
Summary
This application note extends the concepts discussed in Floating-Point PID Controller Design with
Vivado HLS and System Generator for DSP (XAPP1163) and demonstrates how you can implement
the Proportional-Integral-Derivative (PID) control algorithm at a higher level of abstraction within
MathWorks Simulink® using the Xilinx Model Composer (XMC) design tool. Model Composer is
designed as a plug-in to Simulink for design, simulation, and implementation of production-
quality algorithms on Xilinx devices. Transformation from algorithmic specification to production-
quality implementation is enabled through automatic optimizations and automatic code
generation that extends the Vivado® High-Level Synthesis (HLS) tool. Additionally, automatic
test bench generation helps validate functional equivalence between the executable specification
in Simulink and the synthesized RTL.

This application note describes two different ways to implement the PID algorithm with Model
Composer:

• Native Xilinx-optimized blocks from the Model Composer block libraries within Simulink.

• A C-based, firmware customizable, Math Sequencer function that can be imported as a
custom Model Composer block within Simulink.

Download the reference design files for this application note from the Xilinx website. For detailed
information about the design files, see Reference Design.

Introduction
MATLAB® and Simulink product families from MathWorks provide a comprehensive design
environment to model, analyze, and tune linear and non-linear dynamic systems. Model
Composer fits into the Simulink environment and offers controls engineers a path for moving
from algorithm design to deployment on Xilinx devices.

XMC offers the following advantages for accelerating the deployment of controls algorithm:

• Access to Xilinx-optimized math and linear algebra libraries for designing the implementation
model at a high level of abstraction.

• Simplification of test bench development via integration with Simulink add-on toolboxes or
MATLAB source code.

• Ease of verification by taking advantage of the many Simulink visualization and debug
methodologies.

• Simulation performance advantages using bit-accurate C++ models.

• Flexible implementation approaches using either native XMC blocks or imported C/C++.
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• In situ debug of imported C/C++ models using Microsoft Visual C or GNU Debugger during
Simulink simulations.

• Ability to evaluate and export the design and the test bench using C++, Vivado IP catalog, or
System Generator.

Approach 1: Using Native Xilinx Model Composer Block
Libraries

The following figure contrasts the Simulink and XMC block diagrams for a standard PID controller
as part of a closed loop system model that includes both the plant and the error feedback.

Figure 1:   Simulink PID Block within a Closed-Loop Control System
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Moving from the Simulink golden reference model for the PID controller to a floating-point
implementation model (ClosedLoopPID_XMC_spfp.slx) in Model Composer entails
expressing the math or replacing the native Simulink blocks with equivalent Xilinx-optimized bit-
accurate blocks from the Model Composer block libraries within Simulink—this enables you to
work at the same level of abstraction as Simulink.
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The ability to have both the golden reference model and the Model Composer hardware
implementation model within the same environment significantly simplifies the process of
verifying the functional equivalence between them. This design drives both subsystems using the
same input stimulus and leverages the debug and visualization capabilities within Simulink. This
allows you to easily compare the results and make informed design tradeoffs for the
implementation.

From Simulation to Packaged IP or Optimized C++ Code
for Vivado HLS

The following figure shows the fixed-point version of the XMC implementation model
(ClosedLoopPID_XMC.slx).

Figure 2:   XMC_PID Fixed-Point Design
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The Simulink scopes, signal logging, and simulation data inspector enable you to quickly and
easily compare and contrast the simulation results for the Simulink double precision floating
point to the XMC implementation. The following figure shows the feedback datapaths captured
using a traditional Simulink scope. The difference (“diff”) between the two signals is also plotted
to demonstrate the error between the double precision Simulink and fixed-point XMC model. For
this PID implementation with 27 bits of dynamic range, there is no noticeable difference
between fixed- and floating-point.
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Figure 3:   Simulink Scope Simulation Results

The same data can also be captured and analyzed using the simulation data inspector.

Figure 4:   Simulation Data Inspector
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An XMC Data Type Conversion (DTC) operator is used to change the quantization levels between
floating-point or fixed-point data types as needed to determine if the modified precision leads to
a system response with the desired user characteristics. For example, as shown in the following
figure, both a fixed-point and floating-point DTC are used in the same simulation.

Figure 5:   Using the XMC DTC
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A user only needs to specify the data type in the DTC in order to set the precision.

Both an XMC fixed-point (ClosedLoopPID_XMC.slx) and single-precision floating-point
(SPFP) PID model (ClosedLoopPID_XMC_spfp.slx) are included as part of the reference
design to demonstrate and contrast resources, latency, and achievable clock frequency for the
same design with different data types.

The automatically generated Vivado IP catalog option using the create and execute test bench
option creates the HLS project that includes pass/fail results.
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Figure 6:   Creating an HLS Project that Includes a Pass/Fail Test Bench Using the
Simulink Source Stimulus

The resulting auto-created fixed-point and SPFP HLS XMC PID projects can be used to further
evaluate or optimize the resulting C++ based designs.
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Figure 7:   PID Fixed-Point HLS Implementation Results
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Figure 8:   PID Single-Precision Floating-Point HLS Implementation Results

Table 1:   PID Fixed-Point vs. Float-Point Comparison

XMC Data Type DSP LUTs Flip-Flops Block RAM Latency (Clocks) Clock (MHz)
Fixed Point 5 459 822 0 81 311

SPFP 3 958 1761 0 142 290

As expected, the wider SPFP datapaths are slower, have higher latency, and use more resources
than the same implementation in fixed point.
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Approach 2: Using a C++ Math Sequencer Function
Imported as a Custom Model Composer Block

In addition to expressing the algorithm using native Model Composer block libraries, which can
be automatically synthesized into a packaged IP or equivalent HLS synthesizable code,
sometimes the user might find it more natural to start with C/C++ source code to describe a
function or algorithm in the XMC development environment. To extend the discussion started in
Floating-Point PID Controller Design with Vivado HLS and System Generator for DSP (XAPP1163),
what if the user wanted to fix the hardware resources but change the control algorithm?
Whether you have a PID, PI, or lead-lag controller, these functions all boil down to a series of
multiply, add, subtract, and saturate operations.

The control algorithm hardware design could be simplified, and a state machine built that has
memory (for intermediate data and instruction storage), inputs (e.g., the W, Y input needed for
the PID controller example), math operators (mult, add, saturate) and an output that could, for
example, be used to drive a DAC to control a servo motor. The arithmetic operations could be
operated serially over time and modified by changing the instruction memory much like a generic
processor. The arrival of input data (W, Y are inputs for the PID control loop) could be used to
kick off a control algorithm that is essentially a sequence of math operations. This is the basis for
the Math Sequencer (MS) block diagram in the following figure.

Figure 9:   Math Sequencer Block Diagram
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A LUTRAM-based instruction array provides storage for the 16-bit instruction word as shown in
the following figure.
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Figure 10:   Math Sequencer Instruction
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Bits 15–12 for the A operand (e.g., multiplexer A) and bits 11–8 for the B operand (e.g.,
multiplexer B) are register-based inputs for the math operation detailed in bits 3:0 (i.e., +, *,
saturate, bypass). Bits 7–4 indicate where the operation results are stored, giving you read,
modify, and write capabilities for your data storage. There are ways to reduce the amount of
hardware needed at the expense of clock cycles. For example, if you need error = w – y, you
could perform a two-step sequence using tmp_b = y * –1; error = w + tmp_b.

Note: A 0x0 instruction ends the math sequence.

Sometimes a pair of operand data ends up in the same register array. To work around this
problem, you need a bypass instruction to move data from one array to another (for example, to
move data from the A array side to the B array side, or vice versa).

To expand the capabilities, you could also add additional operators or higher level functions like a
divide, square root, and FFT, which can all be added to the instruction pipeline as needed. For
this exercise, we are using the PID C++ code from Floating-Point PID Controller Design with Vivado
HLS and System Generator for DSP (XAPP1163) as our template, so we only need saturate, bypass,
multiplier, and adder operators.

The code for the MS is very simple and easy to understand in C++ in reference to Figure 9: Math
Sequencer Block Diagram.

#include "ms.h"

void ms(float w_in, float y_in, float &pwm) {

    // for register & instruction details see math_sequencer_rv2.xls (MS Excel Spreadsheet)

    // A mux  data
    static float a_mux[] = {0, Gi, Gd, c, Gp, 0, 0, 0, 0, 0, 0, minus1, plus1, zeroc};
    // B mux data
    static float b_mux[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, minus1, plus1, zeroc};
#pragma HLS ARRAY_PARTITION variable=b_mux complete dim=1
    // constant definitions

    // load data from interface
    a_mux[5] = (float) w_in; // cast variable to float
    a_mux[6] = (float) y_in;

    // setup instructions
    unsigned short mnemonics[23] = 
{0x6CC2,0x5B31,0x633,0x2652,0x1662,0x3442,0xB272,0x82A1,0x7C42,0x7A11,0x93B1,0xA5A1,0xA03,0x4642,0x
D8B5,0xA791,0x79A1,0xA23,0x8074,0x9084,0x7D5,0x8E5};
    const short num_instr = 22;

    ap_uint<16> instruction;
    ap_uint<4> instr_sel; // instruction mux controls
    ap_uint<4> store;
    ap_uint<4> dsel_b, dsel_a;

    float a_sel_data, b_sel_data; // variables for data management & results storage
    float op_results; // 32 bit results
    float fsat_o, fmul, fadd; // float data types needed to support saturate
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#pragma HLS PIPELINE
        instruction_loop : for (short inst_loop = 0; inst_loop < num_instr; inst_loop++) {

            // split up instruction into tasks
            instruction = (ap_uint<16>) mnemonics[inst_loop]; // cast unsigned short to 
ap_ufixed<16> data type

            // split out instructions into sub blocks
            instr_sel = instruction & 0x000F; // instruction select
            store = (instruction & 0x00F0) >> 4; // store results where?
            dsel_b = (instruction & 0x0F00) >> 8; // source B side mux from what register?
            dsel_a = (instruction & 0xF000) >> 12; // source A side mux from what register?

            // determine A select
            a_sel_data = a_mux[dsel_a];

            // determine B select
            b_sel_data = b_mux[dsel_b];

            switch(instr_sel) {
                case 0: break; // invalid instruction
                case 1: fadd = a_sel_data + b_sel_data; op_results = fadd; break; // a+b
                case 2: fmul = a_sel_data * b_sel_data; op_results = fmul; break; // a*b
                case 3: if (b_sel_data < min_limit)
                            fsat_o = min_limit;
                        else if (b_sel_data > max_limit)
                            fsat_o = max_limit;
                        else fsat_o = b_sel_data;
                        op_results = fsat_o; break;
                case 4: op_results = a_sel_data; break; // bypass a
                case 5: op_results = b_sel_data; break; // bypass b
                // case 6: op_results = a_sel_data / b_sel_data; break; // a/b
                break;
            } // end instr_sel

            switch(store) {
                            case 0: b_mux[8] = op_results; break; // yi
                            case 1: b_mux[7] = op_results; break; // yd
                            case 2: b_mux[1] = op_results; break; // pwm
                            case 3: b_mux[6] = op_results; break; // error
                            case 4: a_mux[7] = op_results; break; // pid_mult
                            case 5: a_mux[8] = op_results; break; // x1; a_mux
                            case 6: a_mux[9] = op_results; break; // x2; a_mux
                            case 7: b_mux[2] = op_results; break; // prev_x1
                            case 8: b_mux[3] = op_results; break; //prev_x2
                            case 9: b_mux[9] = op_results; break; // pid_addsub
                            case 10: b_mux[10] = op_results; break; // pid_addsub2
                            case 11: a_mux[10] = op_results; break; // tmp_a; a_mux
                            case 12: b_mux[11] = op_results; break; // tmp_b
                            case 13: b_mux[4] = op_results; break; // prev_yd
                            case 14: b_mux[5] = op_results; break; // prev_yi
                            case 15: break; // invalid
                        } // end store results

        } // end instruction_loop

    pwm = b_mux[1]; // PWM is a pass by reference variable (ie: top level interface); SDSoC 
interface requires C99 data types

} // end math sequencer

A Microsoft Excel spreadsheet was used to automatically generate the instruction table using
mnemonics to represent the C++ code written in Floating-Point PID Controller Design with Vivado
HLS and System Generator for DSP (XAPP1163) to simplify hexadecimal instruction creation.
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Figure 11:   Excel Spreadsheet Used to Generate Math Sequencer Instruction Sequence

After importing the MS C++ code and running the simulation, almost no difference is found
between the Simulink double precision model and the MS.
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Figure 12:   Imported C++ Model for the Math Sequencer
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Figure 13:   Simulink vs. Math Sequencer Simulation Results

Conceptually this is all simple, but because it is difficult to write error free C/C++, it is desirable
to have the pre-built test benches and verification environment of Simulink combined with the
ability to debug C/C++ using Microsoft Visual C (MSVC) or GNU debugger. This capability exists,
and the steps to single step or debug the ms.cpp design using MSVC are:

1. Make sure the Simulink model is opened and ready to simulate in MSVC.

2. Set to build the debug DLL with Visual Studio compiler at the Simulink console (the DLL is
automatically built when you run the simulation) from the Simulink command line >>
xmcImportFunctionSettings ('build', 'debug', 'compiler', 'Visual Studio').

3. Launch Visual Studio.

4. Attach the running MATLAB process from the Visual Studio menu Debug → Attach to
Process….

Select the MATLAB.exe process and click on the Attach button.

Note: Make sure the Attach to: Native code option is set.
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Figure 14:   Attach the MATLAB Process

5. Set user breakpoint(s) in the C/C++ code (from opened files in Visual Studio).

6. Run the simulation in Simulink.

7. Use the MSVC menu to debug the C/C++ code.

In MSVC, you can see a breakpoint set at line 36 in the following figure.
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Figure 15:   MSVC Single Step Implementation

Having the ability to set breakpoints and debug in your imported C/C++ code is a huge
advantage for development. Now you have the power of Simulink for test bench creation,
verification, and visualization of results for any imported C/C++ modules.

Running the ms.cpp source code without any optimizations gives the following results.
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Figure 16:   HLS Baseline Math Sequencer Results

Applying two HLS instructions to pipeline the instruction loop and partition the b_mux (e.g., the
lines that start with #pragma in the ms.cpp source code above) gives the following more
optimized HLS results.
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Figure 17:   Math Sequencer Implementation Results

The following table compares the XMC blockset with the Math Sequencer approach.

Table 2:   Math Sequencer vs. XMC Native Block Resource, Latency, and Clock
Frequency Comparison

SPFP Data Type DSP LUTs Flip-Flops Block RAM Latency (Clocks) Clock (MHz)
XMC native blocks 6 981 1606 0 142 289.52

Math Sequencer 3 958 1761 0 158 283.37

The MS has some potential advantage because you can easily change the control algorithm or
operators (for example, you could add a divide operator or a square root function to calculate
magnitude), make the instruction sequence field upgradeable so the algorithm can change later
(without changing the hardware implementation), and reduce resources at the expense of
latency.
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Reference Design
Download the reference design files for this application note from the Xilinx website.

Reference Design Matrix

The following checklist indicates the procedures used for the provided reference design.

Table 3:   Reference Design Matrix

Parameter Description
General

Developer name Xilinx

Target devices XC7Z020CLG484-1

Source code provided? Yes

Source code format (if provided) Simulink (slx) and C++ design files

Design uses code or IP from existing reference design,
application note, 3rd party or Vivado software? If yes, list.

Yes, Floating-Point PID Controller Design with Vivado HLS and
System Generator for DSP (XAPP1163)

Simulation

Functional simulation performed Yes

Timing simulation performed? Yes

Test bench provided for functional and timing simulation? Yes, as part of HLS automated design flow

Test bench format Simulink (xls) or C++ based on XMC or HLS tools flow

Simulator software and version Vivado simulator 2018.3

SPICE/IBIS simulations No

Implementation

Synthesis software tools/versions used Vivado Design Suite 2018.3

Implementation software tool(s) and version Vivado Design Suite 2018.3

Static timing analysis performed? Yes

Hardware Verification

Hardware verified? No

Platform used for verification N/A

Setup
The reference design includes the following files:

• create_library.m: MATLAB file used to create the C++ simulatable XMC module.

• ClosedLoopPID_XMC_SPFP.slx: Single-precision floating-point PID controller using
native XMC blocks.

• ClosedLoopPID_XMC.slx: Fixed-point PID controller using native XMC blocks.

• ClosedLoopPID_MS_XMC.slx: Math sequencer design.

• ms.cpp, ms.h: Math Sequencer C++ source files.
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• math_sequencer_rv2.slxs: Microsoft Excel file used to create Math Sequencer
instructions.

Running the Reference Design

1. From the MATLAB command line execute the create_library.m file to create the C++
simulatable XMC module from the ms.cpp and ms.h C++ source files.

2. Use Simulink to simulate the ClosedLoopPID_XMC_SPFP.slx single-precision floating-
point PID controller using native XMC blocks.

3. Use Simulink to simulate the ClosedLoopPID_XMC.slx fixed-point PID controller using
native XMC blocks.

4. Use Simulink to simulate the ClosedLoopPID_MS_XMC.slx math sequencer design.

5. From within the Simulink environment, use the Model Composer Hub to generate the
corresponding HLS project design for the models used in step 2 through step 4.

6. Use the HLS flow to determine the resources, timing, and RTL verification for step 2 through 
step 4.

Conclusion
This application note reimplements the PID controller design of Floating-Point PID Controller
Design with Vivado HLS and System Generator for DSP (XAPP1163) using the native XMC blockset
and contrasts the differences for both fixed- and floating-point approaches. In addition, the
approach is augmented with a C++ based, flexible Math Sequencer used for applications
requiring additional algorithm flexibility and reduced resources at the expense of latency (e.g.,
serial implementation vs. parallelism).

Throughout the process it is notable that:

• XMC simplifies test bench development, visualization of results, and debug by allowing the
user to take advantage of the many inherent Simulink capabilities and toolboxes.

• The design provides a flexible implementation approach using either native XMC blocksets or
custom created and imported C/C++.

• Having C++ based models reduces simulation and development time.

• The design provides native debug of imported C/C++ modules during development using
Microsoft Visual C or a GNU debugger.

• A test bench and design can be created, evaluated, and exported as an executable C++ design,
Vivado IP catalog, or System Generator IP.

• An HLS project created as part of the export process can also be used to further optimize the
design performance.

• The user has the ability to independently quantize each variable in the HLS based C code. For
fixed-point data types that might require bit growth and truncation after a math operation,
XMC allows you to take advantage of automated data type propagation after a math
operation as opposed to having to manually define the data size for each variable in C++ for
HLS.
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Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
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