
Pill-Matic Product
Design Specification

Rev. 1.1

Connor Dueck , Devon Louie, Adam Gabriel, Jerry Yao, Peter Hsu

ENSC305W, ENSC440W

10/16/03

Contact Person:

Connor Dueck

cdueck@sfu.ca

604.839.5671

i

Table of Contents
Table of Contents i

List of Figures ii

List of Tables ii

Abstract 4

1. Introduction 5

1.1 Scope 5

1.2 Intended Audience 5

2. Software 5

2.1 Software Overview 5

2.2 Purpose 6

2.3 Breakdown 6

2.4 Configuration Screen 7

2.5 Menu Screen 7

2.6 Lock Screen 7

2.7 Add Pills Screen 7

2.8 Calendar Screen 8

2.9 Log Screen 8

2.10 Options Screen 8

3. Hardware 10

3.1 Hardware Overview 10

3.2 Storage Disk Rotation 11

3.3 Calibration 12

3.4 Vibration 12

3.5 Break Beam Sensor 12

3.6 Servo Motors 13

3.7 Motor/Sensor Controller 13

3.8 Power Supply 15

4. Firmware 15

4.1 Microcontroller 15

4.2 Raspberry Pi Firmware 18

4.3 Graphical User Interface 18

4.4 Connection to Arduino Pro Micro 20

ii

5. System Test Plan 20

5.0 Software Test Plan 20

5.1 Hardware Test Plan 21

5.1 Firmware Test Plan 21

6. Conclusion 22

7. References 23

List of Figures
Figure 1: Breakdown of the smartphone application 7

Figure 2: Prototype GUI of the Add Pills Screen

8

Figure 3: A sample of the Log Screen with labels at the bottom

9

Figure 4: A sample interaction of two Pill-Matic machines and two phones

10

Figure 5: Overview of the Pill-Matic’s hardware design

11

Figure 6: Infrared Break Beam Sensor Schematic

Figure 7: Motor/Sensor Controller Board Schematic

Figure 8: Overview of Pill-Matic Power System

Figure 9: Raspberry Pi 2 Model B board

Figure 10: System Overview

Figure 11: Flow chart of GUI when user is taking pills

Figure 12: Flow chart of GUI when user is adding medication / viewing calendar

13

15

16

17

19

20

20

List of Tables
Table 1: A comparison of different development tools [1],[2],[3],[4]

6

Table 2: A comparison between regular and elevated user on functions

Table 3: DC motor specifications

Table 4: Quadrature encoder information

Table 5: Vibration Motor Specifications

10

12

12

13

iii

Table 6: Arduino Pro Micro pinout

Table 7: Specification of Raspberry Pi 2 Model B

Table 8: Raspberry Pi 2 Model B GPIO Pinout

Table 9: Serial communication protocol from Raspberry Pi 2 to Arduino Pro Micro

Table 10: Serial communication protocol from Arduino Pro Micro to Raspberry Pi 2

15

17

18

21

21

4

Abstract

This document provides an outline of the design specifications for Health-Assist’s Pill-Matic, an

automated pill dispenser and reminder system. The purpose of this document is to provide

technical information and design requirements for each component of the Pill-Matic to the

user. The design specifications of the Pill-Matic has been divided into software, hardware, and

firmware sections.

The software section covers the design approach and functionality of our companion

smartphone application. Our software team decided to develop in Python with a Kivy library,

using Buildozer to compile into an android application. The final product will include the

following screens: Configuration, Menu, Lock, Log, Add Pills, Calendar and Options.

The hardware design section includes technical specifications and design approach for each

component of the Pill-Matic prototype including Storage Disk Rotation, Calibration, Vibration,

Break Beam Sensor, and Motor/Sensor Controller. The main storage disk is capable of holding

eight distinct medications, while DC motors are responsible for the disk rotation required in the

dispensing of medication. Before dispensing, a photointerrupter is utilized to insure that the

main storage disk is calibrated at the zero position. The Pill-Matic then uses vibration such that

the medication lines up correctly and dispenses one pill at a time. As a pill leaves the main

storage disk, it is detected by the break beam sensor, which then communicates to the

vibration motor to stop. Finally servo motors are responsible for closing the main storage disk

to stop the output of additional pills.

The firmware section outlines the design choice and responsibilities of our microcontroller. The

Raspberry Pi firmware is written in the C++ programming language and its graphical user

interface will be developed using PyGobject. The Raspberry Pi will communicate with the

Arduino Pro Micro in order to control the motors specified in the hardware section.

Finally, the system test plan consists of detailed test cases to insure that our prototype meets

all requirements specified in previous documents. Health-Assist expects to have a fully

functional prototype adhering to the following design specifications by April 1st, 2016.

5

1. Introduction
Pill-Matic is an automated pill dispenser and reminder system designed for patients with

multiple daily prescriptions. Pill-Matic will be linked to a mobile device through an Android

application capable of communicating pill schedules, dosages, and missed alerts. The design of

our product has been divided into software, hardware, and firmware sections. This document

provides the technical specifications for each component of the Pill-Matic.

1.1 Scope
This document is intended to describe the design specifications of the Pill-Matic and any related

software. All design choices are made with careful consideration for justifications based on the

Pill-Matic’s functional specifications in the hopes of creating a simple and concise product

scheme. All details within this document will be applied primarily to our proof-of-concept

prototype, rather than for a mass production model. There are however, some considerations

within this document that could be used in a finalized product. The designs themselves will

focus mainly on covering higher-level design details, but might dabble on particulars if need be.

1.2 Intended Audience
The primary users of the design specifications is intended for the members of the Health-Assist

team, who plan to use this document as a guiding reference for any design considerations that

they will have in the development and making of the Pill-Matic prototype. Any future engineers

who wish to make use of this document in its entirety can also use any of its contents for

further ideas and improvements if they wish to.

2. Software

2.1 Software Overview
In order to develop the mobile application, we sought out a development tool that was cross-

platform, easy to use and accommodated with variety of built in functions. Table [1] shows a

comparison of the tools we researched. Our conclusion led us to use Python with Kivy library

and Buildozer to compile into an android application. Python by nature is a simple language to

program in. The Kivy library contains a variety of tools that allows us to easily develop a GUI

that is cross-platform. Both Kivy and Python have active community members that are

constantly developing new tools, thus we will not lack in terms of additional functionalities.

Table [1]: A comparison of different development tools [1],[2],[3],[4]

Development Tool (Language) Complexity Cross-Platform Extensive functionality

Kivy (Python) Simple ✔ ✔
Corona SDK (Lua) Simple ✔ ✖

Android Studio / SDK (Java) Complex ✖ ✔
Xcode (Interactive, C) Simple ✖ ✔

6

2.2 Purpose
The purpose of the mobile application is to provide extra assistance to the user while using Pill-

Matic. This is achieved by providing data, schedules, and alarms to the user independently from

our product. However, in order to obtain these information, the phone must communicate with

Pill-Matic via Bluetooth. Once a connection has been established, they will acknowledge each

other and regularly exchange information when the phone’s Bluetooth is in range of Pill-Matic.

Pill-Matic will uniquely identify each phone it connects with by their phone number. Likewise,

the phones will uniquely identify Pill-Matic through a product number. Having a unique

identifier is important when multiple Pill-Matic machines are linked to multiple mobile devices.

2.3 Breakdown
The application is divided into the following screens: Configuration, Menu, Lock, Log, Add Pills,

Calendar and Options. Figure [1] provides an overview of the application and how these screens

interact with each other. Due to Kivy’s cross-platform features, the prototype screens will be

shown using Windows.

Figure [1]: Breakdown of the smartphone application

7

2.4 Configuration Screen
The configuration screen is a setup screen that a user should see when they have just installed

the application and ran it for the first time. Its role is to ensure that the user establishes a

connection with Pill-Matic so they can acknowledge each other in order to exchange

information later on. By clicking “Connect”, the application will attempt to search for a Pill-

Matic machine and connect to it. If it cannot find a machine, it will prompt an alert message

notifying the user. At the bottom, there is a checkbox that allows the user to skip this step. This

is only to be used if the Pill-Matic is pre-configured to locate this particular phone. Once this

has been setup, this page should not appear again until the phone is needed to connect to a

new Pill-Matic machine or it has lost its saved data.

2.5 Menu Screen
This is the main screen for the application. From here, the user has four options to choose from
the view and manage the data received from Pill-Matic.

2.6 Lock Screen
This is a protective screen to prevent accidental changes to the application without the user

being aware.

2.7 Add Pills Screen
This screen allows the user to add pills remotely with their application. The user needs to

eventually be around Pill-Matic for the phone to send this information to the machine. It allows

the user to configure the type of medications and also allows them to program a schedule. A

prototype visual representation of this screen is shown in Figure [2].

Figure [2]: Prototype GUI of the

Add Pills Screen

8

2.8 Calendar Screen
This screen provides a daily or weekly view of their pill dispense schedules. The daily view will

display dispense schedules and alarm schedules by the hour vertically. The weekly view is an

extension of the daily view with the whole week’s display.

2.9 Log Screen
This screen is meant for the user to view activities from Pill-Matic, the phone and their own

actions. It is an extra layer of safety measures to ensure that if errors are to occur on Pill-Matic

or the application, there will be a trace as to what went wrong. It can also be used to track how

the user has been using the product to determine if they are abusing the product at any point

or time. A sample display can be seen in Figure [3].

Figure [3]: A sample of the Log Screen with labels at the bottom

2.10 Options Screen
This screen provides various settings allowing the user to customize the application to their

own preference. There is a slight distinction in terms of user level. Phones with elevated user

levels will have the option to override schedules and send an immediate request for Pill-Matic

to dispense a pill. This is meant to be used as an emergency measures only.

9

2.11 User Privileges

Some of the features on the mobile application are only accessible through an elevated user.

Being able to dispense a pill at will is helpful in emergencies, but can be abused. Thus,

promoting a phone to be a privileged user can only be performed on the particular Pill-Matic

machine that the user is attempting to gain privilege to. Accessing these functions will also be

protected by a password that the user must enter each time to prevent abusive use.

Figure [4] demonstrates an example of how two Pill-Matic machines and two Phones could

function. If Pill-Matic 1 is configured to link and elevated Phone A, then the user will be able to

use privileged functions on Phone A for Pill-Matic 1 and view regular information that the

phone receives from Pill-Matic 1. Likewise, if Pill-Matic 2 is configured to link both Phone A and

B, then the user can view information on Pill-Matic 2 but will not be able to access privileged

function through either phones. Table [2] provides additional clarification as to what the

privileged user is entitled to.

Figure [4]: A sample interaction of two Pill-Matic machines and two phones

 Table [2]: A comparison between regular and elevated user on functions

Functions Regular User Elevated User

Add Pills ✔ ✔
View Calendar/Schedule ✔ ✔

View logs ✔ ✔
Update Calendar/Schedule ✖ ✔

Immediate pill dispense ✖ ✔

10

3. Hardware

3.1 Hardware Overview
Figure [5] provides an overview of the Pill-Matic’s hardware design. Note that servo motors and

vibration motors are not shown.

The main storage disk, shown in white, is responsible for holding up to eight separate

medications of any size or shape. The disk was designed to rotate 360 degrees to minimize the

number of dispensing mechanisms as well as making it easier for the user to add medications to

the system. Vibration is used to move pills throughout the disk.

To keep pills from being dispensed at the wrong time or being moved throughout the machine

during storage disk rotation, an outer ring and gate were designed. The gate is operated via a

small servo motor and is used to open or cover an opening in the outer ring. The upper grey

section in Figure [5] shows the mechanics of the ring and gate.

As pills are dispensed one at a time, they end up in a temporary holding section, lower grey

element, built into the Pill-Matic. Only after the user has requested their medication and

entered a security code will the pills be released from this section and into the medication cup.

Individual components of the Pill-Matic will be discussed in detail and can be found in their

respective sections.

Figure [5]: Overview of the Pill-Matic’s hardware design

11

3.2 Storage Disk Rotation
While designing for the main storage disk rotation, three motor options were considered:

 Servo motors

 Stepper Motors

 DC motors

Servo motors, the simplest option to implement, with their built in feedback were ruled out

because of their 180 degree rotational limit. Stepper motors, although extremely accurate, did

not allow for any feedback to the motor controller. If for some reason the storage disk was

restricted from rotating, the motor controller would not be able to detect it and could result in

the incorrect medications being dispense. The low cost of DC motors, as well as the option to

purchase them with built in incremental encoders were the deciding factors in the design.

Specifications such as rotational speed, torque, power, noise, cost, and motor size were all

considered when determining which DC motor to use in the final design. To keep the rotation of

the disk from affecting the stored medication and dispensing mechanism, a low rotational

speed was needed. To cope with friction and possibility of pills blocking rotation, a higher

torque motor was required. Unfortunately, slow speed and higher torque result in higher gear

ratios which directly contribute to the noise of the motor. The specifications for the DC motor

used in the design are below in Table [3].

Table [3]: DC motor specifications

The motor purchased for this design is equipped with an incremental quadrature encoder. Two

Hall Effect sensors, placed 90 degrees apart, are mounted to the motors rear shaft. Each

revolution of the motors shaft results in 3 output pulses for sensor. Using both sensors and

accounting for the motors gear ratio, the output signal from the encoder comes at a rate of

1800 pulses per main shaft revolution, resulting in a rotational accuracy of 0.2 degrees per

pulse. More information on the quadrature encoder is available in Table [4].

Table [4]: Quadrature encoder information

By feeding both output waveforms from the quadrature encoder back into the motor

controller, rotational speed, change in position and direction of rotation can be calculated.

Through the use of a PID controller, the motor can be rotated to any position.

Rated Voltage Rated Torque Rated Speed Gear Ratio Rated Current Stall Current

12V 784mN*m 17RPM 200:1 410mA 1.8A

Operating Voltage Resolution Input Current Output

4.5V to 5.5V 3PPR 50mA 200:1

12

3.3 Calibration

To ensure the main storage disk is in the correct position at boot up and before each dispensing

cycle, a calibration sequence is used. The storage disk is rotated slowly until a photointerruptor

detects the zero position of the disk. This position is then recorded and referenced during

future motor rotations.

3.4 Vibration
Controlling pill movement through the main storage disk is done through vibration. Objects

naturally line up in a convenient orientation when succumb to vibrating materials, which the

Pill-Matic takes advantage of to accurately dispense one pill at a time, despite varying pill

shapes and sizes. Small DC motors with offset weights are used to vibrate the Pill-Matic’s main

storage disk.

Table [5]: Vibration Motor Specifications

3.5 Break Beam Sensor
As a pill leaves the main storage disk, it must be detected by the motor controller which will

then determine if the vibration motor must be disabled. Multiple options were researched to

determine the best way of detecting when and how many pills leave the storage disk, but after

much deliberation, the below solution was implemented.

Instead of using an off-the-shelf sensor, an infrared break beam sensor was designed. The

custom sensor uses an infrared led to create a beam of light which is picked up by a 38kHz

infrared receiver. As an object, such as a pill, breaks the infrared light beam, a signal is sent to

our motor controller. In order for our infrared led to be picked up by our sensor, it must be

pulsed at 38kHz. A schematic of the circuitry required to pulse the led is shown in Figure [6].

Figure [6]: Infrared Break Beam

Sensor Schematic

Rated Voltage Rated Current Stall Current Rated Speed

5V 70mA 120mA 3,00RPM

13

Implementing a simple photointerruptor would have been a simper solution to this problem,

but using our approach yielded many benefits. Because the sensor uses infrared light pulsed at

a specific frequency, it is much less susceptible to interference which is important for a high

accuracy medical device. Secondly, because the sensor is built from individual components and

not packaged into one body, it can be used in a wide range of designs. This allows the hardware

design to change and adapt without having to implement a different sensor.

3.6 Servo Motors
Along with the main storage motor and vibration motors, two small servo motor are needed for

the design. The first motor is responsible for closing the opening between the storage disk and

the output, which stops pills from being dispensed while the disk is rotating. The duty of the

second servo is to dispense the medication after the user has requested their dose.

3.7 Motor/Sensor Controller
The motor and sensor controller board for the Pill-Matic is built around the Arduino Pro Micro.

The microcontroller is responsible for reading and interpreting all sensor data as well as control

the operations of all motors. Dispenser data such as pill location, number of pills to dispense

and calibrate commands are sent from a Raspberry Pi to the Arduino.

The Arduino Pro Micro was selected because of its small size and the microcontroller it uses.

The ATMEGA328U microcontroller, unlike most other Arduino board microcontrollers, allows

for five hardware interrupts and five Pulse Width Modulation (referred to as PWM from now)

outputs. The large number of hardware interrupts are necessary as many of our sensors run at

high frequencies and the PWM outputs are needed to run servos and the main storage disk

motor. Table [6] shows the pinouts of the Arduino.

Alongside the Arduino is a TB6612FNG dual output motor driver breakout board. This board,

shown in Figure [7], is responsible for the 12V control of the main storage disk motor. Two

digital inputs control the direction of rotation and a PWM input is required to set the rotational

speed.

14

Table [6]: Arduino Pro Micro pinout

Figure [7]: Motor/Sensor Controller Board Schematic

Arduino Pin Function

Digital Pin 0 (Interrupt) Encoder A input

Digital Pin 1 (Interrupt) Encoder B input

Digital Pin 2 (Interrupt) Break Beam input

Digital Pin 3 (Interrupt) Break Beam input

Digital Pin 4 (Interrupt) Photointerruptor input

Digital Pin 5 (PWM) Servo 1 output

Digital Pin 6 (PWM) Servo 2 output

Digital Pin 9 (PWM) Servo 3 output

Digital Pin 10 (PWM) Motor PWM output

Digital Pin 11 (Digital Output) Storage Motor output A

Digital Pin 12 (Digital Output) Storage Motor output B

Analog Pin 2 (Digital Output) Vibration Motor output

Analog Pin 3 (Digital Output) Vibration Motor output

15

3.8 Power Supply
The Pill-Matic will be powered by one 12V supply. The only component of the device which

requires a 12V input is the main storage disk motor, which has a max current load of 1.8A. The

rest of the components will receive power via a 5V regulator with a max output of 3A. A full

diagram of the Pill-Matic power system is available on Figure [8].

Figure [8]: Overview of Pill-Matic Power System

4. Firmware

4.1 Microcontroller

The Raspberry Pi 2 Model B board was selected for use as the platform for this project because

of the ease of implementing the desired features. This includes Bluetooth, which can easily be

added on via the USB ports on the Raspberry Pi, the acoustic notification system, which can be

added on via the 3-Pole audio jack or the GPIO pins as well as the 3.5 inch TFT touch screen,

which can be added on via the GPIO pins as well. In addition to the great adaptability of the

platform, the Raspberry Pi 2 Model B has a 1.0GHZ Broadcom BCM2835 processor, which is more

than powerful enough to power all the required systems as well as query for interrupts from the

digital GPIO pins. Furthermore, the Raspberry Pi 2 only draws 4.0W while under full load, thus

powering the device is possible from a very wide range of power supplies.

16

Physically, the Raspberry Pi 2 Model B fits in an area of 85.60 mm × 56.5 mm and weighs only

45g. This compact design saves space in the end unit, and since the health-assist device is very

flat, it enables us to not have to add cavity space to store the microcontroller.

Figure [9]: Raspberry Pi 2 Model B board

Table [7]: Specification of Raspberry Pi 2 Model B

SoC Broadcom BCM2835

CPU ARM-A7 900 MHz (overclocked to 1GHz)

GPU Broadcom VideoCore IV @250MHz

RAM 1GB (shared with GPU)

USB Ports (2.0) 4

Audio Output 3.5mm 3-Pole, HDMI

Storage MicroSD

Network Adapters 10/100 USB Ethernet Adapter

GPIO 40× GPIO

Operating Voltage 5V via microUSB

GPIO Voltage (HIGH) 3.3V

17

Table [8]: Raspberry Pi 2 Model B GPIO Pinout

Pin # Pint Type Usage

3V3 Power Screen SPI Bus
5v Power Screen SPI Bus

GPIO2 I2C Screen SPI Bus
5V Power Screen SPI Bus

GPIO3 I2C Screen SPI Bus
Ground Ground Screen SPI Bus

GPIO4 GPIO Screen SPI Bus

GPIO14 UART0_TXD Screen SPI Bus

Ground Ground Screen SPI Bus

GPIO15 UART0_RXD Screen SPI Bus

GPIO17 GPIO Screen SPI Bus

GPIO18 GPIO Screen SPI Bus

GPIO27 GPIO Screen SPI Bus

Ground Ground Screen SPI Bus

GPIO22 GPIO Screen SPI Bus

GPIO23 GPIO Screen SPI Bus

3V3 Power Screen SPI Bus

GPIO24 GPIO Screen SPI Bus

GPIO10 GPIO Screen SPI Bus

Ground Ground Screen SPI Bus

GPIO9 GPIO Screen SPI Bus

GPIO25 GPIO Screen SPI Bus

GPIO11 GPIO Screen SPI Bus

GPIO9 GPIO Screen SPI Bus

Ground Ground Screen SPI Bus

GPIO7 GPIO Screen SPI Bus

ID_SD I2C ID Not used

ID_SC I2C ID Not used

GPIO5 GPIO Not used

Ground Ground Not used

GPIO6 GPIO Not used

GPIO12 GPIO Not used

GPIO13 GPIO Not used

Ground Ground Not used

GPIO19 GPIO Not used

GPIO16 GPIO Pulse alarm

GPIO26 GPIO Pulse alarm

GPIO20 GPIO Pulse alarm

Ground Ground Not used

GPIO21 GPIO Not used

18

Figure [10]: System Overview

4.2 Raspberry Pi Firmware
The firmware for the Raspberry Pi will be written in the C++ programing language, using the

latest G++ compiler. All programming and configuration is compiled on a development use

Raspberry Pi, which is then used to produce a system image. This contains all programs,

configuration and user data which was stored on the development device. From there the

firmware can be easily loaded on to any device by simply copying the system image to a micro

SD card. Firmware updates are done by removing the microSD card, saving user data, updating

the micro SD card and copying the data back to it.

4.3 Graphical User Interface
The GUI for the Raspberry Pi will be created using PyGobject, due to the simplicity. This

program allows for a GUI to be created which can call bash scripts and other executable

programs. This will allow us to trigger events in the C++ code from the GUI, such as dispensing

pills or logging into the device. PyGobject uses python, which is a well-known highly adaptable

programming language used in a multitude of different applications.

19

Figure [11]: Flow chart of GUI when user is taking pills

Figure [12]: Flow chart of GUI when user is adding medication / viewing calendar

20

4.4 Connection to Arduino Pro Micro
The Raspberry Pi will communicate with the Arduino Pro Micro via USB serial, using a custom

protocol, in order to control the motors, for details see table 3 and table 4.

Table [9]: Serial communication protocol from Raspberry Pi 2 to Arduino Pro Micro

Table [10]: Serial communication protocol from Arduino Pro Micro to Raspberry Pi 2

5. System Test Plan

5.0 Software Test Plan
5.0.1 Mobile Application Test Plans

T-0 Data Transfer

Procedures:
Attempt to access all elevated user features
through the Android mobile application while
connected through Bluetooth to the Pill-
Matic

Applicable Requirement:
S5.1.1-III, S5.1.2-II, S5.1.4-III, S5.1.5-III

Expected Results: Controller shall respond
correctly to any mobile application request
received via Bluetooth and return the
designated response signals

5.0.2 Mobile Application Privacy and Safety

T-1 Lock Screen

Procedures:
Attempt to modify pill schedules or change
connection options

Applicable Requirement:
S5.3.3-II, S5.4.2-III, S5.4.3-III

Expected Results: Lock Screen prompt should
activate and ask users for a password for
further access

Bit Offset (from the right) Functionality

0 Zero the hoppers

1,2,3 Chamber numbers

4,5,6 Number of pills to dispense from that chamber

Bit Offset (from the right) Functionality

0 Success/Failure

1,2,3 Chamber Number

4,5,6 Number of pills to dispense from that chamber

21

5.1 Hardware Test Plan
5.2.1 Power Modules

T-2 Power supply and adapter shall maintain voltage and current stability at all times

Procedures:
Maintain steady operation under maximum
power constraints including: All motors at
maximum chamber loads, LCD screen touch
display ON, microcontroller running,
Bluetooth connection

Applicable Requirement:
H2.4.1-III

Expected Results: All features are working as
intended with no significant impact to user
experience

5.2.2 Mechanical Modules

T-3 Dispenser Mechanism

Procedures:
Send a dispense signal either through
“immediate dispense” option or as a normal
scheduled dispense to the Pill-Matic

Applicable Requirement:
G2.10.1-III, G2.10.3-III, S3.3.1-III

Expected Results: Dispensing mechanism
shall release the correct amount of pills as
tasked from the correct chambers without
being obstructed by the physical mechanisms

T-4 Holding Cell Mechanism

Procedures:
Allow break beam sensor to trigger or allow
pills to be stored in holding cells for too long
during its normal operational period

Applicable Requirement:
H3.3.1-III, H3.4.7-II

Expected Results: The holding cell will
release any pills in its chamber to the
separate discard chamber when prompted

5.1 Firmware Test Plan
5.3.1 Raspberry Pi Firmware:

T-5 The firmware recovers from system crashes

Procedures:
1. Cause a power loss to the system.
2. Cause the execution of a program to
segmentation fault
3. Cause an out of index error in a program

Applicable Requirement:
F4.1.7-III

Expected Results: The device reboots and
comes back online

22

T-6 Firmware updates time when syncing with android application

Procedures:
Purposefully change android phone time so
that the file transferred via Bluetooth has the
incorrect time

Applicable Requirement:
F4.1.4-III

Expected Results: The Raspberry Pi adopts
the time written in the file, instead of its’
own system time.

T-7 Firmware loses less than 1 second per day when powered off and less than 100ms per
day when powered on

Procedures:
Completely power off Raspberry Pi, record
current device time, against internet time,
power on in one day, compare time again.

Applicable Requirement:
F4.1.4-III

Expected Results: The current device time
compared to internet time should differ by at
most one second

T-8 The firmware can read from a template file shared from and to a Bluetooth device

Procedures:
Check to ensure that the firmware is able to
read configuration information from the file
transferred via Bluetooth and that it can
write to said file

Applicable Requirement:
F4.1.5-III, F4.1.6-III

Expected Results: The firmware can read and
write to the template file and adopts its’
configuration to match it.

5.3.2 GUI:

T-9 User interface is reasonably fast so it does not interfere with everyday usage

Procedures:
Navigate between all GUI pages

Applicable Requirement:
F4.5.1-I

Expected Results: Time to get from page to
page is on average less than 1 second

T-10 User interface does not allow user to get stuck in a menu

Procedures:
Navigate between all GUI pages and finally
back to the home page

Applicable Requirement:
F4.5.2-III

Expected Results: All pages either link to
another page or link to home

6. Conclusion
The design specification document clearly outlines the technical information and design

requirements of each software, hardware or firmware component in the Pill-Matic. The test

plan will serve as a guideline for implementing the functional requirements specified in

previous documents. Health-Assist is currently developing the prototype and expects full

functionality by April 1st, 2016.

23

7. References
[1] "Kivy: Cross-platform Python Framework for NUI", Kivy.org, 2016. [Online]. Available:

https://kivy.org/#home. [Accessed: 09- Mar- 2016].

[2] "Develop cross Platform Mobile Apps and Games | Corona Labs!”, Coronalabs.com, 20216. [Online.]

Available: https://coronalabs.com/products/corona-sdk/. [Accessed: 09- Mar- 2016].

[3] "Download Android Studio and SDK Tools | Android Developers", Developer.android.com, 2016.

[Online]. Available: http://developer.android.com/sdk/index.html. [Accessed: 09- Mar- 2016].

[4] “Xcode – What’s New – Apple Developer”, Developer.apple.com, 2016. [Online]. Available:

https://developer.apple.com/xcode/. [Accessed: 09- Mar- 2016].

