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 52 of 71

3.9 Lesson 9: Internal Oscillator

Using the on-chip internal oscillator and PLL (Phase Locked Loop) of the PIC18F46K20 is discussed.
Clocks from 31 kHz up to 64 MHz can be generated without requiring external oscillator components.

3.9.1 The Internal Oscillator Block

The internal oscillator block of the PIC18F46K20 generates two different clock signals. The main
output, INTOSC, is a factory calibrated 16 MHz clock source with postscaler that can provide a range of
clock frequencies down to 31 kHz.

The other output, INTRC, is a nominal 31 kHz clock source that drives peripherals such as the Power-up
Timer, the Fail-Safe Clock Monitor, the Watchdog Timer, and the Two-Speed Startup feature.

When the oscillator block is set to provide a 31 kHz clock to the microcontroller, it can be selected as a
postscaled output of INTOSC, which has the benefit of calibrated accuracy, or INTRC, which has the
benefit of lower power consumption.

The oscillator block also contains a 4x PLL (Phase Locked Loop) frequency multiplier that can increase
the microcontroller clock source up to 32 MHz. The PLL is only available when the internal oscillator
block selected output is 8 MHz or 16 MHz. It will multiply the base 4 MHz signal by 4 to 32 MHz, and
the 8 MHz base clock to 64 MHz.

This allows the internal oscillator block to provide a range of 10 different, software selecteable
frequencies of 31 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4MHz, 8 MHz, 16 MHz and (with the PLL)
32 MHz and 64 MHz. Recall from previous lessons that the default frequency on a reset is 1 MHz.

FIGURE 3-43: SIMPLIFIED INTERNAL OSCILLATOR BLOCK DIAGRAM

Key Concepts
• To use the internal oscillator block, set the OSC configuration bits to INTIO67 or INTIO7. The

latter outputs the clock signal CLKO on the RA6 pin.
• The OSCCON Special Function Register is used to set the base internal oscillator frequency from

31 kHZ up to 16 MHz.
• The OSCTUNE register allows the internal oscillator frequency to be adjusted on a fine scale, and

enables or disables the PLL.
• The 4x PLL may only be used when base frequencies of 8 MHz or 16 MHz are selected in

OSCCON. Enabling the PLL multiplies the base frequency by 4, providing clocks at 32 MHz and
64 MHz, respectively.

16 MHz
8 MHz
4 MHz
2 MHz
1 Mhz
500kHz
250 kHz

 31 kHz

P
o
s
t
s
c
a
l
e
r

INTOSC
16 MHz

INTRC
31 kHz

4x PLL

 CPU &
Peripherals

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 53 of 71

3.9.2 Configuring the Internal Oscillator

The internal oscillator block is selected as the primary oscillator in the Configuration bits. The OSC bits
in the CONFIG1H configuration word are set to either INTIO67 or INTIO7. When INTIO67 is
selected, the internal oscillator is the primary oscillator with the external oscillator pins OSC2 & OSC1
available as RA6 & RA7 IO. OSC = INTIO7 differs only in that RA6 is not available; instead the
internal instruction clock is output as CLKO on that pin.

The two Special Function Registers that control the internal oscillator block in software are OSCCON
and OSCTUNE, shown in figures 3-44 and 3-45.

FIGURE 3-44: OSCCON: OSCILLATOR CONTROL REGISTER

The IDLEN bit in OSCCON affects how the oscillator behaves in power managed modes, and is not
discussed further here.

The IRFCx bits determine the internal oscillator frequency. These are the outputs of the postscaler. As
Note 2 in Figure 3-44 indicates, the 31 kHz clock can be selected as either a postscaled version of the

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 54 of 71

INTOSC 8 MHz oscillator, on which all other frequencies are based, or the INTRC low power 31 kHz
oscillator as discussed in section 3.9.1. This selection is made with the INTSRC bit in the OSCTUNE
register.

The IRFCx bits may be changed by software during program execution, allowing the program to
“throttle” the microcontroller execution speed to current processing needs. This can save on power
consumption when fast clock speeds aren’t required.

The OSTS and IOFS bits are read-only status bits. The PIC18F46K20 has the option to startup running
off the internal oscillator until an external oscillator circuit has stabilized. This allows faster startup of
the microcontroller with external oscillators. OSTS is used to alert the software when the clock source
has switched over to the external primary oscillator. This functionality is not covered further in this
lesson.

The SCSx bits allow the software to switch the microcontroller clock source over to the internal
oscillator block even when an external oscillator has been selected in the Configuration bits. The
Secondary oscillator may also be selected, which is the low-speed low-power oscillator that is part of
Timer1 and is usually run with a 32kHz crystal for real-time-clock applications. In this lesson, the
internal oscillator has been selected as the primary oscillator in the Configuration bits, and SCS1:SCS0
= 00.

FIGURE 3-45: OSCTUNE: OSCILLATOR TUNING REGISTER

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 55 of 71

The 5 TUNx bits in OSCTUNE allow small adjustments in the INTOSC oscillator frequency. This can
be used to calibrate the frequency more accurately than the factory calibration, and adjust for drift over
Vdd and temperature changes.

The PLLEN bit enables the PLL, multiplying the INTOSC output by 4. Note that the PLL may only be
enabled for INTOSC = 8 MHz or INTOSC = 16 MHz. Enabling the PLL with a 4 MHz base frequency
gives a 16 MHz clock, and with a 16 MHz base frequency gives 64 MHz.

For further information on the internal oscillator block, see section 2.6 of the PIC18F46K20 Datasheet.

3.9.3 Exploring the Lesson 9 Source Code

The lesson 9 program code has a simple background loop in the main() function that displays a binary
count on the demo board LEDs, as shown in Figure 3-46. Each count increment is delayed by 32,000
instruction cycles. As the clock frequency is changed, the instruction rate changes and so the total time
in seconds of the delay gets shorter as the clock frequency increases. The effect is that the LED display
will count faster as the clock speed is increased.

At the start of the program, the internal oscillator is running at 250 kHz. Each press of the demo board
switch creates an interrupt that increases the clock frequency by a factor of 2 up through 64 MHz, after
which it returns to 250 kHz.

FIGURE 3-46: SOURCE CODE BACKGROUND LOOP

A few other things of interest in the lesson 9 source code are:

• The interrupts are configured for only a single level of priority, where interrupt priorities are
disabled. This differs from the lesson 8 source code where interrupt priorities were enabled.

• Instead of using ADCON1 to configure the switch input RB0 as a digital input as was done in
previous lessons, the lesson 9 source sets the Configuration bit PBADEN = OFF. This causes all
PORTB pins to default to digital, instead of analog, inputs on a reset.

• The lesson 9 interrupt service function void InterruptService(void) demonstrates calling
another function void SetIntOSC(IntOSCFreq *ClockSet) from within the interrupt service
code.

3.9.4 Build and Run the Lesson 9 Code with PICkit 2 Debug Express

Build and program the lesson 9 project, then Run the application in the debugger. Pressing the demo
board switch causes the program to change the oscillator frequency during execution. As the oscillator
frequency increases, the rate at which the LEDs count increases.

 while (1)
 { // delay and count on LEDs here. Interrupt h andles switch and freq changes

 LATD = LED_Count++; // output count to PORTD LEDs
 Delay1KTCYx(32); // delay 32,000 cycles or about 1 sec at 125kHz
 }

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 56 of 71

3.10 Lesson 10: Using Internal EEPROM

The PIC18F46K20 microcontroller includes 256 bytes of on-chip EEPROM for data storage. This
lesson discusses reading and writing the internal EEPROM in software.

3.10.1 Reading a data byte from EEPROM

The EECON1 Special Function Register controls operations to both the internal EEPROM as well as the
Program Memory flash array.

FIGURE 3-47: EECON1: EEPROM CONTROL REGISTER 1

Key Concepts
• The 4 SFRs that control EEPROM operations are EECON1, EECON2, EEDATA, and EEADR.
• The internal EEPROM is written and read one byte at a time.
• To write EEPROM, a short code sequence must be written to EECON2 immediately before

starting the write operation. This is to prevent inadvertent EEPROM writes.
• Writing a byte to EEPROM takes a period of time before the write cycle is complete. The

microcontroller will continue to execute code during an EEPROM write cycle.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 57 of 71

A read of an EEPROM byte begins by clearing the EEPGD bit in EECON1. This selects the data
EEPROM array for access. The CFGS bit should also be cleared during an EEPROM access; it is only
set to access the Configuration bit locations.

The byte address of the data EEPROM location to be read is loaded into the EEADR register. The RD
bit in EECON1 is then set to execute the read. On the next instruction cycle, the value of the read
EEPROM location is available in the EEDATA register. Figure 3-48 shows a function that reads a byte
of EEPROM.

FIGURE 3-48: DATA EEPROM READ

3.10.2 Writing a data byte to EEPROM

Similar to a read, a write to the internal EEPROM must clear the EEPGD and CFGS bits in EECON1 to
access the internal EEPROM array. The data value to be written is then written to the EEDATA
register. The address of the byte to be written is loaded into EEADR.

Before a write can take place, the WREN bit in EECON1 must be set, or the write will not occur. It is
also necessary to write a sequence of two bytes, values 0x55 and 0xAA to EECON2 immediately before
beginning the write by setting the WR bit in EECON1. Both the WREN bit and the EECON2 sequence
are to protect against inadvertent writes to EEPROM and ensure the integrity of EEPROM values.

The three step sequence of:
 EECON2 = 0x55;
 EECON2 = 0xAA;
 EECON1bits.WR = 1;

must be completed in this order, without other statements or interruptions or the write will not execute.
Therefore, if interrupts are enabled, they should be disabled before the sequence and re-enabled after the
WR bit is set.

EEPROM writes take some time to erase and program the byte in the array. This time is listed as
parameter D122 in the datasheet section 26.0 Electrical Characteristics, and is usually several ms.
During this time, the PIC18F46K20 microcontroller continues to execute program code. The program
may determine when a write has completed by polling or by an interrupt generated by the EEPROM
module.

unsigned char EEPROM_Read(unsigned char address)
{ // reads and returns the EEPROM byte value at the address given
 // given in "address".

 EECON1bits.EEPGD = 0; // Set to access EEPROM memory
 EECON1bits.CFGS = 0; // Do not access Config registers

 EEADR = address; // Load EEADR with addr ess of location to write.

 // execute the read
 EECON1bits.RD = 1; // Set the RD bit to ex ecute the EEPROM read

 // The value read is ready the next instruction cycle in EEDATA. No wait is
 // needed.

 return EEDATA;
}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 58 of 71

In the example write function in Figure 3-49, the code waits for the EEPROM write to complete by
polling the WR bit of EECON1. When the write is complete, this bit will be cleared. Alternatively, the
program can be alerted that the write has been completed with an interrupt. The EEPROM module will
set the EEIF bit in PIR2 when the write completes.

For more information on the data EEPROM memory see section 7.0 of the PIC18F46K20 datasheet.

FIGURE 3-49: DATA EEPROM WRITE

3.10.3 Exploring the Lesson 10 Source Code

The lesson 10 program writes all 256 bytes of the data EEPROM memory, writing each location with
value = 255 – address. For example, the EEPROM byte at address 0x09 is written with value 0xF6 =
246.

Once all locations have been written, the program ends in an infinite while(1) loop.

3.10.4 Build and Run the Lesson 10 Code with PICkit 2 Debug Express

Build and program the lesson 10 project, then Run the application in the debugger. The EEPROM
memory may be viewed in the MPLAB IDE by selecting view > EEPROM.

As the EEPROM memory window does not update with changed EEPROM byte values during
debugging, it is necessary to select Debugger > Read EEDATA to see the current contents of the data
EEPROM memory. However, doing so will cause a program reset.

Note: The EEPROM window in the MPLAB IDE does not update with new EEPROM values
during debugging.

void EEPROM_Write(unsigned char address, unsigned c har databyte)
{ // writes the "databyte" value to EEPROM at the a ddress given
 // location in "address".
 EECON1bits.EEPGD = 0; // Set to access EEPROM memory
 EECON1bits.CFGS = 0; // Do not access Config registers

 EEDATA = databyte; // Load EEDATA with byt e to be written
 EEADR = address; // Load EEADR with addr ess of location to write.

 EECON1bits.WREN = 1; // Enable writing

 INTCONbits.GIE = 0; // Disable interrupts
 EECON2 = 0x55; // Begin Write sequence
 EECON2 = 0xAA;
 EECON1bits.WR = 1; // Set WR bit to begin EEPROM write
 INTCONbits.GIE = 1; // re-enable interrupts

 while (EECON1bits.WR == 1)
 { // wait for write to complete.
 };

 EECON1bits.WREN = 0; // Disable writing as a precaution.
}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 59 of 71

3.11 Lesson 11: Program Memory Operations

Topics covered in this include reading, writing, and erasing locations in the Flash Program Memory,
protecting areas of program memory in the Configuration bits, and considerations for using C pointers to
program memory.

3.11.1 ROM Pointers and Reading Flash Program Memor y

The MPLAB C18 Compiler simplifies working with data stored in program memory by allowing
pointers to program memory to be declared. The pointer address length is either 16 or 24 bits,
depending on which “Code Model” is selected in the project settings. The “Small Code Model” will
generate 16-bit pointers, while the “Large Code Model” generates 24-bit pointers. For the best
microcontroller performance, the “Small Code Model” with 16-bit pointers should be used. The “Large
Code Model” is necessary for devices that have more than 64 KB of Flash Program Memory to be able
to point to locations above the first 64 KB of program memory. (The maximum of a 16-bit value is
65536 which is 64 x 1024 or 64 K).

The Code Model settings may changed in the MPLAB IDE by selecting Project > Build Options… >
Project. This brings up the Build Options dialog. Select the “MPLAB C18” tab and then “Memory
Model” from the “Categories” drop-down box as shown in Figure 3-50.

An individual pointer declaration may also use the keywords near or far to explicitly specify the
pointer address length. Use of either keyword overrides the code model settings.

near rom char *rom_pointer; // 16-bit pointer t o program memory
far rom char *rom_pointer; // 24-bit pointer t o program memory

For more information on project memory models, see Chapter 3 of the MPLAB C18 C Compiler User’s
Guide.

Key Concepts
• Pointers declared with the rom keyword point to program memory locations.
• The EECON1 and EECON2 SFRs control program memory erase and write operations.
• Unlike Data EEPROM Memory, the Flash Program Memory must be explicitly erased before it

may be written.
• The CPx (Code Protect) Configuration bits prevent programmers from reading ranges of a

microcontroller’s program memory.
• The WRTx Configuration bits prevent software write operations on ranges of program memory,

and the EBTRx bits prevent software read operations on ranges of program memory.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 60 of 71

FIGURE 3-50: PROJECT CODE MODEL SETTINGS

Once a pointer to program memory has been declared, it can be pointed to a declared location in
program memory, for example a #pragma romdata array, or an explicit address.

#pragma romdata mystrings = 0x100
rom char hello_str[] = "Hello!";

rom_pointer = hello_str; // = &hello_str[0]
char letter = *rom_pointer

The first letter ‘H’ of the hello_str[] array in program memory is now pointed to by rom_pointer .
The value of the variable letter is now ‘H’.

rom_pointer = (near rom char *)0x320;

Now, rom_pointer points to the program memory byte at address 0x320.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 61 of 71

Reading Flash Program Memory then simply requires declaring a rom pointer and using an assignment
statement to read the pointer value.

3.11.2 Erasing and Writing Flash Program Memory

Unlike writing Data EEPROM Memory, writing Flash Program Memory requires that the locations
being written are erased first. When erased, a program memory location has all bits set to ‘1’. Thus an
erased byte has the hex value 0xFF. Writing a program memory location sets the appropriate bits to ‘0’,
but a write cannot set a bit ‘1’. Also different from EEPROM operations is that program memory erases
and writes cannot operate on a single byte, but instead operation on “blocks” of a particular number of
bytes.

The PIC18F46K20 erase block size is 64 bytes. This means it will always erase 64 sequential bytes at
once, and the block must start at an address that is a multiple of 64. For example, we could erase the 64
bytes from address 128 through 191 at once, but not the 64 bytes from address 100 through 163.

To erase a 64 byte block of program memory, we use a rom pointer to set the address of the block to be
erased, and use EECON1 to control the erase. Setting the pointer address puts the address in the
TBLPTRx Special Function Registers. These 3 registers hold the address for program memory
operations with TBLRD and TBLWR assembly instructions. The MPLAB C18 compiler handles these tasks
for us. The EEPGD bit EECON1 is set to ‘1’, so the operation affects program memory and not data
EEPROM. The CFGS bit is set to ‘0’, as we do not want to select the Configuration bits. To select an
erase operation as opposed to a write operation, bit FREE of EECON1 is set to ‘1’. WREN is then set to
‘1’ to enable write/erase operations.

 // point to address 2176, which is a multiple o f 64
 rom_pointer = (near rom char *)0x880;

 EECON1bits.EEPGD = 1; // point to flash pro gram memory
 EECON1bits.CFGS = 0; // not configuration registers
 EECON1bits.FREE = 1; // we're erasing
 EECON1bits.WREN = 1; // enable write/erase operations

Next, the EECON2 sequence must be followed as with data EEPROM writes, and the WR bit of
EECON1 is set to initiate the write.

 INTCONbits.GIE = 0; // Disable interrupts
 EECON2 = 0x55; // Begin Write sequence
 EECON2 = 0xAA;
 EECON1bits.WR = 1; // Set WR bit to begin EEPROM write
 INTCONbits.GIE = 1; // re-enable interrupts

As with a data EEPROM write, and erase or write to Flash Program Memory takes up to several ms to
complete. While there is an active erase or a write operation to program memory, all microcontroller
program execution is halted since it is possible the microcontroller might attempt to execute instructions
from the locations being erased or written. This would be illegal, as the program memory location’s
value is in an indeterminate state until the operation has completed.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 62 of 71

The PIC18F46K20 write block size is 32 bytes. This requires that we write 32 sequential bytes at a
time. As with erasing, the first byte must be at an address that is a multiple of the block size, 32.

The sequence for writing program memory is very similar to that for erasing. The differences are that a
rom pointer is used to write the 32 locations, and that the EECON1 bit FREE is cleared to select a write
operation. Don’t forget that the locations to be written must be erased first!

When the 32 locations are written with the pointer, they are not actually written to program until the
completion of the entire sequence. The pointer writes actually store the data in 32 temporary hardware
registers. When the actual write sequence is executed, it is the contents of this 32 byte buffer that is
written to the program memory array. For example, we might use a for loop to write the contents of a
RAM array to these buffers using a rom pointer.

 for (i = 0; i < 32; i++)
 {
 *(rom_pointer + i) = ram_array[i]; // w rite to the holding registers
 }

This data is not actually in program memory yet, and won’t be until the entire write sequence is
completed as shown in Figure 3-51.

As an example for the above note, suppose using the following code we intended to write to the 32 block
of program memory from address 0x100 to 0x11F. The data would actually be written to address
0x120 because the pointer is incremented to address 0x120 after the last write.

 rom_pointer = (near rom unsigned char *)0x100;

 for (i = 0; i < 32; i++)
 {
 *(rom_pointer++) = ram_array[i]; // wri te to the holding registers
 }
 // after the for loop, the rom_pointer address value is 0x120.

If the rom_pointer value were left at 0x11F, the data would be written as intended started at 0x100.

Note: The program memory block that is written to is determined by the address in the
TBLPTRU:TBLPTRH:TBLPRTL Special Function Registers, excluding the 5 least
significant bits. These bits are excluded to ensure the write block begins on a 32 byte
boundary. Therefore, it is critically important that the pointer address is not
incremented past the last address in the block. If this occurs, the 32 bytes will be written
at the next block boundary instead of the intended one.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 63 of 71

FIGURE 3-51: EXAMPLE PROGRAM MEMORY WRITE FUNCTION

3.11.3 Protecting Program Memory in the Configurati on Bits.

The program is divided into sections that can individually be protected by setting the appropriate
Configuration bits. The protections available are:

Code Protect – The CPx bits prevent microcontroller programmers such as the PICkit 2 from
reading the contents of program memory in the address range associated with the particular CPx
configuration bit. If a programmer attempts to read a code-protected section of memory, all
locations will read as value 0x00. This prevents other parties from stealing proprietary program
code.

Write Protect – When a WRTx configuration bit is ON, then program memory erase or write
operations prohibited from working on the associated range of memory. This could be used to
protect a bootloader from accidental corruption by inadvertent application program memory
writes or erases.

Table Read Protect – The EBTRx bits, when asserted, prevent program memory locations being
read from instructions executing in another program memory block. For example, if EBTR3 was
asserted, then program memory locations from 0x6000 to 0x7FFF by any code executing from
program memory locations 0x0000 to 0x5FFF. Locations in the block 0x6000 to 0x7FFF could
still be read by code executing in that block. This could be used, for example, to prevent using a
bootloader to read out sensitive code-protected data.

Once these protective Configuration bits have been asserted (set to ON), they cannot be turned off or
changed without a programmer executing a Bulk Erase on the microcontroller, which erases all program

unsigned char ProgMemWr32(unsigned int address, uns igned char *buffer_ptr)
{ // NOTE: program memory must also be erased first .
 near rom unsigned char *ptr;
 char i;

 ptr = (rom unsigned char *)(address & 0xFFE0);/ / ensure write starts on 32-byte boundary

 for (i = 0; i < 32; i++)
 {
 *(ptr + i) = buffer_ptr[i]; // write th e data into the holding registers
 }

 EECON1bits.EEPGD = 1; // write to flash program memory
 EECON1bits.CFGS = 0; // not conf iguration registers
 EECON1bits.FREE = 0; // we're no t erasing now.
 EECON1bits.WREN = 1; // enable w rite/erase operations

 // execute code sequence, which cannot be inter rupted, then execute write32

 INTCONbits.GIE = 0; // Disable interrupts
 EECON2 = 0x55; // Begin Write sequence
 EECON2 = 0xAA;
 EECON1bits.WR = 1; // Set WR bit to begin 32-byte write
 INTCONbits.GIE = 1; // re-enable interrupts

 EECON1bits.WREN = 0; // disable write/erase operations
}

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 64 of 71

memory and data EEPROM memory. It is possible to prevent other Configuration bits from being
changed after the device is initially programmed using the WRTC Configuration bit.

3.11.4 Exploring the Lesson 11 Source Code with PIC kit 2 Debug Express

At compile time, when the project is built, the lesson 11 source code places three strings in Flash
Program Memory at address 0x100:

#pragma romdata mystrings = 0x100
rom char hello_str[] = "Hello!";
rom char mchp_str[] = "Microchip";
rom char fill_60[] =
"01234567890123456789012345678901234567890123456789 0123456789";

After building the project, the strings can be seen in Program Memory by opening the Program Memory
window in the MPLAB IDE using View > Program Memory.

FIGURE 3-52: STRINGS IN PROGRAM MEMORY

The program code doesn’t start until address 0x280.

Build and program the lesson 11 code and set a breakpoint on the first pointer assignment statement as
shown in Figure 3-53.

FIGURE 3-52: BREAKPOINT ON POINTER ASSIGNMENT

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 65 of 71

Run the program until is stops at the breakpoint. Step through the do while loop in Figure 3-53 and
observe the characters of the hello_str[] string are read into the singlechar variable one at a time
until the terminating ‘0’ value of the string is reached.

The next statement demonstrates reading from an explicit program memory address using a function:

singlechar = ProgMemRdAddress(0x107); // returns ' M' from "Microchip".

Step into the following statement and through the function, which erases a 64 byte block of memory that
the strings are stored in.

// Erase the 64 bytes starting at 0x100
ProgMemErase64(0x100);

After completing the erase, select menu Debugger > Read. In the Program Memory window, the 64
bytes of program memory starting at address 0x0100 where the strings were stored have been erased, as
shown in Figure 3-53.

FIGURE 3-53: ERASED 0x0100 TO 0x013F

The remaining code creates a 32 byte buffer in RAM and fills it with the alphabet characters in
uppercase, plus a few punctuation characters at the end. This buffer is then written to the 32 byte block
of program memory starting at 0x0100 that was just erased. Since we read program memory, we’ll have
to reset the debugger. Select Debugger > Reset > Processor Reset. Right-click on the source code and
select Breakpoints > Remove All Breakpoints from the pop-up menu to clear the breakpoint we set
earlier. Run the program. After running for a few seconds, select Debugger > Halt. The program
should be stopped at final while(1) loop. Select Debugger > Read again and we can see that the write
to program memory was successful.

FIGURE 3-54: PROGRAM MEMORY WRITE RESULTS

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 66 of 71

3.12 Lesson 12: Using the CCP Module PWM

This lesson gives a brief introduction to using the Pulse Width Modulation (PWM) functionality of the
Capture/Compare/Pwm (CCP) peripheral of the PIC18F46K20.

3.12.1 PWM Overview

In short, Pulse Width Modulation is a square wave of a given frequency where the duty cycle of the
period is varied. The duty cycle is a ratio of how long the signal is high to the total length of the period.
For example, a waveform with a frequency of 250 Hz has a period of 4 ms. For a PWM signal with a
25% duty cycle, the waveform would be high for 1 ms and low for 3ms (and then repeat). A PWM
signal with 50% duty is high for 2ms and low for 2ms, while a 75% duty cycle would be high for 3ms
and low for 1 ms.

FIGURE 3-55: EXAMPLE PWM DUTY CYCLES

Pulse Width modulation is used in a variety of applications, including communications, motor control,
audio and analog outputs, and lighting. In this lesson, the brightness of a demo board LED will be
controlled with the output of the PWM. The LED is only on during the high portion of the PWM period,
and is off during the low period. As the duty cycle is decreased, the LED is on for a shorter and shorter
portion of the PWM period, so it appears dimmer. The frequency is set high enough that the human eye
cannot detect the individual blinks of each period, but sees the LED light as continuously on.

3.12.2 Using the CCP Module

Timer2 is used to set the period, or frequency, of the PWM waveform. Timer2 operation is very similar
to Timer0 discussed in Lesson 5, with a few differences. Namely, Timer2 is always an 8-bit timer.

Key Concepts
• The PWM timebase (frequency) is determined by Timer2 and the PR2 Special Function Register.
• PWM operation of the CCP module is selected in the CCPxCON SFR.
• Up to 10 bits of resolution are possible, with the 8 MSb’s of the duty cycle in CCPRxL, and the 2

LSBs in CCPxCON.
• The actual amount of duty cycle resolution depends on the value of the PR2 register.

1 ms

4 ms

1 ms
4 ms = 25% Duty Cycle

2 ms

4 ms

= 50% Duty Cycle
2 ms
4 ms

3 ms

4 ms

= 75% Duty Cycle
3 ms
4 ms

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 67 of 71

Timer2 also has a postscaler, but the postscaler does not affect the CPP module operation PWM
timebase, so its settings are “don’t care.” The Timer2 module also has a Period Register, known as PR2.
This Special Function Register is the maximum to which Timer2 can count before being reset to 0.

Normally, an 8-bit timer would count up to 255 before resetting to 0 and beginning to count again. With
the PR2 register, the timer counts up to the value in PR2. When it reaches this value, the timer is reset
to 0. For example if PR2 = 3, then Timer2 would count 0-1-2-3-0-1-2-3-0-1-2-3- etc.

The count cycle from zero up until Timer2 reaches the PR2 in conjunction with the timer prescaler
(which determines how long each timer count takes) determines the PWM frequency. The time between
each reset to 0 in Timer2 is the PWM period. For example, assume we want a PWM frequency of
62.5Hz, which has a period of 16ms.

Our clock is the internal oscillator block default, 1 MHz, which gives a 250 kHz instruction rate.
250,000 Hz / 62.5 Hz = 4000. Thus, we need to count 4000 times at 250 kHz before each Timer2 reset.
However, Timer2 is 8 bits and can count to a maximum of 255. So we must use the prescaler to slow
down the counting. Timer2 has 3 prescaler options: 1:1, 1:4, or 1:16 (Figure 3-56). 4000 / 256 = 15.6
so it requires a prescaler of 1:16.

With the prescaler set to 1:16, the count frequency of Timer 2 is 250,000 Hz / 16 = 15625 Hz. To get
our PWM frequency of 62.5 Hz, Timer 2 must count 15625 / 62.5 = 250 times. Since Timer2 starts at 0,
we set PR2 = 249, so it counts 0-249 (250 counts), resets to zero, and counts back to 249. A simplified
diagram of the PWM module is shown in Figure 3-57.

FIGURE 3-56: T2CON: TIMER2 CONTROL REGISTER

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 68 of 71

FIGURE 3-57: SIMPLIFIED PWM BLOCK DIAGRAM

Now that the frequency has been determined, it is necessary to set up the CCP1 module for PWM using
the CCP1CON register. Bits CCP1Mx determine the module mode; there is only one value to select for
PWM, CCP1Mx = 0b11xx where the ‘x’ bits are “don’t care” so 0b1100 will work. The two DC1Bx
bits in CCP1CON are the 2 least significant bits of the 10-bit PWM duty cycle value. The 8 most
significant of the 10 bits are written to CCPR1L.

The duty cycle value is determined by the duty cycle percentage (DC%) times the 10-bit timebase (PR2
* 4). DCValue = DC% * (PR2 * 4). For example, to get a duty cycle of 50%, the value would be 50% *
(250 * 4) = 500. 500 decimal is 0x1F4 hex or 0b01 1111 0100 binary. The 8 most significant bits, 0b01
1111 01 or 0x7D are written to CCPR1L, and the 2 LSbs are written to the DC1B1 and DC1B0 bits in
CCP1CON.

CCPR1L CCP1CON<5:4>

Comparator

TMR2 (NOTE)

Comparator

PR2

Clear

Q

Set clear

PWM pin

NOTE: To create a 10-bit timebase, the 8-bit TMR2 register is concatenated
with the 2-bit internal Q clock, or the 2 most significant bits of the prescaler.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 69 of 71

FIGURE 3-58: CCPxCON: CCPx CONTROL REGISTER

For more information on Timer2 see section 13.0 Timer2 Module of the PIC18F46K20 Datasheet.
More info on the CCP module PWM functionality can be found in section 15.0 Capture/Compare/Pwm
(CCP) Module, and section 15.4 PWM Mode.

3.12.3 Exploring the Lesson 12 Source Code

The PWM signal from the CCP1 module is normally output on the CCP1/RC2 pin. However, this pin is
not connected to any demo board LEDs. To output a signal on an LED pin, the Enhanced CCP module
(ECCP) on the PIC18F46K20 is utilized. This functionality is selected in the upper 2 bits of CCP1CON,
(P1Mx) which are set to 0b01 so the modulated PWM signal appears on the P1D/RD7 which drives
LED 7. No other aspect of the enhanced PWM functionality is used; for more information see section
16.0 Enhanced Capture/Compare/Pwm (ECCP) Module.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 70 of 71

The first thing done in the lesson source code is to set PWM pin RD7 to an output.

TRISDbits.TRISD7 = 0;

Timer2 is then configured to generate the PWM period of 16ms as discussed previously in this lesson.

T2CON = 0b00000111;// Prescale = 1:16, timer on
PR2 = 249; // Timer 2 Period Register = 250 counts

Finally, the CCP1 module is configured for PWM operation with a duty cycle of 50% as described
previously in this lesson:

CCPR1L = 0x7D; // The 8 most significant bits of the period are 0x7D
CCP1CON = 0b01001100; // The 2 LSbs are 0b00, and C CP1Mx = 110 for PWM

At this point in the program in the module running, generating and outputting a PWM signal on
RD7/P1D with 50% duty cycle at 62.5 Hz.

To make the LED get brighter and then dimmer, we have a loop that changes the duty cycle. The first
do while loop increases the brightness over 2 seconds by increasing the duty cycle. As the duty cycle
is increased, the LED is on for a longer period of time so it appears brighter. Note that for simplicity,
the lesson program only changes the 8 MSbs of the duty cycle value in CCPR1L.

The second do while loop decreases the brightness over 2 seconds by reducing the duty cycle. As the
duty cycle is decreased, the LED is on for shorter and shorter periods of time, making it appear dimmer.

3.12.4 Build and Run the Lesson 12 Code with PICkit 2 Debug Express

Build and program the lesson 12 project, then Run the application in the debugger. You will see the
demo board LED 7 continuously get brighter then dimmer! If you have an oscilloscope available,
connect a probe to one of the RD7 signal points on the demo board to see the changing the PWM
waveform.

PIC18F46K20 Starter Kit Demo Board Lessons

© 2007 Microchip Technology Inc. Page 71 of 71

Appendix: 44-Pin Demo Board Schematics.

FIGURE A-1: 44-PIN DEMO BOARD SCHEMATIC DIAGRAM

