
                                                                                                        
The Ronald O. Perelman Center for 
Political Science and Economics (PCPSE)                                                            
133 South 36th Street                                                                                                                                               
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu                                            
http://economics.sas.upenn.edu/pier 

 

 
PIER Working Paper   

18-002 
 

 

 

Matching to Produce Information 
 

 
 
ASHWIN KAMBHAMPATI        CARLOS SEGURA-RODRIQUEZ  PENG SHAO 

 

April 30, 2020- revised 

September 2018 - Original 

 

 

 

https://ssrn.com/abstract=3113594 

mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier
https://ssrn.com/abstract=3113594


Matching to Produce Information:

A Model of Self-Organized Research Teams*

Ashwin Kambhampati†, Carlos Segura-Rodriguez‡, and Peng Shao§

April 30, 2020

Abstract

In recent decades, research organizations have brought the “market inside the

firm” by allowing workers to sort themselves into teams. How do research teams form

absent a central authority? We introduce a model of team formation in which workers

first match and then non-cooperatively produce correlated signals about an unknown

state. We uncover a novel form of moral hazard: an e�cient team of workers pro-

ducing complementary signals may be disrupted if one of its members can form an

ine�cient team in which she exerts less e↵ort. This ine�ciency rationalizes targeted

management interventions which designate specific workers as “project leaders” with

more assumed responsibilities.
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1 Introduction

Self-organized teams are playing an increasingly important role in economic activity.

From 1987 to 1996, the fraction of Fortune 1000 firms with workers in self-managed

work teams rose from 27 percent to 78 percent (Lawler, Mohrman and Benson (2001)

and Lazear and Shaw (2007)). More recently, a 2016 survey of more than 7,000 exec-

utives in over 130 countries indicates that organizations are increasingly operating as

a network of teams in which workers engage in self-directed research (Deloitte, 2016).

These human resources trends are particularly important in organizations such as Uni-

versities (Wuchty, Jones and Uzzi (2007)) and large technology companies, like Google

and Amazon, that rely on flexible internal labor markets in order to take advantage of

informational complementarities among workers with diverse backgrounds. Yet while

the free-ridership problem within teams has garnered considerable theoretical attention

(see, for instance, Hölmstrom (1982), Legros and Matthews (1993), and Winter (2004)),

less has been devoted to the study of how moral hazard within teams a↵ects sorting. Fur-
thermore, to our knowledge, no existing work studies this interaction in the context of

the production of information.

To fix ideas, consider the case of the Danish hearing-aid manufacturer Oticon. In

1987, Oticon lost almost half of its equity when its competitors began selling cosmet-

ically superior devices. In an attempt to regain its competitive advantage, Oticon re-

structured its research department, replacing vertical, hierarchical production with hor-

izontal, project-based team production. At first, these changes were profitable. Eliminat-

ing hierarchies and allowing workers to lead their own teams enabled the firm to take

advantage of the existing information dispersed among its workers (Kao, 1996).1 How-

ever, new problems arose. First, some teams were far better than others “in terms of

how well the team members worked together and what the outcome of team e↵ort was”

(Larsen, 2002). Second, competition meant that “anybody [at a project] could leave at

will, if noticing a superior opportunity in the internal job market” (Foss, 2003). These

problems eventually led Oticon to selectively intervene in the assignment of workers to

teams, designating particular workers as “project leaders”.

We show that the types of ine�ciencies observed at Oticon, and in other organizations

which decentralize information production, arise naturally in a model in which workers

1Oticon’s CEO commented that decentralization “improved markedly [Oticon’s] ability to invent new
ideas, concepts, and make use of what [Oticon] actually [had]” (Kao, 1996). In particular, the firm was able
to revive old projects that later turned out to be profitable.
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cooperatively form teams and non-cooperatively produce information. In the setting we

study, workers form teams (match) in order to forecast the value of a Gaussian state. Each

worker then acquires any number of costly Gaussian signals about it. The moral hazard

problem within teams a↵ects the e�ciency of sorting across teams in two ways. First, pro-

ductive teams composed of workers producing complementary information may form at

the expense of excluded workers whomust form relatively unproductive teams composed

of workers producing substitutable information. Second, productive teams composed

of workers producing complementary information may not form even when e�cient; a

worker in such a team may prefer to join a less productive team if, in this deviating team,

she can exert su�ciently less e↵ort. The latter ine�ciency rationalizes the selective man-

agement intervention in teams observed at Oticon; by designating specific workers as

project leaders, management could eliminate opportunistic deviations by workers in its

internal labor market.

To derive these results, we proceed as follows. First, we characterize the (Pareto-

E�cient Nash) equilibrium correspondence of the signal-acquisition game played within

teams. Our characterization consists of cuto↵ values on the (state-conditional) pairwise

correlation between workers’ signals. Intuitively, more positively correlated signals con-

tain more redundant information. Thus, the marginal value of producing a signal when

one’s teammate has already produced one is decreasing in correlation. It follows that, if

the cost of producing a signal is small enough, there is a cuto↵ above which there is a

unique asymmetric equilibrium, and another cuto↵ below which there is a unique sym-

metric equilibrium. More subtly, when signals are not too revealing, there is a third,

intermediate cuto↵ above which all equilibria are asymmetric and below which there is

at least one symmetric equilibrium (Proposition 1).

Given this characterization, we turn to sorting. Defining, and proving the existence

of, a notion of equilibrium in our environment is non-trivial: workers face a one-sided

matching problem in which an equilibrium correspondence determines their matching

payo↵s. Nonetheless, while a stable matching may not exist, as in the Roommate Problem

of Gale and Shapley (1962)), we show that by fixing non-cooperative equilibria played

within each feasible team, we can always find a self-enforcing matching (Proposition 2).

We call a collection of such equilibria and a self-enforcing matching a Coalitional Subgame
Perfect Equilibrium (CSPE).

We then study the welfare e�ciency of equilibrium sorting. For a fixed strategy pro-

file in which each worker produces at least one signal, minimizing pairwise correlation

2



maximizes team productivity. Hence, one might guess that forming teams composed of

workers with the lowest feasible pairwise correlations is e�cient. But this need not be the

case; matching such workers might cause excluded workers to form highly unproductive

teams composed of workers with high pairwise correlations. We call this phenomena

Stratification Ine�ciency.
Sometimes, however, a team composed of workers with a low pairwise correlation

need not form even when it is e�cient. A worker in such a team may prefer to match

with another worker with whom she has a higher pairwise correlation if in that team she

can produce relatively fewer signals than her partner in equilibrium. Moral hazard thus

generates an additional sorting ine�ciency, which we call Asymmetric E↵ort Ine�ciency.
Hence, while Stratification Ine�cient CSPE feature too much inequality in productivity

across teams, Asymmetric E↵ort Ine�cient CSPE feature too much inequality of e↵ort
within teams.

We conclude by showing that each ine�ciency occurs in an open set of correlation

parameters (Proposition 3). Our formal definitions and proofs reveal two important in-

sights relevant to our motivating applications. First, whenever a CSPE is Stratification

Ine�cient, there is no other e�cient CSPE (Observation 1). Hence, Stratification Ine�-

ciency is a robust phenomenon that can only be eliminated by actively assigning workers

to teams, in which case self-enforced teams are not an optimal organizational structure.

Second, in many cases, when there is an Asymmetric E↵ort Ine�cient CSPE, there is

multiplicity and an e�cient CSPE exists as well. That an e�cient CSPE exists suggests a

simple resolution to incentive problems: make particular workers more responsible for

team output (Observation 2). Then, opportunities to free ride can be eliminated and so

the e�cient outcome can be obtained as an equilibrium.

Literature

Matching with Nontransferable Utility. Legros and Newman (2007) consider general two-

sided matching environments in which, for each matched pair, there is an exogenously

specified utility possibility frontier.2 As matching is two-sided, a stable matching–the

core of an assignment game–exists, as established by Kaneko (1982). As we consider a
2A well-known application of this framework is to risk-sharing within households. Legros and Newman

(2007) and Chiappori and Reny (2016) show that if couples share risk e�ciently, then all stable matchings
are negative assortative. Gierlinger and Laczó (2018) show that if the assumption of perfect risk-sharing
is relaxed, then positive assortative matching can occur. Schulhofer-Wohl (2006) finds necessary and su�-
cient conditions for preferences under which risk-sharing problems admit a transferable utility represen-
tation.
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one-sided matching problem, however, the core may be empty; in the absence of restric-

tions on the expected utility possibilities frontier within each team, cycles can arise (see

Online Appendix B for an example). Hence, we define a new, weaker solution concept,

Coalitional Subgame Perfect Equilibrium (CSPE). In a CSPE, the non-cooperative equilib-

ria played within teams–even those not formed in equilibrium– are fixed. Our existence

proof thus demonstrates how after-match equilibrium selection can be used to prevent

o↵-path deviations that undermine stability.3

Sorting and Bilateral Moral Hazard. Our paper joins a small literature that considers

matching settings in which the utility possibility frontier of each matched pair is a↵ected
by the presence of bilateral moral hazard.4 Kaya and Vereshchagina (2015) study one-

sided matching between partners who, after matching, play a repeated game with im-

perfect monitoring (due to moral hazard) and transfers. While moral hazard limits the

achievable joint surplus attainable by a matched pair, transfers ensure that the Pareto-

frontier is linear, i.e. payo↵s are transferable. Hence, stable matchings exist and (con-

strained) e�ciency is ensured by standard arguments, in contrast to our setting.5

Vereshchagina (2019) studies two-sidedmatching between financially-constrained en-

trepreneurs in the presence of bilateral moral hazard and incomplete contracts; entrepreneurs

can only sign contracts under which the realized revenue is split between the partners

according to an equity-sharing rule.6 Non-transferability of output gives rise to ine�-

cient positive sorting through the following channel: wealthy entrepreneurs, whom con-

tribute more resources to joint production, are willing to form partnerships with poor

entrepreneurs only if they receive a high equity share. But, joint surplus maximizing eq-

uity shares may be constant across all partnerships. Hence, wealthy entrepreneurs prefer

to match even if the overall benefit of re-matching with poor entrepreneurs is large. The

logic behind ine�ciency thus resembles that of Stratification Ine�ciency.7

3In Section 2.3, we compare our definition and that of the core in detail. It is worth noting that our
constructive proof bears resemblance to that of Farrell and Scotchmer (1988), who prove that the core is
non-empty in a market for partners whom divide output equally.

4 Wright (2004), Serfes (2005), Serfes (2007), and Sperisen and Wiseman (2016) study the assortativity
of stable matchings in the presence of one-sided moral hazard, i.e. principals matching agents.

5Kaya and Vereshchagina (2014) study a special case of their model in which workers form partnerships
that may involve “money burning” to provide incentives. They then ask whether workers would prefer
to work for an entrepreneur, i.e. hire a budget-breaker, as in Franco, Mitchell and Vereshchagina (2011)
to avoid this problem. Chakraborty and Citanna (2005) consider a model similar to that of Kaya and
Vereshchagina (2015) in which partners play asymmetric roles.

6Two-sidedness again ensures that a stable matching exists, in the sense of Legros and Newman (2007),
unlike in our setting.

7We note, however, that there is no analog to Asymmetric E↵ort Ine�ciency in her model. A related,
earlier contribution is that of Sherstyuk (1998), who shows that equal-sharing equity rules may preclude
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Finally, Kräkel (2017) considers a very di↵erent channel through which moral hazard

leads to ine�cient endogenous sorting. He studies an environment in which a firm posts

an initial contract that determines both wages and a sorting protocol (workers either

endogenously sort into teams or are randomly assigned to teams). The firm then receives

interim information about the e�ciency of the matches formed and can re-negotiate the

initial contract. Under endogenous sorting, workers may form ine�cient teams in order

to force the firm to re-negotiate the initial contract.

Team Theory. The seminal work of Marschak and Radner (1972) investigates the be-

havior of a team of agents whom share a common prior and objective function, but pos-

sess di↵erent information when taking actions. As in this work, we assume that workers

in a team have no conflict of interest: they all want to choose an action closest to the re-

alized state. However, in our setting, e↵ort is costly and these costs have implications for

the composition of teams that form in equilibrium.

Like us, Chade and Eeckhout (2018) study teams in a matching setting. They study

the optimal assignment of workers to teams in a canonical Gaussian environment with

two important features: (i) each worker produces exactly one signal within a team and

(ii) utility is transferable. In our environment, in contrast to (i), workers can acquire any

number of signals and, in contrast to (ii), utility is non-transferable. We are thus able

to study the impact of moral hazard on sorting, a “relevant open problem with several

economic applications” (Chade and Eeckhout, 2018). Our analysis, consequently, focuses

on the e�ciency of equilibrium teams as opposed to their assortativity, as is the focus of

Chade and Eeckhout (2018).8

An additional di↵erence between our setup and that of Chade and Eeckhout (2018)

is that they assume that signals between workers possess a common correlation param-

eter, but di↵er in variance, whereas we assume the opposite. We make this assumption

to capture research settings in which workers are identical in their level of “expertise”,

but may come from di↵erent backgrounds. Our work, therefore, contributes to the liter-

ature on diversity in teams, i.e. Prat (2002), Hong and Page (2001), and Hong and Page

(2004).9 In particular, Asymmetric E↵ort Ine�cient CSPE are characterized by excessive

e�cient heterogeneous partnerships.
8As the latter question is of independent interest, however, in Online Appendix A we discuss how en-

dogenous e↵ort might a↵ect the equilibrium assortativity of teams. Fixing the signal structure of Chade and
Eeckhout (2018), we show that, once e↵ort choice is endogenous, optimal matching must simultaneously
diversify, while incentivizing e↵ort.

9 Prat (2002) finds conditions under which a team should be comprised of homogenous information
structures when these information structures are priced according to market forces. Hong and Page (2004)
and Hong and Page (2001) consider the performance of heterogeneous non-Bayesian problem solvers. In
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homogeneity, i.e. high correlation, within teams. Our results thus illustrate a new chan-

nel through which moral hazard can cause homogenous teams to form even when they

are suboptimal.

Correlation and Information Acquisition. More broadly, our analysis of the information

acquisition game played within teams is related to recent work defining notions of com-

plementary and substitutable information. In the environment we consider, lower cor-

relation implies higher complementarity in terms of the value of information. Börgers,

Hernando-Veciana and Krähmer (2013) define signals as complements or substitutes in

terms of their value across all decision problems, therefore requiring stronger conditions.

Liang and Mu (2020) adapt the definition of Börgers, Hernando-Veciana and Krähmer

(2013) to a multivariate Gaussian environment and use it characterize the learning out-

comes of a sequence of myopic players.

2 Model

2.1 Environment

Four workers, indexed by the set N := {1,2,3,4}, are uncertain about a state ✓ and share

a common Gaussian prior with mean µ✓ and variance �2
✓ .

10 Each worker can obtain un-

biased, conditionally independent Gaussian signals with variance �2. Within a team,

however, signals are correlated; ⇢ij 2 [�1,1] is the state-conditional correlation coe�cient

between worker i’s and worker j’s signal when they work together.

Prior to production, workers form teams of at most two workers; forming a team of

two incurs a cost of K > 0 on each member. The final assignment of workers to teams

is therefore described by a matching function µ : N ! N such that the teammate of

worker i’s teammate, j , is i–that is, if j = µ(i), then µ(j) = i.11 Let M denote the set

of all such functions. After teams have been formed, each worker i simultaneously and

independently chooses a number of signals to produce, ni 2N[ {0}, at cost c(ni), where

c : N[ {0}! R is an increasing function satisfying increasing marginal costs, i.e. c(n) �
c(n� 1) � c(n� 1)� c(n� 2) for any n � 2, and c(0) = 0.

The correlation structure in the signal-acquisition stage captures the economics of a

situation in which joint and simultaneous e↵ort is a↵ected by complementarities, while

contrast, we consider the endogenous formation of teams by Bayesian workers within a firm with a fixed
information structure.

10The analysis extends easily to the case of N workers.
11We interpret (i, i) as a single-worker team.
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unilateral e↵ort is not. In particular, we interpret ni as a decision by worker i to produce

a single signal in each of ni consecutive “periods”, starting from period 1; if ni � nj > 0,

then workers i and j produce signals jointly in periods t 2 {1, ...,nj }. Hence, signals drawn

in these periods are conditionally correlated according to ⇢ij . If ni > nj , however, then

worker i produces a signal alone in periods t 2 {nj +1, ...,ni}. Consequently, in these peri-

ods, workers cannot exploit correlation between signals to learn about the state. Figure 1

depicts the case in which ni = 3 and nj = 2.

Finally, after observing the signal realizations of every team member, each team takes

an action a⇤ 2 R to minimize the expected value of a quadratic loss function. Formally,

a⇤ 2 argmin
a2R

E✓

h
(a�✓)2 | xS

i
,

where xS denotes the concatenation of signals observed in the team.

⇢ij

⇢ij

3

2

1

Period Worker i Worker j

Independent

Independent

Figure 1: Signal structure when ni = 3 and nj = 2.

2.2 Solution Concepts

A signal-acquisition strategy for worker i is a function mapping teammate identity to a

non-negative integer, ni :N !N[ {0}.12 Given a strategy for each player, we denote the

profile of signals chosen in team (i, j) by n(i, j) := (ni(j),nj(i)). The payo↵ to worker i in

team (i, j) given the strategy profile n(i, j) is

vi(n(i, j);⇢ij ) := �Ex


min
a2R

E✓

h
(a�✓)2 | xS

i�
� c(ni(j))�K i,j . (1)

12We consider pure strategies for ease of interpretation and tractability.
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To ease notation, we denote ni(j) and nj(i) by ni and nj and drop the dependence of vi on

⇢ij whenever there is no confusion that j is i’s teammate.

The strategy spaces for each player,N[ {0}, and the payo↵ functions defined in Equa-

tion 1 constitute a normal-form game–call it the Production Subgame.13 To account for

pre-play communication, in each team (i, j), we require that the strategy profile n⇤(i, j) is a

Pareto-E�cient Nash Equilibrium (PEN) of the Production Subgame. For the two-stage

game, we introduce a new solution concept called Coalitional Subgame Perfect Equilibrium
(CSPE).

Definition 1. Amatching µ 2M and a collection of PEN,N ⇤ = {n⇤(i, j)}i,j2N , is aCoalitional
Subgame Perfect Equilibrium (CSPE) if there does not exist a matching, µ0 2 M , and a
worker i for which i and j = µ0(i) are strictly better o↵ under µ0 given the PEN:

vi(n⇤(i, j)) > vi(n⇤(i,µ(i))), and

vj(n⇤(i, j)) > vj(n⇤(j,µ(j))).

A matching µ 2M and a collection of PEN, one for every feasible team, is a CSPE if no

worker(s) can form a deviating team in which, given the prescribed PEN in that team,

each worker obtains a strictly higher payo↵.

2.3 Relationship to the core

The standard solution concept in the literature onmatching with imperfectly transferable

utility is the core. A matching function and a point in the utility possibility frontier

for each matched pair is in the core if (i) no matched worker is better o↵ alone and (ii)

no pair can match and pick a point in their utility possibility frontier that makes both

strictly better o↵.14 While the core is certainly well-defined in our environment– the set

of PEN payo↵s within a team is its utility possibility frontier–condition (ii) is problematic;

if workers are free to play any PEN in a deviating team, then cycles of re-negotiation

may arise and cause the core to be empty. To circumvent this problem, we define a new

solution concept, CSPE, in which each o↵-path team plays a fixed PEN. This limits the

set of payo↵s achievable by a deviating pair of workers and enables us to prove existence

(Proposition 2). In addition to the advantage of existence, we find CSPE both intuitive
13If a worker i decides to work alone, then the Production Subgame is to be interpreted as a decision

problem.
14See Legros and Newman (2007) for a general definition in two-sided environments and Kaya and

Vereshchagina (2015) for a definition in a one-sided environment.
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and plausible; every core allocation is also a CSPE and those which are not are sustained

by credible “o↵-path” behavior, i.e. Pareto-E�cient Nash Equilibria.

3 Production Subgame Analysis

3.1 Preliminaries

Because each worker’s payo↵ function is quadratic, her optimal action given any signal

realization is the posterior mean. Hence, her expected payo↵ when signals are costless

is the negative posterior variance. Lemma 1 states these observations and provides a

closed-form solution for the posterior variance.

Lemma 1. Suppose workers i and j form a team and acquire (ni,nj ) signals with ni  nj . Each
worker’s optimal action is a = E(✓ | x) and the expected payo↵ of worker i is

vi(ni,nj ) = Var(✓ | (ni,nj ))� c(ni)�K i,µ(i),

where x is the concatenation of realized signals and

Var(✓ | (ni,nj )) :=

8>>>>><>>>>>:

0 if i , j,ni > 0,nj > 0 and ⇢ij = �1
✓✓

2ni
1+⇢ij

+ (nj �ni)
◆
��2 +��2✓

◆�1
otherwise.

The pairwise correlation coe�cient ⇢ := ⇢ij , for i , j , measures the complementarity

between workers: as ⇢ increases, the value of working together decreases. For intuition,

consider the extreme cases. When ⇢ = �1, by producing (1,1) signals, a team can match

the state by choosing an action equal to the sample average. On the other hand, when

⇢ = 1, working together to produce (1,1) signals is equivalent to having only one worker

produce a signal. So, to rule out uninteresting cases, we assume that the cost of a single

signal satisfies the following two properties: (i) in a two-worker team in which ⇢ = �1,
both workers have an incentive to produce a single signal (and so perfectly learn the

state), and (ii) in any team, at least one worker has an incentive to produce at least one

signal.

Assumption 1. c(1) < �2
✓

�2
✓+�

2 min{�2
✓ ,�

2}.
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3.2 The Marginal Value of Information

To characterize PEN, we define and analyze themarginal value of information to worker

i of producing a signal in the ni-th period given that worker j produces a signal in the first

nj periods. This marginal benefit corresponds to the reduction of the ex-post variance

generated by the last signal:

MV (ni ;nj ,⇢) ⌘ Var(✓ | (ni � 1,nj ))�Var(✓ | (ni,nj )).

If ni � nj , we call worker i a leader. If the inequality is strict, we call worker j a follower.
Figure 2a illustrates the posterior variance Var(✓ | (ni,nj )) for di↵erent correlations, ⇢,

and strategy profiles, (ni,nj ), in the case in which � = �✓ = 1. In Figure 2a, the di↵erence
between the dashed red line and the solid black line is the marginal value of information

to a leader of producing a signal in period two, while the di↵erence between the dotted

blue line and the dashed red line is the marginal value of information to a follower of

producing a signal in period two, given that the leader is already producing one in the

first two periods. The former di↵erence is represented by the solid, red line in Figure 2b,

while the latter is represented by the dashed, blue line in Figure 2b.
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Figure 2: Ex-post Variance and Marginal Values.

We make three observations about the figures, which generalize beyond the parame-

terization we consider, and which we exploit in proving our main characterization result.

First, the marginal value of information to the leader is strictly increasing in ⇢. This

happens because the value of the information obtained from working together with the

follower in previous periods decreases. By concavity of the information production func-

tion, the marginal value of information left to learn increases.
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Second, the marginal value of information to a follower is non-monotonic in ⇢. In-

deed, we see the di↵erence between the blue line and red line in Figure 2a is non-monotonic,

and so the blue line in Figure 2b is hump-shaped. The marginal value of the follower is

increasing in an initial region for the same reason the leader’s marginal value is increas-

ing; when ⇢ increases, the value of work done together in past periods decreases and so

the marginal value of information left to learn increases. However, there is another e↵ect
to consider. When ⇢ increases, the value of working together with the leader in a future

period decreases– the leader and follower’s information is less complementary. After an

interior cuto↵ value ⇢̃, the second e↵ect dominates and the marginal value of information

to the follower decreases.

Third, the marginal value of a leader is higher than the marginal value to a follower

above a negative cuto↵ value, ⇢̂. It turns out that the relationship between ⇢̂ and ⇢̃ is the

key to ordering the equilibrium correspondence in terms of symmetry. We discuss this in

detail after stating our main characterization result.

3.3 PEN Characterization

Proposition 1. Let ⇢ denote the pairwise correlation between workers in a two-worker team.
For each ⇢ 2 [�1,1], there exists a PEN of the Production Subgame. If Assumption 1 is satisfied,
there exist interior cuto↵ values ⇢⇤  ⇢⇤⇤ for which the following properties hold:

1. For ⇢  ⇢⇤, there is a unique PEN. It is symmetric and each worker produces a strictly
positive number of signals.

2. For ⇢ > ⇢⇤⇤, generically, there is a unique PEN up to the identity of each worker. In it, one
worker produces a strictly positive number of signals and the other produces none.

If, in addition, �2 � �2
✓ , there exists another cuto↵ value ⇢⇤⇤⇤ for which ⇢⇤  ⇢⇤⇤⇤  ⇢⇤⇤ and the

following properties hold:

3. For ⇢ 2 (⇢⇤,⇢⇤⇤⇤], there is at least one symmetric and one asymmetric PEN.

4. For ⇢ > ⇢⇤⇤⇤, all PEN are asymmetric.

Figure 3 illustrates the Proposition in a case in which �2 � �2
✓ , so that all four prop-

erties apply: below ⇢⇤ ⇡ .10, the unique PEN is symmetric; above ⇢⇤⇤ ⇡ .71, there is a

unique PEN, up to identity, in which only one worker exerts e↵ort; for ⇢ 2 (⇢⇤,⇢⇤⇤⇤], where

11
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Figure 3: PEN Correspondence with �2 = �2
✓ = 1 and c(n) = 0.01n2.

⇢⇤⇤⇤ ⇡ 0.33, there is both a symmetric and an asymmetric PEN; and, for ⇢ > ⇢⇤⇤⇤ all PEN

are asymmetric.

The intuition for the first two properties is simple. Under Assumption 1, (i) (1,1) is the

unique equilibrium when ⇢ = �1 and (ii) for any pairwise correlation, at least one worker

produces at least one signal. Since posterior variance is continuous in pairwise correla-

tion, (i) implies that there exists a cuto↵, strictly above negative one, below which the

unique equilibrium is (1,1), establishing the first property of the proposition. Property

(ii) implies that when ⇢ = 1 there is, generically, a unique equilibrium, up to identity, in

which only one worker produces a strictly positive number of signals.15 As the marginal
15The genericity qualifier rules out the case in which a worker is indi↵erent between two positive integers
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value of a follower’s signal is close to zero for correlations near one, continuity of the pos-

terior variance in correlation again implies that there is a cuto↵ strictly below one above

which only one worker acquires signals.

The intuition for the last two properties is subtle. It turns out that if signals are su�-

ciently noisy, �2 � �2
✓ , then the marginal value of information for a follower is maximized

at a correlation ⇢̃ strictly below the value at which the marginal value of information for a

leader exceeds that of the follower, ⇢̂, as in Figure 2b. Hence, increasing ⇢ past ⇢̂ increases

the marginal value to the leader while decreasing the marginal value to the follower. Be-

havior then coheres with intuition; higher correlations drive equilibria to be asymmetric

because leaders have an increasing incentive to acquire more information, while follow-

ers have a decreasing incentive to match the signals produced by leaders. We thus obtain

a strong result: there is an intermediate cuto↵ above which all PEN are asymmetric and

below which there is at least one symmetric and one asymmetric PEN.16

We conclude our analysis by pointing out two properties satisfied by the equilibrium

correspondence in Figure 3, but which are not ensured by the condition �2 � �2
✓ alone:

(i) ⇢⇤ < ⇢⇤⇤⇤ and (ii) there is a non-trivial asymmetric equilibrium, i.e. an equilibrium in

which each worker produces a strictly positive number of signals, for correlations above

⇢⇤. The latter property is satisfied whenever a worker produces at least three signals by

herself, i.e. whenever the marginal value of a third signal exceeds the marginal cost.

Assumption 2 thus ensures that both (i) and (ii) are satisfied; we will require it to prove

the robustness of Asymmetric E↵ort Ine�ciency.

Assumption 2. ⇢⇤ < ⇢⇤⇤⇤ and c(3)� c(2) <MV (3;0,0).17

3.4 Existence of CSPE

Exploiting symmetry of the equilibrium correspondence of the Production Subgame, we

provide an algorithm that identifies a Pareto-E�cient CSPE.

when ⇢ = 1 and her teammate takes zero draws.
16If ⇢̂ < ⇢̃, a counterintuitive phenomena emerges. In this case, there is a region in which increasing ⇢ past

⇢̂ increases the marginal value for both the leader and the follower. Hence, if an asymmetric equilibrium
is played at some correlation ⇢ above ⇢̂, but below ⇢̃, it may be the case that for a higher correlation a
symmetric equilibrium may be played. Why? The increase in the value of information left to learn for the
follower might induce her to match the leader’s signal. If this happens, the leader’s incentive to produce
another signal may decline enough so that she does not produce another one herself. For such an example,
we direct the reader to Online Appendix C.

17While we have not stated the condition ⇢⇤ < ⇢⇤⇤⇤ in terms of primitives, it holds whenever the cost
function is not “too convex”. For instance, if costs are linear, it is always satisfied. As our running example
demonstrates, however, the condition is satisfied beyond the case of linear costs.
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Proposition 2. A Pareto-E�cient CSPE exists.

Two comments are in order. First, Proposition 2 generalizes to environments beyond

the one we consider; as long as the after-match game is symmetric, a CSPE exists. Second,

as previously discussed, while a CSPE exists the core may be empty. See Online Appendix

B for a formal definition of the core and an example of its emptiness.

4 Ine�cient Sorting

Our analysis of the Production Subgame yields two important insights. First, fixing a

strategy profile within teams, reducing correlation increases the value of information

the team generates. Second, increasing correlation decreases the symmetry of equilibria;

as signals become more substitutable, the marginal value of matching a leader’s signal

decreases. We now show how these two within-team properties influence the e�ciency

of sorting across teams.

4.1 Stratification Ine�ciency

We first exposit an ine�ciency, Stratification Ine�ciency, that arises because two highly

productive workers, i.e. workers with low pairwise correlation, match at the expense

of the two excluded workers, whom must form a less productive team with a relatively

high pairwise correlation. After illustrating it with a numerical example, we observe that

management intervention within teams cannot restore e�cient sorting. The presence of

Stratification Ine�ciency thus suggests that self-organizing teams may not be an optimal

organizational structure.

Suppose, for simplicity, that the parameters are as in Figure 3, so that all properties

of Proposition 1 apply. Suppose further that the network in Figure 4a describes the cor-

relation matrix; numbers next to adjacent edges depict pairwise correlation. Then, the

unique PEN in teams composed of workers connected by dotted or dashed lines is the

symmetric profile (2,2) and the unique PEN (up to identity) in teams composed of work-

ers connected by solid lines is the asymmetric profile (0,3).18 Corresponding payo↵s are
depicted in Figure 4b. We argue that, if team membership costs are small enough, the

unique CSPE matching pairs worker 1 (worker 3) and worker 2 (worker 4), while the

e�cient matching pairs worker 1 (worker 2) and worker 3 (worker 4).

18This can be seen by referring back to Figure 3.
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Figure 4: Stratification Ine�ciency.

First, observe that teams (1,4) and (2,3) can never form in a CSPE; fixing any PEN,

the worker producing a positive number of signals would be better o↵ alone. Second,

observe that worker 3 and worker 4 must match in any CSPE. Inspecting the green line

in Figure 4b, we see that worker 3 and worker 4 each obtains a higher payo↵ in a team

together than in any PEN in any other team; indeed, their pairwise correlation, -0.3, is the

smallest among all feasible teams and all teams other than (1,4) and (2,3) play the same

equilibrium. But if worker 3 and worker 4 match, worker 1 and worker 2 are left with

only two options: they can either work alone or form a team together. For a small enough

team membership cost K > 0, the utility each obtains from working together exceeds that

of working alone. Hence, worker 1 and worker 2 must match in any CSPE.

While we have argued that in the unique CSPE, worker 1 (worker 3) and worker 2

(worker 4) match, it remains to argue that matching worker 1 (worker 2) and worker 3

(worker 4) is welfare improving. Whymight this be the case? Though themost productive

team, (3,4), forms in the CSPE matching, this comes at the cost of preventing workers 1

and 2 from joining teams with significantly lower pairwise correlations. In particular,

while the team (1,2) produces positively correlated signals, the teams (1,3) and (2,4)

do not. It turns out that the gain in productivity obtained from re-matching worker 1

with worker 3, and worker 2 with worker 4, outweighs the cost of disrupting the most

productive team (3,4).

We now formalize the logic just described and define our first notion of ine�ciency.
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Definition 2 (Stratification Ine�ciency). A CSPE (µ,N ⇤) is Stratification Ine�cient if

1. there exist two workers i, j 2 N , i , j , for which which µ(i) = j and v`(n⇤(i, j)) is the
highest payo↵ worker ` 2 {i, j} can obtain in any PEN in any team; and,

2. there exists a matching µ0 , µ 2M and a collection of PEN N̂ = {n̂(i, j)}i,j2N such that,

P

`2N
v`(n⇤(`,µ(`))) <

P

`2N
v`(n̂(`,µ0(`))).

The first condition requires that, in any Stratification Ine�cient CSPE matching, a pair

of teammates are each as well o↵ as in any other feasible team playing any other PEN, i.e.

worker 3 and worker 4 in our example. The second condition requires that there exists

another matching, i.e. µ̂ such that µ̂(3) = 1 and µ̂(4) = 2 in our example, and a collection

of PEN in each team that increases utilitarian welfare. Stratification Ine�ciency there-

fore arises because two (possibly highly productive) workers each obtains a higher payo↵
together than in any other team, but do not internalize the “externality” they generate

on the productivity of other matches. An e�ciency-minded manager, in contrast, prefers

them not to match so that she can better exploit the entire correlation matrix.

An immediate implication of our definition is that Stratification Ine�ciency is a phe-

nomenon that can only be eliminated by a manager that actively intervenes in the assign-

ment of workers to teams. In particular, if two workers obtain a higher payo↵ together

than in any other team playing any PEN, there is no way to select PEN within teams to

induce either to form a more e�cient team. Put di↵erently, whenever a Stratification

Ine�cient CSPE exists, then no e�cient CSPE exists.

Observation 1. If a Stratification Ine�cient CSPE exists, then no e�cient CSPE exists. Hence,
no management intervention within teams can restore e�ciency.

4.2 Asymmetric E↵ort Ine�ciency

Stratification Ine�ciency is not driven by free riding. Indeed, in the ine�cient matching

we illustrated, each worker works as hard as she would in the e�cient matching. We now

focus on the implications of free riding within teams for sorting across teams. In contrast

to Stratification Ine�ciency, we show that the type of ine�ciency that arises due to free

riding can be prevented by active management of workers within teams.

For illustration, suppose again that the parameters are as in Figure 3. But now, sup-

pose the network in Figure 5a describes the correlation matrix. The unique PEN in teams
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composed of workers connected by blue dashed lines is the symmetric profile (2,2), the

unique PEN (up to identity) in teams composed of workers connected by dotted red lines

is the asymmetric profile (1,3), and the unique PEN (up to identity) in teams composed of

workers connected by solid lines is the asymmetric profile (0,3). Corresponding payo↵s
are depicted in Figure 5b. We argue that, if team membership costs are small enough,

there is a CSPE matching that pairs worker 1 (worker 2) and worker 3 (worker 4), even

though the e�cient matching pairs worker 1 (worker 3) and worker 2 (worker 4).
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Figure 5: Asymmetric-E↵ort Ine�ciency.

To see why such a CSPE exists, consider the incentives of worker 1. She has two rele-

vant options: form a team with worker 2, with whom she produces uncorrelated signals,

or form a teamwith worker 3, with whom she produces positively correlated signals.19 In

the team with worker 2, worker 1 produces two signals in any PEN. On the other hand, in

a team with worker 3, worker 1 either produces three signals (so that worker 3 produces

one signal) or one signal (so that worker 3 produces three signals). In the case in which

worker 1 produces three signals when matched with worker 3, it is clear that she would

rather form a team with worker 2; not only is the value of information produced lower in

the team with worker 3, she is exerting more e↵ort. But, if worker 1 produces one signal

when matched with worker 3, so that she is the follower in that team, then she would

rather form a team with worker 3; though the value of information produced is lower,

she is exerting less e↵ort (see Figure 5b for the payo↵ comparison).

19Again, teams (1,4) and (2,3) never form in any CSPE.
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So, for argument’s sake, fix the PEN within team (1,3) to be the strategy profile (1,3)

so that worker 1 would rather match with worker 3 than worker 2. Worker 3 would only

deem such a team acceptable if she could not persuade worker 4 to form a team with her.

But, fixing the PEN within team (2,4) to be the asymmetric profile (3,1), worker 4 prefers

to work with worker 2 (worker 4 has the “same” options as worker 1). Hence, there is

a CSPE in which worker 1 matches worker 3 (and worker 2 matches worker 4) because

worker 3 (worker 2) has no better option. The CSPE outcome is ine�cient, however,

because not only does the total value of information produced in the firm increase by

forming teams (1,2) and (3,4), but total e↵ort costs decrease weakly.20

We again formalize the logic just described and define our second notion of ine�-

ciency.

Definition 3 (Asymmetric E↵ort Ine�ciency). A CSPE (µ,N ⇤) is Asymmetric E↵ort Inef-
ficient if

1. there exist two workers i, j 2 N , i , j , for which µ(i) = j , and a PEN n̂(i, i 0), i 0 , i,
satisfying

n⇤i (j)n̂i 0 (i) < n̂i(i 0)n⇤j(i);

and,

2. there exists a matching µ̂ 2M satisfying µ̂(i) = i 0 and a collection of PEN N̂ = {n̂(i, j)}i,j2N ,
including n̂(i, i 0), such that

P

`2N
v`(n⇤(`,µ(`))) <

P

`2N
v`(n̂(`,µ0(`))).

To understand the definition, consider again the example. Let (i, j) = (1,3) and (i 0, j 0) =

(2,4). The manager prefers to match worker 1 with worker 2 because there is a symmetric

PEN inside the team, n̂(1,2) = (2,2), in which worker 1 exerts relatively more e↵ort than
her partner when compared to the “on-path” PEN, n⇤(1,3) = (1,3). In particular, n⇤1(3)

n⇤3(1)
=

1
3 < 1 = n̂1(2)

n̂2(1)
so that, by cross-multiplying, we see that the first inequality of the definition

is satisfied. The second part of the definition ensures that, upon re-matching worker 1

and worker 2 and fixing n̂(1,2), the manager can select a PEN and matching of the other

two workers so that utilitarian welfare increases.
20Recall, the cost of e↵ort is increasing for an individual worker and the total number of signals produced

in each team in the e�cient and ine�cient matching is the same.
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Our discussion suggests a possible resolution to incentive problems in the case of

Asymmetric E↵ort Ine�ciency. If a manager can assign roles to individual workers, then

it may be possible to enforce an e�cient CSPE. For example, returning to Figure 5, if a

manager designates worker 1 as a leader, quite literally in the terminology of our analysis,

then she can enforce an e�cient CSPE. In particular, if we choose a PEN in team (1,3) so

that worker 1 is the team leader, rather than worker 3, then worker 1 would rather form

a team with worker 2. As worker 2 prefers this arrangement to the case in which she

matches with worker 4 and is the leader, worker 1 and worker 2 match, leaving worker 3

and worker 4 to match.

Observation 2. If an Asymmetric E↵ort Ine�cient CSPE exists, then an e�cient CSPE may
also exist. In this case, a manager can select PEN within teams to restore e�ciency.

4.3 Robustness

We finally show that the ine�ciencies we identify are robust in a formal sense.

Proposition 3 (Robustness). Suppose K > 0 is small.

1. If Assumption 1 holds, then there is an open set of correlation parameters for which there
is a Stratification Ine�cient CSPE.

2. If Assumption 1 and 2 hold, and �2 � �2
✓ , then there is an open set of correlation param-

eters for which there is an Asymmetric E↵ort Ine�cient CSPE.

The proof of Proposition 3 makes full use of our characterization of within-team equi-

libria to construct correlations leading to ine�ciency. In particular, to construct a Strati-

fication Ine�cient CSPE, we choose four pairwise correlations strictly below ⇢⇤, the cuto↵
below which there is a unique and symmetric PEN, and all others above it. As long as

there is no free-riding opportunity for the workers with the lowest correlation, they must

match in any CSPE (for small K > 0). However, if the other two workers have a su�ciently

high correlation, then re-matching workers can improve welfare.

To construct an Asymmetric Ine�cient CSPE, we observe that, under Assumption 2,

there is an open set of correlations above ⇢⇤ for which there is a non-trivial asymmetric

PEN of the Production Subgame. We then pick a worker, say worker 1, and two pairwise

correlations– ⇢13, in this open set, and ⇢12 below ⇢⇤–so that worker 1 prefers to free ride

in the team with worker 3 than to match worker 2. If ⇢12 is small enough, however, the

sum of utilities in the team (1,2) exceeds that in (1,3), as in our illustrative example.
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Moreover, in the open set of parameters we identify, a manager can always improve

welfare by forcing worker 1 to be the leader when matched with worker 3, i.e. selecting a

PEN in which she exerts relatively more e↵ort than worker 3. We remark that such pow-

ers seem plausible in many organizational contexts; while it may be costly to assign all

workers to teams, it may not be so costly to manage the behavior of particular workers.21

5 Discussion

Our paper is a first step towards understanding how research teams form absent a central

authority. We shed light on how workers’ incentives for e↵ort within teams are a↵ected
by their skill complementaries and therefore impact equilibrium sorting. Our analy-

sis uncovers two plausible forces leading to ine�cient sorting. First, workers produc-

ing complementary information may match and force excluded workers to form highly

unproductive teams composed of workers producing substitutable information. Hence,

there is too much inequality in productivity across teams. Second, even when it is e�cient

for a team composed of workers producing complementary information to form, such a

team may not arise in equilibrium if one of its members has an opportunity to form a

less productive team in which she exerts relatively less e↵ort. Hence, there is too much

inequality in e↵ort within teams. While the former ine�ciency suggests conditions under

which self-organized teams are not optimal, the latter provides foundation for targeted

management interventions that designate specific workers as project leaders, as in the

case of Oticon.

We conclude by commenting on the structure of our model leading to our results and

on the extensions we have considered.

Gaussian Environment. Wemodel information acquisition using a canonical quadratic-

Gaussian set-up; workers obtain normally distributed signals tominimize a quadratic loss

function and have normally distributed prior beliefs.22 In this environment, the expected

21A careful reader should note that while we have demonstrated that Stratification Ine�ciency and
Asymmetric Ine�cient CSPE occur in a range of non-trivial scenarios, we have not argued that they are
the only sources of ine�ciency in our model. This claim is false precisely because welfare ine�ciency may
exist within a team. In particular, a PEN may be selected within a team that is welfare dominated by an-
other PEN. As the focus of our analysis is on ine�cient sorting, however, we do not attempt to characterize
such ine�ciencies. We conjecture, but have not proven that, taking care of within-team ine�ciency, the
ine�ciencies we have identified are exhaustive.

22Our results generalize to the case in which the joint distribution of signals and states for any number
of draws is elliptical with finite second moments. In this case, the conditional expectation is still linear in
signals and our characterization results will possess the same qualitative features.
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value of the posterior distribution simplifies to the negative posterior variance (Lemma

1). Hence, we can derive comparative statics using a closed-form utility function. Our

analysis uncovers how correlation between teammates a↵ects the symmetry of the PEN

correspondence–that we can order equilibria by symmetry in terms of correlation is the

crucial property for our main ine�ciency results. In Online Appendix D, we consider a

binary signal, binary state environment, as is common in applied theoretical work. While

the intuition that perfect negative correlation leads to perfect learning does not hold (be-

cause such correlation is statistically infeasible), it is still the case that low correlation in

state-conditional signals is desirable. Consequently, the marginal value of a draw, and

hence equilibrium predictions, satisfy the same properties as in the Gaussian case.

Draw Procedure. The procedure through which workers acquire and share information

possesses two features which deserve comment. First, workers choose numbers of signals

simultaneously. Methodologically, we abstract from dynamic considerations in order to

isolate the key property relevant for team formation–namely, the relationship between

correlation and the symmetry of equilibrium strategies. Nonetheless, it is worthwhile

to explore the extent to which the intuitions we have provided hold in a more complex

dynamic game. Towards an answer, in Online Appendix E, we study a finite extensive

form game with sequential decisions. Our main conclusion is that for many, but not all,

correlations there is a Subgame Perfect Equilibrium of the sequential game that coincides

with the most symmetric equilibrium of the simultaneous game. Nonetheless, it may be

the case that an equilibrium of the simultaneous game is more asymmetric than the most

symmetric equilibrium of the extensive form game. Hence, sequential decisions do not
eliminate asymmetric equilibria, the driving force behind Asymmetric E↵ort Ine�ciency.

Second, the correlation between signals di↵ers across “periods”; if (ni,nj ) draws are

taken in team (i, j) with correlation ⇢, and nj > ni > 0, then the first ni signals drawn by

each worker are correlated according to ⇢ and the last nj �ni signals are conditionally in-

dependent. We assume that pairwise correlation a↵ects the value of e↵ort within, but not

across, periods in order capture the economics of a situation in which joint and simulta-

neous e↵ort is a↵ected by complementarities, while unilateral e↵ort is not. In particular,

it would not be equivalent to analyze a continuous choice model in which workers first

choose precisions and then share a single signal. In this set-up, within and across period

e↵ects cannot be disentangled.23

23Nonetheless, a kind of “continuous draw” set-up may be imagined as follows. Suppose, relative to a
single signal of fixed precision, a worker can draw many signals with lower precisions, but with the cost of
information held constant. In Online Appendix F, we analyze the limit model obtained when such preci-
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Size-Two Teams. We follow the matching literature in assuming that workers form

teams with at most two workers. This restriction allows us to obtain a clean character-

ization of within-team equilibria; a single pairwise correlation coe�cient captures in-

tuitively the e↵ects of skill complementarity. Extending the analysis to teams of more

than two workers is not without its challenges. In subsequent work, Segura-Rodriguez

(2019) shows that a team of three workers can perfectly learn the state even if each worker

produces a single signal and all three signals are highly correlated. Characterizing within-

team equilibria with many workers and exploring the implications of these equilibria for

team formation is an interesting open problem we leave for future research.

Optimality of Decentralized Sorting. Our current framework illustrates the ways in

which decentralized sorting within firms may be ine�cient. We have assumed through-

out, however, that workers are compensated equally for team output and that manage-

ment does not play an active role in the assignment of workers to teams. In subsequent

work, Kambhampati and Segura-Rodriguez (2020) study the problem of optimally as-

signing workers to teams and designing incentive contracts in the presence of both moral

hazard and adverse selection. They characterize when creating incentives in a centralized

organization becomes so costly that a profit-maximizing manager prefers to allow work-

ers to sort themselves into teams and compensate them equally on the basis of team out-

put alone. Nonetheless, the environment in Kambhampati and Segura-Rodriguez (2020)

is simpler than the one considered in this paper and so their results do not directly ap-

ply. A complete analysis of the tradeo↵ between centralization and decentralization in

informational settings thus awaits future research.
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A Proofs

A.1 Proof of Lemma 1

For any measurable function g : X ! R, where X is the set of possible realizations of

signals,

�Ex,✓

h
(g(x)�✓)2

i
 �Ex

h
(E(✓ | x)�✓)2

i
= �Ex

h
E✓

h
(E(✓ | x)�✓)2 | x

ii
= �Var(✓ | x).

The inequality follows because E
h
(b �✓)2|x

i
is minimized by setting b = E[✓|x]. The first

equality follows from the Law of Iterated Expectations. The second equality follows from

the definition of conditional variance.
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Let ⌃ be the correlation matrix of joint signals x, and 1N be a N -column vector of

1s. The likelihood function of the signals is, p(x|✓) = det(2⇡��2⌃)�
1
2 exp

 
� 1

2

h
(✓ · 1N �

x)0��2⌃�1(✓ · 1N � x)
i!

and the prior density is, p(✓) = (2⇡��2)�
1
2 exp

 
� 1

2

h
(✓ �µ✓)2��2✓

i!
.

By Bayes rule, the posterior distribution of ✓|x is proportional to,

p(x|✓)p(✓) / exp
 
� 1
2

h
(✓ �µ✓)2��2✓ + (✓ · 1N � x)0��2⌃�1(✓ · 1N � x)

i!

/ exp
 
� 1
2

h
✓2(��2✓ +��210N⌃

�11N )�✓(2µ✓��2✓ +��2(x0⌃�11N +10N⌃
�1x)

i!

/ exp
 
� 1
2

h
✓ �A

i0
B
h
✓ �A

i!
,

where B = (��2✓ + ��210N⌃
�11N ), A = B�1(µ✓��2✓ + ��210N⌃

�1x), and the proportionality

operator eliminates positive constants. Since the derived expression is the kernel of a

normal distribution, Var(✓ | x) = B�1.

We construct B�1 when workers take nj � ni draws. The prior covariance matrix, ⌃�1,

is block diagonal with ni blocks of the form,

⌃0 =

0
BBBBBB@
1 ⇢

⇢ 1

1
CCCCCCA ,

and nj � ni scalar blocks each equal to 1. The inverse of a block diagonal matrix is equal
to the block diagonal matrix formed by inverting each block. Then, 10N⌃

�11N is equal to
ni102⌃

�1
0 12 + (nj �ni). Since,

⌃�10 =
1

1� ⇢2

0
BBBBBB@
1 �⇢
�⇢ 1

1
CCCCCCA ,

we have, 102⌃
�1
0 12 = 2

1+⇢ . Hence,

Var(✓ | ni,nj ) = B�1 =
⇣
��210N⌃

�11N +��2✓

⌘�1
=

 
��2

 
2ni
1+ ⇢

+ (nj �ni)
!
+��2✓

!�1
.

Finally, if ⇢ = �1, the average of two signals equals the realized state ✓, and so the poste-

rior variance is zero.
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A.2 Proof of Proposition 1

A.2.1 Existence of Nash Equilibrium

Since information production exhibits diminishingmarginal returns, eventually, themarginal

value of producing a signal must be less than the marginal cost regardless of the behavior
of one’s partner. Therefore, it is without loss to bound the action space.

Lemma 2. There is a positive integer N̄ such that for each positive integer n � N̄ , n is a not
best response by worker i to any strategy by worker j .

Proof. For ni  nj ,

Var(✓ | (ni � 1,nj ))�Var(✓ | (ni,nj )) =
⇣ 1�⇢
1+⇢

⌘
��2

⇣⇣
ni

1�⇢
1+⇢+nj+1� 2

1+⇢

⌘
��2+��2✓

⌘⇣⇣
ni

1�⇢
1+⇢+nj

⌘
��2+��2✓

⌘

is strictly decreasing in nj and in ni because
1�⇢
1+⇢ > 0. For ni � nj +1,

Var(✓ | (ni � 1,nj ))�Var(✓ | (ni,nj )) = ��2⇣⇣
nj

1�⇢
1+⇢+ni�1

⌘
��2+��2✓

⌘⇣⇣
nj

1�⇢
1+⇢+ni

⌘
��2+��2✓

⌘

is strictly decreasing in ni and in nj , again because 1�⇢
1+⇢ > 0.

Therefore, the marginal value of worker i is strictly decreasing in nj , so that worker

i’s best response is decreasing in nj . We only need to prove that worker i’s best response

to 0 draws by worker j is finite. It su�ces to show that there is an ni 2 Z+ such that

Var(✓ | (ni � 1,0))�Var(✓ | (ni,0)) is smaller than c(1). We have

Var(✓ | (ni � 1,0))�Var(✓ | (ni,0)) = 1
(ni�1)��2+��2✓

� 1
ni��2+��2✓

< �2

ni (ni�1) .

Then, it is su�cient to have ni >
�2

c(1)ni
+ 1. When ni >

�2

c(1) + 1 we obtain the desired

inequality. Define N̄ 2N as the smallest value that satisfies the inequality.

Since we can bound the action space, we may redefine the game as a finite exact po-

tential game to show that there exists a pure strategy Nash equilibrium.

Lemma 3. There exists a pure strategy Nash equilibrium of the Production Subgame.

Proof. Given that no worker optimally produces a number of signals larger than N̄ , we

can redefine the Production Subgame as the finite normal form game ({0,1, . . . , N̄ }2, {vi ,vj }).
Define the potential function,

�(ni,nj ,⇢ij ) = �Var(✓ | (ni,nj ))� c(ni)� c(nj ),
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where ⇢ij is the correlation for team (i, j). It is a potential function since

vi(ni,nj )� vi(n0i ,nj ) = �Var(✓ | (ni,nj ))� c(ni) +Var(✓ | (n0i ,nj )) + c(n0i)

=�(ni,nj ,⇢ij )��(n0i ,nj ,⇢ij )

vj(ni,nj )� vj(ni,n0j ) = �Var(✓ | (ni,nj ))� c(nj ) +Var(✓ | (ni,n0j )) + c(n0j )

=�(ni,nj ,⇢ij )��(ni,n0j ,⇢ij ).

Hence, the redefined game is a finite exact potential game and is guaranteed to have a

pure strategy Nash equilibrium by Corollary 2.2 of Monderer and Shapley (1996).

A.2.2 Existence of Pareto-E�cient Nash Equilibrium

By Lemma 2, we can conclude that the set of Nash Equilibria is finite. Consider the subset

of equilibria that maximizes worker i’s payo↵. Choose any equilibrium that (weakly)

maximizes worker j’s payo↵ within this subset. The chosen equilibrium must be Pareto-

E�cient. Hence, a Pareto-E�cient Nash Equilibrium exists.

A.2.3 Comparative Statistics Preliminary Lemmas

Lemma 4 states that the marginal value of a signal by a leader is increasing in ⇢.24

Lemma 4 (Leader Comparative Statics in ⇢). For ni > nj , MV (ni ;nj ,⇢) is increasing in ⇢.

Proof. For ni > nj ,

@MV (ni ;nj ,⇢)
@⇢

/
  
nj

1� ⇢
1+ ⇢

+ni

!
��2 +��2✓

!
+
  
nj

1� ⇢
1+ ⇢

+ni � 1
!
��2 +��2✓

!
> 0.

The same property does not hold for a follower.25 We prove the follower’s marginal

benefit is strictly concave in the pairwise correlation ⇢ and has a unique maximizer. For

the following lemmas it is useful to define the signal-to-prior variance ratio � := �2

�2
✓
.

Lemma 5 (Follower Comparative Statics in ⇢). For ni < nj with nj � 1, MV (ni + 1;nj ,⇢) is
strictly concave in ⇢ with unique maximizer,

⇢̃(ni +1,nj ,�) =

⇣
nj +� �

p
ni(ni +1)

⌘2

�(nj +�)2 +ni(ni +1)
.

24Recall, a leader is a teammate taking weakly more draws than her partner.
25Recall, a follower is a teammate taking strictly fewer draws than her partner.
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Proof. If worker j produces nj signals, the marginal benefit of the n + 1-th signal for

worker i, with n < nj , is equal to,

MV (n+1;nj ,⇢) =
1�⇢
1+⇢⇣

n 2
1+⇢+nj�n+�

⌘⇣
(n+1) 2

1+⇢+nj�n�1+�
⌘ .

Di↵erentiating with respect to ⇢,

@MV (n+1;nj ,⇢)
@⇢

=
2�2

⇣
�(nj +�)2(1 + ⇢)2 +n(n� 1)(1� ⇢)2

⌘

⇣
2n+ (nj �n+�)(1 + ⇢)

⌘2 ⇣
2(n+1) + (nj �n� 1+�)(1 + ⇢)

⌘2 .

Di↵erentiating again with respect to ⇢,
@2MV (n+1;nj ,⇢)

@⇢2
/ 4n(n+1)

⇣
�(nj +�)2(1 + ⇢)�n(n� 1)(1� ⇢)

⌘

+n(n+1)
h
2n(nj �n� 1+�) + 2(n+1)(nj �n+�) + (nj �n� 1+�)(nj �n+�)

i
(2⇢ � 2) < 0.

Hence, the marginal value MV (n + 1;nj ,⇢) is strictly concave in ⇢. The unique maxi-

mizer ⇢̃ must satisfy,

(nj +�)2(1 + ⇢̃)2 = n(n+1)(1� ⇢̃)2,

a quadratic equation in ⇢ with roots,

⇢ =

⇣
nj +� ±

p
n(n+1)

⌘2

�(nj +�)2 +n(n+1)
.

Both solutions are negative because the denominator is negative. However, the smaller

root (corresponding to the “plus” in the numerator) is less than �1 and therefore infea-

sible. Since n+ 1  nj , the other root (corresponding to the “minus” in the numerator) is

greater than �1. Set ⇢̃(n+1,nj ,�) =
⇣
nj+��

p
n(n+1)

⌘2

�(nj+�)2+n(n+1) .

We nowmake stepwise comparisons between themarginal value of a signal by a leader

and the marginal value of a signal by a follower. Workers initially produce n � 1 signals.

The leader’s marginal value is the payo↵ of producing an n-th signal. The follower’s

marginal value is the payo↵ of producing an n-th signal, given that the leader already

produced n signals. Lemma 6 states that for any number n � 1 and signal-to-prior vari-

ance ratio � = �2

�2
✓
, there is a unique correlation, ⇢̂(n,�), below which the marginal value

of the leader is less than the marginal value of the follower, and above which the opposite

holds.
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Lemma 6 (Leader-Follower MV Comparison 1). Fix nj > ni with nj � 1 and � . Then,

MV (nj ;ni,⇢)
|          {z          }

Marginal Value Leader

< MV (ni +1;nj ,⇢)
|               {z               }
Marginal Value Follower

if and only if,

⇢ < ⇢̂(ni +1,nj ,�) =
�(� +ni +nj ) +

q
(� +ni +nj )2 � 4(� +nj �ni � 1)

2(� +nj �ni � 1)
< 0.

Proof.

MV (ni +1;nj ,⇢) �MV (nj ;ni ,⇢)

,
1�⇢
1+⇢⇣

ni
2

1+⇢ +nj �ni +�
⌘⇣
(ni +1) 2

1+⇢ +nj �ni � 1+�
⌘ � 1⇣

ni
2

1+⇢ +nj �ni � 1+�
⌘⇣
ni

2
1+⇢ +nj �ni +�

⌘

,1� ⇢
1+ ⇢

 
ni

2
1+ ⇢

+nj �ni � 1+�

!
�

 
(ni +1)

2
1+ ⇢

+nj �ni � 1+�

!

, 0 � (� +nj �ni � 1)⇢2 + (� +ni +nj )⇢ +1.

The last inequality involves a quadratic concave function in ⇢. The roots are:

⇢+(ni,nj ) =
�(� +ni +nj ) +

q
(� +ni +nj )2 � 4(� +nj �ni � 1)

2(� +nj �ni � 1)

⇢�(ni,nj ) =
�(� +ni +nj )�

q
(� +ni +nj )2 � 4(� +nj �ni � 1)

2(� +nj �ni � 1)
.

When ni � 1 the expression inside the root is greater than (� +nj �ni)2, so that ⇢�(ni,nj ) <

�1 for all ni � 1. If ni = 0, the expression inside the root is equal to (� + nj � 2)2. If

� + nj < 2 then ⇢�(0,nj ) < �1, and if � + nj � 2, then ⇢�(0,nj ) = �1. Therefore, ⇢� is an

infeasible solution.

It is clear that ⇢+(ni,nj ) < 0 for all ni and nj , and

⇢+(0,nj ) =
�(� +1) +

p
(� � 1)2

2�
=

8>>>>><>>>>>:

�2
2(�+nj�1) > �1 if � +nj � 2

2�2(�+nj )
2(�+nj�1) = �1 if � +nj < 2.

Further, when ni � 1 the expression inside the root is larger than (� + nj � 2)2. Therefore,
⇢+(ni,nj ) > �1 for all nj > ni � 0. Then ⇢+ is a feasible solution and we set ⇢̂(ni + 1,nj ) =
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⇢+.

Lemma 7 states that if � is su�ciently large, the pairwise correlation at which the

marginal value of a follower is maximized, ⇢̃(ni,ni ,�), is less than ⇢̂(ni,�). We use this

property in the next section to order equilibria in terms of their symmetry.

Lemma 7 (Leader-Follower MV Comparison 2). Fix nj > ni � 1. Then for � � 1

⇢̃(ni +1,nj ,�)  ⇢̂(ni +1,nj ,�).26

Proof. Define the function g(ni + 1,nj ,�) := ⇢̃(ni + 1,nj ,�) � ⇢̂(ni + 1,nj ,�). We want to

show that g(ni + 1,nj ,�)  0 for any nj > ni � 1 and any � � 1. It su�ces to show that

g(ni +1,nj ,1)  0 for any nj > ni � 1 and then show that
@g(ni+1,nj ,�)

@� < 0 for any nj > ni � 1.

We first show that g(ni +1,nj ,1)  0. Notice,

g(ni +1,nj ,1) =

⇣
nj +1�

p
ni(ni +1)

⌘2

�(nj +1)2 +ni(ni +1)
�
�(1 +ni +nj ) +

q
(1 +ni +nj )2 � 4(nj �ni)

2(nj �ni)
 0,

if and only if,

2(nj �ni )
⇣
nj +1�

p
ni (ni +1)

⌘2
+
✓
(1 +ni +nj )�

q
(1 +ni +nj )2 � 4(nj �ni )

◆⇣
�(nj +1)2 +ni (ni +1)

⌘

2(nj �ni )
⇣
�(nj +1)2 +ni (ni +1)

⌘  0.

For any nj > ni � 1, the denominator is negative. Hence, the expression holds if and only
if,

2(nj �ni )
⇣
nj +1�

p
ni (ni +1)

⌘2
+
✓
(1 +ni +nj )�

q
(1 +ni +nj )2 � 4(nj �ni )

◆⇣
�(nj +1)2 +ni (ni +1)

⌘
� 0.

Dividing by nj +1�
p
ni(ni +1) > 0, we see that the inequality holds if and only if

2(nj �ni )(nj +1�
p
ni (ni +1))�

✓
1+ni +nj �

q
(1 +ni +nj )2 � 4(nj �ni )

◆
(nj +1+

p
ni (ni +1)) � 0

, (nj +1)
✓
nj � 3ni � 1+

q
(1 +ni +nj )2 � 4(nj �ni )

◆
�

p
ni (ni +1)

✓
3nj �ni +1�

q
(1 +ni +nj )2 � 4(nj �ni )

◆
.

Since nj � ni +1, we have that nj +1 � 2ni �
p
ni(ni +1)+2. So, it is su�cient to show that

(2ni �
p
ni (ni +1) + 2)

✓
nj � 3ni � 1+

q
(1 +ni +nj )2 � 4(nj �ni )

◆

�
p
ni (ni +1)

✓
3nj �ni +1�

q
(1 +ni +nj )2 � 4(nj �ni )

◆

,(ni +1)
✓
nj � 3ni � 1+

q
(1 +ni +nj )2 � 4(nj �ni )

◆
� 2

p
ni (ni +1)(nj �ni ) � 0.

26For ni = 0, ⇢̃(ni ,nj ,�) = �1, so the inequality is satisfied for any � .
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To complete the argument, we show that (i) the left-hand side of the last expression is

positive when nj = ni +1 and (ii) increasing in nj . To show (i), notice that when nj = ni +1

the expression on the left-hand side is positive if and only if

�ni +
q
n2i +2ni �

r
ni

ni +1

, 2(ni +1)� 1
ni +1

� 2
q
n2i +2ni

, 1
(ni +1)2

� 0,

where the second and third lines are the result of taking squares on both sides and sim-

plifying. Clearly, the last inequality always holds. To show (ii), notice that the derivative

of the left-hand side with respect to nj is positive if and only if

(ni +1)

0
BBBBBBBB@
1+

ni +nj � 1q
(ni +nj +1)2 � 4(nj �ni)

1
CCCCCCCCA
� 2

p
ni(ni +1).

Since nj > ni , the left-hand side of this expression is greater than
2(ni+1)(ni+nj )

ni+nj+1
. Hence, it is

su�cient to show that,
ni +nj

ni +nj +1
�

r
ni

ni +1

, n2j � ni(1 +ni),

where the second line is the result of taking squares on both sides and simplifying. But,

this holds is as long as nj � ni+1. We have thus completed the proof that g(ni+1,nj ,1)  0.

To show that
@g(ni+1,nj ,�)

@� < 0, we first observe that for all � � 1,

@⇢̂(ni+1,nj ,�)
@� /

✓
�1+

⇣
(� +nj +nj i)2 � 4(� +nj �ni � 1)

⌘�0.5
2(� +ni +nj � 2)

◆
2(� +nj �ni � 1)

�2
✓
�(� +nj +ni ) +

q
(� +nj +ni )2 � 4(� +nj �ni � 1)

◆

= 2(2nj +1)
q
(� +nj +ni )2 � 4(� +nj �ni � 1) + 2(ni +nj +�)2 � 8(nj +1) > 0.

The inequality follows because the first term is positive and the second term minus the

third term is non-negative: 2(ni + �)2 � 8 if ni = 0, and greater than 2(2ni + 1)2 � 8(ni + 1)

if ni > 0. Second, we observe that for all � � 1,

@⇢̃(ni+1,nj ,�)
@� / ni(ni +1)� (nj +�)

p
ni(ni +1) < 0,
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since
p
ni(ni +1) > ni , and nj � ni +1.

A.2.4 Proof of 1. and 2.

By Assumption 1, for ⇢ = �1 and correlations close to it, both workers produce at least

one signal. Since MV (2;1,⇢) is close to 0, for correlations close to �1, no worker has an

incentive to produce a second signal when both are producing a single signal. Hence,

there is a threshold ⇢⇤ > �1 below which the unique equilibrium is symmetric.

As ⇢ approaches 1, the marginal benefit of matching the first signal of one’s teammate,

MV (1;1,⇢), approaches zero. By continuity and monotonicity of MV (1;1,⇢) in ⇢, there

exists a unique ⇢⇤⇤ < 1 such that MV (1;1,⇢⇤⇤) = c(1). Since, by the proof of Lemma 2,

MV (1;n,⇢) = c(1) is decreasing in ⇢ when n � 1, the follower in the team has no incentive

to match the leader’s first signal. Hence, for ⇢ > ⇢⇤⇤ one worker produces zero signals

and the other produces a strictly positive number of signals. This PEN is unique up to

identity, except in the case in which the leader is indi↵erent between two numbers of

signals.

A.2.5 Proof of 3. and 4.

For this proof, we use the Sequential Response Algorithm:

1. Set (n0i ,n
0
j ) = (0,0) and t = 1.

2. IfMV (t;nt�1j ,⇢) > c(t)� c(t �1), set nti = nt�1i +1 and move to step 3, replacing t with

t +1. If not, set nti = nt�1i and move to step 4, replacing t with t +1.

3. Set ntj = argmaxnnti V ar(✓ | (t,n))� c(n) and go back to step 2, replacing t with t +1.

4. (Complement E↵ect) Set (nti ,n
t
j ) = (nt�1i + 1,nt�1j + 1) if (i) both workers are made

weakly better o↵ and (ii) the resulting profile is a Nash equilibrium. If either (i) or

(ii) is not satisfied, set (nti ,n
t
j ) = (nt�1i ,nt�1j ) and move to step 5, replacing t with t+1.

Else, repeat step 4, replacing t with t +1.

5. (Substitution E↵ect) Consider the profile (nt�11 + 1,nt�12 �n), where nt�12 �n is a best-

response by worker j given nt�11 + 1 subject to the constraint that 0  n  nt�12 . Set

(nt1,n
t
2) = (nt�11 +1,nt�12 �n) if (i) both workers are made weakly better o↵ and (ii) the

resulting profile is a Nash equilibrium. Then, repeat step 5, replacing t with t + 1.

If either (i) or (ii) are not satisfied, exit the algorithm and return (nt�11 ,nt�12 ).
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The algorithm terminates in finite time for the following two reasons. First, the algorithm

eventually exits the loop between step 2 and step 3 because the marginal value of a signal

approaches zero and costs are increasing. Second, the algorithm eventually exits step 4

and step 5 because, by Lemma 2, there is a positive integer above which worker 1 no

longer wants to produce a signal, no matter the number of signals produced by worker 2.

Lemma 8. The Sequential Response Algorithm finds a PEN that minimizes
���ni �nj

���.

Proof. We first claim that if step 4 is reached in iteration t + 1, then (nti ,n
t
j ) is a Nash

equilibrium. To see this, note that, after step 1, the algorithm cycles between step 2 and

step 3. We make two observations about this cycle. First, worker j either exits the loop

having never produced a signal or she matches worker i’s signal the first time step 3 is

reached.27 Second, if worker j does not match worker i’s signal in step 3, then she never

increases the number of signals she acquires in any future iteration in which step 3 is

reached (her marginal value decreases each time step 3 is reached).

When step 4 is reached, worker j does not have a profitable deviation downwards by

construction. Checking that worker i has no profitable downward deviation is more in-

volved. First, suppose step 3 was never reached. Then, worker i exits having produced

zero signals and cannot reduce the number of signals she produces further. Second, sup-

pose step 3 was reached at least once. If during last time step 3 was reached worker j

matched worker i’s signal, then symmetry ensures that worker i has no profitable de-

viation. If during the last time step 3 was reached, worker j best responded by weakly

decreasing the number of signals she produced, then the marginal value of information

for worker i is larger after j’s decision than before. Once again, worker i has no profitable

downward deviation.

We now check for profitable upward deviations. When step 4 is reached, worker i does

not have a profitable deviation upwards by construction. Moreover, ntj  nti . If ntj = nti ,

then j’s incentives are the same as i’s and so she has no profitable deviation upwards. If

ntj < nti , however, she has no incentive to produce ntj + 1 signals by construction. More-

over, since the marginal value of information is decreasing in the number of signals she

produces, she does not want to produce any larger number of signals either.

27To understand why, consider the first time step 2 is reached. Worker i either (i) produces zero signals
or (ii) produces one signal. In case (i), the algorithm proceeds to step 4 with both workers having produced
zero signals. In case (ii), the algorithm proceeds to step 3. If worker j then matches worker i’s first signal,
we are done. Otherwise, worker j best responds by producing zero signals. But if she produces zero signals,
she must exit the loop having produced zero signals; each future iteration at which step 3 is reached, the
marginal value of producing a strictly positive number of signals decreases.
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then our second observation about the algorithm suggests that ntj + 1 was not prof-

itable. But, then, any larger number of signals is also not profitable. Hence, worker j has

no profitable deviation upwards. We have thus established that the profile entering step

4 is a Nash equilibrium.

Step 4 and step 5 ensure that the algorithm finds a PEN. That this PEN is the most

symmetric follows from the incremental construction in the cycle between step 2 and

step 3.

The proof consists of two steps. First, we argue that if (n1,n2) with n1 > n2 is a PEN for

correlation ⇢, then for correlation ⇢0 > ⇢ there exists an equilibrium (n01,n
0
2) with n01 � n1

and n02  n2. Second, we argue that if there is no symmetric PEN at ⇢, then for ⇢0 > ⇢ there

is no symmetric PEN as well. These two properties together imply the result.

First, suppose that for correlation ⇢ there is a PEN (n1,n2) with n1 > n2. Then, it has

to be that

MV (n1;n2,⇢) �MV (n2 + 1;n1,⇢).

Lemma 6 and Lemma 7 imply that ⇢ > ⇢̂(n2 + 1,n1,�) > ⇢̃(n2 + 1,n1,�). Hence, by Lemma

5, for any correlation ⇢0 > ⇢,MV (n2+1;n1,⇢0) <MV (n2+1;n1,⇢). Pick ⇢0 > ⇢ and start the

Sequential Response Algorithm at step 3. Since the marginal value of draw n2 +1 is smaller

at ⇢0 than at ⇢, the optimal response of player 2 to n1 draws is smaller than or equal to

n2 when the correlation is ⇢0 instead of ⇢. Continuing with the algorithm, we find a PEN

(n01,n
0
2). Since the number of signals produced by player 1 can only increase throughout

the algorithm and the marginal value of a signal by player 2 decreases in the number of

signals produced by player 1, we conclude that n01 � n1 and n02  n2.

Second, suppose that for correlation ⇢ there is no symmetric PEN. Then, using the

Sequential Response Algorithm, there must be an iteration t at which nt2 < t and nt1 = t.

Since player 1 has taken draw t, it means that

MV (t; t � 1,⇢) �MV (t; t,⇢).

Then, Lemma 6 and Lemma 7 imply that ⇢ > ⇢̂(t, t,�) > ⇢̃(t, t,�). Hence, by Lemma 5, for

any correlation ⇢0 > ⇢, MV (t; t,⇢0) < MV (t; t,⇢). Therefore, at iteration t of the Sequential
Response Algorithm when the pairwise correlation is ⇢0, it must be that nt2 < t as well. Fur-

thermore, it must be that nt1 = t; by Lemma 4, the marginal value of draw t for player 1 is

larger at correlation ⇢0 than at correlation ⇢. Since (nt1,n
t
2) is asymmetric, and any asym-

metric profile at any iteration of the algorithm stays asymmetric, there is no symmetric
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PEN.

A.3 Proof of Proposition 2

The following algorithm finds a Pareto-E�cient CSPE:

1. There are
�4
2
�
= 6 possible two-worker teams. Within each of these teams, select a

PEN in which the leader obtains the highest possible payo↵. Among the set of all of

these teams, identify the team, say (1,2), in which the leader, say worker 1, obtains

a higher payo↵ than any leader in any other team. If the PEN played in this team,

n⇤(1,2), yields the leader a lower payo↵ than if she works alone, then in the unique

CSPE each worker is alone and chooses an optimal number of signals. If this is not

the case, fix the PEN n⇤(1,2) and set µ(1) = 2. Proceed to the next step.

2. Fix n⇤(1,3), n⇤(1,4), n⇤(2,3), and n⇤(2,4) so that 1 and 2 are leaders in every PEN

in every team to which they are not assigned. Fixing these PEN, worker 1 has no

incentive to deviate from her current team since, by construction, she obtains a

higher payo↵ than any leader in any team playing any PEN. And as worker 2 obtains

a weakly higher payo↵ than worker 1 (she is acquiring weakly fewer signals), she

has no incentive to deviate as well. Therefore, neither worker 3 nor worker 4 can

persuade worker 1 or worker 2 to form a deviating team. If there is a PENwithin the

team (3,4) that gives to both workers a higher utility than working alone, let µ(3) = 4

and choose this PEN. Otherwise, let µ(3) = 3 and µ(4) = 4 and let each choose an

optimal number of signals. In either case, we obtain a CSPE (µ, {n⇤(i, j)}i,j2N ). If the

CSPE is Pareto-E�cient, we are done.

3. If the CSPE found in Step 2 is not Pareto-E�cient, there is another matching µ̂ 2M
and a collection of “on-path” PEN, n̂(i, µ̂(i))i2N , such that, for each worker,

vi(n̂(i, µ̂(i))) � vi(n⇤(i,µ(i))),

and the inequality is strict for at least one worker. Consider the profile (µ̂, {ñ(i, j)}i,j2N )

where (ñi , ñj ) = (n̂i , n̂j ) if j = µ̂(i) and (ñi , ñj ) = (n⇤i ,n
⇤
j ) otherwise. This profile is a

CSPE; on-path, each worker obtains a higher payo↵ than in the original CSPE and

each worker has the same deviations as before. If it is not Pareto-E�cient, then re-

peat this step until a Pareto-E�cient CSPE is found. As there is a finite number of

CSPE, the algorithm must end in a finite number of iterations.
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A.4 Proof of Proposition 3

We make use of the following Lemma.

Lemma 9. For any correlations, there exists a K > 0 such that any worker in a size-two team
in which her partner produces a strictly positive number of signals strictly prefers that team to
working alone.

Proof. Suppose worker i and worker j play an arbitrary PEN (a,b), with a,b > 0. Suppose

worker i optimally produces c signals alone. Clearly, absent membership costs, worker

i is strictly better o↵ in a team with worker j in which (c,b) is played. But, since (a,b) is

a PEN, she is weakly better o↵ under (a,b) than (c,b), and hence strictly better o↵ under

(a,b) than working alone. Hence, if the team membership cost is below some number

Kij > 0, the cost of forming the team is strictly smaller than the benefit for both i and j .

Choosing K =min
i,j,i

Kij > 0 completes the proof.

1. We select correlations ⇢12, ⇢13, ⇢14, ⇢23, ⇢24, and ⇢34 so that there is a CSPE in which

teams (1,2) and (3,4) form, but for which there is a matching forming teams (1,3)

and (2,4) and a collection of PEN that strictly increases welfare. By Assumption 1,

the first two results of Proposition 1 apply. Hence, there exists a correlation ⇢⇤ > �1
below which there is a unique and symmetric PEN in which each worker produces

a strictly positive number of signals and a correlation 1 > ⇢⇤⇤ � ⇢⇤ above which there

is a unique and completely asymmetric PEN in which one worker produces zero

signals. We utilize these correlations in the proof.

First, choose ⇢12 < ⇢⇤ so that the marginal value of a signal for each worker in the

unique and symmetric PEN (n,n), n > 0, is strictly smaller than the marginal cost

c(n + 1) � c(n). Second, choose ⇢34 such that ⇢12 < ⇢34 < ⇢⇤ and the unique and

symmetric PEN is (n,n) as well; by continuity of the marginal value of information,

such a correlation is guaranteed to exist. Third, choose ⇢13,⇢24 2 [⇢12,⇢34] close to

⇢12 so that (n,n) is the unique PEN in teams (1,3) and (2,4). Fourth, choose ⇢14
and ⇢23 greater than ⇢⇤⇤ and select an arbitrary PEN in these teams. This ensures

that teams (1,4) and (2,3) can never form in any CSPE; due to membership costs,

the worker producing a strictly positive number of signals would prefer to work

alone. Finally, utilizing Lemma 9, choose K > 0 small enough that any worker in a

size-two team in which her partner produces a strictly positive number of signals

strictly prefers that team to working alone.
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By construction, the unique PEN in teams (1,2), (1,3), (2,4), and (3,4) is (n,n). Fix-

ing this strategy profile, we observe that payo↵s for any given worker are strictly

decreasing in pairwise correlation,

@v(n,n;⇢)
@⇢

=
�2n��2⇣

2n��2 + (1+ ⇢)��2✓

⌘ < 0.

Hence, worker 1 and worker 2 each obtain a higher payo↵ together than in a team

with either worker 3 or worker 4, and, by our restriction on K > 0, a strictly higher

payo↵ than when alone. Team (1,2) must therefore form in any CSPE. This leaves

worker 3 and worker 4 with two options: form a team or work alone. But, again, the

two workers prefer to form a team by our restriction on K > 0.

Notice, however, that if ⇢13 and ⇢24 are close enough to ⇢12, the gain from matching

worker 1 (2) and worker 3 (4) (and selecting the unique PEN in these teams) strictly

increases the total sum of utilities. Hence, we shown that our original CSPE is

welfare dominated. Further, as incentives are strict everywhere, for ✏ > 0 small,

there is an ✏-ball around our chosen correlations for which the same properties are

satisfied.

2. We construct an Asymmetric E↵ort Ine�cient CSPE in which teams (1,3) and (2,4)

form. We again select correlations ⇢12, ⇢13, ⇢14, ⇢23, ⇢24, and ⇢34. By Assumption 1,

the first two properties of Proposition 1 hold. Hence, we can choose correlations ⇢14
and ⇢23 above ⇢⇤⇤ so that teams (1,4) and (2,3) never form in any CSPE. Since �2 �
�2
✓ , the third and fourth properties of Proposition 1 hold. Moreover, by Assumption

2, we can choose correlations ⇢13 > ⇢⇤ and ⇢24 > ⇢⇤ close to ⇢⇤ in which there is a

non-trivial asymmetric PEN in which each worker does strictly better as a follower

than in the unique PEN at ⇢⇤. Fix these non-trivial PEN, n⇤(1,3) and n⇤(2,4), so that

worker 1 and worker 4 are the followers in each team. Let the payo↵ to worker 1 in

this team be denoted by u⇤1 and the payo↵ to worker 4 be denoted by u⇤4.

It remains to choose ⇢12 and ⇢34. We claim that for any small ✏ > 0, we can find

a correlation ⇢12 < ⇢⇤ such that the payo↵ to each worker in the unique symmetric

PEN in team (1,2) is u12 2 (u⇤1,u
⇤
1 � ✏). Why does such a correlation exist? First,

observe that, at ⇢ = �1, where the unique PEN is (1,1), each worker obtains a higher

payo↵ than u⇤1. Next, notice that at ⇢⇤, the payo↵ to each worker, u, is less than u⇤1.

Any payo↵ between u and u⇤1 is attainable for some ⇢ 2 [�1,⇢⇤) since (i) ⇢ decreases
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below ⇢⇤ payo↵s increase, fixing a strategy profile and (ii) the number signals each

worker produces decreases as ⇢. (ii) implies that any discontinuities in the payo↵
correspondence must cause both workers to su↵er a decrease in payo↵s, as in Figure

3, thereby eliminating the possibility that the interval (u⇤1,u
⇤
1 � ✏) is “jumped over”.

A similar argument ensures we can find a correlation ⇢34 < ⇢⇤ such that the payo↵
to each worker in the unique symmetric PEN in team (3,4) is u34 2 (u⇤4,u⇤1 � ✏).

We argue that the matching µ satisfying µ(1) = 3 and µ(2) = 4, together with any col-

lection of PEN that includes n⇤(1,3) and n⇤(2,4), is a CSPE. By construction, worker

1 (worker 4) is strictly better o↵ playing n⇤(1,3) (n⇤(2,4)) than if they formed a team

with worker 2 (worker 3) and played the unique PEN in this team. Further, worker

2 (worker 3) prefers to match with worker 1 (worker 4) than to remain alone.

However, for ✏ > 0 small enough, it is clear that the total sum of utilities is higher

when matching worker 1 with worker 2 (worker 3 with worker 4) and playing the

unique PEN in that team. Hence, the CSPE is welfare ine�cient. Moreover, in these

welfare-improving teams, worker 1 and worker 4 each exert relatively more e↵ort
than their partners in the original CSPE. Hence, the CSPE we constructed is Asym-

metric E↵ort Ine�cient. Again, as incentives are strict everywhere, for ✏ > 0 small,

there is an ✏-ball around our chosen correlations for which the same properties are

satisfied.
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Online Appendix:
“Matching to Produce Information: A

Model of Self-Organized Research Teams”

Ashwin Kambhampati*, Carlos Segura-Rodriguez† and Peng Shao‡

A Assortative Matching

Chade and Eeckhout (2018) study optimal matching in an information environment re-

lated to ours. In theirs, the correlation between signals is constant, but precisions may be

heterogeneous. They show that if utilities are transferable and each worker produces only

one signal, the reduced form utility obtained from forecasting the state is submodular for

a wide range of correlations. Therefore, if teams are composed of two workers, optimal

matching is negative assortative: the best worker matches the worst worker, the second

best matches the second worst, and so on.

In our environment, workers strategically choose the number of signals they produce

and transfers are not possible. Moreover, correlation varies, but precisions are held con-

stant. To isolate the e↵ects of the first two features of our model, we assume in this section

that precisions vary, but correlation is held to zero. Our main conclusion is that, perhaps

unsurprisingly, it need not be true that the negative assortative matching maximizes wel-

fare, nor that it emerges endogenously.1

*University of Pennsylvania, Department of Economics, The Ronald O. Perelman Center, 133 South
36th Street; Philadelphia, PA 19104, akambh@sas.upenn.edu

†Central Bank of Costa Rica, Research Department, Central Avenue and First Street, San José, 10101,
segurarc@bccr.fi.cr

‡University of Pennsylvania, Department of Economics, The Ronald O. Perelman Center, 133 South
36th Street; Philadelphia, PA 19104, pshao@sas.upenn.edu

1That utilities are nontransferable is not necessary to revert their result, but we keep it to preserve
the structure of the game we study. Following our approach, the equilibrium of the production game is
inherently ine�cient due to its public goods nature, while in a fully transferable world this ine�ciency
disappears. We focus on whether negative assortative matching is optimal given the equilibrium played
inside each team.



Suppose each worker produces conditionally independent signals with precisions ⌧1 <

⌧2 < . . . < ⌧N . As in the main text, suppose each agent receives the quadratic loss of her

team’s optimal forecast and that a team has at most two workers. Then, if workers i and j

are in a team together, and produce ni and nj signals, the utility loss associated with their

forecast is

� 1
⌧✓ +ni⌧i +nj⌧j

.

An application of Proposition 2 of Chade and Eeckhout (2018) implies that the posterior

variance is submodular in ni⌧i . Consequently, negative assortative matching with respect

to ni⌧i is optimal when workers are forced to choose one signal.

We consider what happens when i and j are free to choose the number of signals they

produce. For simplicity, suppose worker i can produce signals with unit variance, the

prior variance is equal to unity, and the cost of drawing n signals is c(n) = 0.001n2. Figure

6 presents the resulting PEN correspondence and shows that, as worker j’s signal variance

increases, equilibria become asymmetric. Why? Since each of worker j’s signals produce

less information, fixing ni and nj , the marginal value of worker j’s last signal decreases.

On the other hand, the marginal value of a signal for worker i increases. Both forces lead

to asymmetry.

The implications of this behavior for team formation are stark. Suppose that there

are four workers with variances 0.25, 0.5, 1 and 1.25. If we match the best worker (the

one with variance 0.25) with the worst worker (the one with variance 1.25), the unique

PEN played within the team is (2,0); the worst worker does not contribute at all. In

contrast, when the worst worker is paired with the worker with variance 1, the unique

PEN is (2,1). Consequently, for small team membership costs, the optimal matching is

{(0.25,1), (0.5,1.25)}, instead of the negative assortative matching, {(0.25,1.25), (0.5,1)}.
Moreover, it turns out that the optimal matching can be decentralized as a CSPE, while

the negative assortative matching cannot.
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Figure 6: PEN Correspondence when ⇢ij = 0 and ⌧i = 1.

B Analysis of the core

We first formally define the core.

Definition 1 A matching µ 2M and a collection of PEN, N ⇤ = {(n⇤
i
,n
⇤
j
)}i2N ,j=µ(i), is in the

core if there does not exist a matching, µ̂ 2 M , a worker k with match ` = µ̂(k), and a PEN

(n̂k, n̂`) for which:

vk(n̂k, n̂`) > vk(n⇤k,n
⇤
µ(k)), and

v`(n̂k, n̂`) > v`(n⇤`,n
⇤
µ(`)).

Notice, the core coincides with the definition of a CSPE if there is a unique PENwithin

every feasible team. Furthermore, every core partition is a CSPE partition. However, in

contrast to a CSPE, there may not exist any partition in the core.

We now present an example of an empty core. Suppose the four workers’ technologies

are correlated according to the network depicted in Figure 7 and the parameters of the

model are those in Table 6. With positive membership costs, no worker forms a team

with worker 4 in the core. We exhibit a preference cycle among the other three workers
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Table 6: Parameters for example with empty core.

Parameter Interpretation Value

�
2 Signal Variance 1

�
2
✓

Prior Variance 1

c(n) Cost of m Signals 0.01n2

K Cost of Teammate 0.01

3

1 2

4

0.45

0.73

0.73

0.1

0.73 0.65

Correlation PEN Payo↵s

0.1 (2,2) (�0.256,�0.256)
0.45 (1,3) (�0.238,�0.318)
0.65 (1,3) (�0.247,�0.327)
0.73 (0,3) (�0.25,�0.34)

Figure 7: Empty core.

to show that the core is empty. Suppose that team (1,2) forms and workers 3 and 4 work

alone. Then, worker 3 and worker 1 can form a mutually beneficial deviating team in

which worker 3 is the leader. Suppose that team (1,3) is formed. Then, worker 2 can

make an o↵er to the leader of team (1,3) and form a mutually beneficial deviating team

in which worker 2 is the leader. Suppose that team (3,2) is formed. Then, worker 1 can

form a mutually beneficial deviating team with its leader in which worker 1 is the leader.

Finally, if all workers remain alone, worker 1 and worker 2 can form a team and be made

better o↵. Hence, no matching is in the core.
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C PEN Characterization Conditions are Necessary

Consider the equilibrium correspondence presented in Figure 8, where �
2 = 1

4 < 1 = �
2
✓

violates the su�cient condition for the third and fourth properties in Proposition 1. In

Figure 8, while for ⇢ = �0.29 there is a unique and asymmetric PEN, for a slightly higher

correlation there is a unique and symmetric PEN.
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Figure 8: Equilibrium correspondence when c(m) = 0.019m, �2 = 1
4 and �

2
✓
= 1.

Why does this happen? When n = 1, for ⇢ = �0.29 2 (⇢̂, ⇢̃) the marginal value of

a signal for a leader is greater than the marginal value of a signal for a follower. We

may then fix the marginal cost of a second signal so that the leader wants to produce

it. But then, if ⇢ increases, the marginal value of the follower increases and may exceed

the chosen marginal cost, so that she wants to produce a second signal as well. If the

follower produces a second signal, however, the leader has no incentive to produce a third

signal because the information left to learn decreases su�ciently. Hence, a symmetric

equilibrium (2,2) is played.

D Binary States, Binary Signals

Suppose that the state ✓ is either High (H) or Low (L). For simplicity, suppose further

that Pr(✓ = H) = 1
2. Each worker can produce an informative signal, with realization H

5



Worker i

H L

Worker j
H p

2 + ⇢ijp(1� p) p(1� p)(1� ⇢ij )
L p(1� p)(1� ⇢ij ) (1� p)2 + ⇢ijp(1� p)

Figure 9: Joint distribution when state is High (H).

or L realization, and it equals to the true state with probability p >
1
2. Figure 9 presents

the joint distribution over signal realizations when the state is H . If the state is L, the

elements of the main diagonal are switched.

Notice that in this environment the feasible set of correlations is bounded below. In

particular, statistical feasiblitiy requires that ⇢ij � �1�pp . Hence, when a couple compares

signals and has the most feasible negative correlation they need not learn the state; the

state is revealed if HH (or LL) is observed, but not given any other realization. Further,

for any correlation, there is a positive probability that HL or LH is observed.

Table 7: Expected Posterior Variance in the two-state model for some strategies.

# signals i # signals j Expected Posterior Variance

0 0 1
4

1 0 p(1� p)

1 1 p(1� p)
✓
(p+⇢ij (1�p))(1�p+⇢ij p)
p2+(1�p)2+2⇢ij p(1�p) +

1
2
(1�⇢ij )

◆

2 0 p(1� p)
✓

p(1�p)
p2+(1�p)2 +

1
2

◆

2 1 p
2(1� p)2

✓
(p+⇢ij (1�p))(1�p+⇢ij p)
p3+(1�p)3+⇢ij p(1�p) + 2(1� ⇢ij ) +

(p+⇢ij (1�p))(1�p+⇢ij p)
(1+⇢ij )p(1�p)

◆

2 2 p
2(1� p)2

✓
(p+⇢ij (1�p))2(1�p+⇢ij p)2

(p2+⇢ij p(1�p))2+((1�p)2+⇢ij p(1�p))2 +
(p+⇢ij (1�p))(1�p+⇢ij p)

2p(1�p)

+(1� ⇢ij )2 +
4(1�⇢ij )(p+⇢ij (1�p))(1�p+⇢ij p)

p2+(1�p)2+2⇢ij p(1�p)

◆

3 0 p
2(1� p)2

✓
p(1�p)

p3+(1�p)3 + 3
◆

3 1 p
2(1� p)2

✓
p(p�1)(p+⇢ij (1�p))(1�p+⇢ij p)

p2(p2+⇢ij p(1�p))+(1�p)2((1�p)2+⇢ij p(1�p)) + (1� ⇢ij ) +
2p(1�p)(1�⇢ij )
p2+(1�p)2

+
2(p+⇢ij (1�p))(1�p+⇢ij p)
p2+(1�p)2+2⇢ij p(1�p) +

(p+⇢ij (1�p))(1�p+⇢ij p)
p(1�p+⇢ij p)+(1�p)(p+⇢ij (1�p))

◆
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Figure 10: Values ⇢̃(2,p) and ⇢̂(2,p) for di↵erent signal precisions p.

There is no simple expression for the expected posterior variance for an arbitrary pro-

file of signals. Nonetheless, Table 7 computes it for a number of cases; these values are

enough to find the PEN of the Production Subgame when each worker’s best response is

bounded by three. Defining ⇢̃(t,p) and ⇢̂(t,p) as in the main text, Figure 10 displays their

values when t = 2. The figure shows that it is still true that we have ⇢̃(2,p) > ⇢̂(2,p) if and

only if the precision of the signal is high enough. We suspect a similar result is true for

larger t.

E Sequential versus Simultaneous Decision

In this section, we present a finite sequential version of the game played within each

team. We assume that the total number of periods T � 2M̄ , where M̄ is the upper bound

on best responses described in Lemma 2. In each period, each worker chooses whether or

not to produce a signal ai
t
2 {0,1}. Signals across periods are conditionally independent

and signals in the same period are correlated according to the pairwise correlation of

teammates, ⇢. In period t, all workers observe all actions at�1 and signals xt�1 in periods

1, ...t � 1; the public history at period t is given by h
t�1 = (ar ,xr)t�1r=1 where ar = (a1r ,a2r ) .

Let Ht�1 denote the set of feasible histories up to period t. Then, a strategy for worker

7



i is a function si :
S

T

t=1H
t�1 ! {0,1}. The expected payo↵ of worker i given the history

(ar ,xr)Tr=1 is:

v
(i,j)
i

(((ar)Tr=1)) = �
1✓

2
1+⇢ij

P
T

r=1 a
1
r a

2
r +

P
T

r=1

⇣
a
1
r + a

2
r � 2a1s a2r

⌘◆
��2 +�

�2
✓

� c
0
BBBBB@

TX

r=1

a
i

r

1
CCCCCA .

We refer to the equilibrium outcome number of signals as (n1,n2), where ni =
P

T

r=1 a
i
r .

We consider Subgame Perfect Equilibria that are not Pareto Dominated by any other

Subgame Perfect Equilibrium– call such an equilibrium a Pareto-E�cient Subgame Per-

fect Equilibrium (PESP). The next proposition states that, if there is a PEN in the simul-

taneous game in which strategies di↵er by at most 1, there is an identical PESP outcome

of the sequential game.

Proposition 4 Let (m1,m2) be the most symmetric PEN in the simultaneous game. If |m1 �m2| <
2, there is a PESP of the sequential game with outcome (n1,n2), where n1 =m1 and n2 =m2.

Proof After every history h
t�1 each worker knows the posterior variance of ✓, which we

denote by �
t(ht�1). We define three automaton states: WN,WD1 ,WD2. WN is the state at

which no worker deviates,WD1 is the state at which worker 1 is the last deviator, andWD2

is the state at which worker 2 is the last deviator. Consider the strategy profile

si(ht�1) =

8>>><>>>:

1 if ni(� t(ht�1)) � T � t
0 otherwise

,

where ni(� t(ht�1)) is the number of the most symmetric equilibrium given the prior vari-

ance � t(ht�1) and without loss n1(� t(ht�1)) � n2(� t(ht�1)). O↵ the path of play choose any

Nash equilibrium of the Subgame. If a worker deviates from the prescribed strategy pro-

file then he takes the largest number of signals implied by this Nash equilibrium in the

subgame that follows after.

To see why no worker has an incentive to deviate, notice if worker 1 does not produce a

signal when she is prescribed to do so, then she can never produce as many signals as she

was initially prescribed. But as |n1 �n2| < 2, worker 2 cannot compensate for worker 1’s

deviation. As worker 1 prefers to produce n1 instead of n1�1 signals in the simultaneous

8



game, she has no incentive to deviate. A similar argument applies for worker 2.

The following example shows why we cannot extend the proposition to all correla-

tions. Suppose � = �✓ = 1 and c(m) = 0.05m. If ⇢ = 0.15, the only equilibrium in the

simultaneous game is (3,0). However, in the sequential game this cannot be a Subgame

Perfect Equilibrium. Suppose worker 1 deviates and decides to produce only one signal

in each of the last two periods. Then, the best response of worker 2 is to produce a signal

in period T � 1 or period T . This outcome gives worker 1 a payo↵ of �0.367 instead of

�0.4.2

However, for large correlations, the same deviation is not profitable for worker 1 since

worker 2 will never want to produce a signal in period T or period T � 1. If both work-

ers produce a signal during the same period, they would be highly correlated. Hence,

worker 2 would not have incentive to produce a signal, since the extra information that is

produced by her signal is almost zero. This observation illustrates that, for intermediate

correlations, ine�ciency due to asymmetric equilibria may be smaller in the extensive

game than in the simultaneous game.

Although our intuition suggests that all equilibria of the simultaneous game are more

asymmetric than all equilibria of the sequential game, this may not be true. In the fol-

lowing example, there is an asymmetric equilibrium of the sequential game that is more

asymmetric than the most symmetric equilibrium of the simultaneous game. Further-

more, it is not an equilibrium of the simultaneous game. Consider the example in Figure

11 in which we graph the equilibrium correspondence of the simultaneous game. For

correlation ⇢ = 0.1, the profile (3,2) is the most symmetric equilibrium in the simultane-

ous game and (4,1) is not an equilibrium. However, in the sequential game, the on-path

sequence (ar)Tr=1, with a
2
T
= 1, a1r = 1 for r = T � 4,T � 3,T � 2,T � 1 and a

i
r = 0 in any

other period, is consistent with a PESP. Notice, all signals are taken in di↵erent periods

and (4,1) is the outcome number of signals. A deviation by worker 1 at period T � 4 is

not necessarily followed by an increase in the number of signals by worker 2, since an

extra signal by her implies acquiring correlated information. It can be shown that a Nash

2In the unique Subgame Perfect Equilibrium, up to identity, worker 1 produces 2 signals and worker 2
produces 1 signal, with no signals taken in the same period.
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equilibrium of the Subgame following such a deviation is (3,1). As (4,1) is preferred by

worker 1 to (3,1), worker 1 does not have the incentive to deviate at T � 4. A similar

argument applies for deviations in other periods.
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Figure 11: Equilibrium strategies when c = 0.01n, � = 1
2, and �✓ = 1.

F Continuous Action Space

In our model, the informativeness of a signal is scaled by its precision. In this section, we

modify the production game by making signals more imprecise and scaling the cost so

that there is no “free lunch” e↵ect. This allows us to find a limit game where the action

space is continuous.

Let us consider a sequence of games in which each signal becomes less informative. In

the kth game, k signals are equivalent to a single signal of the original game. That is, the

variance in the kth game, �2
k
, is equal to k�2, where �2 is the variance of each signal in the

original game. For simplicity, we assume that the cost of taking a signal is linear. No free

lunch implies that in the kth game the cost of a signal is c

k
, where c is the cost of a signal

in the original game. Suppose workers i and j are in a team together and the correlation

between their signals is ⇢. Then in the kth game, if they choose nk
i
and n

k

j
signals, worker

i’s payo↵ is given by

10



v
(i,j)
i

(nk
i
,n

k

j
) =

0
BBBBB@

0
BBBBB@min

8>><>>:
n
k

i

k
,

n
k

j

k

9>>=>>;
2

1+ ⇢
+

�������
n
k

i

k
�
n
k

j

k

�������

1
CCCCCA�
�2 +�

�2
✓

1
CCCCCA

�1

� cn
k

i

k
.

Notice that for any real number z and fixed ✏ > 0, there exist rational numbers k and

n such
���n
k
� z

��� < ✏. Therefore, the sequence of games converges to the game where player i

chooses ri 2 R+ and, if workers choose ri and rj signals, worker i’s payo↵ is given by

v
(i,j)
i

(ri , rj ) =
��2

(r
ij
(�ij � 1) + r̄ij ) +�

� cri ,

where r
ij
=min{ri , rj }, r̄ij =max{ri , rj }, �ij = 2

1+⇢ij
and � = �

2

�
2
✓

.

As in the discrete game, workers i and j’s payo↵ when in a team together depend on

a factor �ij 2 [1,1) that specifies the team’s productivity. The equilibrium correspon-

dence is similar to the one described in the main text and characterized in the following

proposition.

Proposition 5

• If �ij < 2, the unique Nash equilibrium, up to the identity of the workers, is
✓
0,
q

�2

c
��

◆
.

• If �ij = 2, any strategy profile such that ri + rj =
q

�2

c
�� is a PEN.

• If �ij � 2, the only PEN is

ri = rj =

q
�2(�ij�1)

c
��

�ij

.

Proof Suppose ri > rj . Then, the marginal value of ri for worker i is,

�
2

⇣
rj(�ij � 1) + ri +�

⌘2

and the marginal value of rj for worker j is,

(�ij � 1)�2

⇣
rj(�ij � 1) + ri +�

⌘2 .

If �ij < 2 the marginal value for worker j is always smaller than worker i’s marginal

value, so there is a corner solution in which rj = 0. Given rj , i’s best-response is ri =

11



q
�2

c
�� .

If �ij = 2, the marginal value of a signal is the same for both workers. Optimally,

each chooses r so that the marginal value equals the marginal cost. Since any investment

division between the workers does not a↵ect the marginal output, any profile (ri , rj ) such

that ri + rj =
q

�2

c
�� is an equilibrium.

If �ij > 2, it cannot be the case that ri > rj since the marginal benefit for worker j is

strictly larger and both workers face the same marginal cost. Hence, all equilibria are

symmetric. For (r, r) to be an equilibrium, it must be the case that:

�
2

⇣
rj(�ij � 1) + ri +�

⌘2

��������
ri=rj

 c,

and,
(�ij � 1)�2

⇣
rj(�ij � 1) + ri +�

⌘2

��������
ri=rj

� c.

The only PEN is the profile in which r = ri = rj is maximized and satisfies the previous

constraints. Hence, the second inequality binds. Re-arranging yields the equation stated

in the proposition.

The proposition implies that for negative correlations the only equilibrium is sym-

metric, for conditionally independent signals there is multiplicity, and for positive corre-

lations the only equilibrium is fully asymmetric.
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