CHAPTER 18 OUTLINE

18.1 Externalities

18.2 Ways of Correcting Market Failure

18.3 Stock Externalities
18.4 Externalities and Property Rights
18.5 Common Property Resources
18.6 Public Goods
18.7 Private Preferences for Public Goods

18.1 EXTERNALITIES

- externality Action by either a producer or a consumer which affects other producers or consumers, but is not accounted for in the market price.

Negative externality: the action of one agent imposes a cost to another agent(s)

Positive externality: the action of one agent gives a benefit to another agent(s)

Negative Externalities and Inefficiency

- marginal external cost Increase in cost imposed externally as one or more firms increase output by one unit.
- marginal social cost Sum of the marginal cost of production and the marginal external cost.

18.1 EXTERNALITIES

Negative Externalities and Inefficiency

Figure 18.1

External Cost

When there are
negative externalities,
the marginal social cost
the marginal social cost
\circ MSC is higher than the
o marginal cost MC.
The difference is the marginal external cost MEC.
In (a), a profit-
maximizing firm
produces at q_{1}, where
price is equal to MC.
The efficient output is q^{*},
${ }_{\square}^{\circ}$ at which price equals
\# MSC.

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e
3 of 35

18.1 EXTERNALITIES

Negative Externalities and Inefficiency

Figure 18.1
External Cost (continued)
In (b), the industry's competitive output is Q_{1}, at the intersection of
Chapter 18 Externalities and Public Goods

18.1 EXTERNALITIES

Positive Externalities and Inefficiency

- marginal external benefit

Increased benefit that accrues
to other parties as a firm increases output by one unit.

- marginal social benefit Sum
of the marginal private benefit plus the marginal external benefit.

18.1 EXTERNALITIES

Positive Externalities and Inefficiency

Figure 18.2
External Benefits
When there are positive
Chapter 18 Externalities and Public Goods externalities, marginal social benefits MSB are higher than marginal benefits D.
The difference is the marginal external benefit \qquad MEB.
The price P_{1} results in a level of repair, q_{1}.
A lower price, P^{*}, is
required to encourage the efficient level of supply, q^{*}.

A model of externalities

Two agents, A and B, consumes good x, respectively in quantities x_{A} and x_{B}.
To consume, agent A pays a cost $c\left(x_{A}\right)$ and agent B pays a cost $c\left(x_{B}\right)$ where function $c($.$) is increasing and convex (c^{\prime}>0$ and $c^{\prime \prime} \geq 0$)
The consumption of one agent produces an externality on the other agent, i.e.
$u_{A}\left(x_{A}, x_{B}\right)$ is the agent A's utility where $\frac{d u_{A}}{d x_{A}}>0$ is the marginal benefit and $\frac{d u_{A}}{d x_{B}}$ is the marginal externality of agent B's consumption on agent A's utility
$u_{B}\left(x_{B}, x_{A}\right)$ is the agent B's utility where $\frac{d u_{B}}{d x_{B}}>0$ is the marginal benefit and $\frac{d u_{B}}{d x_{A}}$ is the marginal externality of agent A's consumption on agent B's utility

Selfish agents face the following problems:
Agent A's problem $\max _{\left\{x_{A}\right\}} u_{A}\left(x_{A}, x_{B}\right)-c\left(x_{A}\right)$
Agent B's problem $\max _{\left\{x_{B}\right\}} u_{B}\left(x_{B}, x_{A}\right)-c\left(x_{B}\right)$
FOCs are $\frac{d u_{A}}{d x_{A}}=\frac{d c\left(x_{A}\right)}{d x_{A}} \quad \frac{d u_{B}}{d x_{B}}=\frac{d c\left(x_{B}\right)}{d x_{B}}$

Suppose a social planner that maximizes the sum of the utilities of the two agents. Its problem is

$$
\max _{\left\{x_{A}, x_{B}\right\}} u_{A}\left(x_{A}, x_{B}\right)+u_{B}\left(x_{B}, x_{A}\right)-c\left(x_{A}\right)-c\left(x_{B}\right)
$$

The FOCs are

$$
\frac{d u_{A}}{d x_{A}}=\frac{d c\left(x_{A}\right)}{d x_{A}}-\frac{d u_{B}}{d x_{A}} \quad \frac{d u_{B}}{d x_{B}}=\frac{d c\left(x_{B}\right)}{d x_{B}}-\frac{d u_{A}}{d x_{B}}
$$

Selfish agents: FOCs are

$$
\begin{equation*}
\frac{d u_{A}}{d x_{A}}=\frac{d c\left(x_{A}\right)}{d x_{A}} \quad \frac{d u_{B}}{d x_{B}}=\frac{d c\left(x_{B}\right)}{d x_{B}} \tag{I}
\end{equation*}
$$

Social planner: FOCs are

$$
\begin{equation*}
\frac{d u_{A}}{d x_{A}}=\frac{d c\left(x_{A}\right)}{d x_{A}}-\frac{d u_{B}}{d x_{A}} \quad \frac{d u_{B}}{d x_{B}}=\frac{d c\left(x_{B}\right)}{d x_{B}}-\frac{d u_{A}}{d x_{B}} \tag{II}
\end{equation*}
$$

If externality are negative, i.e. $\frac{d u_{B}}{d x_{A}}<0$ and $\frac{d u_{A}}{d x_{B}}<0$ the RHS of conditions (II) are bigger respect to the RHS of conditions (I).
This implies that selfish agents consume more respect to the social planner solution.
Note that LHS is decreasing, as well as the RHS is increasing If externality are positive, i.e. $\frac{d u_{B}}{d x_{A}}>0$ and $\frac{d u_{A}}{d x_{B}}>0$ the RHS of conditions (II) are smaller respect to the RHS of conditions (I).
This implies that selfish agents consume less respect to the social planner solution.

Example with negative externalities
$u_{A}\left(x_{A}, x_{B}\right)=10 x_{A}-x_{B}$ and $c\left(x_{A}\right)=x_{A}{ }^{2}$
$u_{B}\left(x_{B}, x_{A}\right)=10 x_{B}-x_{A}$ and $c\left(x_{B}\right)=x_{B}{ }^{2}$

Selfish agents: $\quad x_{A}=5 \quad x_{B}=5$
Social planner: $\quad x_{A}=4.5 \quad x_{B}=4.5$

Example with positive externalities
$u_{A}\left(x_{A}, x_{B}\right)=10 x_{A}+x_{B}$ and $c\left(x_{A}\right)=x_{A}{ }^{2}$
$u_{B}\left(x_{B}, x_{A}\right)=10 x_{B}+x_{A}$ and $c\left(x_{B}\right)=x_{B}{ }^{2}$

Selfish agents: $\quad x_{A}=5 \quad x_{B}=5$
Social planner: $\quad x_{A}=5.5 \quad x_{B}=5.5$

18.2 WAYS OF CORRECTING MARKET FAILURE

Figure 18.4

The Efficient Level of Emissions

The efficient level of factory
Chapter 18 Externalities and Public Goods emissions is the level that equates the marginal external cost of emissions MEC to the benefit associated with lower abatement costs MCA.
The efficient level of 12

$$
\text { units is } E^{*} \text {. }
$$ units is E^{*}.

18.2 WAYS OF CORRECTING MARKET FAILURE

An Emissions Standard

- emissions standard Legal limit on the amount of
 pollutants that a firm can emit.

Figure 18.5
Standards and Fees
Chapter 18 Externalities and Public Goods
The efficient level of emissions at E^{*} can be achieved through either an emissions fee or an emissions standard.

Facing a fee of $\$ 3$ per unit of emissions, a firm reduces emissions to the point at which the fee is equal to the marginal cost of abatement.

The same level of emissions reduction can be achieved 12 with a standard that limits emissions to 12 units.

18.2 WAYS OF CORRECTING MARKET FAILURE

An Emissions Fee

- emissions fee Charge levied on each unit of a firm's
 emissions.
Standards versus Fees
Figure 18.6

The Case for Fees

Chapter 18 Externalities and Public Goods
With limited information, a policymaker may be faced with the choice of either a single emissions fee or a single emissions standard for all firms.

The fee of $\$ 3$ achieves a total emissions level of 14 units more cheaply than a 7-unit-perfirm emissions standard.

With the fee, the firm with a lower abatement cost curve (Firm 2) reduces emissions more than the firm with a higher cost curve (Firm 1).

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e.

18.2 WAYS OF CORRECTING MARKET FAILURE

Standards versus Fees

Figure 18.7

The Case for Standards

When the government has limited information about the costs and

18.2 WAYS OF CORRECTING MARKET FAILURE

Tradeable Emissions Permits

- tradeable emissions permits System of marketable permits, allocated among firms, specifying the maximum level of emissions that can be generated.
Marketable emissions permits create a market for externalities. This market approach is appealing because it combines some of the is to replace coal with cleaner fuels, to encourage the use of public transportation, and to introduce fuelefficient hybrid vehicles.

[^0]
18.2 WAYS OF CORRECTING MARKET FAILURE

EXAMPLE 18.3
Sulfur dioxide emissions produced through the burning of coal for use in electric power generation and the wide use of coal-based home furnaces have caused a huge problem in Beijing as well as other cities in China.

Over the long term, the key to solving Beijing's problem 15 ofs

Figure 18.8
Price of Tradeable Emissions Permits

The price of tradeable permits for sulfur dioxide emissions fluctuated between $\$ 100$ and $\$ 200$ in the period 1993 to 2003, but then increased sharply during 2005 and 2006 in response to an increased demand for permits. Since then, the price has fluctuated around $\$ 400$ to $\$ 500$ per ton.

18.2 WAYS OF CORRECTING MARKET FAILURE

Recycling

Figure 18.9
The Efficient Amount of Recycling
As the amount of scrap disposal increases, the marginal private cost, MC, increases, but at a much lower rate than the marginal social cost MSC.

The marginal cost of recycling curve, MCR, shows that as the amount of disposal decreases, the amount of recycling increases; the marginal cost of recycling increases.

[^1]
18.2 WAYS OF CORRECTING MARKET FAILURE

Recycling

Figure 18.9

The Efficient Amount of Recycling (continued)

The efficient amount of recycling of scrap material is

18.2 WAYS OF CORRECTING MARKET FAILURE

Refundable Deposits

Figure 18.10
Refundable Deposits
The supply of virgin glass containers is given by S_{v} and
the supply of recycled glass by S_{r}.
The market supply S is the horizontal sum of these two curves.
As a result, the market price of glass is P and the equilibrium supply of recycled glass is M_{1}.

$$
M_{1}
$$

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e

18.2 WAYS OF CORRECTING MARKET FAILURE

Refundable Deposits

Figure 18.10
Refundable Deposits (continued)
By raising the relative cost of disposal and encouraging
Chapter 18 Externalities and Public Goods
recycling, the refundable deposit increases the supply of recycled glass from S_{r} to S_{r}^{\prime} and the aggregate supply of glass from S to S^{\prime}.
The price of glass then falls to P^{\prime}, the quantity of recycled glass increases to M^{*}, and the amount of disposed glass decreases.

Note as the quantity of virgin M^{*} glass reduces

18.2 WAYS OF CORRECTING MARKET FAILURE

EXAMPLE 18.4 Regulating Municipal Solid Wastes

Many other countries have made greater efforts to encourage recycling than the United States.

A number of proposals to encourage more recycling in the United States include a refundable deposit, curbside charge, and mandatory separation. Mandatory separation is perhaps the least desirable of the three alternatives.

A recent case in Perkasie, Pennsylvania, shows that recycling programs can indeed be effective. Prior to implementation of a program combining all three economic incentives just described, the total amount of unseparated solid waste was 2573 tons per year. When the program was implemented, this amount fell to 1038 tons-a 59-percent reduction. As a result, the town saved $\$ 90,000$ per year in disposal costs.
18.3 STOCK EXTERNALITIES

- stock externality Accumulated result of action by a producer or consumer which, though not Chapter 18 Externalities and Public Goods accounted for in the market price, affects other producers or consumers.

18.3 STOCK EXTERNALITIES

Stock Buildup and Its Impact

How does the stock of a pollutant change over time?
With ongoing emissions, the stock will accumulate, but some fraction of the stock, δ, will dissipate each year. Thus, assuming the stock starts at zero, in the first year, the stock of pollutant (S) will be just the amount of that year's emissions (E):

$$
S_{1}=E_{1}
$$

In general, the stock in any year tis given by the emissions generated that year plus the nondissipated stock from the previous year:

$$
S_{t}=E_{t}+(1-\delta) S_{t-1}
$$

If emissions are at a constant annual rate E, then after N years, the stock of pollutant will be

$$
S_{N}=E\left[1+(1-\delta)+(1-\delta)^{2}+\cdots+(1-\delta)^{N-1}\right]
$$

As N becomes infinitely large, the stock will approach the long-run equilibrium level E / δ.

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e.

18.3 STOCK EXTERNALITIES

Stock Buildup and Its Impact

Numerical Example Table 18.1 shows how the stock builds up over time. Note that after 100 years, the stock will reach a level of 4,337 units. (If this level of emissions continued forever, the stock will eventually approach $E / \delta=100 / .02=5,000$ units.)

18.3 STOCK EXTERNALITIES

Stock Buildup and Its Impact

To determine whether a policy of zero emissions makes sense,
 we must compare the present value of the annual cost of $\$ 1.5$ billion with the present value of the annual benefit resulting from a reduced stock of pollutant.

$$
\mathrm{NPV}=(-1.5+.1)+\frac{(-1.5+.198)}{1+R}+\frac{(-1.5+.296)}{(1+R)^{2}}+\cdots+\frac{(-1.5+4.337)}{(1+R)^{99}}
$$

Table 18.2 shows the NPV as a function of the discount rate. It also shows how the NPV of a "zero emissions" policy depends on the dissipation rate, δ. If δ is lower, the accumulated stock of pollutant will reach higher levels and cause more economic damage, so the future benefits of reducing emissions will be greater.

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e.
18.3 STOCK EXTERNALITIES

[^2]
18.3 STOCK EXTERNALITIES

EXAMPLE 18.5 Global Warming

Emissions of carbon dioxide and other greenhouse gases have increased dramatically over the past century, which has in turn led to an increase in atmospheric concentrations of greenhouse gases, or GHGs.

The problem is that the costs of reducing GHG emissions would occur today but the benefits from reduced emissions would be realized only in some 50 or more years.

Does this emissions-reduction policy make sense? To answer that question, we must calculate the present value of the flow of net benefits, which depends critically on the discount rate. Economists disagree about what rate to use, and as a result, they disagree about what should be done about global warming

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e.

18.3 STOCK EXTERNALITIES

EXAMPLE 18.5 Global Warming (continued)

TABLE 18.3 Reducing GHG Emissions

"Business as Usual"					Emissions Reduced by 1\% per Year					
Year	$E_{\text {t }}$	s_{t}	ΔT_{t}	Damage	E_{t}	$s_{\text {t }}$	ΔT_{t}	Damage	Cost	Net Benefit
2010	50	430	σ	0	50	430	0°	0	0.65	-0.65
2020	55	460	$0.5{ }^{\circ}$	0.54	45	460	0.5*	0.43	0.83	-0.72
2030	62	490	1 -	1.38	41	485	$1 \cdot$	1.11	1.07	-0.79
2040	73	520	$1.5{ }^{\circ}$	2.68	37	510	$1.4{ }^{*}$	2.13	1.36	-0.83
2050	85	550	$2{ }^{*}$	4.54	33	530	$1.8{ }^{\circ}$	3.63	1.75	-0.84
2060	90	590	23^{*}	6.77	30	550	$2{ }^{*}$	5.81	223	-1.27
2070	95	610	27^{*}	9.91	27	550	$2{ }^{*}$	7.44	286	-0.38
2080	100	640	$3 \cdot$	14.28	25	550	$2{ }^{*}$	9.52	3.66	1.10
2090	105	670	$3.3{ }^{\circ}$	20.31	22	550	2 *	12.18	4.69	3.44
2100	110	700	3.7	28.59	20	550	2	15.60	6.00	7.00
2110	115	730	$4{ }^{*}$	39.93	18	550	2^{*}	19.97	768	12.28
the charge in temperature ΔT, is measured in degees Celsiss, and costs, derrages and net bereflis are messured in thilions of 2007 colars. Cost of reducrg emissions is esimsted to be 1 pescent of GCP esch year. Worid GCP is projected to gow at 2.5 W in real terms from a level of sb5 trilion in 2010. Damsge from wamring is estrnated to be 1.3% of GDP per year for every 1 ' C of termperature increase										

Table 18.3 shows GHG emissions and average global temperature change for two scenarios. Also shown is the annual net benefit from the policy, which equals the damage under the "business as usual" scenario minus the (smaller) damage when emissions are reduced minus the cost of reducing emissions.

18.4 EXTERNALITIES AND PROPERTY RIGHTS

Property Rights

- property rights Legal rules stating what people or firms may do with their property.

Bargaining and Economic Efficiency

Economic efficiency can be achieved without government intervention when the externality affects relatively few parties and when property rights are well specified.

TABLE 18.4	Profits under Alternative Emissions Choices (Daily)		
	Factory's (\$)	Fishermen's Profit $\mathbf{(\$)}$	Total Profit $(\$)$
No filter, no treatment plant	500	100	600
Filter, no treatment plant	300	500	800
No filter, treatment plant	500	200	700
Filter, treatment plant	300	300	600

The efficient solution maximizes the joint profit of the factory and the fishermen. Maximization occurs when the factory installs a filter and the fishermen do not build a treatment plant.

Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e.

18.4 EXTERNALITIES AND PROPERTY RIGHTS

Bargaining and Economic Efficiency

If the factory and the fishermen agree to split this gain equally by having the fishermen pay the factory $\$ 250$ to install the filter, this bargaining solution achieves the efficient outcome.

TABLE 18.5 Bargaining with Alternative Property Rights

No Cooperation	Right to Dump (\$)	Right to Clean Water (\$)
Profit of factory	500	300
Profit of fishermen	200	500
Cooperation		
Profit of factory	550	300
Profit of fishermen	250	500

- Coase theorem Principle that when parties can bargain without cost and to their mutual advantage, the resulting outcome will be efficient regardless of how property rights are specified.

18.4 EXTERNALITIES AND PROPERTY RIGHTS

Costly Bargaining-The Role of Strategic Behavior

Bargaining can be time-consuming and costly, especially when property rights are not clearly specified.

Bargaining can break down even when communication and monitoring are costless if both parties believe they can obtain larger gains.
Another problem arises when many parties are involved.
A Legal Solution—Suing for Damages
A suit for damages eliminates the need for bargaining because it specifies the consequences of the parties' choices. Giving the party that is harmed the right to recover damages from the injuring party ensures an efficient outcome. (When information is imperfect, however, suing for damages may lead to inefficient outcomes.)

18.5 COMMON PROPERTY RESOURCES

- common property resource Resource to which anyone has free access.

Figure 18.11
Common Property Resources When a common property resource, such as a fishery, is accessible to all, the resource is used up to the point F_{c} at which the private cost is equal to the additiona revenue generated.
This usage exceeds the efficient level F^{*} at which the marginal social cost of using the resource is equal to the marginal benefit (as given by the demand curve).

18.5 COMMON PROPERTY RESOURCES

EXAMPLE 18.7 Crawfish Fishing in Louisiana

Figure 18.12

Crawfish as a Common Property Resource
Because crawfish are bred in ponds to which fishermen have unlimited access, they are a
Common property resource.
The efficient level of fishing occurs when the marginal benefit is equal to the marginal social cost.
However, the actual level of fishing occurs at the point at which the price for crawfish is equal to the private cost of fishing.
The shaded area represents the social cost of the common property resource.

Example: The problem of the Commons

n farmers in a village graze their goats on the village green.
g_{i} is the number of goats of the $i^{\text {th }}$ farmer
The total number of goats is denote by $G=g_{1}+$ $\ldots .+g_{n}$
c is the cost of a goat
Value of a goat is $v(G)$ where
$v^{\prime}<0, v^{\prime \prime}<0$ and $v(G)>0$ if $G<G_{\text {max }}$.
During the spring farmers simultaneously choose how many goats to own.

Normal form game representation
Players: n farmers

Strategies:
$i^{\text {th }}$ player's set of strategy is $S_{i}=[0, \infty)$ i.e. $s_{i}=g_{i}$

Payoff:
$i^{\text {th }}$ player's payoff is $\pi_{i}=g_{i} V(G)-c g_{i}$

Solution: Nash Equilibrium

$\left(g_{1}^{*}, \ldots . g_{n}^{*}\right)$ is a Nash equilibrium if every g_{i}^{*} is the solution to the following farmer's problem:

$$
\max _{\left\{g_{i}\right\}} g_{i} \cdot v\left(g_{1}^{*}+\ldots+g_{i}+\ldots+g_{n}^{*}\right)-g_{i} \cdot c
$$

The FOC are:
$v\left(g_{1}^{*}+\ldots+g_{i}+\ldots+g_{n}^{*}\right)+g_{i} \cdot v^{\prime}\left(g_{1}^{*}+\ldots+g_{i}+\ldots+g_{n}^{*}\right)-c=0$
Then in a Nash equilibrium must be:

$$
v\left(g_{1}^{*}+\ldots+g_{i}^{*}+\ldots+g_{n}^{*}\right)+g_{i} \cdot v^{\prime}\left(g_{1}^{*}+\ldots+g_{i}^{*}+\ldots+g_{n}^{*}\right)-c=0
$$

for all i.

Denoting by G* the total number of goats in equilibrium, for every i the FOC is written as:

$$
v\left(G^{*}\right)+g_{i} \cdot v^{\prime}\left(G^{*}\right)-c=0
$$

Summing up all n FOCs we have

$$
\begin{gathered}
n \cdot v\left(G^{*}\right)+G^{*} \cdot v^{\prime}\left(G^{*}\right)-n \cdot c=0 \\
v\left(G^{*}\right)+\frac{G^{*}}{n} \cdot v^{\prime}\left(G^{*}\right)-c=0
\end{gathered}
$$

The social optimum $\mathrm{G}^{* *}$ is given by the solution of the following problem:

$$
\max _{\{G\}} G \cdot v(G)-G \cdot c
$$

The FOC is:

$$
v\left(G^{* *}\right)+G^{* *} \cdot v^{\prime}\left(G^{* *}\right)-c=0
$$

Then in The Nash equilibrium farmers choose to buy more goats that the social optimum.

Numerical example with two farmers

$v(G)=100-G^{2} \quad$ where $G=g_{1}+g_{2} \quad$ and $c=2$
Farmer 1's problem:

$$
\max _{g_{1}} g_{1}\left(100-\left(g_{1}+g_{2}\right)^{2}\right)-g_{1} c
$$

The FOC is:

$$
\begin{gathered}
100-\left(g_{1}+g_{2}\right)^{2}-2 g_{1}\left(g_{1}+g_{2}\right)-\mathrm{c}=0 \\
100-G^{2}-2 g_{1} G-\mathrm{c}=0
\end{gathered}
$$

The FOCs for both players are:
$100-G^{2}-2 g_{1} G-\mathrm{c}=0$ and $100-G^{2}-2 g_{2} G-\mathrm{c}=0$
Summing up we get:

$$
\begin{gathered}
200-2 G^{2}-2 G\left(g_{1}+g_{2}\right)-2 \mathrm{c}=0 \\
200-4 G^{2}-2 \mathrm{c}=0
\end{gathered}
$$

Replacing $\mathrm{c}=2$ and solving by G

$$
G=7
$$

Social optimum

The problem is

$$
\max _{G} G\left(100-G^{2}\right)-G c
$$

FOC:

$$
\begin{gathered}
\left(100-G^{2}\right)-2 G^{2}-c=0 \\
3 G^{2}=100-c=98 \\
G=\sqrt{\frac{98}{3}}<7
\end{gathered}
$$

18.6 PUBLIC GOODS

- public good Nonexclusive and nonrival good: the marginal cost of provision to an additional consumer is zero and people cannot be excluded from consuming it.
Chapter 18 Externalities and Public Goods
- nonrival good Good for which the marginal cost of its provision to an additional consumer is zero.
- nonexclusive good Good that people cannot be excluded from consuming, so that it is difficult or impossible to charge for its use.

18.6 PUBLIC GOODS

Efficiency and Public Goods

Figure 18.13
Efficient Public Good Provision
When a good is nonrival, the social marginal
Chapter 18 Externalities and Public Goods

18.6 PUBLIC GOODS

Public Goods and Market Failure

- free rider Consumer or producer who does not pay for a nonexclusive good in the expectation that others will.

EXAMPLE 18.8 The Demand for Clean Air

$$
\begin{aligned}
& \text { The Demand for Clean Air } \\
& \text { The three curves describe the } \\
& \text { willingness to pay for clean air (a } \\
& \text { reduction in the level of nitrogen } \\
& \text { oxides) for each of three different } \\
& \text { households (low income, middle } \\
& \text { income, and high income). } \\
& \text { In general, higher-income } \\
& \text { households have greater } \\
& \text { demands for clean air than lower- } \\
& \text { income households. Moreover, } \\
& \text { each household is less willing to } \\
& \text { pay for clean air as the level of } \\
& \text { air quality increases. }
\end{aligned}
$$

Public good game

N subjects denoted by $i \in\{1,2, \ldots \ldots, N\}$ are endowed by e_{i}
They contribute simultaneously to a public good. The contribution of subject i is denoted by c_{i}. The amount of public good is the sum of the contributions: $G=\sum_{i=1}^{N} c_{i}$
The utility of subject i is given by:

$$
u(G)+e_{i}-c_{i}
$$

where $u^{\prime}>0$ and $u "<0$ and
it exist a G^{*} such that:
$u^{\prime}=1$ for $G=G^{*}$ and $u^{\prime}<1$ for all $G<G^{*}$, greater than 1 otherwise.
The problem of subject i is:

$$
\max _{c_{i}} u(G)+e_{i}-c_{i}
$$

FOCs: $u^{\prime}(G)-1=0$ for all subjects i
Then the best response is to contribute an amount to reach an amount G^{*} of public good

FOCs: $u^{\prime}(G)-1=0$ for all subjects i
Then the best response is to contribute an amount to reach an amount G^{*} of public good
Then all combinations of contributions such that

$$
G^{*}=\sum_{i=1}^{N} c_{i}
$$

Represent a Nash equilibrium
Note that if $G^{*}=0$ the unique Nash equilibrium is when all contributions are equal to zero

What is the social optimum?
Suppose a social planner that maximizes the sum of the utilities of all subjects.
The problem of the social planners is:

$$
\max _{c_{i}} n \cdot u(G)+\sum_{i=1}^{N} e_{i}-G
$$

FOC: $\mathrm{n} \cdot u^{\prime}(G)-1=0$
Then the best response is an amount that satisfy

$$
u^{\prime}(G)=\frac{1}{n}
$$

By this amount is larger than G^{*} because u^{\prime} is decreasing ($u^{\prime \prime}<0$) and $u\left(G^{*}\right)=1$

Numerical example I: $u(G)=\ln (G)$
The problem of the social planners is:

$$
\max _{c_{i}} n \cdot \ln (G)+\sum_{i=1}^{N} e_{i}-G
$$

FOC: $\mathrm{n} \cdot \frac{1}{G}-1=0 \rightarrow G=n$
The problem of subject i is:

$$
\max _{c_{i}} \ln (G)+e_{i}-c_{i}
$$

FOC: $\frac{1}{G}-1=0$ for all subjects $i \rightarrow G=1$
Numerical example II
Note, suppose $u(G)=\ln (G+2)$, the FOC of the subject l's problem is: $\frac{1}{G+2}-1<0$ for all values of G
Then in equilibrium contributions are all equal to zero
The social optimum is $G=n-2$

18.7 PRIVATE PREFERENCES FOR PUBLIC GOODS

Figure 18.15

Determining the Level of
 Educational Spending

The efficient level of educational spending is determined by summing the willingness to pay for education (net of tax payments) of each of three citizens.

Curves W_{1}, W_{2}, and W_{3} represent their willingness to pay, and curve $A W$ represents the aggregate willingness to pay.
The efficient level of spending is $\$ 1200$ per pupil. The level of
 spending actually provided is the level demanded by the median voter. In this particular case, the median voter's preference (given by the peak of the W_{2} curve) is also the efficient level.

[^0]: Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e.

[^1]: Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e

[^2]: - social rate of discount Opportunity cost to society as a whole of receiving an economic benefit in the future rather than the present.

 In principle, the social rate of discount depends on three factors: (1) the expected rate of real economic growth; (2) the extent of risk aversion for society as a whole; and (3) the "rate of pure time preference" for society as a whole.

