Pin Access-Driven Design Rule Clean and DFM Optimized Routing of Standard Cells under Boolean Constraints

Nikolay Ryzhenko

Steven Burns, Anton Sorokin, Mikhail Talalay

Intel corporation, Hillsboro, OR, USA

Routing of Standard Cells

• Primary requirements:

- DRC-clean and correct by abutment
- All nets are to be routed: transistors are connected by wires and vias according to the netlist
- Power/ground nets are connected to the rails
- Pin access: I/O nets must have a specified number of feasible intersections with the upper metal layer

• Optimizations:

- PPA: Power, performance, area
- Reliability, extra pin hit points; pin density

• Emerging challenges:

- Design for manufacturing
- Metal fill & via density

Design Rules

- A gap between the 193nm optical wave length and sub 20-nm layout objects makes design rules complex and non-local.
- The complexity of rules only grows with every technology node:
 - The number of involved objects;
 - The number of involved tracks in a design rule;
 - The number of corner cases (if then, if then, if then ...).
- Neither traditional tools nor humans can handle such complex rules optimally

Design Rules

- Basic rules involve two objects: (1) some via/wire side/edge/corner to another (2) via/wire side/edge/corner
 - Legal (minimal) via/wire width/length (1, 2, 3, 4)
 - Via-2-via edge/side/diagonal spacing (5, 6, 7)
 - Wire-2-wire edge/side/corner spacing in the same and adjacent tracks (8, 9, 10, 11, 12)
 - Minimal offsets between wire end-lines (13, 14)
 - Minimal wire enclosure for a via edge (15)
- There can be multi-object DRs: forbidden placements of 3+ vias, forbidden configurations of 3+ wire cuts, different minimal wire lengths for different combinations of other wires and vias around, etc.

Design For Manufacturing

Design rules are always a tradeoff between manufacturability and marginality: yield vs. PPA, time to market, #masks.

Design rule clean layout: Two wires and two vias

 L_0 is a minimal spacing (design rule value) L_1 is an actual silicon spacing

 $L_{1} < L_{0}$

Litho-unfriendly layout pattern

Added extra wire length

 $L_2 > L_1$

Layout becomes more sustainable

Added even more wire length

 $L_{3} > L_{2}$

Litho-friendly layout pattern may affect PPA due to longer wire length.

Layout Regularity Trends

- Layouts naturally become more and more regular:
 - FinFETs: Fixed poly grid and diffusion fins
 - Unidirectional layers without jogs
 - Fixed metal templates
 - Fixed via sizes
- Following things become practical
 - Discrete layout models
 - Accurate solving techniques

Layout Modeling

- We used following work as a base:
 - G. Suto, **Rule agnostic routing by using design fabrics**, *Proceedings of the 49th Annual Design Automation Conference, June 03-07, 2012, San Francisco, California*
- Gridded Layout Data Model is intended to model any arbitrary layout constraints of different nature:
 - Design rules
 - DFM guidelines
 - Density rules
- Cell architecture rules:
 - Boundary rules
 - Pin-access requirements
- Quality of layout:
 - Wire length, via count, via size, diffusion contacts, poly contacts, metal jogs, etc.

Metal Grids

OGD

PGD

OGD

Via Grids

- An intersection of metals may allow different via options: sizes, alignment of sides, position
- In practical examples, every via type has own grid

Examples of Layout Modeling

- A binary decision variable is created for every payload
- Boolean expressions describe arbitrary layouts
- In practice, we describe illegal layouts to model design rules

 $F_{1} = S(0,0) \land S(1,1) \land \overline{S(0,1)} \land \overline{S(1,0)}$ $F_{2} = S(0,0) \land S(1,0) \land S(0,1) \land S(1,1)$ $F_{3} = S(0,0) \land S(1,0) \land S(1,1) \land S(2,1)$

 $F_5 = V(4,0) \wedge V(4,2) \wedge M(4,0) \wedge M(5,0) \wedge \overline{M(6,0)} \wedge M(4,2) \wedge \overline{M(3,2)} \wedge \overline{M(3,1)}$

Examples of Patterns (1)

- Given a Boolean formula, SAT determines if the variables can be assigned in such a way to make the formula true.
- Routing of nets is constructed from candidate routes. A candidate route consists of vias and wire discretes.
- Nets are split into two-terminal connections.
- A global router selects reasonable connections.
- A maze router constructs several candidate routes:
 - For every transistor-to-transistor connection;
 - Between transistors and power rails;
 - Between transistors and possible seed metal1 pin wires.
- Pair conflicts between routes help to prune unfeasible candidates.
- Strict rules are modeled via illegal layout patterns.
- SAT finds the first possible solution if it exists.

Pin-Access Requirements

Every metal1 pin wire in this example must have at least 2 feasible hit points

Layout Quality Aspects

- Contact a) is worse than b) because of a long high-resistance poly wire.
- Peripheral contact c) is worse than a central contact d) between two transistors.
- A contact with two uniformly placed vias
 f) is more reliable than a single-via contact
 e) at the diffusion side.
- A power rail hook-up i) is better than the long one h) but worse than the shortest one j).

SAT optimizations

- SAT finds the first possible solution if it exists.
- Without additional constraints, layout will be complete and DRC-clean but the quality will be unacceptable
- Extra layout patterns model legal but undesired layout cases
- Groups of undesired layout patterns are minimized lexicographically according to the predefined criticality.
- SAT solvers can specify assumptions: it is possible to assign temporary values to literals.

Counters

TRUE when $N({x} = TRUE) \ge 4$; corner case: $AND({x})$

TRUE when $N({x} = TRUE) \ge 3$

TRUE when $N({x} = TRUE) \ge 2$

TRUE when $N({x} = TRUE) \ge 1$; corner case: $OR({x})$

Evolution of Routing under SAT Constraints

- a) Terminals of nets
- b) Undesired layout pattern: a line-end attacker on wire side
- c) Initial routing with 6 layout instances of (b)
- d) Applied an assumption $C_{\leq}(p(F_b), 3) = TRUE$; no more than 3 instances of (b) can appear
- e) Applied an assumption $C_{\leq}(p(F_b), 1) = TRUE$; no more than 1 instance of (b) can appear
- f) Pattern (b) is forbidden completely: (b) acts a strict layout rule

Experimental Results

Table 1. Routing results for combinational and sequential cells from a 10 nm standard cell library.

Cell type	#transistors	#nets	#routes	#literals	#clauses	Total runtime, m:ss.	SAT runtime, m:ss.
XOR	13	8	2,533	486,338	1,217,752	1:14	0:06
2-to-1 multiplexer	13	10	1,677	519,607	776,481	0:57	0:07
Half adder	18	12	2,002	681,392	1,144,917	1:37	0:12
High-strength AND-OR	22	13	1,180	679,452	614,128	0:43	0:04
Flip-flop	28	16	3,822	982,610	1,851,459	2:56	0:32
Full adder	32	17	3,797	1,236,482	2,713,914	5:45	2:14
Scanable Flip-flop	38	25	4,160	1,826,160	3,266,194	6:19	1:00

Thank you!